
Structural Optimization 16, 68-75 @ Springer-Verlag 1998 

Review Article 

Numerical  instabilities in topology optimization: 
A survey on procedures dealing with checkerboards, 
mesh-dependencies  and local minima 

O. S i g m u n d  

Department of Solid Mechanics, Technical University of Denmark, DK-2800 Lyngby, Denmark 

J.  P e t e r s s o n  

Department of Mechanical Engineering, University of Linkhping, S-58183 Linkhping, Sweden 

A b s t r a c t  In this paper we seek to summarize the current 
knowledge about numerical instabilities such as checkerboards, 
mesh-dependence and local minima occuring in applications of the 
topology optimization method. The checkerboard problem refers 
to the formation of regions of alternating solid and void elements 
ordered in a checkerboard-like fashion. The mesh-dependence 
problem refers to obtaining qualitatively different solutions for 
different mesh-sizes or diseretizations. Local minima refers to the 
problem of obtaining different solutions to the same discretized 
problem when choosing different algorithmic parameters. We re- 
view the current knowledge on why and when these problems ap- 
pear, and we list the methods with which they can be avoided and 
discuss their advantages and disadvantages. 

1 I n t r o d u c t i o n  

The topology optimization method for continuum struc- 
tures (Bends0e and Kikuchi 1988; or BendsCe 1995, for an 
overview) has reached a level of maturi ty where it is being 
applied to many industrial problems and it has widespread 
academic use, not only for structural optimization problems 
but also in material, mechanism, electromagnetics and other 
coupled field design problems. 

Despite its level of matureness, there still exist a num- 
ber of problems concerning convergence, checkerboards and 
mesh-dependence which are subject to debate in the topology 
optimization community. In this paper, we seek to summa- 
rize the current knowledge on these problems and to discuss 
methods with which they can be avoided. 

The topology optimization problem consists in finding the 
subdomain f2s with limited volume V*, included in a prede- 
termined design domain ~2, that  optimizes a given objective 
function f (e.g. compliance). Finding the optimal topology 
corresponds to finding the connectedness, shape and number 
of holes such that  the objective function is extremized. In- 
troducing a density function p defined on $2, taking the value 
1 in ~s  and 0 elsewhere, the nested version of the problem 

can be written as 

mins.t, p t2f(P) p dz <_ V*, } 

p ( x ) = 0 o r  1, g x E f 2 ,  

(1) 

i.e. wherever the displacement function u (or in general, the 
state function) appears, it has been eliminated through the 
implicit dependence defined by the equilibrium equation. 

Typically the topology optimization problem is treated by 
discretizing (1) by dividing ~ into N finite elements. Usu- 
ally one approximates the density as element-wise constant 
and thereby the discretized density can be represented by the 
N-vector p. Taking p to be constant in each element is prac- 
tical since integrations over elements can be performed with 
p outside the integral sign, and consequently one can operate 
with simple scalings of the usual element stiffness matrices. 
The discretized 0-1 topology optimization problem becomes 

minp f(P)' N } 

s.t. V = Epivi <V*, 
i=1 

pi = 0  or 1, i=l,...,N, 
(2) 

where Pi and v i are element densities and volumes, respec- 
tively, and V* is the total  volume bound. 

1.1 Nonexistence 
It is well-known that  the 0-1 topology optimization problem 
(1) lacks solutions in general. The reason is that  given one 
design the introduction of more holes, without changing the 
structural volume, will generally increase the efficiency mea- 
sure [decrease the function value f in (1)], i.e. there is a lack 
of closedness of the set of feasible designs. The type of nu- 
merical instability where a larger number of holes appear for 
larger N,  which hence refers to nonexistence of solutions, is 
indeed found in numerical solutions of the topology optimiza- 
tion problem (2) and it is often termed mesh-dependence. 



