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Numerical integration of ordinary differential equations
based on trigonometric polynomials

By

WALTER GAUTSCHI*

There are many numerical methods available for the step-by-step integration
of ordinary differential equations. Only few of them, however, take advantage
of special properties of the solution that may be known in advance. Examples
of such methods are those developed by BrRock and MURRrAY [2], and by DENNIS
[4], for exponential type solutions, and a method by URABE and MisE [5] designed
for solutions in whose Taylor expansion the most significant terms are of relatively
high order. The present paper is concerned with the case of periodic or oscillatory
solutions where the frequency, or some suitable substitute, can be estimated in
advance. Our methods will integrate exactly appropriate trigonometric poly-
nomials of given order, just as classical methods integrate exactly algebraic
polynomials of given degree. The resulting methods depend on a parameter,
v=hw, where h is the step length and w the frequency in question, and they
reduce to classical methods if v—0. Our results have also obvious applications
to numerical quadrature. They will, however, not be considered in this paper.

1. Linear functionals of algebraic and trigonometric order
In this section [a, b] is a finite closed interval and C°[a, b] (s =0} denotes the
linear space of functions x(¢) having s continuous derivatives in [a, ]. We
assume C*[a, b] normed by
s
(1.1 [ =Y max |+ @].

oo A<D
A linear functional L in C*[a, b] is said to be of algebraic order p, if
(1.2) Lt =0 (r=0,1,....9);

it is said to be of trigonometric order p, relative to period T, if
_ 27 N\ : 27 4\ .
(1.3) L1—Lcos(rfot)_Lsm(rﬁj;»t)_o (r=1,2,...,9).

Thus, a functional L is of algebraic order p if it annihilates all algebraic poly-
nomials of degree <p, and it is of trigonometric order #, relative to period T,
if it annihilates all trigonometric polynomials of order <p with period T.
Functionals of trigonometric order p are comparable with those of algebraic
order 2, in the sense that both involve the same number of conditions. The
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relationship turns out to be much closer if we let L depend on the appropriate
number of parameters. In fact, consider functionals of the form

(1.4) Lx=pLix+ - +PopLlopx+ Lopii,
where L, (A=1) are fixed linear continuous functionals in C°[a, b] and g, real
parameters. Then the following theorem holds.
Theorem 1. Let the functionals L, in (1.4) satisfy the following conditions.
() L;1=0 (A=1,2,...,2p+1).
0

(ii) There is a unique set of parameters, B,=_p,, such that the functional L in
(1.4) ts of algebraic order 2P, that is to say,

(1.5) det (L) 0 (

»x vow index, A colummn index
#,A=1,2,...,2p

Then, for T sufficiently large, there is also a unique set of pavameters, §,=8,(T),
such that L is of trigonometric order p rvelative to period T. Furthermore,

(1.6) Bi(T) B as T — oo.

Proof. The main difficulty in the proof is the fact that in the limit, as T — oo,
equations (1.3) degenerate into one single equation, L 1=0. We therefore trans-
form (1.3) into an equivalent set of equations from which the behavior of the
solution at 7T =oc can be studied more easily.

In this connection the following trigonometric identities are helpful,
r
(1.7) Sinz’—;—=2cf,g(1—cosgx) (r=1,2,3%,...,
o=1

where ¢,, are suitable real numbers and o,,50. The existence of such numbers
is obvious, if one observes that sinz’% =[(1—cosx)/2]" can be written as a

cosine-polynomial of exact order r. Differentiating both sides in (1.7) gives also
21X X X
. gy . .
(1.8) sin 72~cos‘i_:'22311,951ngx (r=1,2,3,...),

where 7,,=00,,/7, and in particular 7,,=g0,,50.
Equations (1.3) are equivalent to

L1=0,
2mn - 27
L(1—cosrme—t)=Lsmth=O (r=1,2,...,9).

