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Numerical homogenization of cracking processes in thin

fibre-epoxy layers

M.V. Cid Alfaro1, A.S.J. Suiker1, C.V. Verhoosel1 and R. de Borst2.

1: Delft University of Technology, P.O. Box 5058, NL-2600 GB, Delft, The Netherlands

2: Eindhoven University of Technology, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

Abstract

Discrete microscale fracture processes in thin fibre-epoxy layers are connected to

a mesoscale traction-separation law through a numerical homogenization frame-

work. The microscale fracture processes are studied with the finite element method,

where cracking within the epoxy and debonding between fibres and epoxy is sim-

ulated by placing interface elements furnished with a mixed-mode interface dam-

age model in between the continuum elements modelling the fibres and epoxy.

It is demonstrated how the effective traction-separation response and the corre-

sponding microscale fracture patterns under mesoscale tensile conditions depend

on the sample size, the fibre volume fraction and the presence of imperfections.

Key words: fibre debonding, matrix cracking, cohesive zone model, discrete

fracture, adhesive layers.

1. Introduction

Finite element simulations serve as an important tool for studying the com-

plex failure behaviour of fibre-epoxy systems and optimizing their performance

in (macroscopic) engineering applications. However, the execution of a direct nu-

merical simulation on the mechanical response of an engineering structure, where

all the details of the underlying microstructure are incorporated, requires a very

fine finite element mesh, thus leading to an impractical amount of computational

time. A more efficient approach for this purpose is to use material models that

represent the mechanical response of the underlying microstructure in an effec-

tive fashion, as derived by means of analytical and/or numerical homogenization

techniques.

Preprint submitted to European Journal of Mechanics A/Solids September 28, 2009
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Analytical homogenization techniques often lead to computationally efficient

models. Nevertheless, these models typically fail to describe the effective material

response accurately when the underlying microstructure is complex and is char-

acterised by a strongly non-linear constitutive behaviour. Under these conditions

the use of a numerical homogenization method is recommendable. In the case of

continuum models, numerical homogenization is based on computationally aver-

aging the generated microstructural stress and deformation over a representative

volume element (RVE), thereby implicitly (i.e., not in closed-form) establishing

an effective, mesoscopic constitutive relation between the average stress and de-

formation. Over the past two decades, various approaches have been developed

along this line, see for example [1, 2, 3, 4, 5, 6, 7, 8, 9]. These approaches rely on

a local periodicity of the microstructure in the direct neighborhood of the RVE,

but do not impose periodicity over the complete macroscopic structure under con-

sideration (i.e., global periodicity is not required). The macroscopic structure thus

contains mesoscopic material points for which the specific microscopic RVE’s are

assumed to be periodic only in a small vicinity of the material points.

Although numerical homogenization approaches for bulk continuum problems

have been reported widely in the literature, numerical homogenization frame-

works for thin layer problems are lacking. Only recently a first step into this

direction has been made by Geubelle and co-workers [10, 11], where a mesoscale

cohesive zone formulation was derived from numerically homogenizing the mi-

croscale failure processes in a thin, heterogeneous adhesive, as simulated with

an isotropic damage model. The present paper also focuses on the derivation of a

mesoscale cohesive zone model from the numerical homogenization of microscale

fracture processes in a thin layer. The homogenization framework developed here

shows similarities with that of Geubelle and co-workers [10, 11]. It is essentially

obtained as a special case of the numerical homogenization of a bulk material

sample loaded under periodic boundary conditions, by collapsing the mesoscale

thickness of the bulk sample into a (cohesive) surface, but the derivation of the

homogenization framework runs along different lines. In addition, instead of sim-

ulating the microscale fracture processes in an averaged, smeared fashion using

a continuum damage model, a cohesive zone model is applied. This is, since ex-

perimental observations show that the microscale failure behaviour of relatively

brittle fibre-epoxy systems is characterised by fibre decohesion and matrix crack-

ing along well-identifiable, discrete cracking paths [12, 13, 14].

In order to allow for arbitrary microscale cracking paths that may develop

from complex crack branching and crack coalescence mechanisms, in the applied

finite element discretizations interface elements are placed between all contin-
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uum elements simulating the epoxy material. Furthermore, interface elements are

placed between the fibres and the epoxy matrix. This modelling approach, which

was originally proposed by Xu and Needleman [15], has been successfully used

in failure analyses of various materials, such as crazing in polymers [16], and

quasi-brittle fracture in cementitious materials [17].

The mesoscale traction-separation curve is constructed from numerically ho-

mogenizing the fracture response of a periodic fibre-epoxy microstructure loaded

under uniaxial tension. Such a traction-separation curve can, for example, be

applied in material points of interface elements used for simulating mesoscopic

fracture in fibre adhesives, under the condition that the thickness of the adhesive

is negligible with respect to the length scales of the macroscopic structure consid-

ered (i.e., a separation of length scales can be warranted). Nonetheless, the analy-

sis of specific meso- and/or macroscale applications falls beyond the scope of the

present study; the attention is directed here to the numerical homogenization of

the response of a microstructural RVE to a mesoscopic traction-separation curve,

thereby considering the influence of the fibre volume fraction and local imper-

fections. Although the numerical examples treated focus upon uniaxial tension,

the homogenization framework presented is applicable to arbitrary, mixed-mode

loading conditions.