Given the fact that  problem (1) generally is not solvable, 
there are two possibilities of computing something which is 
close to what an engineer wants. 

a Modify problem (1) in such a way that  the new version 
possesses a solution. Then discretize this new problem 
version, analyse the discretization procedure to make sure 
that  the discrete problem will give solutions that  are close 
to the exact ones, and, finally, develop algorithms to solve 
the discretized problem. 

b Discretize problem (1). The discrete version of problem 
(1) generally has solutions since it is posed in finite di- 
mension. Develop methods to solve this discrete problem 
and use heuristic rules to avoid unwanted effects such as 
e.g. checkerboard patterns. 

Most often, methods belonging to b produce results with 
comparatively little computational effort. However, this 
methodology is dubious in the sense that  by using it, one 
simply produces pictures that  people want to see, without 
knowing which continuum problem is solved (because prob- 
ably there is none). Choosing methodology a, there are two 
possible ways to overcome the nonexistence problem, namely 
by relaxation or restriction of the design problem. The for- 
mer approach was used in the original works on topology 
optimization and will be briefly described in the following. 
The latter has become increasingly popular in recent years 
and will be discussed also in Section 3. 

1.2 Relaxation 

In principle relaxation means an enlargement of the design 
set to achieve existence. 

In order to encompass composites, i.e. structures with fine 
microstructure, BendsCe and Kikuchi (1988) introduced a mi- 
croscale through the use of the so-called homogenization ap- 
proach to topology optimization. Today we know that  the 
ill-posedness of the 0-1 problem [for f(p) being compliance], 
can be overcome by using so-called ranked layered materials 
(see Allaire and Kohn 1993 and references therein). Using 
this approach results in structures with large regions of perfo- 
rated microstructure or composite materials, i.e. the resulting 
density p has "grey regions" (0 < p < 1). 

Another approach to obtain a well-posed problem for a 
broad range of problems is to allow all materials with a sym- 
metric and positive semidefinite elasticity tensor to compete 
in the problem. This converts the problem to one where the 
energy depends linearly on p (BendsCe et al. 1994). Here, 
the variable p is allowed to at tain all values between 0 and 1. 
This linear problem in one sense provides the "most relaxed" 
problem, and gives a useful bound on the maximum struc- 
tural efficiency. It also models the variable thickness sheet 
problem, where p is interpreted as the thickness function of a 
two-dimensional sheet. Henceforth we will use this term for 
any topology optimization problem where the energy depends 
linearly on p. 

1.3 Restriction 

Restriction methods seek to find a set of designs which is 
smaller than the original one in (1), but which possesses suf- 
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ficient closedness and thereby solutions. This is achieved by 
introducing extra constraints that  bound the maximum al- 
lowed oscillation of p, i.e. the maximum degree of perforation 
of the structure. Examples, which will be explained in more 
detail in Section 3.2, are upper bounds on total  variation, 
local or global gradients of p. The first corresponds to the 
perimeter of the set f2s. The last two make sense only if p 
attains intermediate values. 

1.4 Penalization of intermediate densities 

There are at least two different reasons for allowing but pe- 
nalizing intermediate densities: 

1. post-processing of solutions to relaxed problems, 

2. to avoid integer programming techniques when solving (2) 
(with some perimeter-type constraint). 

If one has chosen a homogenization approach, but has real- 
ized that  in many cases manufacturing or other considera- 
tions exclude perforated or intermediate density regions and 
call for macroscopic 0-1 solutions, then one could add a penal- 
ization to the method, i.e. 1. Attacking directly a restricted 
version of (2), optimization methods for discrete 0-1 variables 
often fail to solve large-scale problems. Therefore, for com- 
putational reasons, one has suggested to allow continuous 
variables, but penalize the intermediate p-values to somehow 
approach a black/white design, i.e. 2. Doing this, one has 
perturbed the problem and a justification is needed, i.e. to 
show that  solutions of the new problem approach those of 
the original discrete-valued one, as the penalization is made 
stronger. That  this is indeed possible, at least with the first 
technique given below and perimeter control, and is proven 
by Petersson (1997b). If the order of problem manipulations 
is reversed, i.e. if the penalization and intermediate values 
are introduced in the problem before the design set restriction 
(which yields existence of solutions in both cases), then the 
restricting constraint can be expressed in terms of a contin- 
uous variable, of. the gradient constraints in Sections 3.2.2 
and 3.2.3. 