Because of assumption (i) the first of these equations is automatically satisfied.
The remaining equations are equivalent to

(1.9) ZG,QL(1—COSQ—2T7515)= Zr,gLsingz—;tzo (r=1,2,...,9).
e=1 e=1
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Using (4.7) and the linearity of L we have

¢ 2 S 2 Y
QZIG,QL(1—cosQATit):Lglo,Q@—Cosg Tn 15):L[51n2 (%t”

Similarly, using (1.8), we find

4 . 27 s 2r—1/ T 7

rQLstf—t:L[sm —tcosw-t},
Suotsme FUEE:
Therefore, letting

T
(1.10) w=7,

we can write (1.9), after suitable multiplications, as follows:

L (fsgl%?)zr—l cos u t} =0
(1.11) * o r=1,2,...,9).
L=

This represents a system of 2 linear algebraic equations in the same number
of unknowns 3, the coefficient matrix and known vector of which both depend
on the parameter . We show that in the limit as #-—>0 the system (1.11) goes
over into the system of equations L{'=0 (r=1, 2, ..., 2p).

In fact, it is readily seen, by expansion or otherwise, that for any integers
=0, r=1, as u—0,

1 27—1
@ [(iyﬁ) cos u 4 o @

e u de ’
@’ (im“l o a° 1
e qr) Tdet

the convergence being uniform with respect to ¢ in any finite interval. In par-
ticular,

(,Smwﬂ)zpl cosut— 27 -0
u
e (# —0),
’fm@ﬁ — 27| >0
K22
so that, by the continuity of the L,, also
L;, [( sin ﬂ)zy_l Cosu t} -—> L,1 2t
(4 —0).

1 2
L) > Ly

From this our assertion follows immediately.

Since the limiting system, by assumption, has a unique solution, §3, the
matrix of the system (1.11) is nonsingular for #==0, and hence remains so for
u sufficiently small. It follows that for sufficiently large 7' there is a unique
solution, §,(T), of (1.11), satisfying (1.6). Theorem 1 is proved.
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Remark 1. Assumption (1) in Theorem 1 is not essential, but convenient for
some of the applications made later. The theorem holds without the assumption
(i) if the functional L in (1.4) is made to depend on 2p+1 parameters,

(1.4 Lx=ByLox+pLix+ -+ PopLlopy+Lopiq,
and assumption (1.5) is modified, accordingly, to

» row index, A column index)

1.5’ det (L, ¢*
(1.5 et (Ly#) + 0 (%1120,1,._”2?

The proof remains the same.

Remark 2. For particular choices of the L, it may happen that the functional
L can be made of higher algebraic order than the number of parameters would
indicate. Even if the excess in order is a multiple of 2, this does not mean neces-
sarily that a similar increase in trigonometric order is possible. For example,

Lx=px(0)+x(1) —§2'(0) —3#'(1), B=—1

if of algebraic order 2, but in general cannot be made of trigonometric order 1,

since

sin u ¢ sin 2

LS9 cospt| = SM2% 1 (41 cos2u) >0 (0<u<3).
k22 24 2

4
2
2. Linear multi-step methods

Linear functionals in C? play an important role in the numerical solution of
first order differential equations

(2.1) ¥ =ft %), xl) =%,
in that they provide the natural mathematical setting for a large class of numerical
methods, the so-called linear multi-step methods. These are methods which

define approximations x,, to values x (f,-+m %) of the desired solution by a relation
of the following form
(2.2) T+ 0 %y o 0 Xy =R (B Tpyr+ B ®nt o + B Xny1os)

n=rk—1,kkF+1,..),
where

x:n:f(t0+Mh» xm)'

Once k ‘“starting” values %, %, ..., X,_, are known, (2.2) is used to obtain
successively all approximations x,, (m=£k) desired.

The integer £>> 0 will be called the index of the multi-step method, assuming,
of course, that not both o, and 8, vanish. (2.2) is called an exfrapolation method
if B,=0, and an interpolation method if By==0. Interpolation methods require
the solution of an equation at each stage, because x,,,; in (2.2) is itself a function
of the new approximation x, ;.

It is natural to associate with (2.2) the linear functional

k
(2.3) Lx:zz [, 5+ m+14—ARB) —hf, 5t +m+1—A )] (x=1).
o

The multi-step method (2.2) is called of algebraic order $, if its associated linear
functional (2.3) is of algebraic order p; similarly one defines trigonometric order
of a multi-step method.
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Since any linear transformation #’=a¢-+b (¢==0) of the independent variable
transforms an algebraic polynomial of degree < into one of the same kind,
it is clear that (2.2) is of algebraic order p if and only if the functional

(2.4) L'y :Eo [z x(k—A) — B 2"k — 2)]

is of algebraic order . Here, the parameter 2 has dropped out, so that the
coefficients o, §; of a multi-step method of algebraic order do not depend on 4.
The situation is somewhat different in the trigonometric case, where a linear
transformation other than a translation (or reflexion) changes the period of a
trigonometric polynomial. By a translation, however, it is seen that (2.2) is
of trigonometric order ¢, relative to period T, if and only if

(2.5) I*x :lgo{ocl x[(k — W) K] — B, ' [(k — 2) ]}

is of trigonometric order p relative to period T.

