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Summary. The evaluation of the stress intensity factors at the tips of a crack in a
homogeneous isotropic and elastic medium may be achieved with higher accuracy and
much less computation if the Lobatto-Chebyshev method of numerical solution of the
corresponding system of singular integral equations is used instead of the method of
Gauss-Chebyshev commonly applied to such problems. Comparison of results obtained
by the two numerical methods when applied to the problem of a cruciform crack in an
infinite medium proves the potentialities of the new approach.

1. Introduction. The problem of one or several cracks existing in an infinite,
isotropic elastic medium and loaded in the same manner in both faces is reduced to the
solution of a system of Cauchy-type singular integral equations by considering the cracks
as composed of elementary dislocations placed infinitely close to each other. This system
of singular integral equations is of the form:

2>„w f f, = 1 »'_i I J j = 1 «'-l
Ka(t, dt = i = 1,2, • • • , .V, (1.1)

where functions c<,-(#), Ka(t, x) and /,(x) (i, j = 1, 2, • • • , N) are known, while the
unknown functions <p,(£) (j = 1, 2, • • • , N) have singularities of order ( — 1/2) as t —> ±1,
that is at the tips of the cracks, and can be expressed in the form:

v,(t) = (1 - 0~1/2!7,(0, ) = 1, 2, • • • , N, (1.2)

with the functions gt(t) (j = 1,2, ■■■ , N) non-singular in the integration interval [—1, 1].
It should be noted that functions <pj(t) are directly related to the density of disloca-

tions along the cracks and that the values of <?,•(<) for t = ±1 are proportional to the
stress intensity factors at the crack tips [1, 2, 3]. The number N of the singular integral
equations in the system (1.1) is at maximum equal to double the number of the existing
cracks if they are loaded with a normal and shear load.

Gol'dshtein and Savova [1] were the first who reduced the problem of a single, smooth
and curved crack in an infinite isotropic elastic medium to a system of singular integral
equations of the form (1.1), while the problem of several linear cracks arbitrarily oriented
in an infinite isotropic elastic medium was solved by Datsyshin and Savruk [2], Moreover,
Erdogan and his co-workers have solved in a series of papers various other cases of linear
cracks in half-planes or composite media. Some of these cases are contained in [3].
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Furthermore, besides these cases of cracked plates, several other problems of mathe-
matical physics may be reduced to systems of singular integral equations of the form
(1.1) with unknown functions behaving like relations (1.2).

The simplest way of solving the system of singular integral equations (1.1) is by
reducing it to a linear system of algebraic equations by approximating both singular and
regular integrals by methods of numerical integration. Ergodan and Gupta [4] gave such
a solution of the system (1.1) by developing a method of approximating the singular
integrals identical with the Gauss-Chebyshev numerical integration method for ordinary
integrals. Further, Erdogan, Gupta and Cook [3] extended this method for the case of
unknown functions p,(<) of the form:

*,(t) = (1 ~ 0"( 1 + «A,(0, -1 < «, 0 < 1, a, 0*0. (1.3)
where the functions <7,(<) vary regularly in the integration interval.

However, the extension of the Gauss-Chebyshev method for the numerical determi-
nation of singular integrals and the solution of the corresponding systems of singular
integral equations [3, 4] was not rigorous. In particular, the characterization of it as a
Gauss method was not completely evident because it was proved to be accurate only for
polynomials gf,(i) up to the (n — l)th degree (n is the number of the abscissae used),
while the Gauss numerical integration method is accurate for polynomials up to the
(2n — l)th degree included. It will be proved in the sequel that, indeed, the Gauss-
Chebyshev method applied to singular integrals, as developed by Erdogan and Gupta [4],
is accurate for polynomials <7,(0 up to 2r?th degree included.