In conclusion, for problems that  exclude microstructures, 
allowing intermediate density values and simultaneously in- 
cluding penalization is in itself neither a relaxation nor a de- 
sign set restriction* but rather an a t tempt  to make classical 
optimization schemes applicable while leaving the solution set 
nearly unchanged (in contrast to restriction and relaxation). 

Several different penalization techniques have been sug- 
gested. One example is to replace f(p) by f(p)+e f p(1-p)dx 
(Allaire and Francfort 1993; Allaire and Kohn 1993; Haber et 
al. 1996). Here c is the penalization parameter determining 
the degree of penalization. Another probably more popu- 
lar method is the so-called SIMP [Simple Isotropic Material 
with Penalization (Zhou and Rozvany 1991)] approach (eft 
BendsCe 1989). Using the SIMP approach the stiffness tensor 
of an intermediate density material is Cijk~(p ) = COiktpP, 

where C~ ~ is the stiffness tensor of solid material and P 

* If one excludes the penalization, then this procedure is indeed a 
relaxation since the design set is enlarged by allowing intermediate val- 
ues and, consequently, from (1) one can arrive at the variable thickness 
sheet problem (which has solutions) 
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is the penalization factor which ensures that  the continuous 
design variables are forced towards a black and white (0/1) 
solution. The influence of the penalty parameter can be ex- T - - [  
plained as follows. By specifying a value of p higher than lJ 
one, the local stiffness for p < 1 is lowered, thus making it 
"uneconomical" to have intermediate densities in the opti- 
mal design. The discretized SIMP optimization problem is 
written as 

min f ( p ) ,  
P 

N 
s.t. v =  _< V*, (3) 

i=1 
0 < P m i n < _ p _ <  1, 

where the design variables p are continuous variables and 
Pmin are lower bounds on densities, introduced to prevent 
singularity of the equilibrium problem. If the objective is 
compliance, then f (p )  = F T K - I ( p ) F  where F is the load 
vector, 

N 
P K  K ( O ) = ~ P i  z, (4) 

i=1 

and K i denote (global level) element stiffness matrices. 
When p = 1 the optimization problem corresponds to the 
variable thickness sheet problem. 

1.5 Numerical problems 

We have divided the common numerical problems appearing 
in topology optimization into three categories: 

�9 Checkerboards refer to the problem of formation of re- 
gions of alternating solid and void elements ordered in a 
checkerboard like fashion. 

�9 Mesh dependence refers to the problem of not obtaining 
qualitatively the same solution for different mesh-sizes or 
discretizations. 

�9 Local minima refers to the problem of obtaining different 
solutions to the same discretized problem when choosing 
different algorithmic parameters.* 

The definitions, appearances, mathematical  and physical ex- 
planations and techniques to prevent the three problems are 
shown schematically in Table 1 and graphically in Fig. 1 and 
are discussed in detail in the following sections. 

2 C h e c k e r b o a r d s  

The checkerboard problem is illustrated in Fig. lb  and con- 
sists of regions in the "optimal topology" consisting of Mter- 
nating solid and void elements. It was earlier believed that  
these regions represented some sort of optimal microstruc- 
ture, but papers by Dfaz and Sigmund (1995) and Jog and 
Haber (1996) have shown that  the checkerboard patterns are 

* E.g .  different s t a r t i n g  so lu t ions  

P 

2 a) 

b) 

c) 

d) 

e) 

Fig. 1. (a) Design problem, (b) example of checkerboards, (c) so- 
lution for 600 element discretization, (d) solution for 5400 element 
discretization and (e) nonuniqueness example 

due to bad numerical modelling of the stiffness of checker- 
boards. 

Assume that the problem (1) has been adjusted so that  
solutions exist. If (2) is a good approximation of (1), the 
solutions of (2) will approach those of (1) as N is increased. 
This - henceforth referred to as FE-convergence - usually 
requires a careful study. A typical example of nonconvergence 
is the formation of checkerboards, and a guarantee of not 
obtaining such anomalies is one of the important  byproducts 
of a FE-convergence proof. 