For a multi-step method to be useful it must be numerically stable, which
above all imposes certain restrictions on the coefficients a, (see, e.g., [1, sec. 9])
In view of this we shall consider the «; as prescribed numbers satisfying the
conditions of stability. Also they shall satisfy

k
(26) Yu=0 (=1

to insure algebraic and trigonometric order p=0.

It is then well known ([, sec. 6]) that to any given set of 241 coefficients
a, satisfying (2.6) there corresponds a unique extrapolation method with index %
and algebraic order k. Letting therefore #=24 we can apply Theorem 1 to
L=L" identifying

2
27) Lix=—hx[2p— Ak (1=<A<2p), Lzl,ﬂx:lzﬁalx[(Zp—«/l)h].
=0

It follows that there exists a unique extrapolation method with ever index
k=2p and trigonometric order p relative to any sufficiently large period T.
Again, as is well known, given k41 coefficients a,, there corresponds a unique
interpolation method with index £ and algebraic order k+1. Letting now
k+4-1=2p, a similar application of Theorem 1 shows the existence, for T sufficient-
ly large, of an interpolation method with odd index =24 — 1 and trigonometric
order p relative to period 7. Furthermore, in the limit as T ->oo, the resulting
methods of trigonometric order $ reduce to those of algebraic order 2.

The essential parameter is actually not 7', but A/T, as is seen if the conditions
(1.11) of trigonometric order p are written down for the functional L*. Since

i 271 i 2y
KA [(Sfiﬂ) " cosu t} = (il—nhﬂ) " (2r cos?ut —1),
a [( sin ﬁ)2r} _ 2y<im_ﬁ)2'_1 cos u i
u

dt %
Numer. Math. Bd. 3 27
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one finds?!

2 \
b 3By (SRR (or costlu b — 2y 2] — 1)

u

U

k .
= Z a; (W@)w_l cos|u(k— 2) k],
ico

’)th,g(sm[uk 2 ])2, " cos[u(k — A) h i (sm[uk LI

Dividing the first relation by #*"~*, and the second relation by 4*’, and letting

v~2uh——£h

one gets?

Zﬂ (___mz sin(} %0 )2'_2 (27 cos? [% (k—4) v} - 1)

A=0

(2.8) - éo“ﬂ (2B cos [ Lk — 2],

1

21’}2;/&1 (M)z'-l cos {; (B —A) v} — Zk: %, (w)zr

A=0 v

We summarize our findings in the following

Theorem 2. In correspondence to each set of coefficients o, with zero sum theve
exist unique sets of coefficients B,(v), Bi(v) depending on the pavameter

v=2mh/T,
such that for v sufficiently small,

(29) Kyt x, o oy Xyigoap =R [f(0) Ay Ao + B, () Xpit1-2p)

is an extrapolation method of trigonometric order P relative to period T, and

ppr1t o %+ -+ op 1%, 22y

= h[ﬂ(’)k (v) x;n+1 ‘*‘ﬂf () A4+ ﬂ;p—l (v) x;+2—2p]

s an interpolation method of trigonometric ovder p relative to period T. The B, (v)
solve the system of linear algebraic equations (2.8) with k=2p, By=0, the B¥(v)
solve the same system with k=2p —1 and with no restrictions on the f’'s. As v—0
the multi-step methods (2.9) and (2.10) reduce to those of algebraic ovder 2P, vespec-
tively.