The Gauss-Chebyshev (or, generally, the Gauss-Jacobi) method was also extended
for the numerical evaluation of singular integrals by Chawla and Ramakrishnan [5].
It will be shown later that their method applied to systems of singular integral equations
of the form (1.1) is identical with the method developed by Erdogan, Gupta and Cook
[3, 4],

By the Gauss-Chebyshev method, systems of the form (1.1) are reduced to systems
of linear equations whose solution provides the values of the unknown functions <?,(<)
at discrete points tk (k = 1,2, • • • , n) within the integration interval [—1, 1], but not at
the limits t = ±1. However, as already mentioned, stress intensity factors at the crack
tips are proportional to the values of <7,(±1), which must therefore be evaluated from
the values of g,(tk), for example, by extrapolation. The relevant expressions are given by
Krenk [6]. Nevertheless, additional error is introduced by such an extraploation, which
is accurate only when the function gr,(<) whose values at t = ±1 are to be determined
is a polynomial up to (n — l)th degree.

In order to avoid extrapolation error and the related computations, instead of the
Gauss-Chebyshev method, the Lobatto-Chebyshev method can be used, which includes
the points t = ±1 among the points tk (k = 1, 2, • • • , n). In the present work, an exten-
sion of this latter method for singular integrals is developed in order to render it applicable
to systems of the form (1.1). By applying both the Gauss-Chebyshev and the Lobatto-
Chebyshev methods in the evaluation of the stress intensity factor k, in a cruciform crack,
the supremacy of the latter is demonstrated.

2. The Gauss-Chebyshev numerical integration method applied to singular integrals.
The system of singular integral equations:
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tlCii{x) L T^~x dt + % £ K"(t' x) JT^7yT2 dt = h(xh
i=l,2,--,N, (2.1)

which results from the system (1.1) if one also considers the behavior (1.2) of the unknown
functions ^>,(0 (j = 1, 2, • • • , N), can be reduced, by means of the Gauss-Chebyshev
method as it was developed by Erdogan and Gupta [4], to the following system of
linear equations:

I t oM E ■rJ~r + Ki.ih , xr)gi{Q = f<(zr),
,l | -1 k = l Ik £r J = 1 A: = 1

i = 1,2, ••• ,N, r = 1,2, , n — 1, (2.2)
with points tk and xr given by the expressions:

T„(tk) = 0, U^Xr) = 0, (2.3)

where T„(x) and Un-X(x) are the Chebyshev polynomials of the first and second kind
respectively, defined by [4]:

Tn(x) = cosn#, [/„_i(z) = S^nnf , x = cost?. (2.4)
sin u

The functions <7,(0, apart from satisfying the system of singular integral equations
(2.1), are considered as fulfilling particular conditions as well, as in the case of cracks:

f1 g,-(0J-1 (1 - t2)w dt = 0, i = 1,2, ••• ,N, (2.5)

from which, by a Gauss-Chebyshev numerical integration, N additional linear equations
are produced:

Ej,(4) = 0, j = 1,2, • • • , N. (2.6)
k = 1

The system of linear equations (2.2) and (2.6) comprises (n X N) equations with an
equal number of unknowns, and its solution provides the values of the unknown functions
<7, (0 at points tk , determined through the first of Eqs. (2.3).

The difficulty in reducing the system (2.1) into the linear system (2.2) lies in the fact
that the singular integrals require special treatment while the ordinary integrals may
be approximated by the Gauss-Chebyshev method directly. Erdogan and Gupta [4]
thus considered the singular integral

g(0~Lt-x( l-"f)l/sdt (2-7)
written as:

<2-8)

where the function g(t) was expressed in the form:
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g(t) = ZRkTk(t), (2.9)
h = 0

i.e. as the sum of (p + 1) Chebyshev polynomials Tk(t) of the second kind.
Further, it was taken into account that:

T^r"» - u-w-o, (2.10)

and it was proved that:

A = 0,1, ,n- 1, r = 1,2, ••• ,n - 1, (2.11)
= 1 Xr)

with points tk and x, defined by relations (2.3). There results the approximate expression
of the integral (2.7):

' - /', ̂  r^y"IS • (2',2)
which becomes accurate if p < n — 1 (due to the expression (2.11), which was not proved
to be valid for h > n — 1), i.e. if g(t) is a polynomial up to (n — l)th degree included.

