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Abstract

This review is concerned with a discussion of numerical methods for the
solution of the equations of special relativistic hydrodynamics (SRHD).
Particular emphasis is put on a comprehensive review of the application of
high-resolution shock-capturing methods in SRHD. Results obtained with
different numerical SRHD methods are compared, and two astrophysical
applications of SRHD flows are discussed. An evaluation of the various
numerical methods is given and future developments are analyzed.

c©1999 Max-Planck-Gesellschaft and the authors. Further information on
copyright is given at http://www.livingreviews.org/Info/Copyright/. For
permission to reproduce the article please contact livrev@aei-potsdam.mpg.de.

http://www.livingreviews.org/Info/Copyright/.


Article Amendments

On author request a Living Reviews article can be amended to include errata
and small additions to ensure that the most accurate and up-to-date infor-
mation possible is provided. For detailed documentation of amendments,
please go to the article’s online version at

http://www.livingreviews.org/Articles/Volume2/1999-3marti/.

Owing to the fact that a Living Reviews article can evolve over time, we
recommend to cite the article as follows:

Mart́ı, J.M., and Müller, E.,
“Numerical Hydrodynamics in Special Relativity”,

Living Rev. Relativity, 2, (1999), 3. [Online Article]: cited on <date>,
http://www.livingreviews.org/Articles/Volume2/1999-3marti/.

The date in ’cited on <date>’ then uniquely identifies the version of the
article you are referring to.

http://www.livingreviews.org/Articles/Volume2/1999-3marti/.


3 Numerical Hydrodynamics in Special Relativity

Contents

1 Introduction 5
1.1 Current fields of research . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Overview of the numerical methods . . . . . . . . . . . . . . . . . 5
1.3 Plan of the review . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Special Relativistic Hydrodynamics 7
2.1 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 SRHD as a hyperbolic system of conservation laws . . . . . . . . 8
2.3 Exact solution of the Riemann problem in SRHD . . . . . . . . . 9

3 High-Resolution Shock-Capturing Methods 13
3.1 Relativistic PPM . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 The relativistic Glimm method . . . . . . . . . . . . . . . . . . . 14
3.3 Two-shock approximation for relativistic hydrodynamics . . . . . 14
3.4 Roe-type relativistic solvers . . . . . . . . . . . . . . . . . . . . . 16
3.5 Falle and Komissarov upwind scheme . . . . . . . . . . . . . . . . 17
3.6 Relativistic HLL method . . . . . . . . . . . . . . . . . . . . . . . 18
3.7 Marquina’s flux formula . . . . . . . . . . . . . . . . . . . . . . . 19
3.8 Symmetric TVD schemes with nonlinear numerical dissipation . 20

4 Other Developments 21
4.1 Van Putten’s approach . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Relativistic SPH . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Relativistic beam scheme . . . . . . . . . . . . . . . . . . . . . . 25

5 Summary of Methods 27

6 Test Bench 30
6.1 Relativistic shock heating in planar, cylindrical, and spherical

geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Propagation of relativistic blast waves . . . . . . . . . . . . . . . 34

6.2.1 Problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2.2 Problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2.3 Collision of two relativistic blast waves . . . . . . . . . . . 43

7 Applications 48
7.1 Astrophysical jets . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.2 Gamma-Ray Bursts (GRBs) . . . . . . . . . . . . . . . . . . . . . 52

8 Conclusion 54
8.1 Evaluation of the methods . . . . . . . . . . . . . . . . . . . . . . 54
8.2 Further developments . . . . . . . . . . . . . . . . . . . . . . . . 55

8.2.1 Incorporation of realistic microphysics . . . . . . . . . . . 56
8.2.2 Coupling of SRHD schemes with AMR . . . . . . . . . . . 57
8.2.3 General relativistic hydrodynamics (GRHD) . . . . . . . . 57

Living Reviews in Relativity (1999-3)
http://www.livingreviews.org

http://www.livingreviews.org


J. M. Mart́ı and E. Müller 4

8.2.4 Relativistic magneto-hydrodynamics (RMHD) . . . . . . 58

9 Additional Information 60
9.1 Algorithms to recover primitive quantities . . . . . . . . . . . . . 60
9.2 Spectral decomposition of the 3D SRHD equations . . . . . . . . 61
9.3 Program RIEMANN . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.4 Basics of HRSC methods and recent developments . . . . . . . . 81
9.5 Newtonian SPH equations . . . . . . . . . . . . . . . . . . . . . . 83

References 85

Living Reviews in Relativity (1999-3)
http://www.livingreviews.org

http://www.livingreviews.org


5 Numerical Hydrodynamics in Special Relativity

1 Introduction

1.1 Current fields of research

Relativity is a necessary ingredient for describing astrophysical phenomena in-
volving compact objects. Among these phenomena are core collapse supernovae,
X-ray binaries, pulsars, coalescing neutron stars, black hole formations, micro-
quasars, active galactic nuclei, superluminal jets and gamma-ray bursts. When
strong gravitational fields are encountered as, for example, in the case of co-
alescing neutron stars or near black holes, general relativistic effects must be
considered. Also the significant gravitational wave signal produced by some of
these phenomena can only be understood in the framework of the general theory
of relativity. There are, however, astrophysical phenomena which involve flows
at relativistic speeds but no strong gravitational fields, and thus at least certain
aspects of these phenomena can be described within the framework of special
relativity alone, disregarding general relativistic effects.

Another field of research, where special relativistic “flows” are encountered,
are present-day heavy-ion collision experiments taking place in large particle
accelerators. The heavy ions are accelerated to ultra-relativistic velocities very
close to the speed of light (∼ 99.998% [166]) to study the equation of state for
hot dense nuclear matter.

1.2 Overview of the numerical methods

The first attempt to solve the equations of relativistic hydrodynamics (RHD)
was made by Wilson [188, 189] and collaborators [28, 75] using an Eulerian
explicit finite difference code with monotonic transport. The code relies on ar-
tificial viscosity techniques [185, 154] to handle shock waves. It has been widely
used to simulate flows encountered in cosmology, axisymmetric relativistic stel-
lar collapse, accretion onto compact objects and, more recently, collisions of
heavy ions. Almost all the codes for numerical both special (SRHD) and gen-
eral (GRHD) relativistic hydrodynamics developed in the eighties [142, 167, 126,
125, 127, 51] were based on Wilson’s procedure. However, despite its popular-
ity it turned out to be unable to describe extremely relativistic flows (Lorentz
factors larger than 2; see, e.g., [28]) accurately.

In the mid eighties, Norman & Winkler [131] proposed a reformulation of t
he difference equations of SRHD with an artificial viscosity consistent with the
relativistic dynamics of non-perfect fluids. The strong coupling introduced in the
equations by the presence of the viscous terms in the definition of relativistic
momentum and total energy densities required an implicit treatment of the
difference equations. Accurate results across strong relativistic shocks with large
Lorentz factors were obtained in combination with adaptive mesh techniques.
However, no multidimensional version of this code was developed.

Attempts to integrate the RHD equations avoiding the use of artificial vis-
cosity were performed in the early nineties. Dubal [45] developed a 2D code
for relativistic magneto-hydrodynamics based on an explicit second-order Lax-
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Wendroff scheme incorporating a flux corrected transport (FCT) algorithm [20].
Following a completely different approach Mann [102] proposed a multidimen-
sional code for general relativistic hydrodynamics based on smoothed particle
hydrodynamics (SPH) techniques [121], which he applied to relativistic spherical
collapse [104]. When tested against 1D relativistic shock tubes all these codes
performed similar to the code of Wilson. More recently, Dean et al. [39] have
applied flux correcting algorithms for the SRHD equations in the context of
heavy ion collisions. Recent developments in relativistic SPH methods [30, 164]
are discussed in Section 4.2.

A major break-through in the simulation of ultra-relativistic flows was ac-
complished when high-resolution shock-capturing (HRSC) methods, specially
designed to solve hyperbolic systems of conservations laws, were applied to
solve the SRHD equations [107, 106, 49, 50]. This review is intended to provide
a comprehensive discussion of different HRSC methods and of related methods
used in SRHD. Numerical methods for special relativistic MHD flows (MHD
stands for magneto hydrodynamics) are not included, because they are beyond
the scope of this review. However, we may include such a discussion in a future
update of this article.

1.3 Plan of the review

The review is organized as follows: Section 2 contains a derivation of the equa-
tions of special relativistic (perfect) fluid dynamics, as well as a discussion of
their main properties. In Section 3 the most recent developments in numerical
methods for SRHD are reviewed paying particular attention to high-resolution
shock-capturing methods. Other developments in special relativistic numeri-
cal hydrodynamics are discussed in Section 4. Numerical results obtained with
different methods as well as analytical solutions for several test problems are
presented in Section 6. Two astrophysical applications of SRHD are discussed in
Section 7. An evaluation of the various numerical methods is given in Section 8
together with an outlook for future developments. Finally, some additional
technical information is presented in Section 9.

The reader is assumed to have basic knowledge in classical [92, 35] and rela-
tivistic fluid dynamics [171, 6], as well as in finite difference / volume methods
for partial differential equations [152, 132]. A discussion of modern finite vol-
ume methods for hyperbolic systems of conservation laws can be found, e.g.,
in [96, 98, 93]. The theory of spectral methods for fluid dynamics is developed
in [24], and smoothed particle hydrodynamics (SPH) is reviewed in [121].
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7 Numerical Hydrodynamics in Special Relativity

2 Special Relativistic Hydrodynamics

The equations of special relativistic (perfect) fluid dynamics are derived, and
their main properties discussed. The derivation of the SRHD equations in 2.1 is
supplemented by 9.1, which discusses algorithms to compute primitive variables,
a procedure crucial in state-of-the-art SRHD codes. 2.2 reflects on the SRHD
equations as a hyperbolic system of conservation laws, and 2.3 discusses the
solution of the special relativistic Riemann problem, which is the basis for most
modern numerical methods. This last subsection is completed by 9.3, where a
FORTAN programme called RIEMANN for computing the solution of a special
relativistic Riemann problem is provided for download.

2.1 Equations

Using the Einstein summation convention, the equations describing the motion
of a relativistic fluid are given by the five conservation laws

(ρuµ);µ = 0, (1)

Tµν
;ν = 0, (2)

where (µ, ν = 0, . . . , 3), and where ;µ denotes the covariant derivative with
respect to coordinate xµ. Furthermore, ρ is the proper rest-mass density of
the fluid, uµ its four-velocity, and Tµν is the stress-energy tensor, which for a
perfect fluid can be written as

Tµν = ρhuµuν + pgµν . (3)

Here gµν is the metric tensor, p the fluid pressure, and and h the specific enthalpy
of the fluid defined by

h = 1 + ε +
p

ρ
, (4)

where ε is the specific internal energy. Note that we use natural units (i.e., the
speed of light c = 1) throughout this review.

In Minkowski spacetime and Cartesian coordinates (t, x1, x2, x3), the con-
servation equations (1, 2) can be written in vector form as

∂u

∂t
+

∂Fi(u)

∂xi
= 0, (5)

where i = 1, 2, 3. The state vector u is defined by

u = (D,S1, S2, S3, τ)T, (6)

and the flux vectors Fi are given by

Fi = (Dvi, S1vi + pδ1i, S2vi + pδ2i, S3vi + pδ3i, Si − Dvi)T. (7)

The five conserved quantities D, S1, S2, S3 and τ are the rest-mass density, the
three components of the momentum density, and the energy density (measured
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relative to the rest mass energy density), respectively. They are all measured
in the laboratory frame, and are related to quantities in the local rest frame of
the fluid (primitive variables) through

D = ρW, (8)

Si = ρhW 2vi (i = 1, 2, 3), (9)

τ = ρhW 2 − p − D, (10)

where vi are the components of the three-velocity of the fluid

vi =
ui

u0
, (11)

and W is the Lorentz factor

W = u0 =
1√

1 − vivi

. (12)

The system of equations (5) with definitions (6, 8, 9, 10, 11, 12) is closed by
means of an equation of state (EOS), which we shall assume to be given in the
form

p = p(ρ, ε). (13)

In the non-relativistic limit (i.e., v ≪ 1, h → 1) D, Si and τ approach
their Newtonian counterparts ρ, ρvi and ρE = ρε + ρv2/2, and equations of
system (5) reduce to the classical ones. In the relativistic case the equations
of (5) are strongly coupled via the Lorentz factor and the specific enthalpy,
which gives rise to numerical complications (see Section 2.3).

In classical numerical hydrodynamics it is very easy to obtain vi from the
conserved quantities (i.e., ρ and ρvi). In the relativistic case, however, the task
to recover (ρ, vi, p) from (D,Si, τ) is much more difficult. Moreover, as state-
of-the-art SRHD codes are based on conservative schemes where the conserved
quantities are advanced in time, it is necessary to compute the primitive vari-
ables from the conserved ones one (or even several) times per numerical cell
and time step making this procedure a crucial ingredient of any algorithm (see
Section 9.1).

2.2 SRHD as a hyperbolic system of conservation laws

An important property of system (5) is that it is hyperbolic for causal EOS [6].
For hyperbolic systems of conservation laws, the Jacobians ∂Fi(u)/∂u have real
eigenvalues and a complete set of eigenvectors (see Section 9.2). Information
about the solution propagates at finite velocities given by the eigenvalues of the
Jacobians. Hence, if the solution is known (in some spatial domain) at some
given time, this fact can be used to advance the solution to some later time
(initial value problem). However, in general, it is not possible to derive the
exact solution for this problem. Instead one has to rely on numerical methods
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9 Numerical Hydrodynamics in Special Relativity

which provide an approximation to the solution. Moreover, these numerical
methods must be able to handle discontinuous solutions, which are inherent to
non-linear hyperbolic systems.

The simplest initial value problem with discontinuous data is called a Rie-
mann problem, where the one dimensional initial state consists of two constant
states separated by a discontinuity. The majority of modern numerical meth-
ods, the so-called Godunov-type methods, are based on exact or approximate
solutions of Riemann problems. Because of its theoretical and numerical im-
portance, we discuss the solution of the special relativistic Riemann problem in
the next subsection.

2.3 Exact solution of the Riemann problem in SRHD

Let us first consider the one dimensional special relativistic flow of an ideal
gas with an adiabatic exponent γ in the absence of a gravitational field. The
Riemann problem then consists of computing the breakup of a discontinuity,
which initially separates two arbitrary constant states L (left) and R (right) in
the gas (see Fig. 1 with L ≡ 1 and R ≡ 5). For classical hydrodynamics the
solution can be found, e.g., in [35]. In the case of SRHD, the Riemann problem
has been considered by Mart́ı & Müller [108], who derived an exact solution
generalizing previous results for particular initial data [173].

The solution to this problem is self-similar, because it only depends on the
two constant states defining the discontinuity vL and vR, where v = (p, ρ, v),
and on the ratio (x − x0)/(t − t0), where x0 and t0 are the initial location of
the discontinuity and the time of breakup, respectively. Both in relativistic and
classical hydrodynamics the discontinuity decays into two elementary nonlinear
waves (shocks or rarefactions) which move in opposite directions towards the
initial left and right states. Between these waves two new constant states vL∗

and vR∗ (note that vL∗ ≡ 3 and vR∗ ≡ 4 in Fig. 1) appear, which are sepa-
rated from each other through a contact discontinuity moving with the fluid.
Across the contact discontinuity the density exhibits a jump, whereas pressure
and velocity are continuous (see Fig. 1). As in the classical case, the self-similar
character of the flow through rarefaction waves and the Rankine-Hugoniot con-
ditions across shocks provide the relations to link the intermediate states vS∗

(S =L, R) with the corresponding initial states vS . They also allow one to
express the fluid flow velocity in the intermediate states vS∗ as a function of
the pressure pS∗ in these states. Finally, the steadiness of pressure and velocity
across the contact discontinuity implies

vL∗(p∗) = vR∗(p∗), (14)

where p∗ = pL∗ = pR∗, which closes the system. The functions vS∗(p) are
defined by

vS∗(p) =

{
RS(p) if p ≤ pS ,
SS(p) if p > pS ,

(15)

where RS(p) / SS(p) denotes the family of all states which can be connected
through a rarefaction / shock with a given state vS ahead of the wave.
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Figure 1: Schematic solution of a Riemann problem in special relativistic hydro-
dynamics. The initial state at t = 0 (top figure) consists of two constant states
(1) and (5) with p1 > p5, ρ1 > ρ5, and v1 = v2 = 0 separated by a diaphragm at
xD. The evolution of the flow pattern once the diaphragm is removed (middle
figure) is illustrated in a spacetime diagram (bottom figure) with a shock wave
(solid line) and a contact discontinuity (dashed line) moving to the right. The
bundle of solid lines represents a rarefaction wave propagating to the left.
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The fact that one Riemann invariant is constant through any rarefaction
wave provides the relation needed to derive the function RS

RS(p) =
(1 + vS)A±(p) − (1 − vS)

(1 + vS)A±(p) + (1 − vS)
, (16)

with

A±(p) =

(√
γ − 1 − c(p)√
γ − 1 + c(p)

√
γ − 1 + cS√
γ − 1 − cS

)± 2
√

γ−1

, (17)

the + / − sign of A± corresponding to S =L / S =R. In the above equation,
cS is the sound speed of the state vS , and c(p) is given by

c(p) =

(
γ(γ − 1)p

(γ − 1)ρS(p/pS)1/γ + γp

)1/2

. (18)

The family of all states SS(p), which can be connected through a shock with a
given state vS ahead of the wave, is determined by the shock jump conditions.
One obtains

SS(p) =

(
hSWSvS ± p − pS

j(p)
√

1 − V±(p)2

)
·

[
hSWS + (p − pS)

(
1

ρSWS
± vS

j(p)
√

1 − V±(p)2

)]−1

, (19)

where the + / − sign corresponds to S =R / S =L. V±(p) and j(p) denote
the shock velocity and the modulus of the mass flux across the shock front,
respectively. They are given by

V±(p) =
ρ2

SW 2
SvS ± j(p)2

√
1 + (ρS/j(p))2

ρ2
SW 2

S + j(p)2
, (20)

and

j(p) =

√√√√√
pS − p

h2
S − h(p)2

pS − p
− 2hS

ρS

, (21)

where the enthalpy h(p) of the state behind the shock is the (unique) positive
root of the quadratic equation
(

1 +
(γ − 1)(pS − p)

γp

)
h2 − (γ − 1)(pS − p)

γp
h +

hS(pS − p)

ρS
− h2

S = 0, (22)

which is obtained from the Taub adiabat (the relativistic version of the Hugoniot
adiabat) for an ideal gas equation of state.

The functions vL∗(p) and vR∗(p) are displayed in Fig. 2 in a p-v diagram for a
particular set of Riemann problems. Once p∗ has been obtained, the remaining
state quantities and the complete Riemann solution,

u = u((x − x0)/(t − t0);uL,uR)), (23)
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Figure 2: Graphical solution in the p-v plane of the Riemann problems defined
by the initial states (pL = 103, ρL = 1, vL = 0.5), and (pi

R, ρR = 1, vR = 0) with
i = 1, 2, 3, 4, where p1

R = 102, p2
R = 10, p3

R = 1, and p4
R = 10−1, respectively.