(2.10)

3. Existence criterion for trigonometric multi-step methods
Theorem 2 establishes the existence of trigonometric multi-step methods only
for v==2nh/T sufficiently small. A more precise condition on v is furnished by
the following

1Tf =1 the coefficient of f; in the first relation, to be meaningful, must be
defined as unity.
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Theorem 3. Muliti-step methods (2.9) and (2.10) of trigonometric order p, relative
to period T, exist if

. 2n
(3.1) |v| < min (vp, «-2—}5__7”) (v=2ah|T),
where v, 1s the smallest positive zero of the cosine-polynomial

e 1 v
3 ,,p(p _EAp+E—n)cos(2n~1) (p odd)

2
. n=1
6.2 Gl)=} -

> vp(;bz— %—ﬁ) —{—glvp(pz—%gb —n)cosnv (p even).

Here, v,(m) denotes the number of combinations of p nonnegative® integers not
exceeding 2p — 1 which have the sum m.

Proof. The linear functional associated with the extrapolation method (2.9) is
2p
Lx 1121/3;' L, x+ szﬂ x,

where L; x=—hx'[(2p—A)h] (1 =A=2p)and L, ,isgiven such that L,,,,1=0.
Similarly,

251

L¥x= 2 ¥ Lfx+ L¥,x

1=0
with L¥=L, ,, L§;1=0, is the functional associated with the interpolation
method (2.10). It is apparent, therefore, that the conditions (1.3) of trigonometric
order for these particular functionals give rise to a system of 24 linear algebraic
equations in the unknowns 8, and 8%, respectively, the matrix of which in either
case is given by

vsin(2p —1)v vsin(2p — 2)v ... vsinwv 0

—wvcos(2p —1)v — v cos{2p — 2)v ... —VCOSV — v
2usin2(2p —1)v 20sin2(2p —2)v ... 2vsin 2v 0

B)=1 —2vcos2(2p—1)v —2vcos2(2p —2)v ... —20¢0820 — 2

pusinp(2p —1)v pvsinp(2p —2)v ... pvsin;‘)v' 0
—puvcosp(2p —1)v —puvcosp(2p —2)v ... —puvcospy —pu

The instance v=0 (in which B is singular) is sufficiently dealt with by
Theorem 2. Theorem 3 will therefore be proved if it is shown that B(v) is non-
singular for all nonvanishing values of v satisfying (3.1).

Replacing the trigonometric functions in B(v) by Euler’s expressions and
applying a few obvious elementary operations on rows and columns of the

2 In terms of partitions (more commonly used in combinatorial analysis) which
involve positive integers with given sum, we have

vp(m)=m,_1 (2p—1, m)+ 7, (29— 1, m),

where 7 (/, m) denotes the number of partitions of m into 2 unequal parts not ex-
ceeding /.

27%
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resulting matrix, one shows that the determinant of B is equal to

2 2 2 2

whh 4 wih o ... wi? wp?

+1 +1 1 1
whity whity .. wiTt wht

—p 2D —1)i _ = _ _ i2
det B (v) = (p!)2277 P 0?P =P ErDiv ppol pp L wd T wh T (w, = e'M).

Wyp o Wap g ... Wy W

1 1 o1 1

The last determinant is a minor of the Vandermonde determinant

2p 2 2 2
u?? w22—1 wi? wop
............. 2p—1
w? why, 4 wi wh | = (0 — w,) 1 1 (@, — @),
o=0 0=o<pgs2p-1
|1 1 1 1

namely, up to the sign (—1)?, the coefficient of #” in the expansion along the
first column. From the right-hand side it is seen that this coefficient is equal to
(— 1)pap(w0,w1,...,w2¢,71) 11 (wgwwo‘)l
0=<o<p=2p—1
where g, denotes the p-th elementary symmetric function in 24 variables. There-

fore,
det B(v) = (p1)2272 4 0*P e~ C2Vivg (0w, wy, ) [T (w,— w,)
(33) 0<o<p=2p—1

(w}. — 6ilv) .
For the product in (3.3) we have
T (w0, — w,) = J] etleroiv [ [ehle=oriv _ g=ile=0)iv]
o< <@ a<<g

= (24)P @61 9 Cp=1%v [T sin L (g — q) v.
o<e

Also,

Iab Agt o A
0, (4, @y, --':w2p41) =) gttt ht g,

where the sum extends over all combinations (4;, s, ..., 4,) of » nonnegative
integers not greater than 2p —1. Thus,
det B(v) = (— 1)? (p1)2 22P (=1 2P

(3.4) X [e4@N0 Y ghitiio] [T sind(o — o) v.
0<o<g=2p—1

It is seen from this that B(v) for v==0 is singular if and only if either the ex-
pression in brackets or the product following this expression vanishes.