D/az and Sigmund (1995) compared the stiffness of 
checkerboard configurations in a discretized setting to the 
stiffness of uniformly distributed materials and concluded 
that  the checkerboard structure has artificially high stiffness. 
Jog and Haber (1996) presented a theoretical framework 
based on a linearized, incremental form of the problem and 
a patch test was proposed. They argued that  spurious thick- 
ness modes can be detected by investigating the nonunique- 
ness of solutions to the discretized incremental equation sys- 
tem. Both works provide useful guidelines regarding choice of 
stable elements and they show that  checkerboard patterns are 
prone to appear in both the homogenization and the SIMP 
approach. 

Theoretical studies of the appearance of checkerboards in 
three-dimensional problems have not yet been carried out. 
However numerical experience shows that  checkerboards also 
appear for this case (e.g. Beckers 1997b). 

Agreeing that  the checkerboard problem is explained by 
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Table 1. Definition of problems found in discretized topology optimization. An "3" indicates that existence of solutions has been proved 

Numerical Mathematical Physical Prevention techniques 
experience problem explanation 

Checkerboards Nonconvergence Erroneous FE- Higher order finite elements 
of FE-solutions modelling of Patches 

checkerboards Filtering 
Restriction methods below 

Mesh dependence 
(a) Necessarily 
finer and finer structure 

(b) Possibly finer 
and finer structure 

(a) Nonexistence 

(b) Nonuniqueness 

(a) "convergence" to 
microstructure 

(b) Ex.: uniaxial stress 

(a) Relaxation (3) 
Perimeter (3) 
Global/local gradient constraint (3) 
Mesh-independent filtering 
(b) Nothing (maybe manufacturing 
preferences) 

Local minima Nonconvergence Nonconvexity Continuation methods 
of algorithm Flatness 

bad numerics, several papers have suggested methods to pre- 
vent them. Some of these prevention schemes, which are 
almost all based on heuristics, are listed in the following: 

2.1 Smoothing 

Having obtained the "optimal solution" (with checkerboards) 
the output picture is smoothed with image processing. 
This method ignores the underlying problem and should be 
avoided. Many commercial post-processing codes automati- 
cally use smoothing of the output images, so here precautions 
should be taken. 

2.2 Higher-order finite elements 

Many papers suggest the use of higher-order finite elements 
for the displacement function u to avoid the checkerboard 
problem. Dfaz and Sigmund (1995) and Jog and Haber 
(1996) show that checkerboards are mostly prevented when 
using 8 or 9-node finite elements for the homogenization ap- 
proach. For the SIMP approach, however, checkerboards are 
only prevented using 8 or 9-node elements if the penalization 
power is small enough [i.e. p should be smaller than 2.29 for a 
specific example in the paper by Dfaz and Sigmund (1995)]. 
This is also a byproduct of the FE-convergence proof in the 
paper of Petersson (1997a). In this work it is shown that, un- 
der a biaxial stress assumption, the mathematical analyses of 
mixed FEM for the Stokes' flow problem can be extended to 
prove strong FE-convergence and uniqueness of solutions in 
the variable thickness sheet problem. 

A drawback of using higher-order finite elements is the 
substantial increase in cpu-time. 

2.3 Patches 

To save cpu-time but still obtain checkerboard free designs, 
Bendsoe et al. (1993) suggested the use of a patch technique 
inspired by similar problems in Stokes flow (Johnson and 

Pitk~ranta 1982). This technique effectively introduces a 
kind of superelement to the finite element formulation and 
has in a practical test shown to damp the appearance of 
checkerboards. However in topology optimization it does not 
remove them entirely. 