The adiabatic index of the fluid is 5/3 in all cases. Note the asymptotic behavior
of the functions as they approach v = 1 (i.e., the speed of light).

can easily be derived.
In Section 9.3 we provide a FORTRAN program called RIEMANN, which allows

one to compute the exact solution of an arbitrary special relativistic Riemann
problem using the algorithm just described.

The treatment of multidimensional special relativistic flows is significantly
more difficult than that of multidimensional Newtonian flows. In SRHD all
components (normal and tangential) of the flow velocity are strongly coupled
through the Lorentz factor, which complicates the solution of the Riemann
problem severely. For shock waves, this coupling ’only’ increases the number of
algebraic jump conditions, which must be solved. However, for rarefactions it
implies the solution of a system of ordinary differential equations [108].
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3 High-Resolution Shock-Capturing Methods

The application of high-resolution shock-capturing (HRSC) methods caused a
revolution in numerical SRHD. These methods satisfy in a quite natural way the
basic properties required for any acceptable numerical method: (i) high order
of accuracy, (ii) stable and sharp description of discontinuities, and (iii) conver-
gence to the physically correct solution. Moreover, HRSC methods are conser-
vative, and because of their shock capturing property discontinuous solutions
are treated both consistently and automatically whenever and wherever they
appear in the flow.

As HRSC methods are written in conservation form, the time evolution of
zone averaged state vectors is governed by some functions (the numerical fluxes)
evaluated at zone interfaces. Numerical fluxes are mostly obtained by means of
an exact or approximate Riemann solver. High resolution is usually achieved by
using monotonic polynomials in order to interpolate the approximate solutions
within numerical cells.

Solving Riemann problems exactly involves time-consuming computations,
which are particularly costly in the case of multidimensional SRHD due to the
coupling of the equations through the Lorentz factor (see Section 2.3). There-
fore, as an alternative, the usage of approximate Riemann solvers has been
proposed.

In this section we summarize how the numerical fluxes are computed in a
number of methods for numerical SRHD. Methods based on exact Riemann
solvers are discussed in Sections 3.1 and 3.2, while those based on approximate
solvers are discussed in Sections 3.3, 3.4, 3.5, 3.6, and 3.7. Readers not familiar
with HRSC methods are referred to Section 9.4, where the basic properties of
these methods are described and an outline of the recent developments is given.

3.1 Relativistic PPM

Mart́ı & Müller [109] have used the procedure discussed in Section 2.3 to con-
struct an exact Riemann solver, which they then incorporated in an extension
of the piecewise parabolic method (PPM) [33] for 1D SRHD. In their relativistic
PPM method numerical fluxes are calculated according to

F̂RPPM = F(u(0;uL,uR)), (24)

where uL and uR are approximations of the state vector at the left and right side
of a zone interface obtained by a second-order accurate interpolation in space
and time, and u(0;uL,uR) is the solution of the Riemann problem defined by
the two interpolated states at the position of the initial discontinuity.

The PPM interpolation algorithm described in [33] gives monotonic conser-
vative parabolic profiles of variables within a numerical zone. In the relativistic
version of PPM, the original interpolation algorithm is applied to zone aver-
aged values of the primitive variables v = (p, ρ, v), which are obtained from
zone averaged values of the conserved quantities u. For each zone j, the quar-
tic polynomial with zone-averaged values aj−2, aj−1, aj , aj+1, and aj+2 (where
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a = ρ, p, v) is used to interpolate the structure inside the zone. In particular, the
values of a at the left and right interface of the zone, aL,j and aR,j , are obtained
this way. These reconstructed values are then modified such that the parabolic
profile, which is uniquely determined by aL,j , aR,j , and aj , is monotonic inside
the zone.

Both, the non relativitic PPM scheme described in [33] and the relativistic
approach of [109] follow the same procedure to compute the time-averaged fluxes
at an interface j + 1/2 separating zones j and j + 1. They are computed from
two spatially averaged states, vj+ 1

2 ,L and vj+ 1
2 ,R at the left and right side of the

interface, respectively. These left and right states are constructed taking into
account the characteristic information reaching the interface from both sides
during the time step. The relativistic version of PPM uses the characteristic
speeds and Riemann invariants of the equations of relativistic hydrodynamics
in this procedure.

3.2 The relativistic Glimm method

Wen et al. [187] have extended Glimm’s random choice method [65] to 1D SRHD.
They developed a first-order accurate hydrodynamic code combining Glimm’s
method (using an exact Riemann solver) with standard finite difference schemes.

In the random choice method, given two adjacent states, un
j and un

j+1, at

time tn, the value of the numerical solution at time tn+1/2 and position xj+1/2

is given by the exact solution u(x, t) of the Riemann problem evaluated at a
randomly chosen point inside zone (j, j + 1), i.e.,

u
n+ 1

2

j+ 1
2

= u

(
(j + ξn)∆x

(n + 1
2 )∆t

;un
j ,un

j+1

)
, (25)

where ξn is a random number in the interval [0, 1].
Besides being conservative on average, the main advantages of Glimm’s

method are that it produces both completely sharp shocks and contact dis-
continuities, and that it is free of diffusion and dispersion errors.

Chorin [29] applied Glimm’s method to the numerical solution of homoge-
neous hyperbolic conservation laws. Colella [31] proposed an accurate procedure
of randomly sampling the solution of local Riemann problems and investigated
the extension of Glimm’s method to two dimensions using operator splitting
methods.

3.3 Two-shock approximation for relativistic hydrodynam-
ics

This approximate Riemann solver is obtained from a relativistic extension of
Colella’s method [31] for classical fluid dynamics, where it has been shown to
handle shocks of arbitrary strength [31, 191]. In order to construct Riemann so-
lutions in the two-shock approximation one analytically continues shock waves
towards the rarefaction side (if present) of the zone interface instead of using
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an actual rarefaction wave solution. Thereby one gets rid of the coupling of the
normal and tangential components of the flow velocity (see Section 2.3), and the
remaining minor algebraic complications are the Rankine-Hugoniot conditions
across oblique shocks. Balsara [8] has developed an approximate relativistic
Riemann solver of this kind by solving the jump conditions in the shocks’ rest
frames in the absence of transverse velocities, after appropriate Lorentz transfor-
mations. Dai & Woodward [36] have developed a similar Riemann solver based
on the jump conditions across oblique shocks making the solver more efficient.

Method p∗ v∗ ρL∗ ρR∗

Problem 1

B 1.440E+00 7.131E-01 2.990E+00 5.069E+00
DW 1.440E+00 7.131E-01 2.990E+00 5.066E+00

Exact 1.445E+00 7.137E-01 2.640E+00 5.062E+00

Problem 2

B 1.543E+01 9.600E-01 7.325E-02 1.709E+01
DW 1.513E+01 9.608E-01 7.254E-02 1.742E+01

Exact 1.293E+01 9.546E-01 3.835E-02 1.644E+01

Table 1: Pressure p∗, velocity v∗, and densities ρL∗ (left), ρR∗ (right) for the
intermediate state obtained for the two-shock approximation of Balsara [8] (B)
and of Dai & Woodward [36] (DW) compared to the exact solution (Exact) for
the Riemann problems defined in Section 6.2.

Table 1 gives the converged solution for the intermediate states obtained
with both Balsara’s and Dai & Woodward’s procedure for the case of the Rie-
mann problems defined in Section 6.2 (involving strong rarefaction waves) to-
gether with the exact solution. Despite the fact that both approximate meth-
ods involve very different algebraic expressions, their results differ by less than
2%. However, the discrepancies are much larger when compared with the ex-
act solution (up to a 100% error in the density of the left intermediate state
in Problem 2). The accuracy of the two-shock approximation should be tested
in the ultra-relativistic limit, where the approximation can produce large er-
rors in the Lorentz factor (in the case of Riemann problems involving strong
rarefaction waves) with important implications for the fluid dynamics. Finally,
the suitability of the two-shock approximation for Riemann problems involving
transversal velocities still needs to be tested.
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3.4 Roe-type relativistic solvers

Linearized Riemann solvers are based on the exact solution of Riemann prob-
lems of a modified system of conservation equations obtained by a suitable
linearization of the original system. This idea was put forward by Roe [155],
who developed a linearized Riemann solver for the equations of ideal (classical)
gas dynamics. Eulderink at al. [49, 50] have extended Roe’s Riemann solver to
the general relativistic system of equations in arbitrary spacetimes. Eulderink
uses a local linearization of the Jacobian matrices of the system fulfilling the
properties demanded by Roe in his original paper.

Let B = ∂F/∂u be the Jacobian matrix associated with one of the fluxes F
of the original system, and u the vector of unknowns. Then, the locally constant
matrix B̃, depending on uL and uR (the left and right state defining the local
Riemann problem) must have the following four properties:

1. It constitutes a linear mapping from the vector space u to the vector space
F.

2. As uL → uR → u, B̃(uL,uR) → B(u).

3. For any uL, uR, B̃(uL,uR)(uR − uL) = F(uR) − F(uL).

4. The eigenvectors of B̃ are linearly independent.

Conditions 1 and 2 are necessary if one is to recover smoothly the linearized
algorithm from the nonlinear version. Condition 3 (supposing 4 is fulfilled)
ensures that if a single discontinuity is located at the interface, then the solution
of the linearized problem is the exact solution of the nonlinear Riemann problem.

Once a matrix B̃ satisfying Roe’s conditions has been obtained for every
numerical interface, the numerical fluxes are computed by solving the locally
linear system. Roe’s numerical flux is then given by

F̂ROE =
1

2

[
F(uL) + F(uR) −

∑

p

|λ̃(p)|α̃(p)r̃(p)

]
, (26)

with

α̃(p) = l̃(p) · (uR − uL), (27)

where λ̃(p), r̃(p), and l̃(p) are the eigenvalues and the right and left eigenvectors
of B̃, respectively (p runs from 1 to the number of equations of the system).

Roe’s linearization for the relativistic system of equations in a general space-
time can be expressed in terms of the average state [49, 50]

w̃ =
wL + wR

kL + kR
, (28)

with

w = (ku0, ku1, ku2, ku3, kp/(ρh)), (29)
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and
k2 =

√−gρh, (30)

where g is the determinant of the metric tensor gµν . The role played by the
density ρ in case of the Cartesian non-relativistic Roe solver as a weight for aver-
aging, is taken over in the relativistic variant by k, which apart from geometrical
factors tends to ρ in the non-relativistic limit. A Riemann solver for special rel-
ativistic flows and the generalization of Roe’s solver to the Euler equations in
arbitrary coordinate systems are easily deduced from Eulderink’s work. The
results obtained in 1D test problems for ultra-relativistic flows (up to Lorentz
factors 625) in the presence of strong discontinuities and large gravitational
background fields demonstrate the excellent performance of the Eulderink-Roe
solver [50].

Relaxing condition 3 above, Roe’s solver is no longer exact for shocks but
still produces accurate solutions, and moreover, the remaining conditions are
fulfilled by a large number of averages. The 1D general relativistic hydrody-
namic code developed by Romero et al. [157] uses flux formula (26) with an
arithmetic average of the primitive variables at both sides of the interface. It
has successfully passed a long series of tests including the spherical version of
the relativistic shock reflection (see Section 6.1).

Roe’s original idea has been exploited in the so-called local characteristic
approach (see, e.g., [198]). This approach relies on a local linearization of the
system of equations by defining at each point a set of characteristic variables,
which obey a system of uncoupled scalar equations. This approach has proven
to be very successful, because it allows for the extension to systems of scalar
nonlinear methods. Based on the local characteristic approach are the meth-
ods developed by Marquina et al. [106] and Dolezal & Wong [42], which both
use high-order reconstructions of the numerical characteristic fluxes, namely
PHM [106] and ENO [42] (see Section 9.4).

3.5 Falle and Komissarov upwind scheme

Instead of starting from the conservative form of the hydrodynamic equations,
one can use a primitive-variable formulation in quasi-linear form

∂v

∂t
+ A∂v

∂x
= 0, (31)

where v is any set of primitive variables. A local linearization of the above
system allows one to obtain the solution of the Riemann problem, and from this
the numerical fluxes needed to advance a conserved version of the equations in
time.

Falle & Komissarov [55] have considered two different algorithms to solve the
local Riemann problems in SRHD by extending the methods devised in [53]. In
a first algorithm, the intermediate states of the Riemann problem at both sides
of the contact discontinuity, vL∗ and vR∗, are obtained by solving the system

vL∗ = vL + bLr
−
L , vR∗ = vR + bRr+

R , (32)
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where r−L is the right eigenvector of A(vL) associated with sound waves mov-
ing upstream and r+

R is the right eigenvector of A(vR) of sound waves moving
downstream. The continuity of pressure and of the normal component of the
velocity across the contact discontinuity allows one to obtain the wave strengths
bL and bR from the above expressions, and hence the linear approximation to
the intermediate state v∗(vL,vR).

In the second algorithm proposed by Falle & Komissarov [55], a lineariza-

tion of system (31) is obtained by constructing a constant matrix Ã(vL,vR) =
A( 1

2 (vL + vR)). The solution of the corresponding Riemann problem is that of

a linear system with matrix Ã, i.e.,

v∗ = vL +
∑

λ̃(p)<0

α̃(p)r̃(p), (33)

or, equivalently,

v∗ = vR −
∑

λ̃(p)>0

α̃(p)r̃(p)), (34)

with
α̃(p) = l̃(p) · (vR − vL), (35)

where λ̃(p), r̃(p), and l̃(p) are the eigenvalues and the right and left eigenvectors
of Ã, respectively (p runs from 1 to the total number of equations of the system).

In both algorithms, the final step involves the computation of the numerical
fluxes for the conservation equations

F̂FK = F(u(v∗(vL,vR))). (36)

3.6 Relativistic HLL method

Schneider et al. [161] have proposed to use the method of Harten, Lax & van
Leer [74], HLL hereafter, to integrate the equations of SRHD. This method
avoids the explicit calculation of the eigenvalues and eigenvectors of the Jaco-
bian matrices and is based on an approximate solution of the original Riemann
problems with a single intermediate state

uHLL(x/t;uL,uR) =





uL for x < aLt
u∗ for aLt ≤ x ≤ aRt
uR for x > aRt

, (37)

where aL and aR are lower and upper bounds for the smallest and largest signal
velocities, respectively. The intermediate state u∗ is determined by requiring
consistency of the approximate Riemann solution with the integral form of the
conservation laws in a grid zone. The resulting integral average of the Riemann
solution between the slowest and fastest signals at some time is given by

u∗ =
aRuR − aLuL − F(uR) + F(uL)

aR − aL
, (38)
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and the numerical flux by

F̂HLL =
a+
RF(uL) − a−

L F(uR) + a+
Ra−

L (uR − uL)

a+
R − a−

L

, (39)

where
a−
L = min{0, aL}, a+

R = max{0, aR}. (40)

An essential ingredient of the HLL scheme are good estimates for the smallest
and largest signal velocities. In the non-relativistic case, Einfeldt [48] proposed
to calculate them based on the smallest and largest eigenvalues of Roe’s matrix.
This HLL scheme with Einfeldt’s recipe is a very robust upwind scheme for
the Euler equations and possesses the property of being positively conservative.
The method is exact for single shocks, but it is very dissipative, especially at
contact discontinuities.

Schneider et al. [161] have presented results in 1D ultra-relativistic hydro-
dynamics using a version of the HLL method with signal velocities given by

aR = (v̄ + c̄s)/(1 + v̄c̄s), (41)

aL = (v̄ − c̄s)/(1 − v̄c̄s), (42)

where cs is the relativistic sound speed, and where the bar denotes the arith-
metic mean between the initial left and right states. Duncan & Hughes [46]
have generalized this method to 2D SRHD and applied it to the simulation of
relativistic extragalactic jets.

3.7 Marquina’s flux formula

Godunov-type schemes are indeed very robust in most situations although they
fail spectacularly on occasions. Reports on approximate Riemann solver fail-
ures and their respective corrections (usually a judicious addition of artificial
dissipation) are abundant in the literature [153]. Motivated by the search for
a robust and accurate approximate Riemann solver that avoids these common
failures, Donat & Marquina [44] have extended to systems a numerical flux for-
mula which was first proposed by Shu & Osher [163] for scalar equations. In
the scalar case and for characteristic wave speeds which do not change sign at
the given numerical interface, Marquina’s flux formula is identical to Roe’s flux.
Otherwise, the scheme switches to the more viscous, entropy satisfying local
Lax-Friedrichs scheme [163]. In the case of systems, the combination of Roe
and local-Lax-Friedrichs solvers is carried out in each characteristic field after
the local linearization and decoupling of the system of equations [44]. However,
contrary to Roe’s and other linearized methods, the extension of Marquina’s
method to systems is not based on any averaged intermediate state.

Mart́ı et al. have used this method in their simulations of relativistic jets [110,
111]. The resulting numerical code has been successfully used to describe ultra-
relativistic flows in both one and two spatial dimensions with great accuracy (a
large set of test calculations using Marquina’s Riemann solver can be found in
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Appendix II of [111]). Numerical experimentation in two dimensions confirms
that the dissipation of the scheme is sufficient to eliminate the carbuncle phe-
nomenon [153], which appears in high Mach number relativistic jet simulations
when using other standard solvers [43].

Aloy et al. [3] have implemented Marquina’s flux formula in their three
dimensional relativistic hydrodynamic code GENESIS.

Font et al. [59] have developed a 3D general relativistic hydro code where the
matter equations are integrated in conservation form and fluxes are calculated
with Marquina’s formula.

3.8 Symmetric TVD schemes with nonlinear numerical
dissipation

The methods discussed in the previous subsections are all based on exact or ap-
proximate solutions of Riemann problems at cell interfaces in order to stabilize
the discretization scheme across strong shocks. Another successful approach
relies on the addition of nonlinear dissipation terms to standard finite difference
methods. The algorithm of Davis [38] is based on such an approach. It can be
interpreted as a Lax-Wendroff scheme with a conservative TVD (total variation
diminishing) dissipation term. The numerical dissipation term is local, free of
problem dependent parameters and does not require any characteristic informa-
tion. This last fact makes the algorithm extremely simple when applied to any
hyperbolic system of conservation laws.

A relativistic version of Davis’ method has been used by Koide et al. [82,
81, 129] in 2D and 3D simulations of relativistic magneto-hydrodynamic jets
with moderate Lorentz factors. Although the results obtained are encouraging,
the coarse grid zoning used in these simulations and the relative smallness of
the beam flow Lorentz factor (4.56, beam speed ≈ 0.98c) does not allow for a
comparison with Riemann-solver-based HRSC methods in the ultra-relativistic
limit.
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4 Other Developments

In this Section we summarize some recent developments in numerical RHD
based on non-HRSC methods. The corresponding methods have been shown to
be capable of simulating high Lorentz factor flows with shock waves. Van Put-
ten’s approach, described in 4.1, was originally developed for numerical RMHD.
4.2 is devoted to outline recent relativistic extensions of SPH methods (origi-
nally developed for Newtonian hydrodynamics). Finally, 4.3 describes the main
properties of the relativistic version of the beam scheme, a method based on the
numerical solution of the equilibrium limit of the non-relativistic Boltzmann
equation.