As regards the first expression we can write it in the form
pB3p—-1)2 pBp-1)2

Pl ) A
e_gp(z p—1)iv Z yp (n) iy — Z 'Vp (%) e[n—*p(Zp—l)]w,
n=p(p—1)/2 n=p(p—1)/2
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with v, (n) as defined in Theorem 3. Consider first the case p even. Then, by
a shift of the summation index, the last sum is seen to be
1”/12 .
Z v (P kp+m) et
n=—pH2
Since the determinant (3.4) is real, this sum must be real too, which is only

possible if
v (p2—§p+n) =v,(p*— 4p —n) (p even).

Qur sum then becomes
P2
(3.5) v, (P2 — +227)P —1p —m)cosny (p even).

Analogously, if p is odd, the sum in question is

(p(p—1)—1)2 p(3p=1)/2 _
L y, (n) g4 @p—1iv

- n=P(P;1)/2 n=(p@p—11+1)/2

p*+1)2 , )
— Z' [%(?2“ %?+ % . %) 6—(27},—1)11}/2 +Vp(?>2“ p— _Z__r%) 6(2;:71)11//2].

n=1

Since this again must be real we also have
V(P — b+ 5w =y (PP —dp—5+n) (p odd),

and our sum becomes
(3.6) 2 ( +—~—n)cos(2nf 1) 2 (p odd).

Substituting (3.5) and (3.6) for the bracketed expression in (3.4) we finally obtain

(3.7) detB(v)=(—1)? (222" Cow) []  sing(e—a)v
0=<o<os2p—1

with C,(v) as defined in (3.2).

Now, C,(v) =0 for 0< |v] < w, if v, is the smallest positive zero of C,. Also,
the sine- product in (3.7) is certainly nonvanishing for 0<C|v| «2@/(?¢ —1).
Therefore, det B{v) is nonvanishing for

2m
0<|v| <m1n(vp, p 1),
which proves our theorem.
For reference we list the cosine-polynomials C,(v) for p=1, 2, 3:

__ v
C, (v) = cos -

Cy(v) =1+ cos v+ cos 20,
v v v v v
C4(v) = 3 cos 5 + 3cos3 - +2co0s§ o + cos772 - cos9---é—.
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One finds easily that
= —p, =
UET, U=V
so that the bounds in (3.1) for p=1, 2, 3 are respectively z, 7/2, 27/
We also note from (3.2) that

8 e
(3.8) 0<|v] < o

is a sufficient condition for nonvanishing of det B (v).

4. Trigonometric extrapolation and interpolation methods of Adams’ type
Multi-step methods with

g =—oy =1, ;=0 (A>1)

and maximal algebraic order for fixed index are called Adams methods. In
this section we list methods of trigonometric order that correspond to Adams’
extrapolation and interpolation methods in the sense of Theorem 2. The
coefficients B, (v) and B¥(v) are obtained as the power series solution of the
appropriate system of equations (2.8) where coefficient matrix and known vector
are expanded into their Taylor series.

Adams extrapolation methods of trigonometric ovder p

2p
Kpy1= Xy + hglﬂﬂ ®) %pp1—y  (v=2mh/T)

ﬂ11=%(1—.$v2+q%604+-'-), ﬁm:—%(1+712—v2+ 120 vt )
,821:—;5(1—w132~ +792 +) Bra=— 32(1 ?ig vt ;fgig vht )
ﬂ“:%O_%*vz 1—13%22%1;4+~--), 524:—%(1+£—v2+ 120 T )

pm 3 o S

Bre=— Ziié (1 - Tiggé vt 263321864109 v4+"')’

= T

e - SR S )

ﬂ“:“dz?gi% (1” 1;);5343 vt §§§§3 ”4+”")’

b= i o )
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Adams interpolation methods of trigonometric order p

2p—1

Xne1 = Xy, + h ).ZO ﬂ:l ('I)) x?’l+1—/1 (7) =25 h/T)