The organization of this paper is as follows. In Section 2 the interface dam-

age model used for simulating the microscale fracture is summarised. In Sec-

tion 3 the governing equations of the fibre-epoxy material are formulated at the

meso- and microscales. The numerical homogenization framework that connects

the fracture behaviour of the microstructural fibre-epoxy sample to a mesoscopic

traction-separation response is presented in Section 4. In Section 5 the applica-

bility of the numerical homogenization framework is demonstrated by studying

fibre-epoxy samples loaded under uniaxial tension. The convergence of the RVE

size is examined, as well as the effect of the fibre volume fraction and the pres-

ence of imperfections on the traction-separation response. Finally, in Section 6

the main conclusions of the study are summarised.

2. Review of the interface damage model

In the present study the modelling of matrix cracking and fibre-matrix debond-

ing is performed with interface elements endowed with a rate-dependent damage

model. The damage model used has been explained in detail in [18, 19], in which

it has been applied to study the mesoscale laminate failure mechanisms reported

in [20, 21]. The damage model is phenomenological, and has a bi-linear traction-
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separation curve to model a quasi-brittle failure response generated by two sepa-

rating crack faces, see Figure 1. For completeness, only the main equations of the

interface damage model in [18, 19] are summarised below. In the presentation of

the model equations, adaptations are made to apply the three-dimensional model

in [19] to the two-dimensional configurations studied in this paper. The constitu-

tive equation relating the tractions to the relative displacements across an interface

is given by

ti = (1 − d)Kδijvj − dCijδ1j〈−v1〉 where i, j ∈ {1, 2}, (1)

with the normal and shear components of the tractions ti and relative displace-

ments vi designated by the indices ’1’ and ’2’, respectively. Furthermore, K is the

elastic stiffness and δij is the Kronecker delta symbol. The damage parameter d is

bounded as 0 ≤ d ≤ 1, such that an undamaged integration point is represented by

d = 0 and a completely damaged integration point is reflected by d = 1. Penetra-

tion of two opposite crack faces is prevented by the second term in the right-hand

side of Eq.(1), where the Macauley brackets 〈x〉 = 1

2
(x + |x|) ensure that crack

faces interact elastically when the normal relative displacement v1 becomes neg-

ative. The evolution of damage is assumed to occur in a rate-dependent fashion,

κ

Gc

(1-d)K

K

v0 vf

tu = Kv0

E
ff

ec
ti

v
e 

tr
ac

ti
o
n

Effective relative displacement

Onset of
fracture process

Completion of
damage process

Kv0(vf-κ)

(vf-v0)

Figure 1: Traction-separation law.
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with the rate of damage formulated as

ḋ =







F̂ (λ, κ)

η
for λ ≥ κ and v0 ≤ κ < vf ,

0 for 0 ≤ λ < κ or κ = vf .

(2)

Here, η is a relaxation parameter (with dimension of time) and F̂ (λ, κ) is the

damage loading function, which is dependent upon a deformation measure λ and

a history variable κ. The deformation measure λ is taken as the Euclidean norm of

the vector of relative crack face displacements, λ = ‖v‖ =
√

v2
1 + v2

2 . The upper

expression in Eq.(2) defines the rate of damage when the effective deformation

λ exceeds the value of the history variable κ, whereas the lower expression sets

the rate of damage equal to zero when (i) the threshold value for the initiation of

damage has not (yet) been reached, (ii) the interfacial material point is in a state of

unloading, or (iii) the damage process has been completed. Note from Eq.(2) that

the history parameter is bounded as v0 ≤ κ ≤ vf , with v0 and vf the relative crack

face displacements at damage initiation (d = 0) and damage completion (d = 1),

respectively.

The actual form of the damage loading function F̂ (λ, κ) is connected to the

shape of the softening curve in the traction-separation relation, see [19] for more

details. As illustrated in Figure 1, the damage process is characterised by a linear

softening curve, which is in correspondence with the following damage loading

function:

F̂ (λ, κ) = f̂(λ) − d̂(κ) =
vf(λ − v0)

λ(vf − v0)
−

vf(κ − v0)

κ(vf − v0)
. (3)

It can be observed from Eq.(2) that in the limit case of the relaxation parame-

ter going to zero, η → 0, the rate-independent loading condition is recovered:

F̂ (λ, κ) = 0, which, as shown by Eq.(3), corresponds to λ = κ.

In order to simulate fracture processes of arbitrary mode-mixity, the relative

displacements at damage initiation, v0, and damage completion, vf , are made

dependent of a mode-mixity parameter β, see also [22], i.e.,

β =
v2

v2 + 〈v1〉
. (4)

In correspondence with this expression, under pure mode I loading conditions

v2 = 0 and thus β = 0, whereas under pure mode II loading conditions v1 = 0
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and thus β = 1. The functions v0 = v̂0(β) and vf = v̂f(β) can be computed

adopting an energy-based, mixed-mode failure criterion from linear elastic frac-

ture mechanics, see [19, 22]. For this purpose, a fracture criterion is taken that is

often used to characterize mixed-mode toughness data for brittle interfacial frac-

ture [23, 24]:

GI

GI,c

+
GII

GII,c

= 1 , (5)

with GI and GII the mode I and mode II energy release rates, and GI,c and GII,c

the toughnesses under pure mode I and pure mode II loading conditions respec-

tively. From Eqs. (4) and (5), the effective relative displacements at damage

initiation and damage completion can be, respectively, computed as

v0 = v̂0(β) = v0
1 v0

2

√

1 + 2β2 − 2β

(βv0
1)

2
+ ((1 − β)v0

2)
2
, (6)

and

vf = v̂f(β) =
2(1 + 2β2 − 2β)

Kv0

[(
(1 − β)2

GI,c

)

+

(
β2

GII,c

)]
−1

, (7)

where v0
1 = tu1/K and v0

2 = tu2/K are the relative displacements at which damage

initiates under pure mode I and pure mode II loading conditions, respectively, and

tu1 and tu2 are the ultimate tractions under pure mode I and pure mode II condi-

tions, respectively. More details about the above interface damage model and its

numerical discretization can be found in [19].