The approximation (2.12) of the Cauchy-type singular integral I is identical, as far as
weights and abscissae are concerned, with the Gauss-Chebyshev method for ordinary
integrals, of course under the restriction that the points x, (r = 1,2, • • • , n — 1) be
given by the second of expressions (2.3). Although the method was considered accurate
by Erdogan and Gupta for functions g(t) polynomials up to (n — l)th degree included,
nevertheless it is accurate for polynomials up to 2nth degree included. It is, therefore,
in some ways more accurate than the Gauss-Chebyshev numerical integration method
for ordinary integrals:

1 = f a S(%>"dt^ I £ Tn(tk) = p, (2.13)
J-l I,1 1 ) n *= 1

which is accurate for functions g(t) polynomials up to (2n — l)th degree included.
In order to prove that the Gauss-Chebyshev method for singular integrals of the

form (2.7) is accurate for functions g(t) polynomials up to 2nth degree included, it is
sufficient to prove that relation (2.11) is valid for values of h not only up to (n — 1)
but up to 2n. One notices that for h = n the validity of (2.11) is obvious, considering
the determination of the points tk and xr according to relations (2.3). For (n + 1) <
h < 2n, in a fashion analogous to that followed by Erdogan and Gupta [4], one considers
the following development into simple fractions:

UtI(x)X) = ' ™k) = °' 0<A-n-l<»-l, (2.14)

where:

ak
Uh-n-l(tk) Uh-n-\(tk) (2.15)Tn'(tk) nUn-M

By applying the following formula, which can be easily derived from Eqs. (2.4):

UM(x) = —Th(x)U„-i(x) + Tn(x)U^(x), (2.16)
and the following formula from relations (2.3), (2.15) and (2.16):
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at = ^ , [/„_„_,(Xr) = TJLx,)Uk-x{x,), (2.17)

then, from relations (2.14), (2.16) and (2.17), the following expression results:

^ Tk(tk)
r[ n(tk — x,)

= .£/*_!(xr), h = n + 1, n + 2, • • • , 2n. (2.18)

This is identical with (2.11), but for values of h from (n + 1) up to 2n included, because
in the fraction on the left-hand side of the series (2.14) the degree of the polynomial of
the numerator must be less than the degree of the polynomial of the denominator.

It is thus proved that the numerical expression (2.12) of singular integrals by the
Gauss-Chebyshev method is accurate for functions g(t) polynomials of up to 2nth degree
included. Furthermore, it is obvious that, when using a highly accurate numerical
integration method such as the Gauss-Chebyshev method for the approximation of
the system (2.1) by means of the linear system (2.2), then the results obtained will
in general be very accurate too.

The Gauss-Chebyshev method for ordinary integrals (2.13) was also extended for
singular integrals by Chawla and Ramakrishnan [5], who gave the following form of
approximation:

f' 1 9(0. it - T V d(h) . f .Un-t(x) (n 10.L ~x (T^?P dt - n £ ~TM ■ <2-19>
which differs from the Gauss-Chebyshev approximate expressions for ordinary integrals
only by the second term of its right-hand side, which vanishes in the latter case. This
term also vanishes, if the roots xr (r = 1, 2, • • • , n — 1) of the polynomial Un-i{x)
are considered as points x. Under this restriction the Gauss-Chebyshev method can be
applied to integrals, singular or not, as follows:

I = f K(t, xr)g(t) dt-lY, K(tk , xr)g(tk) (2-20)
J-1 n *=i

with kernel:

K(U x) = + K&, x), (2.21)

where K^t, x) and K2(t, x) are regularly varying functions in relation to both variables
within the integration interval [—1, 1].

The procedure of Chawla and Ramakrishnan leads to the approximate expression
(2.19) through the Gauss-Chebyshev method for singular integrals. This expression
can be transformed into (2.12) by selecting points x, according to the second of relations
(2.3). It is thus demonstrated that the method of Erdogan and Gupta [4] for the evalua-
tion of Cauchy-type singular integrals of the form (2.7) and called the Gauss-Chebyshev
method, is indeed the Gauss-Chebyshev method. Chawla and Ramakrishnan have also
shown that the expression (2.19) of a singular integral is accurate for functions git) up to
2nth degree, included, as has been proved above in a different manner.