4.1 Van Putten’s approach

Relying on a formulation of Maxwell’s equations as a hyperbolic system in di-
vergence form, van Putten [179] has devised a numerical method to solve the
equations of relativistic ideal MHD in flat spacetime [181]. Here we only discuss
the basic principles of the method in one spatial dimension. In van Putten’s
approach, the state vector u and the fluxes F of the conservation laws are de-
composed into a spatially constant mean (subscript 0) and a spatially dependent
variational (subscript 1) part

u(t, x) = u0(t) + u1(t, x), F(t, x) = F0(t) + F1(t, x). (43)

The RMHD (for relativistic MHD) equations then become a system of evolution
equations for the integrated variational parts u1

∗, which reads

∂u1
∗

∂t
+ F1 = 0, (44)

together with the conservation condition

dF0

dt
= 0. (45)

The quantities u1
∗ are defined as

u1
∗(t, x) =

∫ x

u1(t, y)dy. (46)

They are continuous, and standard methods can be used to integrate the sys-
tem (44). Van Putten uses a leapfrog method.

The new state vector u(t, x) is then obtained from u1
∗(t, x) by numerical

differentiation. This process can lead to oscillations in the case of strong shocks
and a smoothing algorithm should be applied. Details of this smoothing algo-
rithm and of the numerical method in one and two spatial dimensions can be
found in [180] together with results on a large variety of tests.

Van Putten has applied his method to simulate relativistic hydrodynamic
and magneto hydrodynamic jets with moderate flow Lorentz factors (< 4.25)
[182, 184].
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4.2 Relativistic SPH

Besides finite volume schemes, another completely different method is widely
used in astrophysics for integrating the hydrodynamic equations. This method
is Smoothed Particle Hydrodynamics, or SPH for short [100, 63, 121]. The
fundamental idea of SPH is to represent a fluid by a Monte Carlo sampling of
its mass elements. The motion and thermodynamics of these mass elements is
then followed as they move under the influence of the hydrodynamics equations.
Because of its Lagrangian nature there is no need within SPH for explicit in-
tegration of the continuity equation, but in some implementations of SPH this
is done nevertheless for certain reasons. As both the equation of motion of
the fluid and the energy equation involve continuous properties of the fluid and
their derivatives, it is necessary to estimate these quantities from the positions,
velocities and internal energies of the fluid elements, which can be thought of as
particles moving with the flow. This is done by treating the particle positions
as a finite set of interpolating points where the continuous fluid variables and
their gradients are estimated by an appropriately weighted average over neigh-
boring particles. Hence, SPH is a free-Lagrange method, i.e., spatial gradients
are evaluated without the use of a computational grid.

A comprehensive discussion of SPH can be found in the reviews of Hernquist
& Katz [76], Benz [12] and Monaghan [120, 121]. The non-relativistic SPH
equations are briefly discussed in Section 9.5. The capabilities and limits of
SPH are explored, e.g., in [169, 172], and the stability of the SPH algorithm is
investigated in [170].

The SPH equations for special relativistic flows have been first formulated
by Monaghan [120]. For such flows the SPH equations given in Section 9.5 can
be taken over except that each SPH particle a carries νa baryons instead of mass
ma [120, 30]. Hence, the rest mass of particle a is given by ma = m0νa, where
m0 is the baryon rest mass (if the fluid is made of baryons). Transforming the
notation used in [30] to ours, the continuity equation, the momentum and the
total energy equations for particle a are given by (unit of velocity is c)

dNa

dt
= −

∑

b

νb(va − vb) · ∇aWab, (47)

dŜa

dt
= −

∑

b

νb

(
pa

N2
a

+
pb

N2
b

+ Πab

)
· ∇aWab, (48)

and
dτ̂

dt
= −

∑

b

νb

(
pava

N2
a

+
pbvb

N2
b

+ Ωab

)
· ∇aWab, (49)

respectively. Here, the summation is over all particles other than particle a, and
d/dt denotes the Lagrangian time derivative.

N =
D

m0
(50)
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is the baryon number density,

Ŝ ≡ S

N
= m0hWv (51)

the momentum per particle, and

τ̂ ≡ τ

N
+ m0 = m0hW − p

N
(52)

the total energy per particle (all measured in the laboratory frame). The mo-
mentum density S ≡ (S1, S2, S3)T , the energy density τ (measured in units of
the rest mass energy density), and the specific enthalpy h are defined in Sec-
tion 2.1. Πab and Ωab are the SPH dissipation terms, and ∇aWab denotes the
gradient of the kernel Wab (see Section 9.5 for more details).

Special relativistic flow problems have been simulated with SPH by [90, 80,
102, 104, 30, 164]. Extensions of SPH capable of treating general relativistic
flows have been considered by [80, 89, 164]. Concerning relativistic SPH codes
the artificial viscosity is the most critical issue. It is required to handle shock
waves properly, and ideally it should be predicted by a relativistic kinetic theory
for the fluid. However, unlike its Newtonian analogue, the relativistic theory has
not yet been developed to the degree required to achieve this. For Newtonian
SPH Lattanzio et al. [94] have shown that in high Mach number flows a viscosity
quadratic in the velocity divergence is necessary. They proposed a form of the
artificial viscosity such that the viscous pressure could be simply added to the
fluid pressure in the equation of motion and the energy equation. Because this
simple form of the artificial viscosity has known limitations, they also proposed
a more sophisticated form of the artificial viscosity terms, which leads to a
modified equation of motion. This artificial viscosity works much better, but
it cannot be generalized to the relativistic case in a consistent way. Utilizing
an equation for the specific internal energy both Mann [102] and Laguna et
al. [89] use such an inconsistent formulation. Their artificial viscosity term is
not included into the expression of the specific relativistic enthalpy. In a second
approach, Mann [102] allows for a time-dependent smoothing length and SPH
particle mass, and further proposed a SPH variant based on the total energy
equation. Lahy [90] and Siegler & Riffert [164] use a consistent artificial viscosity
pressure added to the fluid pressure. Siegler & Riffert [164] have also formulated
the hydrodynamic equations in conservation form.

Monaghan [122] incorporates concepts from Riemann solvers into SPH. For
this reason he also proposes to use a total energy equation in SPH simulations
instead of the commonly used internal energy equation, which would involve
time derivatives of the Lorentz factor in the relativistic case. Chow & Mon-
aghan [30] have extended this concept and have proposed an SPH algorithm,
which gives good results when simulating an ultra-relativistic gas. In both cases
the intention was not to introduce Riemann solvers into the SPH algorithm, but
to use them as a guide to improve the artificial viscosity required in SPH.

In Roe’s Riemann solver [155], as well as in its relativistic variant proposed
by Eulerdink [49, 50] (see Section 3.4), the numerical flux is computed by solving
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a locally linear system and depends on both the eigenvalues and (left and right)
eigenvectors of the Jacobian matrix associated to the fluxes and on the jumps
in the conserved physical variables (see Eqs. (26) and (27)). Monaghan [122]
realized that an appropriate form of the dissipative terms Πab and Ωab for the
interaction between particles a and b can be obtained by treating the particles
as the equivalent of left and right states taken with reference to the line joining
the particles. The quantity corresponding to the eigenvalues (wave propagation
speeds) is an appropriate signal velocity vsig (see below), and that equivalent to
the jump across characteristics is a jump in the relevant physical variable. For
the artificial viscosity tensor, Πab, Monaghan [122] assumes that the jump in
velocity across characteristics can be replaced by the velocity difference between
a and b along the line joining them.

With these considerations in mind Chow & Monaghan [30] proposed for Πab

in the relativistic case the form

Πab = −Kvsig(Ŝ
∗
a − Ŝ∗

b) · j
Nab

, (53)

when particles a and b are approaching, and Πab = 0 otherwise. Here K = 0.5
is a dimensionless parameter, which is chosen to have the same value as in the
non-relativistic case [122]. Nab = (Na + Nb)/2 is the average baryon number
density, which has to be present in (53), because the pressure terms in the
summation of (90) have an extra density in the denominator arising from the
SPH interpolation. Furthermore,

j =
rab

|rab|
(54)

is the unit vector from b to a, and

Ŝ∗ = m0hW ∗v, (55)

where

W ∗ =
1√

1 − (v · j)2
. (56)

Using instead of Ŝ (see Eq. (51)) the modified momentum Ŝ∗, which involves
the line of sight velocity v · j, guarantees that the viscous dissipation is positive
definite [30].

The dissipation term in the energy equation is derived in a similar way and
is given by [30]

Ωab = −Kvsig(τ̂∗
a − τ̂∗

b )j

Nab

, (57)

if a and b are approaching, and Ωab = 0 otherwise. Ωab involves the energy τ̂∗,
which is identical to τ̂ (see Eq. (52)) except that W is replaced by W ∗.

To determine the signal velocity Chow & Monaghan [30] (and Monaghan [122]
in the non-relativistic case) start from the (local) eigenvalues, and hence the
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wave velocities (v ± cs)/(1 ± vcs) and v of one-dimensional relativistic hydro-
dynamic flows. Again considering particles a and b as the left and right states
of a Riemann problem with respect to motions along the line joining the par-
ticles, the appropriate signal velocity is the speed of approach (as seen in the
computing frame) of the signal sent from a towards b and that from b to a.
This is the natural speed for the sharing of physical quantities, because when
information about the two states meets it is time to construct a new state. This
speed of approach should be used when determining the size of the time step
by the Courant condition (for further details see [30]).

Chow & Monaghan [30] have demonstrated the performance of their Rie-
mann problem guided relativistic SPH algorithm by calculating several shock
tube problems involving ultra-relativistic speeds up to v = 0.9999. The algo-
rithm gives good results, but finite volume schemes based on Riemann solvers
give more accurate results and can handle even larger speeds (see Section 6).

4.3 Relativistic beam scheme

Sanders & Prendergast [159] proposed an explicit scheme to solve the equilib-
rium limit of the non-relativistic Boltzmann equation, i.e., the Euler equations
of Newtonian fluid dynamics. In their so-called beam scheme the Maxwellian
velocity distribution function is approximated by several Dirac delta functions
or discrete beams of particles in each computational cell, which reproduce the
appropriate moments of the distribution function. The beams transport mass,
momentum, and energy into adjacent cells, and their motion is followed to
first-order accuracy. The new (i.e., time advanced) macroscopic moments of
the distribution function are used to determine the new local non-relativistic
Maxwell distribution in each cell. The entire process is then repeated for the
next time step. The Courant-Friedrichs-Levy (CFL) stability condition requires
that no beam of gas travels farther than one cell in one time step. This beam
scheme, although being a particle method derived from a microscopic kinetic
description, has all the desirable properties of modern characteristic-based wave
propagating methods based on a macroscopic continuum description.

The non-relativistic scheme of Sanders & Prendergast [159] has been ex-
tended to relativistic flows by Yang et al. [194]. They replaced the Maxwellian
distribution function by its relativistic analogue, i.e., by the more complex
Jüttner distribution function, which involves modified Bessel functions. For
three-dimensional flows the Jüttner distribution function is approximated by
seven delta functions or discrete beams of particles, which can be viewed as
dividing the particles in each cell into seven distinct groups. In the local rest
frame of the cell these seven groups represent particles at rest and particles
moving in ±x,±y and ±z directions, respectively.

Yang et al. [194] show that the integration scheme for the beams can be
cast in the form of an upwind conservation scheme in terms of numerical fluxes.
They further show that the beam scheme not only splits the state vector but
also the flux vectors, and has some entropy-satisfying mechanism embedded as
compared with approximate relativistic Riemann solver [42, 161] based on Roe’s
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method [155]. The simplest relativistic beam scheme is only first-order accurate
in space, but can be extended to higher-order accuracy in a straightforward
manner. Yang et al. consider three high-order accurate variants (TVD2, ENO2,
ENO3) generalizing their approach developed in [195, 196] for Newtonian gas
dynamics, which is based on the essentially non-oscillatory (ENO) piecewise
polynomial reconstruction scheme of Harten at al. [73].

Yang et al. [194] present several numerical experiments including relativis-
tic one-dimensional shock tube flows and the simulation of relativistic two-
dimensional Kelvin-Helmholtz instabilities. The shock tube experiments con-
sist of a mildly relativistic shock tube, relativistic shock heating of a cold flow,
the relativistic blast wave interaction of Woodward & Colella [191] (see Sec-
tion 6.2.3), and the perturbed relativistic shock tube flow of Shu & Osher [163].
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5 Summary of Methods

This section contains a summary of all the methods reviewed in the two pre-
ceding sections as well as several FCT and artificial viscosity codes. The main
characteristic of the codes (dissipation algorithm, spatial and temporal orders of
accuracy, reconstruction techniques) are listed in two tables (Table 2 for HRSC
codes; Table 3 for other approaches).

Code Basic characteristics

Roe type-l [107, 157, 59] Riemann solver of Roe type with arithmetic aver-
aging; monotonicity preserving, linear reconstruc-
tion of primitive variables; 2nd order time step-
ping ([107, 157]: predictor-corrector; [59]: standard
scheme)

Roe-Eulderink [49] Linearized Riemann solver based on Roe averaging;
2nd order accuracy in space and time

HLL-l [161] Harten-Lax-van Leer approximate Riemann solver;
monotonic linear reconstruction of conserved / prim-
itive variables; 2nd order accuracy in space and time

LCA-phm [106] Local linearization and decoupling of the system;
PHM reconstruction of characteristic fluxes; 3rd or-
der TVD preserving RK method for time stepping

LCA-eno [42] Local linearization and decoupling of the system;
high order ENO reconstruction of characteristic split
fluxes; high order TVD preserving RK methods for
time stepping

rPPM [109] Exact (ideal gas) Riemann solver; PPM reconstruc-
tion of primitive variables; 2nd order accuracy in
time by averaging states in the domain of depen-
dence of zone interfaces

Falle-Komissarov [55] Approximate Riemann solver based on local lin-
earizations of the RHD equations in primitive form;
monotonic linear reconstruction of p, ρ, and ui; 2nd
order predictor-corrector time stepping

MFF-ppm [111, 3] Marquina flux formula for numerical flux computa-
tion; PPM reconstruction of primitive variables; 2nd
and 3rd order TVD preserving RK methods for time
stepping

MFF-eno/phm [43] Marquina flux formula for numerical flux computa-
tion; upwind biased ENO/PHM reconstruction of
characteristic fluxes; 2nd and 3rd order TVD pre-
serving RK methods for time stepping
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MFF-l [59] Marquina flux formula for numerical flux computa-
tion; monotonic linear reconstruction of primitive
variables; standard 2nd order finite difference algo-
rithms for time stepping

Flux split [59] TVD flux-split 2nd order method

sTVD [82] Davis (1984) symmetric TVD scheme with nonlinear
numerical dissipation; 2nd order accuracy in space
and time

rGlimm [187] Glimm’s method applied to RHD equations in prim-
itive form; 1st order accuracy in space and time

rBS [194] Relativistic beam scheme solving equilibrium limit
of relativistic Boltzmann equation; distribution func-
tion approximated by discrete beams of particles re-
producing appropriate moments; 1st and 2nd order
TVD, 2nd and 3rd order ENO schemes

Table 2: High-resolution shock-capturing methods. All the codes rely on a con-
servation form of the RHD equations with the exception of ref. [187].

Code Basic characteristics

Artificial viscosity

AV-mono [28, 75, 113] Non-conservative formulation of the RHD equa-
tions (transport differencing, internal energy
equation); artificial viscosity extra term in the
momentum flux; monotonic 2nd order transport
differencing; explicit time stepping

cAV-implicit [131] Non-conservative formulation of the RHD equa-
tions; internal energy equation; consistent formu-
lation of artificial viscosity; adaptive mesh and
implicit time stepping
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Flux corrected transport

FCT-lw [45] Non-conservative formulation of the RHD equa-
tions (transport differencing, equation for ρhW );
explicit 2nd order Lax-Wendroff scheme with
FCT algorithm

SHASTA-c [161, 39, 40] FCT algorithm based on SHASTA [20]; advection
of conserved variables

van Putten’s approach

van Putten [181] Ideal RMHD equations in constraint-free, diver-
gence form; evolution of integrated variational
parts of conserved quantities; smoothing algo-
rithm in numerical differentiation step; leap-frog
method for time stepping

Smooth particle hydrodynamics

SPH-AV-0 [102, 89] (SPH0) Specific internal energy equation; artificial viscos-
ity extra terms in momentum and energy equa-
tions; 2nd order time stepping ([102]: predictor-
corrector; [89]: RK method)

SPH-AV-1 [102] (SPH1) Time derivatives in SPH equations include varia-
tions in smoothing length and mass per particle;
Lorentz factor terms treated more consistently;
otherwise same as SPH-AV-0

SPH-AV-c [102] (SPH2) Total energy equation; otherwise same as SPH-
AV-1

SPH-cAV-c [164] RHD equations in conservation form; consistent
formulation of artificial viscosity

SPH-RS-c [30] RHD equations in conservation form; dissipation
terms constructed in analogy to terms in Rie-
mann solver based methods

Table 3: Code characteristics.
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6 Test Bench

In this section we compare the performance of the numerical methods described
in the previous sections based on a couple of test problems which have an an-
alytical solution. In 6.1 we compare how the different methods handle the
relativistic shock heating of a cold gas in different geometries based on previ-
ously published data. In Table 4 we summarize the results and give for every
numerical method both the highest Lorentz factor achieved for this problem
and the mean error in the computation of the post-shock density. The results
obtained with different numerical methods for two Riemann problems involving
shock waves and relativistic velocities appear in Section 6.2.1 (mildly relativis-
tic Riemann problem) and Section 6.2.2 (highly relativistic Riemann problem),
respectively. The performance of the methods is summarized in Tables 6 and 7.
Finally, a challenging test problem based on the collision of two relativistic blast
waves is discussed in Section 6.2.3.

6.1 Relativistic shock heating in planar, cylindrical, and
spherical geometry

Shock heating of a cold fluid in planar, cylindrical or spherical geometry has
been used since the early developments of numerical relativistic hydrodynamics
as a test case for hydrodynamic codes, because it has an analytical solution ([18]
in planar symmetry; [111] in cylindrical and spherical symmetry), and because
it involves the propagation of a strong relativistic shock wave.

In planar geometry, an initially homogeneous, cold (i.e., ε ≈ 0) gas with
coordinate velocity v1 and Lorentz factor W1 is supposed to hit a wall, while in
the case of cylindrical and spherical geometry the gas flow converges towards
the axis or the center of symmetry. In all three cases the reflection causes
compression and heating of the gas as kinetic energy is converted into internal
energy. This occurs in a shock wave, which propagates upstream. Behind the
shock the gas is at rest (v2 = 0). Due to conservation of energy across the shock
the gas has a specific internal energy given by

ε2 = W1 − 1. (58)

The compression ratio of shocked and unshocked gas, σ, follows from

σ =
γ + 1

γ − 1
+

γ

γ − 1
ε2, (59)

where γ is the adiabatic index of the equation of state. The shock velocity is
given by

Vs =
(γ − 1)W1|v1|

W1 + 1
. (60)

In the unshocked region (r ∈ [Vst,∞[) the pressure-less gas flow is self-similar
and has a density distribution given by

ρ(t, r) =

(
1 +

|v1|t
r

)α

ρ0, (61)
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where α = 0, 1, 2 for planar, cylindrical or spherical geometry, and where ρ0 is
the density of the inflowing gas at infinity (see Fig. 3).