3. Micro- and mesoscale modelling

Consider a mesoscopic domain ΩM ⊂ R
2 with an external boundary ΓM , see

Figure 2. The external boundary is subjected to displacements u
M and tractions

t
M at ΓM

u and ΓM
t , respectively. The mesoscopic domain is crossed by an adhesive

layer ΓM
coh. The response in a material point of the adhesive layer is connected to

the lower-scale response of a heterogeneous, microscopic domain Ωm ⊂ R
2. The

microscopic domain is represented by a fibre-epoxy sample of width b. Fracture in

the microscopic domain occurs along the cracking path Γm
coh. The boundary condi-

tions at the outer edges Γm of the microscopic domain are assumed to be periodic.

Further, for establishing a connection between formulations at the meso- and mi-

croscale levels, it is assumed that the microscopic domain can be considered as a

representative volume element (RVE).
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Γ
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Γ
B

m

Γ
R

m

Figure 2: Mesoscopic domain ΩM (left) and microscopic domain Ωm (right). The mesoscopic

domain is crossed by an adhesive layer ΓM
coh. The failure behaviour in a material point of the

adhesive layer is connected to the failure response of the microscopic domain (i.e., a fibre-epoxy

sample), as characterised by cracking across the domain width b along the internal boundary Γ
m
coh.

The boundary conditions at the outer edges Γm of the microscopic domain are periodic.

3.1. Governing equations at the mesoscale

The equilibrium condition for an arbitrary material point in the mesoscopic

domain ΩM depicted in Figure 2 is

σM
ij,j = 0 in ΩM , (8)

where σM
ij represents the Cauchy stress, with the superscript M denoting the

mesoscopic character of the variable. The tensor indices can have the values

i, j ∈ {1, 2}, in correspondence with the two-dimensional, orthogonal coordi-

nate system shown in Figure 2. Note that, for reasons of convenience, the body

forces have been omitted in Eq.(8). In addition, the boundary conditions for the

mesoscopic domain are given by

σM
ij nj = tMi on ΓM

t , (9)

uM
i = ûM

i on ΓM
u , (10)

where tMi and ûM
i respectively are the tractions and displacements, as prescribed

on the corresponding external boundaries ΓM
t and ΓM

u with outward normal ni.

Note that the total external boundary is given by ΓM = ΓM
t ∪ ΓM

u . The cohesive



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ARTICLE IN PRESS

surface ΓM
coh can be considered as an internal boundary, for which the tractions tMi

are related to the Cauchy stress σM
ij through the equilibrium condition

σM
ij nj = tMi on ΓM

coh. (11)

Applying the standard variational method, the principle of virtual work at the

mesoscale, under the neglection of body forces, leads to the following expression

∫

ΩM

σM
ij δεM

ij dΩM +

∫

ΓM

coh

tMi δJuM
i K dΓM

coh

︸ ︷︷ ︸

δW M

coh

=

∫

ΓM
t

tMi δuM
i dΓM

t , (12)

which holds for any admissible variational mesoscale displacement δuM
i . Here,

εM
ij represents the mesoscopic engineering strain, and the symbol J•K = (•+−•−)

denotes the jump of a quantity (i.e., the displacement) across the cohesive surface,

with ± designating the upper and lower faces of the cohesive surface. As can

be observed from the above expression, the quantity δW M
coh represents the virtual

work of the cohesive surface.

3.2. Governing equations at the microscale

Similar to the mesoscale equilibrium condition (8), the equilibrium require-

ment for a material point within the microscopic RVE Ωm shown in Figure 2 can

be expressed as

σm
ij,j = 0 in Ωm , (13)

where the boundary conditions are

σm
ij nj = ti on Γm

t , (14)

ui = ûi on Γm
u . (15)

Here, ti and ûi are the tractions and displacements at the corresponding external

boundaries Γm
t and Γm

u of the microscopic RVE, with the superscript m indicating

the microscopic character of these parameters. The total external boundary of the

RVE is given by Γm = Γm
t ∪Γm

u . In order to keep the notation in forthcoming sec-

tions concise, the index m will not be used for all microscale variables introduced
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in this section, i.e., note that it has been omitted for the tractions ti and the dis-

placements ui in Eqs.(14) and (15). As a next step, equilibrium at the microscale

cohesive surface Γm
coh is prescribed by

σm
ij nj = ti on Γm

coh. (16)

Similar to Eq.(12), the principle of virtual work at the microscale leads to

∫

Ωm

σm
ij δεm

ij dΩm +

∫

Γm

coh

ti δJuiK dΓm
coh =

∫

Γm
t

ti δui dΓm
t , (17)

which must be satisfied for any admissible variational microscale displacement

δui. In the above expression, εm
ij is the microscale strain tensor.