2.4 Filter 

Based on filtering techniques from image processing, Sigmund 
(1994) suggested a checkerboard prevention filter implying 
modification of the design sensitivities used in each iteration 
of the algorithm solving the discretized problem. The filter 
makes the design sensitivity of a specific element depend on 
a weighted average over the element itself and its eight direct 
neighbours and is very efficient in removing checkerboards. 
However, the procedure belongs to methodology b described 
in Section 1, and therefore suffers from the principal diffi- 
culties characteristic for such methods. An extension of the 
method to ensure mesh independence is described in more 
detail in the next section. 

2.5 Other methods 

Furthermore, most of the restriction methods described in the 
next section on mesh-dependence will also reduce checker- 
boarding. The reason for this is that when one enforces a 
constraint, strong enough to make the set compact so that so- 
lutions exist, any sequence of admissible designs, such as FE- 
solutions, has convergent subsequences due to this compact- 
ness. The FE-convergence question for problems that have 
solutions without this compactification, e.g. Stokes' problem 
and the variable thickness sheet problem, is much more dif- 
ficult since the sequence of FE-solutions cannot immediately 
be shown to converge. It is then necessary to make sure that 
the finite dimensional space for displacements u is sufficiently 
large compared to the space for p, i.e. as mentioned above, 
given that p is approximated as constant in each element, 
one needs a sufficiently large number of displacement nodes 
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in each finite element. Checkerboards appear when this is not 
the case. In the restricted problems, however, this effect will 
be visible only for coarse meshes. If the mesh is made finer it 
follows from the compactness and (strong) convergence men- 
tioned above that  checkerboards are made arbitrarily weak. 
This was illustrated in the paper by Petersson and Sigmund 
(1998). 

3 M e s h - d e p e n d e n c e  

The mesh-dependence problem is illustrated in Figs. lc and d. 
Figure lc shows the optimal topology for the so-called MBB- 
problem discretized by 600 finite elements (optimized using 
the SIMP approach). Solving the same problem but now 
with a 5400 finite element discretization, results in a much 
more detailed structure (Fig. ld) .  Ideally mesh-refinement 
should result in a better finite element modelling of the same 
optimal structure and a better description of boundaries - 
not in a more detailed and qualitatively different structure. 

As seen in Table 1, mesh-dependence problems can be 
divided into two categories, namely (a) the problem of 
(necessarily) obtaining finer and finer structure with mesh- 
refinement, which is due to to the previously discussed prob- 
lem of nonexistence of solutions, and (b) problems with many 
optima, i.e. nonunique solutions. An example of the latter is 
the design of a structure in uni-axial tension. Here a structure 
consisting of one thick bar will be just as good as a structure 
made up of several thin bars with the same overall area (see 
Fig. le in which Poisson's ratio is zero and the vertical black 
stri p at the points of force application is assumed rigid). In 
category (a) the refinement into a finer structure follows nec- 
essarily since it gives a strictly better value of the objective 
function. In (b) a finer structure is always possible but not 
necessary. The oscillation in p perpendicular to the direction 
of uniaxial stress is arbitrary and not bounded. If the stress 
is biaxial, however, it is proven by Petersson (1997a) that  the 
optimal p is unique. 

Naturally, one cannot set up schemes that  remove the 
nonuniqueness problem, but by introducing manufacturing 
constraints such as a minimum area constraint a less oscil- 
lating solution can be determined. Schemes to prevent the 
nonexistence problems will be discussed in the following. 

3.1 Relaxation 

As discussed in the Introduction, the 0-1 topology optimiza- 
tion problem can be made well-posed by relaxation using the 
homogenization or free material  approaches. Unless one is 
interested in resulting design with composite areas, this ap- 
proach does in general not result in easily manufacturable 
solutions (i.e. macroscopic 0-1 designs). 

3.2 Restriction melhods 

To obtain macroscopic 0-1 solutions some sort of global or 
local restriction on the variation of density must be imposed 
on the original topology optimization problem. So far, four 
different restriction schemes have been proposed, namely, 
perimeter control, global or local gradient constraint and 

mesh-independent filtering. The four methods, for which ex- 
istence of solutions have been proved for the first three and 
the latter is based on heuristics, are discussed in the follow- 
ing. 