Figure 3: Schematic solution of the shock heating problem in spherical geometry.
The initial state consists of a spherically symmetric flow of cold (p = 0) gas of
unit rest mass density having a coordinate inflow velocity |v1| = 1 everywhere.
A shock is generated at the center of the sphere, which propagates upstream with
constant speed. The post-shock state is constant and at rest. The pre-shock
state, where the flow is self-similar, has a density which varies as ρ = (1+ t/r)2

with time t and radius r.

In the Newtonian case the compression ratio σ of shocked and unshocked
gas cannot exceed a value of σmax = (γ +1)/(γ − 1) independently of the inflow
velocity. This is different for relativistic flows, where σ grows linearly with the
flow Lorentz factor and becomes infinite as the inflowing gas velocity approaches
to speed of light.

The maximum flow Lorentz factor achievable for a hydrodynamic code with
acceptable errors in the compression ratio σ is a measure of the code’s quality.
Table 4 contains a summary of the results obtained for the shock heating test
by various authors.
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References α Method Wmax σerror [%]

Centrella & Wilson (1984) [28] 0 AV-mono 2.29 ≈ 10

Hawley et al. (1984) [75] 0 AV-mono 4.12 ≈ 10

Norman & Winkler (1986) [131] 0 cAV-implicit 10.0 0.01

McAbee et al. (1989) [113] 0 AV-mono 10.0 2.6

Mart́ı et al. (1991) [107] 0 Roe type-l 23 0.2

Marquina et al. (1992) [106] 0 LCA-phm 70 0.1

Eulderink (1993) [49] 0 Roe-Eulderink 625 ≤ 0.1a

Schneider et al. (1993) [161] 0 HLL-l 106 0.2b

0 SHASTA-c 106 0.5b

Dolezal & Wong (1995) [42] 0 LCA-eno 7.0 · 105 ≤0.1a

Mart́ı & Müller (1996) [109] 0 rPPM 224 0.03

Falle & Komissarov (1996) [55] 0 Falle-Komissarov 224 ≤0.1a

Romero et al. (1996) [157] 2 Roe type-l 2236 2.2

Mart́ı et al. (1997) [111] 1 MFF-ppm 70 1.0

Chow & Monaghan (1997) [30] 0 SPH-RS-c 70 0.2

Wen et al. (1997) [187] 2 rGlimm 224 10−9

Donat et al. (1998) [43] 0 MFF-eno 224 ≤0.1a

Aloy et al. (1999) [3] 0 MFF-ppm 2.4 · 105 3.5c

Sieglert & Riffert (1999) [164] 0 SPH-cAV-c 1000 ≤0.1a

Table 4: Summary of relativistic shock heating test calculations by various au-
thors in planar (α = 0), cylindrical (α = 1), and spherical (α = 2) geometry.
Wmax and σerror are the maximum inflow Lorentz factor and compression ratio
error extracted from tables and figures of the corresponding reference. Wmax

should only be considered as indicative of the maximum Lorentz factor achiev-
able by every method. The methods are described in Sections 3 and 4 and their
basic properties summarized in Section 5 (Tables 2, 3).

Explicit finite-difference techniques based on a non-conservative formulation
of the hydrodynamic equations and on non-consistent artificial viscosity [28, 75]
are able to handle flow Lorentz factors up to ≈ 10 with moderately large errors
(σerror ≈ 1 − 3%) at best [190, 113]. Norman & Winkler [131] got very good
results (σerror ≈ 0.01%) for a flow Lorentz factor of 10 using consistent artificial
viscosity terms and an implicit adaptive-mesh method.

The performance of explicit codes improved significantly when numerical
methods based on Riemann solvers were introduced [107, 106, 49, 161, 50, 109,
55]. For some of these codes the maximum flow Lorentz factor is only limited

aEstimated from figures.
bFor Wmax = 50.
cIncluding points at shock transition.
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by the precision by which numbers are represented on the computer used for
the simulation [42, 187, 3].

Schneider et al. [161] have compared the accuracy of a code based on the
relativistic HLL Riemann solver with different versions of relativistic FCT codes
for inflow Lorentz factors in the range 1.6 to 50. They found that the error in
σ was reduced by a factor of two when using HLL.

Within SPH methods, Chow & Monaghan [30] have obtained results com-
parable to those of HRSC methods (σerror < 2 · 10−3) for flow Lorentz factors
up to 70, using a relativistic SPH code with Riemann solver guided dissipation.
Sieglert & Riffert [164] have succeeded in reproducing the post-shock state ac-
curately for inflow Lorentz factors of 1000 with a code based on a consistent
formulation of artificial viscosity. However, the dissipation introduced by SPH
methods at the shock transition is very large (10 − 12 particles in the code of
ref. [164]; 20− 24 in the code of ref. [30]) compared with the typical dissipation
of HRSC methods (see below).

The performance of a HRSC method based on a relativistic Riemann solver
is illustrated by means of an MPEG movie (Fig. 4) for the planar shock heating
problem for an inflow velocity v1 = −0.99999 c (W1 ≈ 223). These results are
obtained with the relativistic PPM code of [109], which uses an exact Riemann
solver based on the procedure described in Section 2.3.

The shock wave is resolved by three zones and there are no post-shock nu-
merical oscillations. The density increases by a factor ≈ 900 across the shock.
Near x = 0 the density distribution slightly undershoots the analytical solution
(by ≈ 8%) due to the numerical effect of wall heating. The profiles obtained for
other inflow velocities are qualitatively similar. The mean relative error of the
compression ratio σerror < 10−3, and, in agreement with other codes based on
a Riemann solver, the accuracy of the results does not exhibit any significant
dependence on the Lorentz factor of the inflowing gas.

Some authors have considered the problem of shock heating in cylindrical or
spherical geometry using adapted coordinates to test the numerical treatment of
geometrical factors [157, 111, 187]. Aloy et al. [3] have considered the spherically
symmetric shock heating problem in 3D Cartesian coordinates as a test case
for both the directional splitting and the symmetry properties of their code
GENESIS. The code is able to handle this test up to inflow Lorentz factors of
the order of 700.

In the shock reflection test conventional schemes often give numerical ap-
proximations which exhibit a consistent O(1) error for the density and internal
energy in a few cells near the reflecting wall. This ’overheating’, as it is known
in classical hydrodynamics [130], is a numerical artifact which is considerably
reduced when Marquina’s scheme is used [44]. In passing we note that the strong
overheating found by Noh [130] for the spherical shock reflection test using PPM
(Fig. 24 in [130]) is not a problem of PPM, but of his implementation of PPM.
When properly implemented PPM gives a density undershoot near the origin of
about 9% in case of a non-relativistic flow. PLM gives an undershoot of 14% in
case of ultra-relativistic flows (e.g., Tab. 1 and Fig. 1 in [157]).
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Figure 4: Still from an MPEG movie showing the evolution of the density dis-
tribution for the shock heating problem with an inflow velocity v1 = −0.99999 c
in Cartesian coordinates. The reflecting wall is located at x = 0. The
adiabatic index of the gas is 4/3. For numerical reasons, the specific in-
ternal energy of the inflowing cold gas is set to a small finite value (ε1 =
10−7W1). The figure also shows the analytical solution (blue lines). The
simulation has been performed on an equidistant grid of 100 zones. (To
see the movie, please go to the electronic version of this review article at
http://www.livingreviews.org/Articles/Volume2/1999-3marti.)

6.2 Propagation of relativistic blast waves

Riemann problems with large initial pressure jumps produce blast waves with
dense shells of material propagating at relativistic speeds (see Fig. 5). For
appropriate initial conditions, both the speed of the leading shock front and the
velocity of the shell material approach the speed of light producing very narrow
structures. The accurate description of these thin, relativistic shells involving
large density contrasts is a challenge for any numerical code. Some particular
blast wave problems have become standard numerical tests. Here we consider
the two most common of these tests. The initial conditions are given in Table 5.

Problem 1 was a demanding problem for relativistic hydrodynamic codes in
the mid eighties [28, 75], while Problem 2 is a challenge even for today’s state-
of-the-art codes. The analytical solution of both problems can be obtained with
program the RIEMANN (see Section 9.3).
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Figure 5: Generation and propagation of a relativistic blast wave (schematic).
The large pressure jump at a discontinuity initially located at r = 0.5 gives rise to
a blast wave and a dense shell of material propagating at relativistic speeds. For
appropriate initial conditions both the speed of the leading shock front and the
velocity of the shell approach the speed of light producing very narrow structures.

6.2.1 Problem 1

In Problem 1, the decay of the initial discontinuity gives rise to a dense shell
of matter with velocity vshell = 0.72 (Wshell = 1.38) propagating to the right.
The shell trailing a shock wave of speed vshock = 0.83 increases its width, wshell,
according to wshell = 0.11 t, i.e., at time t = 0.4 the shell covers about 4% of
the grid (0 ≤ x ≤ 1). Tables 6 and 7 give a summary of the references where
this test was considered for non-HRSC and HRSC methods, respectively.

Using artificial viscosity techniques, Centrella & Wilson [28] were able to
reproduce the analytical solution with a 7% overshoot in vshell, whereas Hawley
et al. [75] got a 16% error in the shell density.

The results obtained with early relativistic SPH codes [102] were affected by
systematic errors in the rarefaction wave and the constant states, large ampli-
tude spikes at the contact discontinuity and large smearing. Smaller systematic
errors and spikes are obtained with Laguna et al.’s (1993) code [89]. This code
also leads to a large overshoot in the shell’s density. Much cleaner states are ob-
tained with the methods of Chow & Monaghan (1997) [30] and Siegler & Riffert
(1999) [164], both based on conservative formulations of the SPH equations. In
the case of Chow & Monaghan’s (1997) method [30], the spikes at the contact
discontinuity disappear but at the cost of an excessive smearing. Shock profiles
with relativistic SPH codes are more smeared out than with HRSC methods
covering typically more than 10 zones.

Van Putten has considered a similar initial value problem with somewhat
more extreme conditions (vshell ≈ 0.82 c, σshock ≈ 5.1) and with a transversal
magnetic field. For suitable choices of the smoothing parameters his results are
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Problem 1 Problem 2
Left Right Left Right

p 13.33 0.00 1000.00 0.01
ρ 10.00 1.00 1.00 1.00
v 0.00 0.00 0.00 0.00

vshell 0.72 0.960
wshell 0.11 t 0.026 t
vshock 0.83 0.986
σshock 5.07 10.75

Table 5: Initial data (pressure p, density ρ, velocity v) for two common rela-
tivistic blast wave test problems. The decay of the initial discontinuity leads to
a shock wave (velocity vshock, compression ratio σshock) and the formation of a
dense shell (velocity vshell, time-dependent width wshell) both propagating to the
right. The gas is assumed to be ideal with an adiabatic index γ = 5/3.

accurate and stable, although discontinuities appear to be more smeared than
with typical HRSC methods (6− 7 zones for the strong shock wave; ≈ 50 zones
for the contact discontinuity).

An MPEG movie (Figure 6) shows the Problem 1 blast wave evolution ob-
tained with a modern HRSC method (the relativistic PPM method introduced
in Section 3.1). The grid has 400 equidistant zones, and the relativistic shell is
resolved by 16 zones. Because of both the high order accuracy of the method
in smooth regions and its small numerical diffusion (the shock is resolved with
4-5 zones only) the density of the shell is accurately computed (errors less than
0.1%). Other codes based on relativistic Riemann solvers [50] give similar results
(see Table 7). The relativistic HLL method [161] underestimates the density in
the shell by about 10% in a 200 zone calculation.
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Figure 6: Still from an MPEG movie showing the evolution of the density dis-
tribution for the relativistic blast wave Problem 1 (defined in Table 5). This
figure also shows the analytical solution (blue lines). The simulation has been
performed with relativistic PPM on an equidistant grid of 400 zones. (To
see the movie, please go to the electronic version of this review article at
http://www.livingreviews.org/Articles/Volume2/1999-3marti.)
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References Dim. Method Comments

Centrella & Wilson (1984) [28] 1D AV-mono Stable profiles without os-
cillations. Velocity overesti-
mated by 7%.

Hawley et al. (1984) [75] 1D AV-mono Stable profiles without oscil-
lations. ρshell overestimated
by 16%.

Dubal (1991)d [45] 1D FCT-lw 10-12 zones at the CD.
Velocity overestimated by
4.5%.

Mann (1991) [102] 1D SPH-AV-
0,1,2

Systematic errors in the rar-
efaction wave and the con-
stant states. Large ampli-
tude spikes at the CD. Ex-
cessive smearing at the shell.

Laguna et al. (1993) [89] 1D SPH-AV-0 Large amplitude spikes at
the CD. ρshell overestimated
by 5%.

van Putten (1993)e [181] 1D van Putten Stable profiles. Excessive
smearing, specially at the
CD (≈ 50 zones).

Schneider et al. (1993) [161] 1D SHASTA-c Non monotonic intermedi-
ate states. ρshell underes-
timated by 10% with 200
zones.

Chow & Monaghan (1997) [30] 1D SPH-RS-c Stable profiles without
spikes. Excessive smearing
at the CD and at the shock.

Siegler & Riffert (1999) [164] 1D SPH-cAV-c Correct constant states.
Large amplitude spikes at
the CD. Excessive smearing
at the shock transition
(≈ 20 zones).

Table 6: Non-HRSC methods - Summary of references where the blast wave
Problem 1 (defined in Table 5) has been considered in 1D, 2D, and 3D, respec-
tively. The methods are described in Sections 3 and 4 and their basic properties
summarized in Section 5 (Tables 2, 3). Note: CD stands for contact disconti-
nuity.

dFor a Riemann problem with slightly different initial conditions.
eFor a Riemann problem with slightly different initial conditions including a nonzero trans-

verse magnetic field.
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References Dim. Method Commentsf

Eulderink (1993) [49] 1D Roe-Eulderink Correct ρshell with 500
zones. 4 zones in CD.

Schneider et al. (1993) [161] 1D HLL-l ρshell underestimated by
10% with 200 zones.

Mart́ı & Müller (1996) [109] 1D rPPM Correct ρshell with 400
zones. 6 zones in CD.

Mart́ı et al. (1997) [111] 1D, 2D MFF-ppm Correct ρshell with 400
zones. 6 zones in CD.

Wen et al. (1997) [187] 1D rGlimm No diffusion at disconti-
nuities.

Yang et al. (1997) [194] 1D rBS Stable profiles.

Donat et al. (1998) [43] 1D MFF-eno Correct ρshell with 400
zones. 8 zones in CD.

Aloy et al. (1999) [3] 3D MFF-ppm Correct ρshell with
100/

√
3 zones. 2 zones

in CD.
Font et al. (1999) [59] 1D, 3D MFF-l Correct ρshell with 400

zones. 12-14 zones in
CD.

1D, 3D Roe type-l Correct ρshell with 400
zones. 12-14 zones in
CD.

1D, 3D Flux split ρshell overestimated by
5%. 8 zones in CD.

Table 7: HRSC methods - Summary of references where the blast wave Problem 1
(defined in Table 5) has been considered in 1D, 2D, and 3D, respectively. The
methods are described in Sections 3 and 4 and their basic properties summarized
in Section 5 (Tables 2, 3). Note: CD stands for contact discontinuity.

6.2.2 Problem 2

Problem 2 was first considered by Norman & Winkler [131]. The flow pattern
is similar to that of Problem 1, but more extreme. Relativistic effects reduce
the post-shock state to a thin dense shell with a width of only about 1% of
the grid length at t = 0.4. The fluid in the shell moves with vshell = 0.960
(i.e., Wshell = 3.6), while the leading shock front propagates with a velocity
vshock = 0.986 (i.e., Wshock = 6.0). The jump in density in the shell reaches
a value of 10.6. Norman & Winkler [131] obtained very good results with an
adaptive grid of 400 zones using an implicit hydro-code with artificial viscosity.

fAll methods produce stable profiles without numerical oscillations. Comments to Mart́ı
et al. (1997) and Font et al. (1999) refer to 1D, only.
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Their adaptive grid algorithm placed 140 zones of the available 400 zones within
the blast wave thereby accurately capturing all features of the solution.

Several HRSC methods based on relativistic Riemann solvers have used
Problem 2 as a standard test [107, 106, 109, 55, 187, 43]. Table 8 gives a
summary of the references where this test was considered.

References Method σ/σexact

Norman & Winkler (1986) [131] cAV-implicit 1.00

Dubal (1991)g [45] FCT-lw 0.80

Mart́ı et al. (1991) [107] Roe type-l 0.53

Marquina et al. (1992) [106] LCA-phm 0.64

Mart́ı & Müller (1996) [109] rPPM 0.68

Falle & Komissarov (1996) [55] Falle-Komissarov 0.47

Wen et al. (1997) [187] rGlimm 1.00

Chow & Monaghan (1997) [30] SPH-RS-c 1.16h

Donat et al. (1998) [43] MFF-phm 0.60

Table 8: Summary of references where the blast wave Problem 2 (defined in
Table 5) has been considered. Methods are described in Sections 3 and 4 and
their basic properties summarized in Section 5 (Tables 2, 3).

An MPEG movie (Fig. 7) shows the Problem 2 blast wave evolution obtained
with the relativistic PPM method introduced in Section 3.1 on a grid of 2000
equidistant zones. At this resolution the relativistic PPM code yields a con-
verged solution. The method of Falle & Komissarov [55] requires a seven-level
adaptive grid calculation to achieve the same, the finest grid spacing corre-
sponding to a grid of 3200 zones. As their code is free of numerical diffusion
and dispersion, Wen et al. [187] are able to handle this problem with high accu-
racy (see Fig 8). At lower resolution (400 zones) the relativistic PPM method
only reaches 69% of the theoretical shock compression value (54% in case of the
second-order accurate upwind method of Falle & Komissarov [55]; 60% with the
code of Donat et al. [43]).