4. Connection between the microscale and mesoscale

In order to establish a connection between the responses of the microscale

and mesoscale domains shown in Figure 2, the microscale displacement field ui

is expressed in terms of the mesoscale displacement field uM
i and a fluctuating

displacement field ũi as

ui(x
M
j , xm

k ) = uM
i (xM

j ) + ũi(x
m
k ) , (18)

where, as illustrated in Figure 2, xM
j and xm

k denote the locations of the mesoscale

and microscale material points at which uM
i and ũi are evaluated, respectively.

Essentially, the fluctuating displacement field ũi accounts for the displacement

variations generated by the microstructural inhomogeneities, as measured with

respect to the (average) mesoscopic displacement of the microscale RVE.

4.1. Formulation of boundary conditions on the RVE

In correspondence with the decomposition given by Eq.(18), periodic bound-

ary conditions for the microscale RVE can be formulated as

ũT
i (s1) = ũB

i (s1),

tTi (s1) = −tBi (s1), (19)

ũL
i (s2) = ũR

i (s2),

tLi (s2) = −tRi (s2),
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where s1 is a local coordinate along the Γm
T and Γm

B boundaries of the RVE, and

s2 is a local coordinate along the Γm
L and Γm

R boundaries of the RVE. The first two

boundary conditions for the Top (T) and bottom (B) edges of the RVE reflect the

periodicity in the xm
2 -direction, where the second boundary condition ensures that

the total work generated by the periodic boundary conditions is zero. Similarly,

the last two boundary conditions for the left (L) and right (R) edges of the RVE

warrant periodicity in the xm
1 -direction.

The displacements of the four corner nodes of the microscale RVE in Figure

2 correspond to the (uniform) mesoscopic deformation of a material point in the

cohesive interface ΓM
coh. Hence, the displacement jump across the mesoscale co-

hesive interface may be expressed in terms of the displacement difference of two

opposite corner nodes at the top and bottom surfaces of the RVE as

JuM
i K = uM,T

i − uM,B
i = u4

i − u1
i = u3

i − u2
i . (20)

In accordance with this condition, the microscale displacement fluctuations are

equal to zero at the four RVE corner nodes, i.e.,

ũn
i = 0 with n ∈ {1, 2, 3, 4}. (21)

Combining Eqs.(21) and (18) with Eq.(19), the periodic displacement boundary

conditions, Eq.(19), may be reformulated as

uT
i (s1) = uB

i (s1) + u4
i − u1

i (or, uT
i (s1) = uB

i (s1) + u3
i − u2

i ),

uR
i (s2) = uL

i (s2) + u2
i − u1

i (or, uR
i (s2) = uL

i (s2) + u3
i − u4

i ).
(22)

The above form of the periodic displacement boundary conditions is suitable for

implementation within a finite element code.

4.2. Derivation of the mesoscopic interfacial traction

For establishing an expression for the mesoscopic traction, tMi , in a material

point at the mesoscale cohesive interface ΓM
coh, the averaging principle proposed

by Hill [25] is applied. This principle states that the spatial average of the virtual

work at the microscale, δW m, needs to be equal to the virtual work in a local

material point of the mesoscale cohesive interface, δwM
coh, i.e.,

δW m = δwM
coh. (23)
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Since the local virtual work and total virtual work for the mesoscale cohesive

interface are related as

δW M
coh =

∫

ΓM

coh

δwM
coh dΓM

coh, (24)

where the total virtual work is given by the second term in Eq.(12), the local

virtual work of the mesoscale cohesive interface is expressed by

δwM
coh = tMi δJuM

i K. (25)

In addition, the average virtual work at the microscale is determined by contribu-

tions of the cohesive interface Γm
coh and the adjacent continuum Ωm as

δW m =
1

b
δW m =

1

b







∫

Ωm

σm
ij δεm

ij dΩm +

∫

Γm

coh

ti δJuiK dΓm
coh







. (26)

Note from the above expression that the averaging procedure is performed by

dividing the total virtual work of the microscale RVE by its width b. The height

of the RVE does not need to be taken into account here, since the actual mesoscale

geometrical object is a cohesive surface ΓM
coh with zero thickness. Invoking Eq.(17),

the term in between the curly braces in Eq.(26) may be rewritten as

δW m =
1

b

∫

Γm
t

ti δui dΓm
t . (27)

Substituting the displacement decomposition, Eq.(18), into Eq.(27) then leads to

δW m =
1

b






∫

Γm
t

ti δu
M
i dΓm

t +

∫

Γm
t

ti δũi dΓm
t




 . (28)
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The second integral term in the right-hand side of Eq.(28) may be developed as

∫

Γm
t

ti δũi dΓm
t =

∫

Γm

L

tLi δũL
i dΓm

L +

∫

Γm

R

tRi δũR
i dΓm

R

+

∫

Γm

T

tTi δũT
i dΓm

T +

∫

Γm

B

tBi δũB
i dΓm

B

=

∫

Γm
t

tTi
(
δũT

i − δũB
i

)
ds1 +

∫

Γm
t

tRi
(
δũR

i − δũL
i

)
ds2

= 0,

(29)

in which the boundary conditions, Eq.(19) are substituted to arrive at the final

result that the microscopic fluctuations field does not contribute to the average

microscale virtual work. As mentioned previously, s1 here is a local coordinate

along the Γm
T and Γm

B boundaries of the RVE, and s2 is a local coordinate along

the Γm
L and Γm

R boundaries of the RVE. As a next step, the first integral term in the

right-hand side of Eq.(28) is developed as

∫

Γm
t

ti δu
M
i dΓm

t =

∫

Γm

L

tLi δuM,L
i dΓm

L +

∫

Γm

R

tRi δuM,R
i dΓm

R

+

∫

Γm

T

tTi δuM,T
i dΓm

T +

∫

Γm

B

tBi δuM,B
i dΓm

B

=

∫

Γm
t

tTi

(

δuM,T
i − δuM,B

i

)

ds1 +

∫

Γm
t

tRi

(

δuM,R
i − δuM,L

i

)

ds2

= (δu4
i − δu1

i )