3.2.1 Perimeter control. The perimeter of ~s  is, vaguely 
speaking, the sum of the circumferences of all holes and outer 
boundaries. Existence of solutions to the perimeter controlled 
topology optimization problem was proved by Ambrosio and 
Buttazzo (1993). The first numerical implementation of the 
scheme was done by Haber et al. (1996). The scheme intro- 
duces intermediate density values with penalization in order 
to use some "usual" gradient-based algorithm. An upper 
bound on the total variation is used, TV(p) < P*. This 
makes sense since the total variation of p coincides with the 
perimeter of ~s  when p is 1 in s and 0 elsewhere. The 
difference, hence, is that  the total  variation is defined even 
when p takes intermediate values. In case the function p is 
smooth, 

= / ' l V p l  dx. (5) TV(p) 
J 

f2 

For the discretized density, the total  variation is in the im- 
plementation calculated as 

K 

k----1 

where {P)k is the jump of material  density through element 
interface k of l eng th /k ,  K ~ 2N is the number of element 
interfaces. The parameter r is a small positive number which 
guarantees the differentiability of the perimeter. This expres- 
sion is exactly the total  variation of the element-wise constant 
density when c = 0. 

In the first implementation of the perimeter method, 
Haber et al. (1996) used an interior penalty method to im- 
pose the constraint and reported that  some experiments with 
algorithm parameters were required to make the algorithm 
converge to mesh-independent designs. Using a mathemati-  
cal programming method to solve the optimization problem, 
Duysinx (1997) reported the perimeter constraint to be quite 
difficult to approximate resulting in fluctuations in the de- 
sign variables. Arguing that  the evaluation of the perimeter 
is computationally cheap compared to the finite element so- 
lution, Duysinx (1997) proposed an internal loop procedure 
for perimeter approximation and reported very good conver- 
gence behaviour. 

Perimeter control has been implemented in continuous 
variable settings in the references mentioned above and in 
a discrete variable setting in the report  by Beckers (1996). 

The following two gradient constraints presuppose that  
p is sufficiently smooth and defined for intermediate values. 
This is the case e.g. when the SIMP approach has been ap- 
plied to the ill-posed problem (1). After this has been done, 
one can restrict the problem with (7) or (8) to ensure exis- 
tence of solutions. It is less clear what these constraints cor- 
respond to as p approaches a discrete-valued function. [The 
measure in (5) converges to the perimeter]. 



3.2.2 Global gradient constraint. By a "global gradient con- 
straint" we here simply mean the norm of the function p in 
the Sobolov space HI( j2) ,  

1 

ilpl[H 1 _- .p2 + iVp[2  _< M. (7) 

Proof of existence when including this bound was given 
by BendsCe (1995). The existence proof holds also if the term 
p2 is removed in (7). The "only" difference between global 
gradient and total  variation is then the exponent 2 in (7). 

To our knowledge neither a FE-convergence proof nor nu- 
merical experiments with global gradients in the setting of 
topology optimization have been carried out. Such work is 
expected to be similar in content to perimeter control, but 
less interesting due to the ambiguity of (7) as one passes to 
the limit in the penalization (of intermediate p-values). 

3.2.3 Local gradient constraint. Introduction of a local gradi- 
ent constraint on thickness variation of plates was first done 
by Niordson (1983). Proof of existence, FE-convergence and 
numerical implementation of a scheme introducing local gra- 
dient constraint on density variation was given by Petersson 
and Sigmund (1998). The constraint on the local density 
variation is written as the following pointwise constraint on 
the derivatives of the function p: 

07P,: ___e ( i = 1 , 2 ) .  (8) 

The convergence proof implies that  checkerboards and other 
numerical anomalies will be eliminated, or at least, they can 
be made arbitrari ly weak using this scheme. Implementa- 
tion of the scheme results in up to 2N extra constraints in 
the optimization problem and the method must therefore be 
considered to be too slow for practical design problems. 