Chow & Monaghan [30] have considered Problem 2 to test their relativistic
SPH code. Besides a 15% overshoot in the shell’s density, the code produces a
non-causal blast wave propagation speed (i.e., vshock > 1).

gFor a Riemann problem with slightly different initial conditions.
hAt t = 0.15.
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Figure 7: Still from an MPEG movie showing the evolution of the density dis-
tribution for the relativistic blast wave Problem 2 (defined in Table 5). This
figure also shows the analytical solution (blue lines). The simulation has been
performed with relativistic PPM on an equidistant grid of 2000 zones. (To
see the movie, please go to the electronic version of this review article at
http://www.livingreviews.org/Articles/Volume2/1999-3marti.)
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Figure 8: Results from [187] for the relativistic blast wave Problems 1 (left
column) and 2 (right column), respectively. The relativistic Glimm method is
only used in regions with steep gradients. Standard finite difference schemes
are applied in the smooth remaining part of the computational domain. In the
above plots, Lax and LW stand respectively for Lax and Lax-Wendroff methods;
G refers to the pure Glimm method.
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6.2.3 Collision of two relativistic blast waves

The collision of two strong blast waves was used by Woodward & Colella [191]
to compare the performance of several numerical methods in classical hydro-
dynamics. In the relativistic case, Yang et al. [194] considered this problem to
test the high-order extensions of the relativistic beam scheme, whereas Mart́ı &
Müller [109] used it to evaluate the performance of their relativistic PPM code.
In this last case, the original boundary conditions were changed (from reflect-
ing to outflow) to avoid the reflection and subsequent interaction of rarefaction
waves, allowing for a comparison with an analytical solution. In the following
we summarize the results on this test obtained by Mart́ı & Müller in [109].

p
ρ
v

vshell

wshell

vshock

σshock

Left Middle Right
1000.00 0.01 100.00

1.00 1.00 1.00
0.00 0.00 0.00

0.957 -0.882
0.021 t 0.045 t
0.978 -0.927

14.39 9.72

Table 9: Initial data (pressure p, density ρ, velocity v) for the test problem of
two colliding relativistic blast waves. The de cay of the initial discontinuities (at
x = 0.1 and x = 0.9) produces two shock waves (velocities vshock, compression
ratios σshock) moving in opposite directions followed by two trailing dense she lls
(velocities vshell, time-dependent widths wshell). The gas is assumed to be ideal
with an adiabatic index γ = 1.4.

The initial data corresponding to this test, consisting of three constant states
with large pressure jumps at the discontinuities separating the states (at x = 0.1
and x = 0.9), as well as the properties of the blast waves created by the decay
of the initial discontinuities, are listed in Table 9. The propagation velocity of
the two blast waves is slower than in the Newtonian case, but very close to the
speed of light (0.9776 and −0.9274 for the shock wave propagating to the right
and left, respectively). Hence, the shock interaction occurs later (at t = 0.420)
than in the Newtonian problem (at t = 0.028). The top panel in Fig. 9 shows
four snapshots of the density distribution, including the moment of the collision
of the blast waves at t = 0.420 and x = 0.5106. At the time of collision the
two shells have a width of ∆x = 0.008 (left shell) and ∆x = 0.019 (right shell),
respectively, i.e., the whole interaction takes place in a very thin region (about
10 times smaller than in the Newtonian case, where ∆x ≈ 0.2).

The collision gives rise to a narrow region of very high density (see lower
panel of Fig. 9), bounded by two shocks moving at speeds 0.088 (shock at the
left) and 0.703 (shock at the right) and large compression ratios (7.26 and 12.06,
respectively) well above the classical limit for strong shocks (6.0 for γ = 1.4).
The solution just described applies until t = 0.430 when the next interaction
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Figure 9: The top panel shows a sequence of snapshots of the density profile for
the colliding relativistic blast wave problem up to the moment when the waves
begin to interact. The density profile of the new states produced by the interaction
of the two waves is shown in the bottom panel (note the change in scale on both
axes with respect to the top panel).
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takes place.
The complete analytical solution before and after the collision up to time

t = 0.430 can be obtained following Appendix II in [109].
An MPEG movie (Fig. 10) shows the evolution of the density up to the time

of shock collision at t = 0.4200. The movie was obtained with the relativistic
PPM code of Mart́ı & Müller [109]. The presence of very narrow structures with
large density jumps requires very fine zoning to resolve the states properly. For
the movie a grid of 4000 equidistant zones was used. The relative error in the
density of the left (right) shell is always less than 2.0% (0.6%), and is about 1.0%
(0.5%) at the moment of shock collision. Profiles obtained with the relativistic
Godunov method (first-order accurate, not shown) show relative errors in the
density of the left (right) shell of about 50% (16%) at t = 0.20. The errors drop
only slightly to about 40% (5%) at the time of collision (t = 0.420).

An MPEG movie (Fig. 11) shows the numerical solution after the interaction
has occurred. Compared to the other MPEG movie (Fig. 10) a very different
scaling for the x-axis had to be used to display the narrow dense new states
produced by the interaction. Obviously, the relativistic PPM code resolves the
structure of the collision region satisfactorily well, the maximum relative error
in the density distribution being less than 2.0%. When using the first-order
accurate Godunov method instead, the new states are strongly smeared out
and the positions of the leading shocks are wrong.
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Figure 10: Still from an MPEG movie showing the evolution of the density dis-
tribution for the colliding relativistic blast wave problem up to the interaction of
the waves. This figure also shows the analytical solution (blue lines). The com-
putation has been performed with relativistic PPM on an equidistant grid of 4000
zones. (To see the movie, please go to the electronic version of this review article
at http://www.livingreviews.org/Articles/Volume2/1999-3marti.)
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Figure 11: Still from an MPEG movie showing the evolution of the den-
sity distribution for the colliding relativistic blast wave problem around the
time of interaction of the waves at an enlarged spatial scale. This figure
also shows the analytical solution (blue lines). The computation has been
performed with relativistic PPM on an equidistant grid of 4000 zones. (To
see the movie, please go to the electronic version of this review article at
http://www.livingreviews.org/Articles/Volume2/1999-3marti.)
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7 Applications

7.1 Astrophysical jets

The most compelling case for a special relativistic phenomenon are the ubiq-
uitous jets in extragalactic radio sources associated with active galactic nuclei.
In the commonly accepted standard model [10], flow velocities as large as 99%
of the speed of light (in some cases even beyond) are required to explain the
apparent superluminal motion observed in many of these sources. Models which
have been proposed to explain the formation of relativistic jets, involve accretion
onto a compact central object, such as a neutron star or stellar mass black hole
in the galactic micro-quasars GRS 1915+105 [118] and GRO J1655-40 [174], or
a rotating super massive black hole in an active galactic nucleus, which is fed
by interstellar gas and gas from tidally disrupted stars.

Inferred jet velocities close to the speed of light suggest that jets are formed
within a few gravitational radii of the event horizon of the black hole. Moreover,
very-long-baseline interferometric (VLBI) radio observations reveal that jets are
already collimated at subparsec scales. Current theoretical models assume that
accretion disks are the source of the bipolar outflows which are further collimated
and accelerated via MHD processes (see, e.g., [16]). There is a large number
of parameters which are potentially important for jet powering: the black hole
mass and spin, the accretion rate and the type of accretion disk, the properties
of the magnetic field and of the environment.

At parsec scales the jets, observed via their synchrotron and inverse Compton
emission at radio frequencies with VLBI imaging, appear to be highly collimated
with a bright spot (the core) at one end of the jet and a series of components
which separate from the core, sometimes at superluminal speeds. In the stan-
dard model [17], these speeds are interpreted as a consequence of relativistic bulk
motions in jets propagating at small angles to the line of sight with Lorentz fac-
tors up to 20 or more. Moving components in these jets, usually preceded by
outbursts in emission at radio wavelengths, are interpreted in terms of traveling
shock waves.

Finally, the morphology and dynamics of jets at kiloparsec scales are domi-
nated by the interaction of the jet with the surrounding extragalactic medium,
the jet power being responsible for dichotomic morphologies (the so called
Fanaroff-Riley I and II classes [56], FR I and FR II, respectively). Current
models [14, 91] interpret FR I morphologies as the result of a smooth decelera-
tion from relativistic to non-relativistic, transonic speeds on kpc scales due to a
slower shear layer. For the most powerful radio galaxies (FR II) and quasars on
the other hand, the observation of flux asymmetries between jet and counter-
jet indicates that in these sources relativistic motion extends up to kpc scales,
although with smaller values of the overall bulk speeds [21].

Although MHD and general relativistic effects seem to be crucial for a suc-
cessful launch of the jet (for a review see, e.g., [23]), purely hydrodynamic,
special relativistic simulations are adequate to study the morphology and dy-
namics of relativistic jets at distances sufficiently far from the central compact
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object (i.e., at parsec scales and beyond). The development of relativistic hydro-
dynamic codes based on HRSC techniques (see Sections 3 and 4) has triggered
the numerical simulation of relativistic jets at parsec and kiloparsec scales.

At kiloparsec scales, the implications of relativistic flow speeds and / or
relativistic internal energies for the morphology and dynamics of jets have been
the subject of a number of papers in recent years [112, 46, 110, 111, 86]. Beams
with large internal energies show little internal structure and relatively smooth
cocoons allowing the terminal shock (the hot spot in the radio maps) to remain
well defined during the evolution. Their morphologies resemble those observed
in naked quasar jets like 3C273 [37]. Fig. 12 shows several snapshots of the time
evolution of a light, relativistic jet with large internal energy. The dependence of
the beam’s internal structure on the flow speed suggests that relativistic effects
may be relevant for the understanding of the difference between slower, knotty
BL Lac jets and faster, smoother quasar jets [60].

Figure 12: Time evolution of a light, relativistic (beam flow velocity equal to
0.99) jet with large internal energy. The logarithm of the proper rest-mass den-
sity is plotted in grey scale, the maximum value corresponding to white and the
minimum to black.

Highly supersonic models, in which kinematic relativistic effects due to high
beam Lorentz factors dominate, have extended over-pressured cocoons. These
over-pressured cocoons can help to confine the jets during the early stages of
their evolution [110] and even cause their deflection when propagating through
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non-homogeneous environments [148]. The cocoon overpressure causes the for-
mation of a series of oblique shocks within the beam in which the synchrotron
emission is enhanced. In long term simulations (see Fig. 13), the evolution is
dominated by a strong deceleration phase during which large lobes of jet ma-
terial (like the ones observed in many FR IIs, e.g., Cyg A [25]) start to inflate
around the jet’s head. These simulations reproduce some properties observed
in powerful extragalactic radio jets (lobe inflation, hot spot advance speeds and
pressures, deceleration of the beam flow along the jet) and can help to constrain
the values of basic parameters (such as the particle density and the flow speed)
in the jets of real sources.

Figure 13: Logarithm of the proper rest-mass density and energy density (from
top to bottom) of an evolved, powerful jet propagating through the intergalactic
medium. The white contour encompasses the jet material responsible for the
synchrotron emission.

The development of multidimensional relativistic hydrodynamic codes has
allowed, for the first time, the simulation of parsec scale jets and superluminal
radio components [68, 85, 117]. The presence of emitting flows at almost the
speed of light enhances the importance of relativistic effects in the appearance
of these sources (relativistic Doppler boosting, light aberration, time delays).
Hence, one should use models which combine hydrodynamics and synchrotron
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radiation transfer when comparing with observations. In these models, moving
radio components are obtained from perturbations in steady relativistic jets.
Where pressure mismatches exist between the jet and the surrounding atmo-
sphere reconfinement shocks are produced. The energy density enhancement
produced downstream from these shocks can give rise to stationary radio knots
as observed in many VLBI sources. Superluminal components are produced by
triggering small perturbations in these steady jets which propagate at almost
the jet flow speed. One example of this is shown in Fig. 14 (see also [68]),
where a superluminal component (apparent speed ≈ 7 times the speed of light)
is produced from a small variation of the beam flow Lorentz factor at the jet
inlet. The dynamic interaction between the induced traveling shocks and the
underlying steady jet can account for the complex behavior observed in many
sources [67].

Figure 14: Computed radio maps of a compact relativistic jet showing the evo-
lution of a superluminal component (from left to right). Two resolutions are
shown: present VLBI resolution (white contours) and resolution provided by the
simulation (black/white images).

The first magnetohydrodynamic simulations of relativistic jets have been
already undertaken in 2D [82, 81] and 3D [128, 129] to study the implications of
ambient magnetic fields in the morphology and bending properties of relativistic
jets. However, despite the impact of these results in specific problems like,
e.g., the understanding of the misalignment of jets between pc and kpc scales,
these 3D simulations have not addressed the effects on the jet structure and
dynamics of the third spatial degree of freedom. This has been the aim of the
work undertaken by Aloy et al. [2].

Finally, Koide et al. [83] have developed a general relativistic MHD code and
applied it to the problem of jet formation from black hole accretion disks. Jets
are formed with a two-layered shell structure consisting of a fast gas pressure
driven jet (Lorentz factor ≈ 2) in the inner part and a slow magnetically driven
outflow in the outer part, both of which are being collimated by the global
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poloidal magnetic field penetrating the disk.

7.2 Gamma-Ray Bursts (GRBs)

A second phenomenon which involves flows with velocities very close to the
speed of light are gamma-ray bursts (GRBs). Although known observationally
for over 30 years, until recently their distance (“local” or “cosmological”) has
been, and their nature still is, a matter of controversial debate [57, 115, 143, 144].
GRBs do not repeat except for a few soft gamma-ray repeaters. They are
detected with a rate of about one event per day, and their duration varies from
milliseconds to minutes. The duration of the shorter bursts and the temporal
substructure of the longer bursts implies a geometrically small source (less than
∼ c · 1 msec ∼ 100 km), which in turn points towards compact objects, like
neutron stars or black holes. The emitted gamma-rays have energies in the
range 30 keV to 2 MeV.

Concerning the distance of GRB sources major progress has occurred through
the observations by the BATSE detector on board the Compton Gamma-Ray
Observatory (GRO), which have proven that GRBs are distributed isotropically
over the sky [114]. Even more important the detection and the rapid availabil-
ity of accurate coordinates (∼ arc minutes) of the fading X-ray counterparts
of GRBs by the BeppoSAX spacecraft beginning in 1997 [34, 146], has allowed
for subsequent successful ground based observations of faint GRB afterglows at
optical and radio wavelength. In the case of GRB 990123 the optical, X-ray and
gamma-ray emission was detected for the first time almost simultaneously (opti-
cal observations began 22 seconds after the onset of the GRB) [22, 1]. From op-
tical spectra thus obtained, redshifts of several gamma-ray bursts have been de-
termined, e.g., GRB 970508 (z = 0.835 [116, 141]), GRB 971214 (z = 3.42 [87]),
GRB 980703 (z = 0.966 [41]), and GRB 990123 (1.60 ≤ z < 2.05 [5]), which
confirm that (at least some) GRBs occur at cosmological distances. Assum-
ing isotropic emission the inferred total energy of cosmological GRBs emitted
in form of gamma-rays ranges from several 1051 erg to 3 · 1053 erg (for GRB
971214) [26], and exceeds 1054 erg for GRB 990123 [5, 22]. Updated informa-
tion on GRBs localized with BeppoSAX, BATSE / RXTE (PCA) or BATSE /
RXTE (ASM) can be obtained from a web site maintained by Greiner [71].

The compact nature of the GRB source, the observed flux, and the cosmo-
logical distance taken together imply a large photon density. Such a source has
a large optical depth for pair production. This is, however, inconsistent with the
optically thin source indicated by the non-thermal gamma-ray spectrum, which
extends well beyond the pair production threshold at 500 keV. This problem can
be resolved by assuming an ultra-relativistic expansion of the emitting region,
which eliminates the compactness constraint. The bulk Lorentz factors required
are then W > 100 (see, e.g., [144]).

In April 1998 the pure cosmological origin of GRBs was challenged by the
detection of the Type Ib/c supernova SN 1998bw [61, 62] within the 8 arc minute
error box of GRB 980425 [165, 140]. Its explosion time is consistent with that of
the GRB, and relativistic expansion velocities are derived from radio observa-
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tions of SN 1998bw [88]. BeppoSAX detected two fading X-ray sources within
the error box, one being positionally consistent with the supernova and a fainter
one not consistent with the position of SN 1998bw [140]. Taken together these
facts suggest a relationship between GRBs and SNe Ib/c, i.e., core collapse
supernovae of massive stellar progenitors which have lost their hydrogen and
helium envelopes [62, 78, 193]. As the host galaxy ESO 184-82 of SN 1998bw
is only at a redshift of z = 0.0085 [175] and as GRB 980425 was not extraordi-
narily bright, GRB-supernovae are more than four orders of magnitude fainter
(Etot γ = 7 · 1047 erg for GRB 980425 [26]) than a typical cosmological GRB.
However, the observation of the second fading X-ray source within the error box
of GRB 980425 and unrelated with SN 1998bw still causes some doubts on the
GRB supernova connection, although the probability of chance coincidence of
GRB 980425 and SN 1998bw is extremely low [140].

In order to explain the energies released in a GRB various catastrophic
collapse events have been proposed including neutron-star/neutron-star merg-
ers [134, 69, 47], neutron-star/black-hole mergers [119], collapsars [192, 101],
and hypernovae [135]. These models all rely on a common engine, namely
a stellar mass black hole which accretes several solar masses of matter from
a disk (formed during a merger or by a non-spherical collapse) at a rate of
∼ 1M⊙ s−1 [151]. A fraction of the gravitational binding energy released by
accretion is converted into neutrino and anti-neutrino pairs, which in turn an-
nihilate into electron-positron pairs. This creates a pair fireball, which will also
include baryons present in the environment surrounding the black hole. Pro-
vided the baryon load of the fireball is not too large, the baryons are accelerated
together with the e+ e− pairs to ultra-relativistic speeds with Lorentz factors
> 102 [27, 145, 144]. The existence of such relativistic flows is supported by
radio observations of GRB 980425 [88]. It has been further argued that the
rapid temporal decay of several GRB afterglows is inconsistent with spherical
(isotropic) blast wave models, and instead is more consistent with the evolution
of a relativistic jet after it slows down and spreads laterally [160]. Independent
of the flow pattern the bulk kinetic energy of the fireball then is thought to
be converted into gamma-rays via cyclotron radiation and/or inverse Compton
processes (see, e.g., [115, 144]).

One-dimensional numerical simulations of spherically symmetric relativistic
fireballs have been performed by several authors to model GRB sources [145,
137, 136]. Multi-dimensional modeling of ultra-relativistic jets in the context
of GRBs has for the first time been attempted by Aloy et al. [4]. Using a col-
lapsar progenitor model of MacFadyen & Woosley [101] they have simulated
the propagation of an axisymmetric jet through the mantle and envelope of
a collapsing massive star (10M⊙) using the GENESIS special relativistic hy-
drodynamic code [3]. The jet forms as a consequence of an assumed energy
deposition of 1051 erg/sec within a 30 degree cone around the rotation axis. At
break-out, i.e., when the jet reaches the surface of the stellar progenitor, the
maximum Lorentz factor of the jet flow is about 20. The latter fact implies that
Newtonian simulations of this phenomenon [101] are clearly inadequate.
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8 Conclusion

8.1 Evaluation of the methods

An assessment of the quality of the numerical methods should consider, at least,
the following aspects: (i) accuracy and robustness in describing high Lorentz
factor flows with strong shocks; (ii) effort required to extend to multi dimen-
sions; (iii) effort required to extend to RMHD and GRHD. In Table 10 we have
summarized these aspects of numerical methods for SRHD.

Method Ultra-

relativistic

regime

Handling of

discontinui-

tiesi

Extension to

several

spatial

dimensionsj

Extension to

GRHD RMHD

AV-mono × O, SE
√ √ √

cAV-implicit
√ √ × × ×

HRSCk
√ √ √

l
√

m ×n

rGlimm
√ √ × × ×

sTVD
√

o D
√ √ √

van Putten
√

o D
√ × √

FCT
√

O
√ × ×

SPH
√

D, O
√ √

p ×q

Table 10: Evaluation of numerical methods for SRHD. Methods have been cat-
egorized for clarity.