∫

Γm
t

tTi ds1 +
(
δu2

i − δu1
i

)
∫

Γm
t

tRi ds2,

(30)

where the periodicity conditions given by Eqs.(19) and (22) are inserted to arrive

at the final expression. In order to develop this expression further, the specific

boundary conditions of the microscale RVE need to be invoked. Within a finite

element setting, the boundary conditions, Eq.(20), can be applied in two differ-

ent ways, which are depicted in Figure 3 as ’Case 1’ and ’Case 2’. The essential

difference between these two cases relates to the horizontal displacement of the

right corner node at the bottom RVE edge (i.e., node 2), which is unconstrained



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ARTICLE IN PRESS

for Case 1 and fully constrained for Case 2. Correspondingly, the boundary con-

ditions for Case 1 introduce the following constraints on the RVE

δu1
1 = δu1

2 = 0,

∫

Γm

R

tR1 dΓm
R = 0, δu2

2 = 0, (31)

where the third constraint essentially corresponds to a zero average normal stress

in the xm
1 -direction of the RVE (which is in agreement with an unconstrained

displacement of node 2 in the xm
1 -direction). In contrast, the boundary conditions

for Case 2 imply

δu1
1 = δu1

2 = 0, δu2
1 = δu2

2 = 0, (32)

where the third constraint in the above expression corresponds to a zero displace-

ment of node 2 in the xm
1 -direction of the RVE. Despite the different boundary

conditions for Cases 1 and 2, substitution of either Eq.(31) or Eq.(32) into Eq.(30)

leads to an identical result, namely

∫

Γm
t

ti δu
M
i dΓm

t = δu4
i

∫

Γm

T

tTi dΓm
T . (33)

Subsequently, inserting Eq.(33) together with Eq.(29) into Eq.(28) gives

δW m =
1

b

∫

Γm

T

tTi dΓm
T δu4

i . (34)

In accordance with Eq.(23), this expression needs to be equated with the virtual

work in a local material point of the mesoscopic cohesive interface, δwM
coh, given

by Eq.(25), which leads to

tMi δJuM
i K =

1

b

∫

Γm

T

tTi dΓm
T δu4

i . (35)

Since JuM
i K = u4

i for both Case 1 and Case 2, see Figure 3, the above expression

generally results in

tMi =
1

b

∫

Γm

T

tTi dΓm
T . (36)
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(b) Case 2

Figure 3: Two different boundary conditions for the microscale RVE, as indicated at node nr. 2.

Obviously, within a finite element discretization the integral term in the right-hand

side of Eq.(36) is approximated by the summation of the nodal forces at the top

edge of the RVE. Although Eq.(36) is applicable to both types of RVE boundary

conditions depicted in Figure 3, the results computed with this expression will be

nevertheless different, as a result of the different responses of the two microscale

RVE’s. Here, it is difficult to say which of the two RVE’s generally provides a

more accurate representation for the behaviour at the mesoscale, since this typi-

cally depends on the characteristics of the macroscopic boundary value problem

problem under consideration. Hence, for the numerical simulations presented in

the forthcoming sections, the boundary conditions of the RVE are chosen some-

what arbitrarily in accordance with Case 1.

5. Numerical simulations of a fibre-epoxy specimen subjected to uniaxial ten-

sion

In the present section a mesoscale traction-separation curve is derived from

the failure response of a microscale fibre-epoxy sample using the homogenization

framework presented in Section 4.2. Although the homogenization framework

can be applied to samples subjected to arbitrary combinations of tensile and shear

loading, for simplicity the examples studied focus upon uniaxial tension.
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5.1. Geometry and boundary conditions of the fibre-epoxy samples

An important requirement in a numerical homogenization study is to check

whether a loaded specimen converges to an RVE upon an increase in size. In

the present communication this convergence study is done for a layer with a spe-

cific thickness, thus keeping the length scale in the thickness direction (i.e., the

sample height) fixed. In the longitudinal direction the length scale is varied by

considering two different sample widths. Note that this approach is different from

a convergence study on RVE’s for bulk materials, where the length scales in all

dimensional directions of the sample are varied, see for example, [9].

For each of the two samples two different fibre volume fractions are consid-

ered, i.e., Vf = 0.3 and 0.5, see Figures 4 and 5. The samples are subjected to

uniaxial tension by prescribing the vertical displacement, û2, at the top edge of

the sample. Quasi-static loading conditions are warranted by using a relatively

small nominal strain rate of ˙̂u2/h = 4 × 10−3 s−1, where h is the sample height.

Periodic boundary conditions are prescribed at the left and right edges of the sam-

ple, as explained in Section 4.1. The displacement at the bottom edge of the

sample is constrained in the vertical direction, and the displacement of the node at

the bottom-left corner of the specimen is also constrained in the horizontal direc-

tion, see Figures 4 and 5. These boundary conditions are in correspondence with

Case 1 depicted in Figure 3(a).