3. Advantages of the Lobatto-Chebyshev numerical integration method as compared
with the Gauss-Chebyshev method. The above procedure for reducing the system of
singular integral equations (2.1) under conditions (2.5) into the system of linear equations
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(2.2) and (2.6) by the Gauss-Chebyshev method leads to the determination of the values
of the unknown functions <7,(<) at points tk , i.e. the roots of the polynomial Tn(x), lying
within the integration interval [—1, 1], but not coinciding with the limits ±1. However,
it is exactly at these points that the values of <7,(0 are of most interest, as they are
proportional to the stress intensity factors at the crack tips, whose determination is the
objective of the solution of the system of singular integral equations (2.1). These values
<7,(1) and <7,(— 1) may be evaluated by extrapolation, based on the determined values
g,(tt), which were derived from the solution of the system of linear equations, according
to the following formulas given by Krenk [6]:

.,c±i> - i ± (3.1)

Formulas (3.1) are sufficiently accurate if the function <7, (<) is a polynomial of degree
not higher than (n — 1). Otherwise, significant error can be introduced, which counter-
balances the advantages of the Gauss-Chebyshev method with respect to the accuracy
of the results obtained, by which a system of singular integral equations can be reduced
into a system of linear equations. Besides the error introduced by the use of formulae
(3.1), additional error may be generated from the lengthy computations required, in
particular when the number of points n is large.

These drawbacks of the Gauss-Chebyshev method as applied to the determination
of stress intensity factors, led eventually to the present application of the Lobatto-
Chebyshev method, in which the limits ±1 of the integration interval are included among
the points tk . Consequently, no extrapolation is necessary in order to determine the
values of the functions gt(t) at these points, i.e. to evaluate the stress intensity factors
at the crack tips. However, the Lobatto-Chebyshev method is accurate for integral
of the form (2.13) with integrable functions g(t) polynomials up to (2n — 3)rd degree
included and not (2n — l)st degree, as in the Gauss-Chebyshev method. With singular
integrals of the form (2.12) the Lobatto-Chebyshev method is accurate for functions
g{t) polynomials up to (2n — 2)rd degree included, as will be shown later, and not 2nth
degree as in the Gauss-Chebyshev method. However, this latter loss of accuracy is not
significant, in view of the advantage of not being obliged to use formulae (3.1) for extra-
polations which are accurate for functions gr,(i) polynomials up to (n — l)th degree only.

Nevertheless, it must be mentioned here that one might be interested in the values
of the unknown functions along the whole of the integration interval [—1, 1] and not
only for the determination of stress intensity factors. In this case, the unknown functions
are expressed by means of formulae of the form (2.9), where the coefficients Bh are given
by formulae of the following form [6]:

B, = I E Th{tk)g{tk), h = 1,2, ••• ,n - 1, B0 = \ £ g(tk) (3.2)
,l A = 1 H A: = 1

and the Gauss-Chebyshev method should be applied, rather than the Lobatto-Chebyshev
one, although formulas analogous to (3.2) may be easily derived for the latter as well.

For ordinary integrals, the Lobatto-Chebyshev method assumes the form [7]:

1 = /_, dt = T [m_1> + M+1) + % ,

Un~2{tk) = 0, k = 2, 3, • • • , n 1, (3.3)
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which is accurate for functions g(t) polynomials up to (2n — 3)rd degree, as already
stated.

The authors are not familiar with any applications of the Lobatto-Chebyshev method
to singular integrals of the form (2.7) like those of the Gauss-Chebyshev method. Hence
the procedure will be developed below.