Since their introduction in numerical RHD at the beginning of nineties,

iD: excessive dissipation; O: oscillations; SE: systematic errors.
jAll finite difference methods are extended by directional splitting.
kContains all the methods listed in Table 2 with exception of rGlimm [187] and sTVD [82].
lrPPM [109] requires an exact relativistic Riemann solver with non-zero transverse speeds.

mThere exist GRHD extensions of several HRSC methods based on linearized Riemann
solvers. The procedure developed by Pons et al. [150] allows any SRHD Riemann solver to be
applied to GRHD flows.

nRequire spectral decomposition of RMHD equations or solution of RMHD Riemann prob-
lem except HLL. Van Putten [178] has studied the characteristic structure of the RMHD
equations in (constraint free) divergence form as a first step to extend modern HRSC meth-
ods to RMHD. Komissarov [84] has developed a multidimensional RMHD code based on a
linearized Riemann solver.

oNeeds confirmation.
pCodes of references [89, 164].
qThere is one code which considered such an extension [102], but the results are not com-

pletely satisfactory.
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HRSC methods have demonstrated their ability to describe accurately (stable
and without excessive smearing) relativistic flows of arbitrarily large Lorentz
factors and strong discontinuities, reaching the same quality as in classical hy-
drodynamics. In addition (as it is the case for classical flows, too), HRSC meth-
ods show the best performance compared to any other method (e.g., artificial
viscosity, FCT or SPH).

Despite of the latter fact, a lot of effort has been put into improving these
non-HRSC methods. Using a consistent formulation of artificial viscosity has
significantly enhanced the capability of finite difference schemes [131] as well as
of relativistic SPH [164] to handle strong shocks without spurious post-shock
oscillations. However, this comes at the price of a large numerical dissipation at
shocks. Concerning relativistic SPH, recent investigations using a conservative
formulation of the hydrodynamic equations [30, 164] have reached an unprece-
dented accuracy with respect to previous simulations, although some issues still
remain. Besides the strong smearing of shocks, the description of contact dis-
continuities and of thin structures moving at ultra-relativistic speeds needs to
be improved (see Section 6.2).

Concerning FCT techniques, those codes based on a conservative formu-
lation of the RHD equations have been able to handle relativistic flows with
discontinuities at all flow speeds, although the quality of the results is below
that of HRSC methods in all cases [161].

The extension to multi-dimensions is simple for most relativistic codes. Fi-
nite difference techniques are easily extended using directional splitting. Note,
however, that HRSC methods based on exact solutions of the Riemann prob-
lem [109, 187] first require the development of a multidimensional version of
the relativistic Riemann solver. The adapting-grid, artificial viscosity, implicit
code of Norman & Winkler [131] and the relativistic Glimm method of Wen et
al. [187] are restricted to one dimensional flows. Note that Glimm’s method
produces the best results in all the tests analyzed in Section 6.

The symmetric TVD scheme proposed by Davis [38] and extended to GRMHD
(see below) by Koide et al. [82] combines several characteristics making it very
attractive. It is written in conservation form and is TVD, i.e., it is converging to
the physical solution. In addition, it is independent of spectral decompositions,
which allows for a simple extension to RMHD. Quite similar statements can be
made about the approach proposed by van Putten [181]. In contrast to FCT
schemes (which are also easily extended to general systems of equations), both
Koide et al.’s and van Putten’s methods are very stable when simulating mildly
relativistic flows (maximum Lorentz factors ≈ 4) with discontinuities. Their
only drawback is an excessive smearing of the latter. A comparison of Davis’
method with Riemann solver based methods would be desirable.

8.2 Further developments

The directions of future developments in this field of research are quite obvious.
They can be divided into four main categories:
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8.2.1 Incorporation of realistic microphysics

Up to now most astrophysical SRHD simulations have assumed matter whose
thermodynamic properties can be described by an inviscid ideal equation of state
with a constant adiabatic index. This simplification may have been appropri-
ate in the first generation of SRHD simulations, but it clearly must be given
up when aiming at a more realistic modeling of astrophysical jets, gamma-ray
burst sources or accretion flows onto compact objects. For these phenomena a
realistic equation of state should include contributions from radiation (γ = 4/3-
“fluid”), allow for the formation of electron-positron pairs at high temperatures,
allow the ideal gas contributions to be arbitrarily degenerate and/or relativis-
tic. Depending on the problem to be simulated, effects due to heat conduction,
radiation transport, cooling, nuclear reactions, and viscosity may have to be
considered, too. To include any of these effects is often a non trivial task even
in Newtonian hydrodynamics (see, e.g., the contributions in the book edited by
Steiner & Gautschy [168]).

When simulating relativistic heavy ion collisions, the use of a realistic equa-
tion of state is essential for an adequate description of the phenomenon. How-
ever, as these simulations have been performed with FCT based difference
schemes (see, e.g., [166]), this poses no specific numerical problem. The simu-
lation of flows obeying elaborated microphysics with HRSC methods needs in
some cases the extension of the present relativistic Riemann solvers to handle
general equations of state. This is the case of the Roe-Eulderink method (ex-
tensible by the procedure developed in the classical case by Glaister [64]), and
rPPM and rGlimm both relying on an exact solution of the Riemann problem
for ideal gases with constant adiabatic exponent (which can also be extended
following the procedure of Colella & Glaz [32] for classical hydrodynamics). We
expect the second generation of SRHD codes to be capable of treating general
equations of state and various source/sink terms routinely.

Concerning the usage of complex equations of state (EOS) a limitation must
be pointed out which is associated with the Riemann solvers used in HRSC
methods, even in the Newtonian limit. These problems are especially com-
pounded in situations where there are phase transitions present. In this case
the EOS may have a discontinuous adiabatic exponent and may even be non-
convex. The Riemann solver of Colella & Glaz [32] often fails in these situations,
because it is derived under the assumption of convexity in the EOS. When con-
vexity is not present the character of the solution to the Riemann problem
changes. Situations where phase transitions cause discontinuities in the adia-
batic index or non-convexity of the EOS are encountered, e.g., in simulations
of neutron star formation, of the early Universe, and of relativistic heavy ion
collisions.

Another interesting area that deserves further research is the application
of relativistic HRSC methods in simulations of reactive multi-species flows, es-
pecially as such flows still cause problems for the Newtonian CFD community
(see, e.g., [149]). The structure of the solution to the Riemann problem becomes
significantly more complex with the introduction of reactions between multiple

Living Reviews in Relativity (1999-3)
http://www.livingreviews.org

http://www.livingreviews.org


57 Numerical Hydrodynamics in Special Relativity

species. Riemann solvers that incorporate source terms [97], and in particular
source terms due to reactions, have been proposed for classical flows [11, 79],
but most HRSC codes still rely on operator splitting.

8.2.2 Coupling of SRHD schemes with AMR

Modeling astrophysical phenomena often involves an enormous range of length
scales and time scales to be covered in the simulations (see, e.g., [124]). In
two and definitely in three spatial dimensions many such simulations cannot
be performed with sufficient spatial resolution on a static equidistant or non-
equidistant computational grid, but they will require dynamic, adaptive grids.
In addition, when the flow problem involves stiff source terms (e.g., energy
generation by nuclear reactions) very restrictive time step limitations may result.
A promising approach to overcome these complications will be the coupling of
SRHD solvers with the adaptive mesh refinement (AMR) technique [13]. AMR
automatically increases the grid resolution near flow discontinuities or in regions
of large gradients (of the flow variables) by introducing a dynamic hierarchy of
grids until a prescribed accuracy of the difference approximation is achieved.
Because each level of grids is evolved in AMR on its own time step, time step
restrictions due to stiff source terms are constraining the computational costs
less than without AMR. For an overview of online information about AMR
visit, e.g., the AMRA home page of Plewa [147], and for public domain AMR
software, e.g., the AMRCLAW home page of LeVeque & Berger [99], and the
AMRCART home page of Walder [186].

A SRHD simulation of a relativistic jet based on a combined HLL-AMR
scheme was performed by Duncan & Hughes [46]. Plewa et al. [148] have mod-
eled the deflection of highly supersonic jets propagating through non-homogeneous
environments using the HRSC scheme of Mart́ı et al. [111] combined with the
AMR implementation AMRA of Plewa [147]. Komissarov & Falle [85] have
combined their numerical scheme with the adaptive grid code Cobra, which has
been developed by Mantis Numerics Ltd. for industrial applications [54], and
which uses a hierarchy of grids with a constant refinement factor of two between
subsequent grid levels.

8.2.3 General relativistic hydrodynamics (GRHD)

Up to now only very few attempts have been made to extend HRSC methods
to GRHD and all of these have used linearized Riemann solvers [107, 50, 157,
9, 59]. In the most recent of these approaches Font et al. [59] have developed
a 3D general relativistic HRSC hydrodynamic code where the matter equations
are integrated in conservation form and fluxes are calculated with Marquina’s
formula.

A very interesting and powerful procedure was proposed by Balsara [8] and
has been implemented by Pons et al. [150]. This procedure allows one to ex-
ploit all the developments in the field of special relativistic Riemann solvers in
general relativistic hydrodynamics. The procedure relies on a local change of
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coordinates at each zone interface such that the spacetime metric is locally flat.
In that locally flat spacetime any special relativistic Riemann solver can be used
to calculate the numerical fluxes, which are then transformed back. The trans-
formation to an orthonormal basis is valid only at a single point in spacetime.
Since the use of Riemann solvers requires the knowledge of the behavior of the
characteristics over a finite volume, the use of the local Lorentz basis is only
an approximation. The effects of this approximation will only become known
through the study of the performance of these methods in situations where the
structure of the spacetime varies rapidly in space and perhaps time as well. In
such a situation finer grids and improved time advancing methods will definitely
be required. The implementation is simple and computationally inexpensive.

Characteristic formulations of the Einstein field equations are able to han-
dle the long term numerical description of single black hole spacetimes in vac-
uum [15]. In order to include matter in such an scenario, Papadopoulos &
Font [138] have generalized the HRSC approach to cope with the hydrodynamic
equations in such a null foliation of spacetime. Actually, they have presented
a complete (covariant) re-formulation of the equations in GR, which is also
valid for spacelike foliations in SR. They have extensively tested their method
calculating, among other tests, shock tube problem 1 (see Section 6.2.1), but
posed on a light cone and using the appropriate transformations of the exact
solution [108] to account for advanced and retarded times.

Other developments in GRHD in the past included finite element methods
for simulating spherically symmetric collapse in general relativity [103], general
relativistic pseudo-spectral codes based on the (3+1) ADM formalism [7] for
computing radial perturbations [70] and 3D gravitational collapse of neutron
stars [19], and general relativistic SPH [102]. The potential of these methods
for the future is unclear, as none of them is specifically appropriate for ultra-
relativistic speeds and strong shock waves which are characteristic of most as-
trophysical applications.

Peitz & Appl [139] have addressed the difficult issue of non-ideal GRHD,
which is of particular importance, e.g., for the simulation of accretion discs
around compact objects, rotating relativistic fluid configurations, and the evo-
lution of density fluctuations in the early universe. They have accounted for
dissipative effects by applying the theory of extended causal thermodynamics,
which eliminates the causality violating infinite signal speeds arising from the
conventional Navier-Stokes equation. Peitz & Appl have not implemented their
model numerically yet.

8.2.4 Relativistic magneto-hydrodynamics (RMHD)

The inclusion of magnetic effects is of great importance in many astrophysical
flows. The formation and collimation process of (relativistic) jets most likely in-
volves dynamically important magnetic fields and occurs in strong gravitational
fields. The same is likely to be true for accretion discs around black holes.
Magneto-relativistic effects even play a non-negligible role in the formation of
proto-stellar jets in regions close to the light cylinder [23]. Thus, relativistic
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MHD codes are a very desirable tool in astrophysics. The non-trivial task of de-
veloping such a kind of code is considerably simplified by the fact that because
of the high conductivity of astrophysical plasmas one must only consider ideal
RMHD in most applications.

Evans & Hawley [52] extended the second-order accurate, Newtonian, artificial-
viscosity transport method of Hawley et al. [75] to the evolution of the MHD
induction equation. Special relativistic 2D MHD test problems with Lorentz
factors up to ∼ 3 have been investigated by Dubal [45] with a code based on
FCT techniques (see Section 4).

In a series of papers Koide and coworkers [82, 81, 128, 129, 83] have in-
vestigated relativistic magnetized jets using a symmetric TVD scheme (see Sec-
tion 3). Koide, Nishikawa & Mutel [82] simulated a 2D RMHD slab jet, whereas
Koide [81] investigated the effect of an oblique magnetic field on the propagation
of a relativistic slab jet. Nishikawa et al. [128, 129] extended these simulations
to 3D and considered the propagation of a relativistic jet with a Lorentz factor
W = 4.56 along an aligned and an oblique external magnetic field. The 2D and
3D simulations published up to now only cover the very early propagation of
the jet (up to 20 jet radii) and are performed with moderate spatial resolution
on an equidistant Cartesian grid (up to 101 zones per dimension, i.e., 5 zones
per beam radius).

Van Putten [180, 181] has proposed a method for accurate and stable numer-
ical simulations of RMHD in the presence of dynamically significant magnetic
fields in two dimensions and up to moderate Lorentz factors. The method is
based on MHD in divergence form using a 2D shock-capturing method in terms
of a pseudo-spectral smoothing operator (see Section 4). He applied this method
to 2D blast waves [183] and astrophysical jets [182, 184].

Steps towards the extension of linearized Riemann solvers to ideal RMHD
have already been taken. Romero [158] has derived an analytical expression
for the spectral decomposition of the Jacobian in the case of a planar rela-
tivistic flow field permeated by a transversal magnetic field (nonzero field com-
ponent only orthogonal to flow direction). Van Putten [178] has studied the
characteristic structure of the RMHD equations in (constraint free) divergence
form. Finally, Komissarov [84] has presented a robust Godunov-type scheme for
RMHD, which is based on a linear Riemann solver, has second-order accuracy in
smooth regions, enforces magnetic flux conservation, and which can cope with
ultra-relativistic flows.

We end with the simulations performed by Koide, Shibata & Kudoh [83] on
magnetically driven axisymmetric jets from black hole accretion disks. Their
GRMHD code is an extension of the special relativistic MHD code developed
by Koide et al. [82, 81, 128]. The necessary modifications of the code were quite
simple, because in the (nonrotating) black hole’s Schwarzschild spacetime the
GRMHD equations are identical to the SRMHD equations in general coordi-
nates, except for the gravitational force terms and the geometric factors of the
lapse function. With the pioneering work of Koide, Shibata & Kudoh the epoch
of exciting GRMHD simulations has just begun.
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9 Additional Information

This section contains more detailed and specific material referenced at various
places in the review.

9.1 Algorithms to recover primitive quantities

The expressions relating the primitive variables (ρ, vi, p) to the conserved quan-
tities (D,Si, τ) depend explicitly on the equation of state p(ρ, ε) and simple
expressions are only obtained for simple equations of state (i.e., ideal gas).

A function of pressure, whose zero represents the pressure in the physical
state, can easily be obtained from Eqs. (8, 9, 10, 12), and (13):

f(p̄) = p (ρ∗(p̄), ε∗(p̄)) − p̄, (62)

with ρ∗(p̄) and ε∗(p̄) given by

ρ∗(p̄) =
D

W∗(p̄)
, (63)

and

ε∗(p̄) =
τ + D[1 − W∗(p̄)] + p̄[1 − W∗(p̄)2]

DW∗(p̄)
, (64)

where

W∗(p̄) =
1√

1 − vi
∗(p̄)v∗i(p̄)

, (65)

and

vi
∗(p̄) =

Si

τ + D + p̄
. (66)

The root of (62) can be obtained by means of a nonlinear root-finder (e.g., a
one-dimensional Newton-Raphson iteration). For an ideal gas with a constant
adiabatic exponent such a procedure has proven to be very successful in a large
number of tests and applications [107, 109, 111]. The derivative of f with respect
to p̄, f ′, can be approximated by [3]

f ′ = vi
∗(p̄)v∗i(p̄)cs∗(p̄)2 − 1, (67)

where cs∗ is the sound speed which can efficiently be computed for any EOS.
Moreover, approximation (67) tends towards the exact derivative as the solution
is approached.

Eulderink [49, 50] has also developed several procedures to calculate the
primitive variables for an ideal EOS with a constant adiabatic index. One
procedure is based on finding the physically admissible root of a fourth-order
polynomial of a function of the specific enthalpy. This quartic equation can
be solved analytically by the exact algebraic quartic root formula although this
computation is rather expensive. The root of the quartic can be found much
more efficiently using a one-dimensional Newton-Raphson iteration. Another
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procedure is based on the use of a six-dimensional Newton-Kantorovich method
to solve the whole nonlinear set of equations.

Also for ideal gases with constant γ, Schneider et al. [161] transform the
system (8, 9, 10), (12), and (13) algebraically into a fourth-order polynomial in
the modulus of the flow speed, which can be solved analytically or by means of
iterative procedures.

For a general EOS, Dean et al. [40] and Dolezal & Wong [42] proposed the
use of iterative algorithms for v2 and ρ, respectively.

In the covariant formulation of the GRHD equations presented by Papadopou-
los & Font [138], which also holds in the Minkowski limit, there exists a closed
form relationship between conserved and primitive variables in the particular
case of a null foliation and an ideal EOS. However, in the spacelike case their
formulation also requires some type of root-finding procedure.

9.2 Spectral decomposition of the 3D SRHD equations

The full spectral decomposition including the right and left eigenvectors of the
Jacobian matrices associated to the SRHD system in 3D has been first derived
by Donat et al. [43]. Previously, Mart́ı et al. [107] obtained the spectral decom-
position in 1D SRHD, and Eulderink [49] and Font et al. [58] the eigenvalues
and right eigenvectors in 3D. The Jacobians are given by

Bi =
∂Fi(u)

∂u
, (68)

where the state vector u and the flux vector Fi are defined in (6) and (7),
respectively. In the following we explicitly give both the eigenvalues and the
right and left eigenvectors of the Jacobi matrix Bx only (the cases i = y, z are
easily obtained by symmetry considerations).