The first sample studied is square-shaped, with a width (and height) equal to

b = h = 0.125 mm. The second sample is rectangular-shaped, where, in com-

parison with the square-shaped sample, the width is chosen two times larger, i.e.,

b = 0.250 mm, while the height h is kept the same. Essentially, the chosen sam-

ple height is representative of the thickness of fibre-epoxy layers used in GLARE

[13]. These fibre-epoxy layers are composed of an FM94 epoxy and S2 glass fi-

bres of 10 µm in diameter. As illustrated in Figures 4 and 5, the internal material

structure of the samples relates to a random fibre distribution that is geometrically

periodic in the x1-direction.

5.2. Finite element model

The finite element model used for the microscale computations is plane-strain

and thus is representative of fibres with a relatively large (actually infinite) length.

The fibres and the epoxy matrix are meshed with 6-node triangular elements

equipped with a 7-point Gauss quadrature. Debonding between fibre and ma-

trix is simulated with the interface damage model summarised in Section 2, us-

ing 6-node interface elements equipped with a 3-point Newton-Cotes quadrature.
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(a) Square-shaped specimen.
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(b) Rectangular-shaped specimen.

Figure 4: Geometry and boundary conditions of fibre-epoxy samples with a fibre volume fraction

of 0.3. The diameter of the glass fibres is 10µm.
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(a) Square-shaped specimen.
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(b) Rectangular-shaped specimen.

Figure 5: Geometry and boundary conditions of fibre-epoxy samples with a fibre volume fraction

of 0.5. The diameter of the glass fibres is 10µm.

Fracture processes within the epoxy material are also simulated with the inter-

face damage model, placing 6-node interface elements furnished with a 3-point

Newton-Cotes quadrature in between triangular continuum elements constructing

the epoxy matrix. This modelling approach for the simulation of fracture was orig-

inally proposed by Xu and Needleman [15], and warrants that the crack initiation

and propagation processes in the sample are naturally determined by the geometry

and boundary conditions applied, and by the parameter values used in the inter-

face traction separation law. The influence of the finite element discretization on

the fracture response can be minimised by choosing a sufficiently fine, randomly

oriented mesh. Nonetheless, the mesh fineness is bounded by a maximum in or-
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Sample Vf Continuum Fibre-epoxy Epoxy Total

shape elements int. elems. int. elems.

Square 0.3 5194 772 5001 10967

Square 0.5 9906 1679 6747 18332

Rectangular 0.3 10390 1549 10035 21974

Rectangular 0.5 19720 3360 13409 36489

Table 1: Number of elements used for samples of different size and volume fraction Vf , see Figures

4 and 5.

der to limit the artificial response contributions related to the use of an interface

’dummy’ stiffness in the traction-separation law, see Eq.(1). In fact, the applica-

tion of interface elements with an elastic dummy stiffness causes that the elastic

response of the finite element model does not converge to that of an ideal contin-

uum in the limit of an ’infinitely fine’ mesh. The number of continuum elements

and interface elements used in the finite element meshes of the samples in Figures

4 and 5 are listed in Table 1. Note from this table that the number of elements used

for modelling the rectangular sample is about two times the number of elements

used for the square sample. Mesh refinement studies reported in [18] indicate that

for this mesh density the fracture response is computed with high accuracy.

The material parameters of the S2 glass fibre, the FM94 epoxy and the inter-

faces between fibres and epoxy and within the epoxy are listed in Table 2. The

elastic material properties for the fibre and the epoxy matrix have been adopted

from [26]. The value of the elastic stiffness K of the interfaces is taken relatively

high, such that the interfacial deformations in the elastic regime are negligibly

small. Values for the ultimate strengths and toughnesses of the epoxy material

and of fibre-epoxy interface could not be found in the literature, and therefore

are estimated from the failure response of delamination tests on double spliced

GLARE specimens [27]. The toughness values listed in Table 2 indicate that the

FM94 epoxy used in these experimental specimens is relatively brittle, both in

tension and in shear. It is worth mentioning that the prepreg layer of a more recent

generation of GLARE laminates is a factor 5 to 8 tougher, due to improvements in

the manufacturing process and the use of an improved epoxy material with better

mechanical properties, see [28]. For simplicity, for the epoxy and fibre-epoxy in-

terfaces the strength and toughness values are taken the same. Here, the subscripts

’coh’ and ’adh’ used in the denotation of the parameters refer to the cohesive

strength of the epoxy material and the adhesive strength of the fibre-epoxy inter-
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Parameter(s) Value(s)

Fibre

Young’s modulus E = 86.9 [GPa]

Poisson’s ratio ν = 0.23

Epoxy

Young’s modulus E = 3.9 [GPa]

Poisson’s ratio ν = 0.37

Fibre-epoxy interface & epoxy interface

Elastic stiffness K = 1×108 [N/mm3]

Ultimate normal and shear strengths tu1 = tu2 = tuadh = 50 [MPa]

Mode I and mode II fracture toughnesses GI,c = GII,c = Gc,adh = 0.5 [N/mm]

Relaxation parameter η = 0.002 [s]

Table 2: Material properties of the fibre-epoxy sample.

face, respectively. The value of the relaxation parameter η is taken relatively small

in order to closely approach the limit case of rate-independent crack growth. Ad-

ditional simulations not presented here have shown that the introduction of a small

rate-dependency is necessary to avoid numerical convergence problems caused by

crack bifurcations.