4. The Lobatto-Chebyshev numerical integration method as applied to the evaluation
of singular integrals. The procedure to be followed in the present section is similar
to that applied by Erdogan and Gupta [4] to the Gauss-Chebyshev method. Let the
following expansion into simple fractions be considered:

#73 = £ - (1 - tk2)Un-M = 0, (4.1)(1 — x2)U„-2(x) f=i tk - x '

where

Tn-h-\{tk)  /a c)\ak ~ [(i - (4-2)

In the expansion (4.1) of the fraction on the left-hand side, the degree of the polynomial
of the numerator must be less than the degree of the polynomial of the denominator, i.e.:

0 < n — h — 1 < n — 1 or 0 < h < n — 1. (4.3)

By considering formulae (2.4), defining the Chebyshev polynomials Tn(x) and U„-1(x),
one can easily show that:

[(1 - x*)Un.t(x)]' = —xUn-2(x) - (n - 1)r._,(x) (4.4)

and also that:

Tm(x) = Tk{x)Tn^{x) + ^_,(®)(1 - x2)C7„_2(x), h> 0, (4.5)

when, from expressions (4.2) for the coefficients ak , one obtains:

_ 1) _ ?\(1) _ Th(tk) , _ _ _ « _ i ("a. r1!ai ~ 2(» - 1) ' a" ~ 2(n - 1) ' a" ~ n - 1 ' ^ - 2,3, ■■■ ,n 1, (4.6)

taking into account that:

ti — 1, t„ = 1, Un— 2(.tk) = 0, k = 2, 3, • • • , n 1, (4.7)

as well as that:

rn_,(l) = 1, r.-^-l) = (-1)""1, U.-,( 1) = n - 1, t/„_a(-1) = (—1 )"(n - 1).
(4.8)

The series expansion (4.1) now assumes the form:

n  Tk(tk)  — tt j_ Th(x)Tn-i(x)
h k in - \){tk -x)~ Uh-1 + (1 - x2)Un.2(x) '

<49)

By selecting points x, from:

r..1(«r)-0, r = 1,2, ••• ,n - 1, (4.10)
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and by applying expansion (4.9) for these, one obtains:

 7^ T=tf»-,(zr), £/-,(*) ^0, h = 0, 1, ,n - 1, (4.11)
& = 1 V/& ~~ AAC* ~~ Xr)

which is valid for h from 0 up to (n — 1) included.
For h from (n — 1) up to (2n — 2), one can prove that the expansion (4.11) is also

valid, provided that, instead of the original expansion (4.1), one considers the expansion:

a o-o^o-o. (4.12)
Consequently, the expansion (4.11) is valid for 0 < h < (2n — 2), while the corresponding
expansion (2.18) for the Gauss-Chebyshev method is valid for 0 < h < 2n.

By comparing Eqs. (2.10) and (4.11) and taking into account that a polynomial git)
of pth degree can be expanded into a series of Chebyshev polynomials, as in Eq. (2.9),
one can develop the following numerical integration method for singular integrals:

_ f ! 9&)_ dt ̂  Z y x sitk)
1, tk - xT (1 - tky/2 dt-n~\h k t,

(I/O L- _ 1 «
(4.13)

Xr

1/2, k = 1, n
1, k = 2, 3, ■ • ■ , n — 1

which is accurate for functions g(t) polynomials up to (2n — 2)th degree included.
Relation (4.13) is identical, as far as weights and abscissae are concerned, with the
Lobatto-Chebyshev method for ordinary integrals (3.3) and it can be considered as an
extension of the latter for singular integrals. Of course points xr are not arbitrary, but
they are given from Eq. (4.10). Also, one may note that the Lobatto-Chebyshev method
for ordinary integrals (3.3) is accurate for functions g(t) polynomials up to (In — 3)th
degree, while for singular integrals (4.13) is accurate for functions g(t) polynomials up
to (2n — 2)th degree.

By applying the Lobatto-Chebyshev method to the system (2.1) under the conditions
(2.5), the following system of linear equations results:

Z CU(XT) E xt - E £ \kKu{tk , xr)gt(tk) = Uxr),
n — 1 t_i tk — xr n — 1 , = 1

E M.-C*) = 0- o= 2, 3, ■ ■ • , » - 1, (4'14)
which consists of (n X N) equations and an equal number of unknowns, as is the case
with the system (2.2) and (2.6) derived by the Gauss-Chebyshev method.