ﬂiko:ﬂfl:‘; (1+—— V24 157}44— ),
ﬁé"oz——g(1+;v2+~—v4+ ) B = i( — w2 3 g )
4 120 24 228 360
;‘2:_;:<1_112 v2—7727v4+~~), ‘3;‘3:,174,<1+%,,, w2+ ;28 +...);
Bt =15 (1 15 7+ Saeon )
R ]
P T e ),
Bis= 145420( a SZ; v 2051778842251 4+"')’
Bia= 114743(} (1+T§3l8 v 224618582%63 + )
Bis = 1440( +A B 18'27;7“"7)4+'“);

As shown in Section 3 the series for 8,, and 3 certainly converge for |v| <7,
where r,=um, ry=n/2, r3=2a/5.
We also note the explicit formulae
sin v _p _ % _ tano
ﬁll—’;&caézv ﬂlz—ﬂlo—‘j*-
5. Trigonometric extrapolation and interpolation methods of Stérmer’s type

Linear multi-step methods are also used in connection with differential

equations of higher order, in particular with second order differential equations
in which the first derivative is absent,

(5.1) 2" =f, %), % (fy) = x,, % (L) = xp.
They take here the form

(5:2) Xyt Xyt oy X = H2(B, x;»’+1 + B, Xy et Bx x;,'H_k) ,
Koy = [ty +mb, x,,).

The terminology introduced in Section 2 extends in an obvious manner to this
new situation. With the multi-step method (5.2) there is now associated the
functional

k

Lax=2lox(tg+m+1—0h) — 8% (ty+m+1—ARB)] (=1).

A=0
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Theorem 1 (with the modification mentioned in Remark 1 on p. 384) can then
be applied to this functional provided that not all the values of «, are fixed in
advance. Otherwise our assumption (1.5') would not hold. Except for this
provision, however, the construction of multi-step methods (5.2) of trigonometric
order follows the same pattern as outlined in Sections 2 and 4 for first order
differential equations.

We content ourselves in this section with listing a few methods that result
if one takes

(5.3) o, =0 for A>2.

In the algebraic case such methods of maximal order (for given index %) are
called Stérmer methods (cf., e.g., [3, p. 125]).

Stormer extrapolation methods of trigonometric order p
2p-1

Xpp1 T 0p1 (V) %y + 0 (V) %,y =h2 Z Bpa(v) Tp1—z (v=2an/T)

=2,  oyp=1, 1911:1_’* 2+%v4+ 3
a21:~2(1—»%v4+%v6+---), Ogg = — 0y — 1,
n= (-2t L), u=—S(1— 2ot W),
/323:%(\1+*"UZ+ 1;6'1)4—!' ),
a31:—2(1*%v64+---), Uge= —Ogy— 1,
e Bl e )
pom Sl o)
B e S
ﬂ35:240(+‘§% +Zgi:> v )

.....................

Stérmer interpolation methods of trigonometric order p
202

Xy + 051 (0) %, + af2(0) xn_lzhle Blinwia_s (v=2ahT)
=0
afi =—2(t+ Lot St Toet ),

301,
360

*

11
ofe=—afy—1, Blo=1+ 0*+ "4
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=2, afy=1, Blo= (14 ot Lot
;1:%(1—72%'7)2—}”1%)»1)4%#“-1\), /35"2:—'{12—(1%—:;rv2+f1~;6v4+“-);
ah=—2(1 42 o0, afy=—afi— 1,

ph Ll B ),

L

x 14 95 2. 103 4 ) % :7{7(1‘&,02_47711 4 )
B3 24 <1+4zv g0 7 T ) Bis 240 9 2160 0 T )
* 1 31 o 3899 4 )
477 %0 (1 18 % T o0 T

The series for a,;, f,, converge if |v| <7, where 5= oo, #,=m/2, those for
ap;, Bx, converge if |v| <r¥ where rf==/3, #f=nx/2. This can be shown by
reasonings similar to, but more complicated than, those in Section 3. The values
of 7y, 7§ were not obtained because of the complexity of the calculations required.