5.3. Influence of sample size and fibre volume fraction

The failure responses of the samples with the two different widths are mutu-

ally compared to assess the convergence of the numerical result upon an increas-

ing microstructural sample volume, see also, for example, [9]. The mesoscopic

traction-separation relation obtained after applying the homogenization approach

presented in Section 4.3.2 to the numerical results is shown in Figure 6. It can

be observed that for both volume fractions the traction-separation responses of

the square-shaped and rectangular-shaped samples are similar, indicating that the

square-shaped sample is sufficiently large for being considered as an RVE. Es-

sentially, the traction-separation responses closely follow the mode I traction-

separation law of the epoxy material. This is due to the fact that the failure process

develops locally through the epoxy material in a mode I dominated fashion (i.e.,

the orientation of the failure crack is approximately perpendicular to the direc-

tion of the tensile loading). This can be observed from Figures 7 and 8 for the

square-shaped and rectangular shaped specimens with a fibre volume fraction of
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0.3, respectively, and from Figures 9 and 10 for the square-shaped and rectan-

gular shaped specimens with a fibre volume fraction of 0.5, respectively. In all

cases the crack clearly grows through the fibre-low (or epoxy-rich) area close to

the top edge of the specimen. This position of the dominant failure crack is in

agreement with experimental observations on delamination failure in fibre-metal

laminates [13]. These experiments show that mesoscale delamination between

the prepreg layer and the aluminium layer at the microscale occurs by cracking

at the edge of the fibre-low area, which is close to the edge of the prepreg layer,

see Figure 11. Since the fibres are hardly involved in this failure mechanism, a

change in the fibre volume fraction from 0.3 to 0.5 changes the sample response

only mildly. Because the present analysis shows that the square-shaped sample

can be considered as a representative volume element, this sample will be used

for the forthcoming computations in this communication.

5.4. Influence of imperfections on failure response

In order to study how the homogenized traction-separation response is influ-

enced by imperfections at fibre-epoxy interfaces, four different configurations are

considered, see Figure 12. The fibre volume fraction of the sample is 0.3 and the

imperfections are represented by a local absence of the adhesive bonding strength
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(a) Fibre volume fraction Vf = 0.3
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Figure 6: Mesoscopic traction-separation response for the square-shaped and rectangular-shaped

samples shown in Figures 4 and 5. a) Fibre volume fraction Vf =0.3. b) Fibre volume fraction Vf

= 0.5.
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σ22 [MPa]

50403020100

Figure 7: Axial normal stress σ22 depicted in deformed, cracked configurations, for the square-

shaped sample in Figure 4(a) (which has a fibre volume fraction of 0.3). The deformed states are

taken at relative displacements Ju2K
M = 0.000816, 0.00146 and 0.00257 mm, respectively.

at specific fibre-epoxy interfaces. As illustrated in Figure 12, the four configura-

tions considered are characterised by: (i) A single imperfection in the upper region

of the sample (i.e., in the left-top quadrant), (ii) A single imperfection in the lower

region of the sample (i.e., in the right-bottom quadrant), (iii) Two imperfections

in the upper and lower regions of the sample (i.e., a combination of configurations

(i) and (ii)), and (iv) Two imperfections in the upper and lower regions of the sam-

ple, where the upper imperfection coincides with that in configuration (i) and the

lower imperfection is placed somewhat higher than that of configuration (ii).

The mesoscopic traction-separation response for the different configurations

in Figure 12 is plotted in Figure 13. For comparison, the response of the speci-

men without imperfections, plotted in Figure 6(a), has also been included in this

figure. The corresponding fracture patterns are depicted in Figures 14 to 17. For

all configurations the imperfections clearly act as nucleation sites for crack de-

velopment. In addition, their location typically is included in the geometry of

the dominant failure crack that develops upon complete failure of the fibre-epoxy

specimen. An exception in this respect, however, is the imperfection located in

the upper half of configuration (iii), see Figure 16; this imperfection initially acts

as a nucleation site for cracking but eventually is not included in the geometry

of the dominant failure crack, due to a local unloading upon deformation. This

is an important difference with configuration (iv), where both imperfections are
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σ22 [MPa]

50403020100

Figure 8: Axial normal stress σ22 depicted in deformed, cracked configurations, related to the

rectangular-shaped sample in Figure 4(b) (which has a fibre volume fraction of 0.3). The de-

formed states are taken at relative displacements Ju2K
M = 0.000815, 0.00186 and 0.00314 mm,

respectively.
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σ22 [MPa]

50403020100

Figure 9: Axial normal stress σ22 depicted in deformed, cracked configurations, related to the

square-shaped sample in Figure 5(a) (which has a fibre volume fraction of 0.5). The deformed

states are taken at relative displacements Ju2K
M = 0.000669, 0.00136 and 0.00265 mm, respec-

tively.

included in the geometry of the dominant failure crack, see Figure 17. The net

result of this behaviour is that the total crack length of configuration (iv) is sub-

stantially larger than that of configuration (iii), which thus requires more energy

dissipation in order to fail the sample. Correspondingly, the effective fracture

toughness of configuration (iv) is larger than that of configuration (iii), see Figure

13, and also is larger than that of the sample without imperfections. Hence, it

may be concluded that the presence of imperfections in a fibre-epoxy sample may

have a positive effect on the effective fracture toughness. From the comparison

of the fracture patterns for configurations (iii) and (iv) it can be further concluded

that the two imperfections both contribute to the geometry of the dominant failure

crack (thereby enhancing the effective fracture toughness) only if the distance be-

tween the imperfections in the tensile direction (i.e., in the thickness direction of

the layer) is not too large.