One can also note that the Lobatto-Chebyshev method for singular integrals can be
developed in a way similar to that followed by Chawla and Ramakrishnan [5] with the
Gauss-Chebyshev method (as well as the Gauss-Jacobi method).

5. Application to the determination of the stress intensity factors at the tips of a
cruciform crack. As an application of the above Gauss-Chebyshev and Lobatto-
Chebyshev methods, the problem of a cruciform crack in an infinite isotropic elastic
medium under constant load a along all its four branches is to be treated (Fig. 1). Such
a crack can be considered as a system of two cracks of length 2a intersecting each other
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I
+ia

-a +a

-la

Fig. 1. Cruciform crack in an infinite medium.

at right angles, in which case the Datsyshin and Savruk [2] method is applicable. The
problem can thus be reduced into a singular integral equation, which must be valid
for both cracks, under the given conditions of symmetry in geometry and loading of
the latter. After using the dimensionless length variables t and x, there follows the
equation:

1C [rb + dt' " <51)
where the unknown function <p(t) is proportional to the dislocation density along the
crack branches. This exhibits a singularity of order (—1/2) at the crack tips; it may thus
assume the form:

v{t) = (5-2)

with function g(t) regularly varying along the crack branches. One should also note that
both functions <p(t) and g(t) are odd because of the opposite sense of deformation of each
branch of the intersecting cracks. Then Eq. (5.1), because of Eq. (5.2), can be approx-
imated by the following system of linear equations:

i v r tk utk2 - *,■)! ,.s
n S + (42 + z,y r = l'2' "•

tk , xr > 0, T2Jtk) = 0, U2n-i(xr) = 0, (5.3)

if the Gauss-Chebyshev method for 2n points be applied, or by the system:

1 v-1 x f t± , tk(tk2 — a:,2)"] , v _ _io
n - 1 £ X*L2 - z,2 + (tk2 + xry id{tk) - a' r - 1,2, ■■■ ,n,

Ik ) %r 0, (1 tk )U2n-2(tk) ~ 0, T2n-l(%r) = 0, (5.4)
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if the Lobatto-Chebyshev method for 2n points be applied. Note that the condition of
single-valuedness of displacements is automatically satisfied, due to the symmetry of
geometry and loading of the cruciform crack.

The systems (5.3) and (5.4) have been solved for various values of n and the value
<7(1) of the unknown function g(t') for t = 1 was determined both by extrapolation follow-
ing the application of the Gauss-Chebyshev method and directly from the solution of
system (5.4) according to the Lobatto-Chebyshev method. The stress intensity factor
kj at the tips of all four branches of the cruciform crack of Fig. 1 can be determined in a
straightforward manner from the value <?(1) of the unknown function g(t) for t = 1
from the expression:

kj = <rang{ 1). (5.5)

The results are given in Table 1, and it is obvious that, with increasing n, they con-

Tahle 1. Reduced values of the stress intensity factor at the tips of a cruciform crack.

Method Gauss-Chebyshev Lobatto-Chebyshev

= a(i)

2 0.94445 0.83658
3 0.83635 0.85970
4 0.83882 0.86387
5 0.86289 0.86449
6 0.86381 0.86441
7 0.86528 0.86424
8 0.86282 0.86408
9 0.86503 0.86396

10 0.86283 0.86387
11 0.86464 0.86380

verge much faster and more smoothly by the Lobatto-Chebyshev method than by the
Gauss-Chebyshev method towards the limit 0.8636, which is approximately the correct
value of the reduced stress intensity factor as derived by Rooke and Sneddon [8]. The
fact that the value of the reduced stress intensity factor does not converge as fast as one
might expect with increasing n by both methods (particularly by the Gauss-Chebyshev
method) is due to the discontinuity of the derivatives of the unknown function g(t)
for t = 0, i.e. at the center of the cruciform crack.
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