3.2.4 Mesh independent filtering. This filter proposed by Sig- 
round (1994, 1997) is an extension of the checkerboard filter 
mentioned earlier. The filter modifies the design sensitivity of 
a specific element based on a weighted average of the element 
sensitivities in a fixed neighborhood. It must be emphasized 
that  this filter is purely heuristic but it produces results very 
similar to local gradient constrained results (Petersson and 
Sigmund 1998), requires little extra cpu-time and is very sim- 
ple to implement compared to the other approaches. Similar 
ideas of weighted averages have been used to ensure mesh- 
independence in bone-mechanics simulation (Mullender et al. 
1994) and in plastic softening materials (e.g. Leblond et aI. 
1994). 

The mesh-independence scheme works by modifying the 
element sensitivities as follows: 

07 _ (pk)_l 1 N Of 
Opk N Hi pi (9) 

i----1 

The convolution operator (weight factor) Hi is written as 

/?/i = rmin - dist(k, i), {i e N I dist(k, i) _< rmin}, 
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k =  1 , . . . , N ,  (10) 

where the operator dist (k, i) is defined as the distance be- 
tween the centre of element k and the centre of element i. The 
convolution operator /it i is zero outside the filter area. The 
convolution operator for element i is seen to decay linearly 
with the distance from element k. 

This means that  instead of using the real sensitivities (e.g. 
Of/Opk), the filtered sensitivities (9) are used. It is worth- 
while noting that  the sensitivity (9) converges to the original 
sensitivity when rmi n approaches zero and that  all sensitivi- 
ties will be equal (resulting in an even distribution of mate- 
rial) when rmi n approaches infinity. 

The existence issue for the mesh-independence filter has 
yet to be proved, but applications in several papers on mate- 
rial design and mechanism design by the first author shows 
that  the method in practice produces mesh-independent de- 
signs. 

3.2.5 Comparison of methods. The perimeter, local gradient 
and mesh-independence filter methods produce very similar 
designs, but there are some differences. 

The perimeter control scheme is a global constraint and 
will allow the formation of locally very thin bars. The local 
gradient and filtering schemes are local constraints and will 
generally remove thin bars. 

Predicting the value of the perimeter constraint for a new 
design problem must be determined by experiments, since 
there is no direct relation between local scale in the structure 
and the perimeter bound. If the perimeter bound is too tight, 
there may be no solution to the optimization problem. This 
problem is particularly difficult for three-dimensional prob- 
lem. In contrast, the gradient and filtering schemes define a 
local length scale under which structural  variation is filtered 
out. This local length scale corresponds to a lower limit on 
ba r /beam widths and can easily be defined when machining 
constraints are taken into consideration. 

Another important  difference is the implementation as- 
pect. The perimeter control scheme requires an extra con- 
straint added to the optimization problem. Although the 
addition of one extra constraint to the optimization prob- 
lem should not be a problem for advanced large scale math- 
ematical programming algorithms, practice has shown that  
implementation of the constraint can give some convergence 
problems. The local gradient constraint scheme is considered 
impractical due to the addition of 2N extra constraints to 
the optimization problem. The big advantage of the filtering 
scheme is that  it requires no extra constraints in the opti- 
mization problem. Furthermore it is very easy to implement, 
and experience shows that  its implementation even stabilizes 
convergence. The disadvantage of the filtering method is that  
it is based on heuristics. 

The perimeter and mesh-independence filter methods 
have both been applied to three-dimensional problems with 
success (Beckers 1997b; Sigmund et al. 1998, respectively). 
The comparisons above also hold for three-dimensional prob- 
lems. 

Finally, it should be mentioned that  there is a nonisotropy 
inherent in the implementation of the discretized perimeter 
measure. E.g, a straight edge angled 45 degrees to the edges 
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of the finite element mesh will be approximated by a perime- 
ter which is x/2 times the true value because of the jagged 
edge, i.e. (6) favours structural edges parallel to those of the 
FEs. In fact, it has been proved by Petersson (1997b) that 
the perimeter control used to date, (6), is actually the proper 
discretization of 

T V n e w ( P ) - - J  ( ,0~1 [-[-] a~2 [ ) d x  (11) 

instead of (5), (assuming the FE-edges are parallel to the x i- 
axes). This means that the numerical results will approach 
solutions of an original problem statement including a new 
perimeter that equals the sum of the structures edge lengths 
projected onto the coordinate axes. This type of modification 
was earlier introduced in the field of image segmentation, see 
the paper by Chambolle (1995) in which an analogous "FE"- 
convergence proof is also given. 