6. Concluding remarks

In this paper a numerical homogenization framework has been presented that

links the microscale response of a fibre-epoxy sample to a mesoscale traction-

separation curve that can be used for simulating the failure response of a (material

point in a) cohesive interface. The formulation is based on Hill’s averaging prin-
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σ22 [MPa]

50403020100

Figure 10: Axial normal stress σ22 depicted in deformed, cracked configurations, related to the

rectangular-shaped sample in Figure 5(b) (which has a fibre volume fraction of 0.5). The de-

formed states are taken at relative displacements Ju2K
M = 0.000669, 0.00134 and 0.00345 mm,

respectively.
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}
}

}
aluminium layer

fibre-low area of prepreg layer

fibre-rich area of prepreg layer

10    mµ  

Figure 11: A delaminating crack in a fibre-metal laminate, taken from [13]. The crack propagates

at the transition between the fibre-low and fibre-rich areas of the prepreg layer, which is close to

the interface with the aluminium layer.

ciple, which states that the spatial average of the virtual work at the microscale

is equal to the virtual work in a local material point of the mesoscale cohesive

interface. Microscale numerical simulations are performed on a fibre-epoxy sam-

ple subjected to uniaxial tension. Two different sample sizes are analysed for two

different values of the fibre volume fraction, Vf = 0.3 and 0.5. When the interface

between fibres and epoxy is of a higher strength than the epoxy itself, the numer-

ical response is characterised by a failure pattern that develops mainly through

the epoxy matrix, as a result of which the failure response is not very sensitive

to a change in the fibre volume fraction. The numerical results converge upon

(i) (ii) (iii) (iv)

Figure 12: Four fibre-epoxy samples with different locations and/or number of imperfections. The

fibre volume fraction of the sample is 0.3 and imperfections are indicated in red.
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Figure 13: Mesoscopic traction-separation law corresponding to the square-shaped sample with a

fibre volume fraction of 0.3 (shown in Figure 4(a)), plotted for a different number and position of

imperfections, see Figure 12.

σ22 [MPa]

50403020100

Figure 14: Axial normal stress σ22 depicted in deformed, cracked configurations, for case (i) in

Figure 12. The deformed states are taken at Ju2K
M = 0.821, 1.940 and 5.985 µm, respectively.

increasing the sample size, confirming that the sample size approaches a repre-

sentative volume element (RVE). The influence on the effective sample response

by the number and position of initial imperfections within the specimen is also
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σ22 [MPa]

50403020100

Figure 15: Axial normal stress σ22 depicted in deformed, cracked configurations, for case (ii) in

Figure 12. The deformed states are taken at Ju2K
M = 0.821, 1.854 and 5.863 µm, respectively.

σ22 [MPa]

50403020100

Figure 16: Axial normal stress σ22 depicted in deformed, cracked configurations, for case (iii) in

Figure 12. The deformed states are taken at Ju2K
M = 0.821, 1.985 and 5.894 µm, respectively.

studied. The imperfections generally trigger crack nucleation, and their location

typically is included in the geometry of the dominant failure crack that develops

upon deformation. As a result of this behaviour, imperfections can increase the
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σ22 [MPa]

50403020100

Figure 17: Axial normal stress σ22 depicted in deformed, cracked configurations, for the case (iv)

in Figure 12. The deformed states are taken at Ju2K
M = 0.822, 1.856 and 8.041 µm, respectively.

length of the dominant failure crack (as compared to the crack length for a sample

without imperfections), and thus may enhance the effective fracture toughness of

the sample.

The present numerical homogenization technique computes the complex fail-

ure response of fibre-epoxy samples in a robust and accurate manner. Although the

examples studied are limited to fibre-epoxy samples subjected to uniaxial tension,

it is emphasised that the averaging relations proposed in Section 4.2, in principle,

can be applied to arbitrary mixed-mode (i.e., tensile and shear) loading condi-

tions.

The simulations for fibre-epoxy samples loaded under uniaxial tension have

shown that the differences between the effective failure response of the fibre-

epoxy layer and the microscopic failure behaviour of the epoxy matrix are small,

see Figure 6. This is partly due to the fact that the cracking processes are described

with a discrete damage model, which makes it possible to capture a local, mode

I-driven failure behaviour in an accurate fashion. A more diffusive, continuum

damage model, such as that used by Geubelle and co-workers in their homogeni-

sation framework [10, 11], by definition will lead to a larger difference between

the local failure behaviour and the effective failure response of a fibre-epoxy layer.

It is also expected that under mixed-mode loading conditions this difference will

be larger than under the mode I loading conditions studied in this manuscript,
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since under increasing mode-mixity the fracture patterns in fibre-epoxy systems

typically become more distributive (or less localised), see [11]. In addition, as

observed in recent micromechanical computations [29], this difference may fur-

ther become larger when the strength of the fibre-epoxy interface is lower than the

strength of the epoxy. This is, because under such conditions the cracking path is

forced to run along the perimeter of fibres and consequently increases in length,

thereby enlarging the effective fracture toughness of the fibre-epoxy system (sim-

ilar to what has been demonstrated in this paper for samples with imperfections at

fibre-epoxy interfaces). These issues are interesting topics for future studies.
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