We also note the explicit formulae

w2(2cos0—1)

11— — —
2cosv—1"

ﬂ]1’<231n27))2 o — 2C0sv /310 2(1-—cosv)
6. Effect of uncertainty in the choice of T
Multi-step methods of trigonometric order presuppose the knowledge of the
period T of the solution, if it is periodic, or of a suitable substitute, if the solution
is only oscillatory. Precise knowledge of this kind is usually not available in
advance, so that one has to rely on suitable estimates of 7. Since 7 enters only
through the parameter v=2xh/T and T'=oc gives the classical multi-step
methods, one expects that uncertainties in the value of T should not seriously
impair the effectiveness of trigonometric multi-step methods (when applicable)
as long as T is not significantly underestimated.
It is instructive to study from this point of view the simple initial value
problem

dx 0 —1 M
(6.1) g (1 O) %, x(0)= (0)
which has the solution
=)
sin ¢

Every multi-step method of trigonometric order =1 relative to period 27z is
exact in this case, so that the example allows us to isolate the effect of inaccu-
rately estimating the period.
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Let us select Adams’ interpolation method of trigonometric order 1, which
can be written in the form

taniv , s

(6.2) Xy = 2%, +h— . (%1 + %) (v=2nh|T).

The correct choice of T is 27, giving v=~Ah. We consider now 7T to be some

“estimate’”” of 2x and use
27

T

to measure the quality of the estimate (underestimation, if > 1, overestimation,
if A<C1, precise estimate, if 1=1).
Letting

application of (6.2) to (6.1) then gives

o —1
xn+1 = xn _}_‘[(1 0) (xn+1 +xn))

or else, collecting terms,

'l‘L'x ——1~Tx v 1 1-—12—21x
—7 1 n+1l 7 T 1 " n-‘rl“ﬁ_,ﬁ 27 '1_—_';2 n

If we set

v =tan 9,
we get

(cos # —sin 19)

Xne1=| . Xy
sin 9 cos
Obviously,
— 1 Ah

(6.3) ©# = 2arc tan (7A,tan— 7;>,

The #-th approximation #, to the solution of (6.1) is thus obtained by rotating
the initial vector xy= (:)) n-times through the angle 4, where 9 is given by (6.3).

Therefore
(cos " 19)
xn = . El
sinn 9

which shows that the approximations have the correct amplitude, but phase errors

(6.4) =0 —h)y=nh {722 arc tan (ﬁ% tan }—211> — 1} .

If A=1 then ¢,=0, as we expect. In the limit as 10 we obtain the phase
error of the method of algebraic order 1, which in our example is the trapezoidal
rule. The expression in curled brackets, as function of 1, has a behavior as shown
in Figure 1. It is seen from this, in particular, that the error in absolute value
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is less than the error at A=0 for all A with 0< A1<C A, where 2,>1. This means
that in using the modified trapezoidal rule (6.2) we may overestimate the period
as much as we wish, and even underestimate it
somewhat, and still get better results than with
the ordinary trapezoidal rule. On the other hand,
the curve in Figure 1 also shows that the error
reduction is not very substantial unless 4 is close l

to 1. If A= 1, for example, there is a gain of at [ i ] A
least one decimal digit only if the estimated period -——/ “

differs from the true period by 5% or less. Fig. 1

&n/h

7. Numerical examples

An important class of differential equations to which trigonometric multi-step
methods may advantageously be applied is given by equations of the form

(7.1) X"+ P(t) x=0,
where P(f) is a nearly constant nonnegative function,
(7.2) PO)=P,[1+p®)]=0 (t=1t,).

Here, P, is a positive constant and p(f) a function which is “‘small’”’ in some
sense for t=%,.

Equation (7.1) may be considered a perturbation of x'' -+ Pyx=0, the dif-
ferential equation of a harmonic oscillator with angular frequency VP,. This
suggests the following values of T (and thus of v) as natural choices in methods
of trigonometric order,

(7.3) T =2a/VB, v=hr|E,

If one is willing to select these values anew at each step of integration, one can
improve upon (7.3) by using

(7.4) T =T,=2n/|Pt,), v=uv,=h}P{,)

in the computation of x, ;.

Particularly favorable results are expected if #, is relatively large and #(¢)
such that

(7.5) foo!p(t)ldt<oo,

in which case it is known that x=c, cos Y Byt+¢, sin YPt+0(1) (¢, ¢, constants,
t—o0) for every solution of (7.1). Our first example belongs to this type.

Example 1. "+ (1004 i-)x=0, 0<f=t=10.