4 Local  m i n i m a  

Considering the many differing solutions to, for instance the 
MBB-beam problem, having appeared in literature, it is clear 
that topology optimization problems have extremely many 
local minima. To a large extent local minima appear for 
the nonrestricted 0-1 topology optimization problems. The 
schemes producing well-posed problems discussed in the pre- 
vious section tend to convexify the problems and produce 
reproducible designs. Nevertheless, small variations in initial 
parameters such as move limits, geometry of design domains, 
number of elements, perimeter constraint value or filter pa- 
rameter, etc., can result in drastical changes in the "optimal 
design". These problems are partly due to flatness of the ob- 
jective function, but probably more importantly, due to the 
numerical optimization procedures used to solve the prob- 
lems. Convergence proofs of algorithms producing iterates 
to solve convex programs are common, while for nonconvex 
programs the statements usually only ensure the algorithm 
iterates' convergence to a nearby stationary point (which cer- 
tainly need not be similar to a global solution). Most global 
optimization methods seem to be unable to handle problems 
of the size of a typical topology optimization problem. Based 
on experience, it seems that continuation methods must be 
applied because, by construction, they take also "global" in- 
formation into account and are thus more likely to ensure 
"global" convergence (or at least convergence to better de- 
signs). 

The idea of continuation methods is to gradually change 
the optimization problem from an (artificial) convex problem 
to the original (nonconvex) design problem in a number of 
steps. In each step a gradient-based optimization algorithm 
is used until convergence. Different continuation procedures 
have been suggested. 

Allaire and Francfort (1993) and Allaire and Kohn 
(1993a) suggested a continuation method were the structure 
is first optimized allowing grey or perforated regions. Af- 
ter convergence, the penalization scheme discussed earlier is 
gradually introduced to obtain a 0/1 design. 

For the perimeter constraint, Haber et al. (1996) sug- 
gested a gradual raise in the penalization factor. For a low 

value of the penalization factor, the design problem resem- 
bles the variable thickness sheet problem which is convex. 
For increasing penalization factor the problem is expected to 
gradually converge to the desired 0-1 design. 

For the mesh-independence filter Sigmund (1997) and Sig- 
round and Torquato (1997) suggest starting with a large value 
of the filter size rmi n ensuring a convex solution and gradu- 
ally to decrease it, to end up with a 0-1 design. 

Recently, Guedes and Taylor (1997) suggested a continu- 
ation approach where costs of intermediate density elements 
are gradually increased by adjusting a weight function a~ in 
the resource constraint f wp <_ V*. 

5 Conclus ions  

Checkerboards, mesh dependence and local minima appear- 
ing in structural topology optimization problems have been 
discussed. It is concluded that precautions must be taken to 
avoid them. At present the two most promising approaches 
seem to be the perimeter control and mesh-independent fil- 
tering. 

The perimeter scheme corresponds to problems for which 
there are both existence and FE-convergence proofs, and it 
can be generalized to all topology optimization problems. 
The method, however, can be a little difficult to make ro- 
bust, but results can be improved by combining it with fil- 
tering techniques (e.g. Beckers 1997a). 

The mesh-independence filter which, despite of its lack of 
theoreticM justification (at the present time), produces good 
results, does not introduce extra constraints in the optimiza- 
tion problem and is very simple to implement. 

Independent of which approach one uses, any single op- 
timization formulation that will produce (close to) 0 - 1 de- 
signs, will be inherently nonconvex. To obtain close to global 
optima, different types of ad-hoc continuation methods have 
been used so far. The concepts of continuation in topol- 
ogy optimization are not very coherent, and more research is 
needed to obtain general stable methods, maybe in combina- 
tion with (other) global optimization methods. 
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