The eigenvalues of matrix Bx(u) are

λ± =
1

1 − v2c2
s

{
vx(1 − c2

s)±cs

√
(1 − v2)[1 − vxvx − (v2 − vxvx)c2

s]
}

, (69)

and
λ0 = vx (triple). (70)

A complete set of right-eigenvectors is

r0,1 =

( K
hW

, vx, vy, vz, 1 − K
hW

)
(71)

r0,2 = (Wvy, 2hW 2vxvy, h(1 + 2W 2vyvy), 2hW 2vyvz, 2hW 2vy − Wvy) (72)

r0,3 = (Wvz, 2hW 2vxvz, 2hW 2vyvz, h(1 + 2W 2vzvz), 2hW 2vz − Wvz) (73)

r± = (1, hWA±λ±, hWvy, hWvz, hWA± − 1) (74)

where

K ≡ κ̃

κ̃ − c2
s

, κ̃ =
κ

ρ
, A± ≡ 1 − vxvx

1 − vxλ±

. (75)
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The corresponding complete set of left-eigenvectors is

l0,1 =
W

K − 1
(h − W,Wvx,Wvy,Wvz,−W ) (76)

l0,2 =
1

h(1 − vxvx)
(−vy, vxvy, 1 − vxvx, 0,−vy) (77)

l0,3 = 1h(1 − vxvx)(−vz, vxvz, 0, 1 − vxvx,−vz) (78)

l∓ = (±1)
h2

∆




hWA±(vx − λ±) − vx − W 2(v2 − vxvx)(2K − 1)·
(vx −A±λ±) + KA±λ±

1 + W 2(v2 − vxvx)(2K − 1)(1 −A±) −KA±

W 2vy(2K − 1)A±(vx − λ±)

W 2vz(2K − 1)A±(vx − λ±)

−vx − W 2(v2 − vxvx)(2K − 1)(vx −A±λ±) + KA±λ±




(79)
where ∆ is the determinant of the matrix of right-eigenvectors, i.e.,

∆ = h3W (K − 1)(1 − vxvx)(A+λ+ −A−λ−). (80)

For an ideal gas equation of state K = h, i.e., K > 1, and hence ∆ 6= 0 for
|vx| < 1.

9.3 Program RIEMANN

PROGRAM RIEMANN

C C This program computes the solution of a 1D

c relativistic Riemann problem with

C initial data UL if X<0.5 and UR if X>0.5

C in the whole spatial domain [0, 1]

C

CG GLOBAL DATA (COMMON BLOCKS) REFERENCED:

CG /GAMMA/, /STATES/, /LS/, /RS/

C

CF FILE ACCESS:

CF solution.dat

C

CM MODULES CALLED:

CM GEP, RAREF

C

PROGRAM RIEMAN

IMPLICIT NONE
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C -------------

C COMMON BLOCKS

C -------------

DOUBLE PRECISION RHOL, PL, UL, HL, CSL, VELL, WL,

& RHOR, PR, UR, HR, CSR, VELR, WR

COMMON /STATES/ RHOL, PL, UL, HL, CSL, VELL, WL,

& RHOR, PR, UR, HR, CSR, VELR, WR

DOUBLE PRECISION RHOLS, ULS, HLS, CSLS, VELLS, VSHOCKL

COMMON /LS/ RHOLS, ULS, HLS, CSLS, VELLS, VSHOCKL

DOUBLE PRECISION RHORS, URS, HRS, CSRS, VELRS, VSHOCKR

COMMON /RS/ RHORS, URS, HRS, CSRS, VELRS, VSHOCKR

DOUBLE PRECISION GAMMA

COMMON /GAMMA/ GAMMA

C ------------------

C INTERNAL VARIABLES

C ------------------

INTEGER MN, N, I, ILOOP

PARAMETER (MN = 400)

DOUBLE PRECISION TOL, PMIN, PMAX, DVEL1, DVEL2, CHECK

DOUBLE PRECISION PS, VELS

DOUBLE PRECISION RHOA(MN), PA(MN), VELA(MN), UA(MN)

DOUBLE PRECISION XI

DOUBLE PRECISION RAD(MN), X1, X2, X3, X4, X5, T

C --------------

C INITIAL STATES

C --------------

WRITE(*,*) ’ ADIABATIC INDEX OF THE GAS: ’

READ (*,*) GAMMA

WRITE(*,*) ’ TIME FOR THE SOLUTION: ’

READ (*,*) T

C ---------- C LEFT STATE C ----------
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WRITE(*,*) ’ ---- LEFT STATE ---- ’

WRITE(*,*) ’ PRESSURE : ’

READ (*,*) PL

WRITE(*,*) ’ DENSITY : ’

READ (*,*) RHOL

WRITE(*,*) ’ FLOW VELOCITY: ’

READ (*,*) VELL

C -----------

C RIGHT STATE

C -----------

WRITE(*,*) ’ ---- RIGHT STATE --- ’

WRITE(*,*) ’ PRESSURE : ’

READ (*,*) PR

WRITE(*,*) ’ DENSITY : ’

READ (*,*) RHOR

WRITE(*,*) ’ FLOW VELOCITY: ’

READ (*,*) VELR

C ------------------------------------------------------------

C SPECIFIC INTERNAL ENERGY, SPECIFIC ENTHALPY, SOUND SPEED AND

C FLOW LORENTZ FACTORS IN THE INITIAL STATES

C ------------------------------------------------------------

UL = PL/(GAMMA-1.D0)/RHOL

UR = PR/(GAMMA-1.D0)/RHOR

HL = 1.D0+UL+PL/RHOL

HR = 1.D0+UR+PR/RHOR

CSL = DSQRT(GAMMA*PL/RHOL/HL)

CSR = DSQRT(GAMMA*PR/RHOR/HR)

WL = 1.D0/DSQRT(1.D0-VELL**2)

WR = 1.D0/DSQRT(1.D0-VELR**2)

C ----------------

C NUMBER OF POINTS

C ----------------

N = 400

C --------------------------

C TOLERANCE FOR THE SOLUTION

C --------------------------
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TOL = 0.D0

C

ILOOP = 0

PMIN = (PL + PR)/2.D0

PMAX = PMIN

5 ILOOP = ILOOP + 1

PMIN = 0.5D0*MAX(PMIN,0.D0)

PMAX = 2.D0*PMAX

CALL GETDVEL(PMIN, DVEL1)

CALL GETDVEL(PMAX, DVEL2)

CHECK = DVEL1*DVEL2

IF (CHECK.GT.0.D0) GOTO 5

C -----------------------------------------------------

C PRESSURE AND FLOW VELOCITY IN THE INTERMEDIATE STATES

C -----------------------------------------------------

CALL GETP(PMIN, PMAX, TOL, PS)

VELS = 0.5D0*(VELLS + VELRS)

C ------------------------------

C SOLUTION ON THE NUMERICAL MESH

C ------------------------------

C ----------------------

C POSITIONS OF THE WAVES

C ----------------------

IF (PL.GE.PS) THEN

X1 = 0.5D0 + (VELL - CSL )/(1.D0 - VELL*CSL )*T

X2 = 0.5D0 + (VELS - CSLS)/(1.D0 - VELS*CSLS)*T

ELSE

X1 = 0.5D0 + VSHOCKL*T

X2 = X1
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END IF

X3 = 0.5D0 + VELS*T

IF (PR.GE.PS) THEN

X4 = 0.5D0 + (VELS + CSRS)/(1.D0 + VELS*CSRS)*T

X5 = 0.5D0 + (VELR + CSR )/(1.D0 + VELR*CSR )*T

ELSE

X4 = 0.5D0 + VSHOCKR*T

X5 = X4

END IF

C --------------------

C SOLUTION ON THE MESH

C --------------------

DO 100 I=1,N

RAD(I) = DFLOAT(I)/DFLOAT(N)

100 CONTINUE

DO 120 I=1,N

IF (RAD(I).LE.X1) THEN

PA(I) = PL

RHOA(I) = RHOL

VELA(I) = VELL

UA(I) = UL

ELSE IF (RAD(I).LE.X2) THEN

XI = (RAD(I) - 0.5D0)/T

CALL RAREF(XI, RHOL, PL, UL, CSL, VELL, ’L’,

& RHOA(I), PA(I), UA(I), VELA(I))

ELSE IF (RAD(I).LE.X3) THEN
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PA(I) = PS

RHOA(I) = RHOLS

VELA(I) = VELS

UA(I) = ULS

ELSE IF (RAD(I).LE.X4) THEN

PA(I) = PS

RHOA(I) = RHORS

VELA(I) = VELS

UA(I) = URS

ELSE IF (RAD(I).LE.X5) THEN

XI = (RAD(I) - 0.5D0)/T

CALL RAREF(XI, RHOR, PR, UR, CSR, VELR, ’R’,

& RHOA(I), PA(I), UA(I), VELA(I))

ELSE

PA(I) = PR

RHOA(I) = RHOR

VELA(I) = VELR

UA(I) = UR

END IF

120 CONTINUE

OPEN (3,FILE=’solution.dat’,FORM=’FORMATTED’,STATUS=’NEW’)

WRITE(3,150) N, T

150 FORMAT(I5,1X,F10.5)

DO 60 I=1,N

WRITE(3,200) RAD(I),PA(I),RHOA(I),VELA(I),UA(I)

60 CONTINUE

200 FORMAT(5(E15.8,1X))

CLOSE(3)

STOP

END
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C -------------------

CN NAME: G E T D V E L

C -------------------

CP PURPOSE:

CP COMPUTE THE DIFFERENCE IN FLOW SPEED BETWEEN LEFT AND RIGHT INTERMEDIATE

CP STATES FOR GIVEN LEFT AND RIGHT STATES AND PRESSURE

C

CU USAGE:

CU CALL GETDVEL( P, DVEL )

C

CA ARGUMENTS:

CA NAME / I,IO,O / TYPE(DIMENSION)

CA DESCRIPTION

CA P / I / DOUBLEPRECISION

CA PRESSURE IN THE INTERMEDIATE STATE

CA DVEL / O / DOUBLEPRECISION

CA DIFFERENCE IN FLOW SPEED BETWEEN LEFT AND RIGHT INTERMEDIATE SATES

C

CG GLOBAL DATA (COMMON BLOCKS) REFERENCED:

CG /GAMMA/, /STATES/

C

CF FILE ACCESS:

CF NONE

C

CM MODULES CALLED:

CM GETVEL

C

SUBROUTINE GETDVEL( P, DVEL )

IMPLICIT NONE

C ---------

C ARGUMENTS

C ---------

DOUBLEPRECISION P, DVEL

C -------------

C COMMON BLOCKS

C -------------

DOUBLE PRECISION RHOLS,ULS,HLS,CSLS,VELLS,VSHOCKL

COMMON /LS/ RHOLS,ULS,HLS,CSLS,VELLS,VSHOCKL

DOUBLE PRECISION RHORS,URS,HRS,CSRS,VELRS,VSHOCKR
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COMMON /RS/ RHORS,URS,HRS,CSRS,VELRS,VSHOCKR

DOUBLE PRECISION RHOL, PL, UL, HL, CSL, VELL, WL,

& RHOR, PR, UR, HR, CSR, VELR, WR

COMMON /STATES/ RHOL, PL, UL, HL, CSL, VELL, WL,

& RHOR, PR, UR, HR, CSR, VELR, WR

DOUBLE PRECISION GAMMA

COMMON /GAMMA/ GAMMA

C ---------

C LEFT WAVE

C ---------

CALL GETVEL(P, RHOL, PL, UL, HL, CSL, VELL, WL, ’L’,

& RHOLS, ULS, HLS, CSLS, VELLS, VSHOCKL )

C ----------

C RIGHT WAVE

C ----------

CALL GETVEL(P, RHOR, PR, UR, HR, CSR, VELR, WR, ’R’,

& RHORS, URS, HRS, CSRS, VELRS, VSHOCKR )

DVEL = VELLS - VELRS

RETURN

END

C -------------

CN NAME: G E T P

C -------------

CP PURPOSE:

CP FIND THE PRESSURE IN THE INTERMEDIATE STATE OF A RIEMANN PROBLEM

IN

CP RELATIVISTIC HYDRODYNAMICS

C

CD DESCRIPTION:

CD THIS ROUTINE USES A COMBINATION OF INTERVAL BISECTION AND INVERSE

CD QUADRATIC INTERPOLATION TO FIND THE ROOT IN A SPECIFIED INTERVAL.

C

CU USAGE:

CU CALL GETP( PMIN, PMAX, TOL, PS )

C

CA ARGUMENTS:
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CA NAME / I,IO,O / TYPE(DIMENSION)

CA DESCRIPTION

CA PMIN / I / DOUBLEPRECISION

CA THE LEFT ENDPOINT OF THE INTERVAL

CA PMAX / I / DOUBLEPRECISION

CA THE RIGHT ENDPOINT OF THE INTERVAL

CA TOL / I / DOUBLEPRECISION

CA TOLERANCE: DESIRED LENGTH OF THE INTERVAL OF UNCERTAINTY

CA OF THE RESULT ( .GE. 0)

CA PS / O / DOUBLEPRECISION

CA PRESSURE IN THE INTERMEDIATE STATE WITHIN THE SPECIFIED TOLERANCE

CA (OR TO MACHINE PRECISION IF THE TOLERANCE IS ZERO).

C

CG GLOBAL DATA (COMMON BLOCKS) REFERENCED:

CG /GAMMA/, /STATES/

C

CF FILE ACCESS:

CF NONE

C

CM MODULES CALLED:

CM GETDVEL

C

CC COMMENTS:

CC IT IS ASSUMED THAT DVEL(PMIN) AND DVEL(PMAX) HAVE OPPOSITE SIGNS

WITHOUT

CC A CHECK.

CC THIS ROUTINE IS FROM "COMPUTER METHODS FOR MATHEMATICAL COMPUTATION",

CC BY G. E. FORSYTHE, M. A. MALCOLM, AND C. B. MOLER,

CC PRENTICE-HALL, ENGLEWOOD CLIFFS N.J.

C SUBROUTINE GETP( PMIN, PMAX, TOL, PS )

IMPLICIT NONE

C ---------

C ARGUMENTS

C ---------

DOUBLEPRECISION PMIN, PMAX, TOL, PS

C -------------

C COMMON BLOCKS

C -------------

DOUBLEPRECISION GAMMA

COMMON /GAMMA/ GAMMA
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DOUBLEPRECISION RHOL, PL, UL, HL, CSL, VELL, WL,

& RHOR, PR, UR, HR, CSR, VELR, WR

COMMON /STATES/ RHOL, PL, UL, HL, CSL, VELL, WL,

& RHOR, PR, UR, HR, CSR, VELR, WR

C ------------------

C INTERNAL VARIABLES

C ------------------

DOUBLEPRECISION A, B, C, D, E, EPS, FA, FB, FC, TOL1,

& XM, P, Q, R, S

C -------------------------

C COMPUTE MACHINE PRECISION

C -------------------------

EPS = 1.D0

10 EPS = EPS/2.D0

TOL1 = 1.D0 + EPS

IF( TOL1 .GT. 1.D0 ) GO TO 10

C --------------

C INITIALIZATION

C --------------

A = PMIN

B = PMAX

CALL GETDVEL(A,FA)

CALL GETDVEL(B,FB)

C ----------

C BEGIN STEP

C ----------

20 C = A

FC = FA

D = B - A

E = D

30 IF( DABS(FC) .GE. DABS(FB) )GO TO 40

A = B

B = C

C = A

FA = FB

FB = FC

FC = FA
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C ----------------

C CONVERGENCE TEST

C ----------------

40 TOL1 = 2.D0*EPS*DABS(B) + 0.5D0*TOL

XM = 0.5D0*(C - B)

IF( DABS(XM) .LE. TOL1 ) GO TO 90

IF( FB .EQ. 0.D0 ) GO TO 90

C -----------------------

C IS BISECTION NECESSARY?

C -----------------------

IF( DABS(E) .LT. TOL1 ) GO TO 70

IF( DABS(FA) .LE. DABS(FB) ) GO TO 70

C ------------------------------------

C IS QUADRATIC INTERPOLATION POSSIBLE?

C ------------------------------------

IF( A .NE. C ) GO TO 50

C --------------------

C LINEAR INTERPOLATION

C --------------------

S = FB/FA

P = 2.D0*XM*S

Q = 1.D0 - S

GO TO 60

C -------------------------------

C INVERSE QUADRATIC INTERPOLATION

C -------------------------------

50 Q = FA/FC

R = FB/FC

S = FB/FA

P = S*(2.D0*XM*Q*(Q - R) - (B - A)*(R - 1.D0))

Q = (Q - 1.D0)*(R - 1.D0)*(S - 1.D0)

C ------------

C ADJUST SIGNS

C ------------

60 IF( P .GT. 0.D0 ) Q = -Q
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P = DABS(P)

C ----------------------------

C IS INTERPOLATION ACCEPTABLE?

C ----------------------------

IF( (2.D0*P) .GE. (3.D0*XM*Q-DABS(TOL1*Q)) ) GO TO 70

IF( P .GE. DABS(0.5D0*E*Q) ) GO TO 70

E = D

D = P/Q

GO TO 80

C ---------

C BISECTION

C ---------

70 D = XM

E = D

C -------------

C COMPLETE STEP

C -------------

80 A = B

FA = FB

IF( DABS(D) .GT. TOL1 ) B = B+D

IF( DABS(D) .LE. TOL1 ) B = B+DSIGN(TOL1,XM)

CALL GETDVEL(B,FB)

IF( (FB*(FC/DABS(FC))) .GT. 0.D0) GO TO 20

GO TO 30

C ----

C DONE

C ----

90 PS = B

RETURN

END

C -----------------

CN NAME: G E T V E L

C -----------------

CP PURPOSE:

CP COMPUTE THE FLOW VELOCITY BEHIND A RAREFACTION OR SHOCK IN TERMS

OF THE
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CP POST-WAVE PRESSURE FOR A GIVEN STATE AHEAD THE WAVE IN A RELATIVISTIC

CP FLOW

C

CD DESCRIPTION:

C

CU USAGE:

CU CALL GETVEL( P, RHOA, PA, UA, HA, CSA, VELA, WA, S, VEL )

C

CA ARGUMENTS:

CA NAME / I,IO,O / TYPE(DIMENSION)

CA DESCRIPTION

CA P / I / DOUBLEPRECISION

CA THE POST-WAVE PRESSURE

CA RHOA / I / DOUBLEPRECISION

CA THE DENSITY AHEAD THE WAVE

CA PA / I / DOUBLEPRECISION

CA THE PRESSURE AHEAD THE WAVE

CA UA / I / DOUBLEPRECISION

CA THE SPECIFIC INTERNAL ENERGY AHEAD THE WAVE

CA HA / I / DOUBLEPRECISION

CA THE SPECIFIC ENTHALPY AHEAD THE WAVE

CA CSA / I / DOUBLEPRECISION

CA THE LOCAL SOUND SPEED AHEAD THE WAVE

CA VELA / I / DOUBLEPRECISION

CA THE FLOW VELOCITY AHEAD THE WAVE

CA WA / I / DOUBLEPRECISION

CA THE FLOW LORENTZ FACTOR AHEAD THE WAVE

CA S / I / CHARACTER

CA THE DIRECTION OF PROPAGATION OF THE WAVE (LEFT OR RIGHT)

CA RHO / O / DOUBLEPRECISION

CA THE DENSITY IN THE POST-WAVE STATE

CA U / O / DOUBLEPRECISION

CA THE SPECIFIC INTERNAL ENERGY IN THE POST-WAVE STATE

CA H / O / DOUBLEPRECISION

CA THE SPECIFIC ENTHALPY IN THE POST-WAVE STATE

CA CS / O / DOUBLEPRECISION

CA THE LOCAL SOUND SPEED IN THE POST-WAVE STATE

CA VEL / O / DOUBLEPRECISION

CA THE FLOW VELOCITY IN THE POST-WAVE STATE

CA VSHOCK / O / DOUBLEPRECISION

CA THE SHOCK VELOCITY

C

CG GLOBAL DATA (COMMON BLOCKS) REFERENCED:

CG /GAMMA/

C

CF FILE ACCESS:
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CF NONE

C

CM MODULES CALLED:

CM NONE

C

CC COMMENTS:

CC THIS ROUTINE CLOSELY FOLLOWS THE EXPRESSIONS IN MARTI AND MUELLER,

CC J. FLUID MECH., (1994)

SUBROUTINE GETVEL( P, RHOA, PA, UA, HA, CSA, VELA, WA, S,

& RHO, U, H, CS, VEL, VSHOCK )

IMPLICIT NONE

C ---------

C ARGUMENTS

C ---------

DOUBLE PRECISION P, RHOA, PA, UA, HA, CSA, VELA, WA

CHARACTER*1 S

DOUBLE PRECISION RHO, U, H, CS, VEL, VSHOCK

C -------------

C COMMON BLOCKS

C -------------

DOUBLE PRECISION GAMMA

COMMON /GAMMA/ GAMMA

C ------------------

C INTERNAL VARIABLES

C ------------------

DOUBLE PRECISION A, B, C, SIGN

DOUBLE PRECISION J, WSHOCK

DOUBLE PRECISION K, SQGL1

C ------------------------------

C LEFT OR RIGHT PROPAGATING WAVE

C ------------------------------

IF (S.EQ.’L’) SIGN = -1.D0

IF (S.EQ.’R’) SIGN = 1.D0
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C

IF (P.GT.PA) THEN

C -----

C SHOCK

C -----

A = 1.D0+(GAMMA-1.D0)*(PA-P)/GAMMA/P

B = 1.D0-A

C = HA*(PA-P)/RHOA-HA**2

C -------------------------------

C CHECK FOR UNPHYSICAL ENTHALPIES

C -------------------------------

IF (C.GT.(B**2/4.D0/A)) STOP

& ’GETVEL: UNPHYSICAL SPECIFIC ENTHALPY IN INTERMEDIATE STATE’

C ----------------------------------------------------------

C SPECIFIC ENTHALPY IN THE POST-WAVE STATE

C (FROM THE EQUATION OF STATE AND THE TAUB ADIABAT,

C EQ.(74), MM94)

C ----------------------------------------------------------

H = (-B+DSQRT(B**2-4.D0*A*C))/2.D0/A

C ------------------------------

C DENSITY IN THE POST-WAVE STATE

C (FROM EQ.(73), MM94)

C ------------------------------

RHO = GAMMA*P/(GAMMA-1.D0)/(H-1.D0)

C -----------------------------------------------

C SPECIFIC INTERNAL ENERGY IN THE POST-WAVE STATE

C (FROM THE EQUATION OF STATE)

C -----------------------------------------------

U = P/(GAMMA-1.D0)/RHO

C ----------------------------------------------------

C MASS FLUX ACROSS THE WAVE

C (FROM THE RANKINE-HUGONIOT RELATIONS, EQ.(71), MM94)

C ----------------------------------------------------
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J = SIGN*DSQRT((P-PA)/(HA/RHOA-H/RHO))

C -------------------

C SHOCK VELOCITY

C (FROM EQ.(86), MM94

C -------------------

A = J**2+(RHOA*WA)**2

B = -VELA*RHOA**2*WA**2

VSHOCK = (-B+SIGN*J**2*DSQRT(1.D0+RHOA**2/J**2))/A

WSHOCK = 1.D0/DSQRT(1.D0-VSHOCK**2)

C -------------------------------------

C FLOW VELOCITY IN THE POST-SHOCK STATE

C (FROM EQ.(67), MM94)

C -------------------------------------

A = WSHOCK*(P-PA)/J+HA*WA*VELA

B = HA*WA+(P-PA)*(WSHOCK*VELA/J+1.D0/RHOA/WA)

VEL = A/B

C -----------------------------------------

C LOCAL SOUND SPEED IN THE POST-SHOCK STATE

C (FROM THE EQUATION OF STATE)

C -----------------------------------------

CS = DSQRT(GAMMA*P/RHO/H)

ELSE

C -----------

C RAREFACTION

C -----------

C -----------------------------------------------------

C POLITROPIC CONSTANT OF THE GAS ACROSS THE RAREFACTION

C -----------------------------------------------------

K = PA/RHOA**GAMMA

C ------------------------------

C DENSITY BEHIND THE RAREFACTION

C ------------------------------
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RHO = (P/K)**(1.D0/GAMMA)

C -----------------------------------------------

C SPECIFIC INTERNAL ENERGY BEHIND THE RAREFACTION

C (FROM THE EQUATION OF STATE)

C -----------------------------------------------

U = P/(GAMMA-1.D0)/RHO

C ----------------------------------------

C LOCAL SOUND SPEED BEHIND THE RAREFACTION

C (FROM THE EQUATION OF STATE)

C ----------------------------------------

CS = DSQRT(GAMMA*P/(RHO+GAMMA*P/(GAMMA-1.D0)))

C ------------------------------------

C FLOW VELOCITY BEHIND THE RAREFACTION

C ------------------------------------

SQGL1 = DSQRT(GAMMA-1.D0)

A = (1.D0+VELA)/(1.D0-VELA)*

& ((SQGL1+CSA)/(SQGL1-CSA)*

& (SQGL1-CS )/(SQGL1+CS ))**(-SIGN*2.D0/SQGL1)

VEL = (A-1.D0)/(A+1.D0)

END IF

END

C ---------------

CN NAME: R A R E F

C ---------------

CP PURPOSE:

CP COMPUTE THE FLOW STATE IN A RAREFACTION FOR GIVEN PRE-WAVE STATE

C CD DESCRIPTION:

C CU USAGE:

CU CALL RAREF( XI, RHOA, PA, UA, CSA, VELA, S, RHO, P, U, VEL )

C CA ARGUMENTS:

CA NAME / I,IO,O / TYPE(DIMENSION)

CA DESCRIPTION

CA XI / I / DOUBLEPRECISION

CA SIMILARITY VARIABLE

CA RHOA / I / DOUBLEPRECISION
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CA THE DENSITY AHEAD THE RAREFACTION

CA PA / I / DOUBLEPRECISION

CA THE PRESSURE AHEAD THE RAREFACTION

CA UA / I / DOUBLEPRECISION

CA THE SPECIFIC INTERNAL ENERGY AHEAD THE RAREFACTION

CA CSA / I / DOUBLEPRECISION

CA THE LOCAL SOUND SPEED AHEAD THE RAREFACTION

CA VELA / I / DOUBLEPRECISION

CA THE FLOW VELOCITY AHEAD THE RAREFACTION

CA S / I / CHARACTER

CA THE DIRECTION OF PROPAGATION OF THE WAVE (LEFT OR RIGHT)

CA RHO / O / DOUBLEPRECISION

CA THE DENSITY IN A POINT WITHIN THE RAREFACTION

CA P / O / DOUBLEPRECISION

CA THE PRESSURE IN A POINT WITHIN THE RAREFACTION

CA U / O / DOUBLEPRECISION

CA THE SPECIFIC INTERNAL ENERGY IN A POINT WITHIN THE RAREFACTION

CA CS / O / DOUBLEPRECISION

CA THE LOCAL SOUND SPEED IN IN A POINT WITHIN THE RAREFACTION

CA VEL / O / DOUBLEPRECISION

CA THE FLOW VELOCITY IN IN A POINT WITHIN THE RAREFACTION

C

CG GLOBAL DATA (COMMON BLOCKS) REFERENCED:

CG /GAMMA/

C

CF FILE ACCESS:

CF NONE

C

CM MODULES CALLED:

CM NONE

C

CC COMMENTS:

CC THIS ROUTINE CLOSELY FOLLOWS THE EXPRESSIONS IN MARTI AND MUELLER,

CC J. FLUID MECH., (1994)

SUBROUTINE RAREF( XI, RHOA, PA, UA, CSA, VELA, S, RHO, P, U, VEL

)

IMPLICIT NONE

C ---------

C ARGUMENTS

C ---------

DOUBLE PRECISION XI
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DOUBLE PRECISION RHOA, PA, UA, CSA, VELA

CHARACTER S

DOUBLE PRECISION RHO, P, U, VEL

C -------------

C COMMON BLOCKS

C -------------

DOUBLE PRECISION GAMMA

COMMON /GAMMA/ GAMMA

C ------------------

C INTERNAL VARIABLES

C ------------------

DOUBLE PRECISION B, C, D, K, L, V, OCS2, FCS2, DFDCS2, CS2, SIGN

C ------------------------------

C LEFT OR RIGHT PROPAGATING WAVE

C ------------------------------

IF (S.EQ.’L’) SIGN = 1.D0

IF (S.EQ.’R’) SIGN = -1.D0

B = DSQRT(GAMMA - 1.D0)

C = (B + CSA)/(B - CSA)

D = -SIGN*B/2.D0

K = (1.D0 + XI)/(1.D0 - XI)

L = C*K**D

V = ((1.D0 - VELA)/(1.D0 + VELA))**D

OCS2 = CSA

25 FCS2 = L*V*(1.D0 + SIGN*OCS2)**D*(OCS2 - B) +

& (1.D0 - SIGN*OCS2)**D*(OCS2 + B)

DFDCS2 = L*V*(1.D0 + SIGN*OCS2)**D*

& (1.D0 + SIGN*D*(OCS2 - B)/(1.D0 + SIGN*OCS2)) +

& (1.D0 - SIGN*OCS2)**D* & (1.D0 - SIGN*D*(OCS2 + B)/(1.D0 - SIGN*OCS2))

CS2 = OCS2 - FCS2/DFDCS2

Living Reviews in Relativity (1999-3)
http://www.livingreviews.org

http://www.livingreviews.org


81 Numerical Hydrodynamics in Special Relativity

IF (ABS(CS2 - OCS2)/OCS2.GT.5.E-7)THEN

OCS2 = CS2

GOTO 25

END IF

VEL = (XI + SIGN*CS2)/(1.D0 + SIGN*XI*CS2)

RHO = RHOA*((CS2**2*(GAMMA - 1.D0 - CSA**2))/

& (CSA**2*(GAMMA - 1.D0 - CS2**2)))

& **(1.D0/(GAMMA - 1.D0))

P = CS2**2*(GAMMA - 1.D0)*RHO/(GAMMA - 1.D0 - CS2**2)/GAMMA

U = P/(GAMMA - 1.D0)/RHO

RETURN

END

9.4 Basics of HRSC methods and recent developments

In this section we introduce the basic notation of finite differencing and sum-
marize recent advances in the development of HRSC methods for hyperbolic
systems of conservation laws. The content of this section is not specific to
SRHD, but applies to hydrodynamics in general.

In order to simplify the notation and taking into account that most powerful
results have been derived for scalar conservation laws in one spatial dimension,
we will restrict ourselves to the initial value problem given by the equation

∂u

∂t
+

∂f(u)

∂x
= 0 (81)

with the initial condition u(x, t = 0) = u0(x).

In hydrodynamic codes based on finite difference or finite volume techniques,
equation (81) is solved on a discrete numerical grid (xj , t

n) with

xj = (j − 1/2)∆x, j = 1, 2, . . . , (82)

and

tn = n∆t, n = 0, 1, 2, . . . , (83)

where ∆t and ∆x are the time step and the zone size, respectively. A difference
scheme is a time-marching procedure allowing one to obtain approximations to
the solution at the new time, un+1

j , from the approximations in previous time
steps. The quantity un

j is an approximation to u(xj , t
n) but, in the case of a

conservation law, it is often preferable to view it as an approximation to the
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average of u(x, t) within a zone [xj−1/2, xj+1/2] (i.e., as a zone average), where
xj±1/2 = (xj + xj±1)/2. Hence

ūn
j =

1

∆x

∫ xj+1/2

xj−1/2

u(x, tn)dx, (84)

which is consistent with the integral form of the conservation law.
Convergence under grid refinement implies that the global error ||E∆x||,

defined as
||E∆x|| = ∆x

∑

j

|ūn
j − un

j |, (85)

tends to zero as ∆x → 0. For hyperbolic systems of conservation laws methods
in conservation form are preferred as they guarantee that if the numerical solu-
tion converges, it converges to a weak solution of the original system of equations
(Lax-Wendroff theorem [95]). Conservation form means that the algorithm can
be written as

un+1
j = un

j − ∆t

∆x

(
f̂(un

j−r, u
n
j−r+1, . . . , u

n
j+q) − f̂(un

j−r−1, u
n
j−r, . . . , u

n
j+q−1)

)

(86)

where q and r are positive integers, and f̂ is a consistent (i.e., f̂(u, u, . . . , u) =
f(u)) numerical flux function.

The Lax-Wendroff theorem cited above does not establish whether the method
converges. To guarantee convergence, some form of stability is required, as for
linear problems (Lax equivalence theorem [154]). In this context the notion of
total-variation stability has proven to be very successful, although powerful re-
sults have only been obtained for scalar conservation laws. The total variation
of a solution at t = tn, TV(un), is defined as

TV(un) =
+∞∑

j=0

|un
j+1 − un

j |. (87)

A numerical scheme is said to be TV-stable, if TV(un) is bounded for all ∆t at
any time for each initial data. One can then prove the following convergence
theorem for non-linear, scalar conservation laws [96]: For numerical schemes
in conservation form with consistent numerical flux functions, TV-stability is a
sufficient condition for convergence.

Modern research has focussed on the development of high-order, accurate
methods in conservation form, which satisfy the condition of TV-stability. The
conservation form is ensured by starting with the integral version of the partial
differential equations in conservation form (finite volume methods). Integrating
the PDE over a finite spacetime domain [xj−1/2, xj+1/2] × [tn, tn+1] and com-

paring with (86), one recognizes that the numerical flux function f̂j+1/2 is an
approximation to the time-averaged flux across the interface, i.e.,

f̂j+1/2 ≈ 1

∆t

∫ tn+1

tn

f(u(xj+1/2, t))dt. (88)
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Note that the flux integral depends on the solution at the zone interface, u(xj+1/2, t),
during the time step. Hence, a possible procedure is to calculate u(xj+1/2, t) by
solving Riemann problems at every zone interface to obtain

u(xj+1/2, t) = u(0;un
j , un

j+1). (89)

This is the approach followed by an important subset of shock-capturing meth-
ods, called Godunov-type methods [74, 48] after the seminal work of Godunov
[66], who first used an exact Riemann solver in a numerical code. These methods
are written in conservation form and use different procedures (Riemann solvers)
to compute approximations to u(0;un

j , un
j+1). The book of Toro [176] gives a

comprehensive overview of numerical methods based on Riemann solvers. The
numerical dissipation required to stabilize an algorithm across discontinuities
can also be provided by adding local conservative dissipation terms to standard
finite-difference methods. This is the approach followed in the symmetric TVD
schemes developed in [38, 156, 197].

High-order of accuracy is usually achieved by using conservative monotonic
polynomial functions to interpolate the approximate solution within zones. The
idea is to produce more accurate left and right states for the Riemann prob-
lem by substituting the mean values un

j (that give only first-order accuracy)

by better representations of the true flow near the interfaces, let say uL
j+1/2,

uR
j+1/2. The FCT algorithm [20] constitutes an alternative procedure where

higher accuracy is obtained by adding an anti-diffusive flux term to the first-
order numerical flux. The interpolation algorithms have to preserve the TV-
stability of the scheme. This is usually achieved by using monotonic functions
which lead to the decrease of the total variation (total-variation-diminishing
schemes, TVD [72]). High-order TVD schemes were first constructed by van
Leer [177], who obtained second-order accuracy by using monotonic piecewise
linear slopes for cell reconstruction. The piecewise parabolic method (PPM) [33]
provides even higher accuracy. The TVD property implies TV-stability, but can
be too restrictive. In fact, TVD methods degenerate to first-order accuracy at
extreme points [133]. Hence, other reconstruction alternatives have been devel-
oped where some growth of the total variation is allowed. This is the case for
the total-variation-bounded (TVB) schemes [162], the essentially non-oscillatory
(ENO) schemes [73] and the piecewise-hyperbolic method (PHM) [105].

9.5 Newtonian SPH equations

Following Monaghan [122] the SPH equation of motion for a particle a with
mass m and velocity v is given by

dva

dt
= −

∑

b

mb

(
pa

ρ2
a

+
pb

ρ2
b

+ Πab

)
∇aWab, (90)

where the summation is over all particles other than particle a, p is the pressure,
ρ is the density, and d/dt denotes the Lagrangian time derivative. Πab is the
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artificial viscosity tensor, which is required in SPH to handle shock waves. It
poses a major obstacle in extending SPH to relativistic flows (see, e.g., [77, 30]).
Wab is the interpolating kernel, and ∇aWab denotes the gradient of the kernel
taken with respect to the coordinates of particle a.

The kernel is a function of |ra−rb| (and of the SPH smoothing length hSPH),
i.e., its gradient is given by

∇aWab = rabFab, (91)

where Fab is a scalar function which is symmetric in a and b, and rab is a
shorthand for (ra − rb). Hence, the forces between particles are along the line
of centers.

Various types of spherically symmetric kernels have been suggested over the
years [120, 12]. Among those the spline kernel of Monaghan & Lattanzio [123],
mostly used in current SPH-codes, yields the best results. It reproduces constant
densities exactly in 1D, if the particles are placed on a regular grid of spacing
hSPH, and has compact support.

In the Newtonian case Πab is given by [122]

Πab = −α
hSPHvab · rab

ρab|rab|2
(

cab − 2
hSPHvab · rab

|rab|2
)

, (92)

provided vab · rab < 0, and Πab = 0 otherwise. Here vab = va − vb, cab =
1
2 (ca + cb) is the average sound speed, ρab = 1

2 (ρa + ρb), and α ∼ 1.0 is a
parameter.

Using the first law of thermodynamics and applying the SPH formalism one
can derive the thermal energy equation in terms of the specific internal energy
ε (see, e.g., [121]). However, when deriving dissipative terms for SPH guided
by the terms arising from Riemann solutions, there are advantages to use an
equation for the total specific energy E ≡ v2/2 + ε, which reads [122]

dEa

dt
= −

∑

b

mb

(
pavb

ρ2
a

+
pbva

ρ2
b

+ Ωab

)
· ∇aWab, (93)

where Ωab is the artificial energy dissipation term derived by Monaghan [122].
For the relativistic case the explicit form of this term is given in Section 4.2.

In SPH calculations the density is usually obtained by summing up the
individual particle masses, but a continuity equation may be solved instead,
which is given by

dρa

dt
= −

∑

b

mb(va − vb)∇aWab. (94)

The capabilities and limits of SPH have been explored, e.g., in [169, 172].
Steinmetz & Müller [169] conclude that it is possible to handle even difficult
hydrodynamic test problems involving interacting strong shocks with SPH pro-
vided a sufficiently large number of particles is used in the simulations. SPH and
finite volume methods are complementary methods to solve the hydrodynamic
equations, each having its own merits and defects.
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[3] Aloy, M.A., Ibáñez, J.Ma, Mart́ı, J.Ma, and Müller, E., “GENESIS: A
High-Resolution Code for 3D Relativistic Hydrodynamics”, Astrophys. J.
Suppl. Ser., 122, 151–166, (1999). 3.7, 5, 2, 3, 3, 6.2.1, 7.2, 9.1
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