The general solution can be expressed in terms of Bessel functions, x =
¢, VEJ,(108) +¢c, [t Y, (10f). We single out the particular solution Vt J,(10t) by
choosing the initial values accordingly. Table 1 below shows selected results
(every 50th value, using f,=1, k= .02) obtained by the Stérmer extrapolation
methods of algebraic order 2 and 4, and of trigonometric order 1 and 2, in this
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order3. In the latter two methods the constant value (7.3) of T was used, that
is, T=m/5, v="2.

Table 1 reveals an average increase in accuracy of about three decimal digits
in favor of the trigonometric extrapolation methods. This — it should be noted —
is at practically no extra cost in computation, since the modified coefficients
of the trigonometric methods, if (7.3) is used, need only be computed once, at

Table 1. Stirmer extrapolation method of vavious algebraic and trigonometric orders.
Example 1 with ty=1

¢ alg. ord. p=2 alg. ord. p=4 trig. ord. p=1 ‘ trig. ord. p=2 ‘ exact 7D values
I 2450358 | — 2450358 | — 2450358 | —.2450358 | — 2450358
2 .2345901 2354337 2362055 | 2362115 | .2362085
3 —.1425368 —.1485247 —.1495871 ‘ —.1495966 | —.1495937
4 .0018875 0143880 0147257 | .0147349 i 0147338
5 1 1393247 1234167 1248068 | .1248015 1248002
6 | —.2330076 | —.2205650 —.2240619 | —.2240630 ‘ —.2240592
7 2472935 2461304 2511024 | 2511101 | 2511049
8 —1773539 | —.1924022 —.1972536 | —.1972659 | —.1972606
9 | .0470268 0771940 0798806 0798938 .0798900
10 | .0993055 0620548 0632007 | 0631907 | .0632007

the beginning of the computations. If the choice (7.4) is made an additional
2 decimal digit is gained on the average, the amount of computing being some-
what larger than before.

Stérmer interpolation methods of algebraic order 2 and of trigonometric
order 1, applied to Example 1, gave results which are 10—20 times worse than
the corresponding results in Table 1, the trigonometric method being, on the
average, more accurate by 21 decimal digits. The interpolation method of
algebraic order 4, however, is almost 100 times better than the corresponding
extrapolation method. Nevertheless there is also here an improvement of about
1} decimal digits in favor of the trigonometric modification.

Larger values of ¢, would put trigonometric methods into an even more
favorable light. As ¢, decreases from 1 to 0, trigonometric methods gradually
lose their superiority.

In our next example — a Mathieu differential equation — the relation (7.5)
is not satisfied any more.

Example 2. x”4+100(1 —acos28) x =0, £,=0, %=1, %0=0 (0<<a=1).
We integrated this equation for various values of « using the same methods
and the same step length 2= .02 as in Example 1. An independent calculation
was done with the help of Nystrom’s method, which was also used to obtain
starting values. Selected results {every 25th value) of the Stérmer extrapolation
methods, in the case a«= .1, are displayed in Table 28 Trigonometric order,
also in this example, is to be understood relative to period T'=umx/5.

3 Calculations were done on ORACLE in 32 binary bit floating point arithmetic
(the equivalent of about 9 significant decimal digits). The final results were rounded
to 7 decimal places. — The author takes the opportunity to acknowledge the able
assistance of Miss Rure BENson in performing these calculations.
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The results in Table 2 follow a similar pattern as those above in Table 1,
the main difference being a reduction, to roughly half the size, of the improvement
of trigonometric methods over the algebraic ones. The average gain in accuracy
is now about 1} decimal digits. The remarks made above on interpolation
methods hold true also in Example 2, except for the reduction just mentioned.
Obviously, as o« decreases to 0, trigonometric methods become increasingly

Table 2. Stdrmer extrapolation method of vavious algebraic and trigonometric ovders.
Example 2 with o= 1

i ‘ alg. ord. p=2 ‘l alg. ord. p=4 | trig. ord. p=1 J trig. ord. p=2 exact 7D values
l

0 1.000 0000 1.0000000 1.000 0000 1.000000 0 1.0000000
0.5 0767165 | .0690295 0685134 0691273 .069208 5
1.0 —.9035098 \ —.905644 8 —.9089870 | —.9080120 | —.9084179
1.5 —.7105151 | —.6908656 —.6942472 | —.6938453 | —.6939608
2.0 .1985482 | 2287643 .2304036 2311394 .2309590
2.5 9715966 | 9679083 9764633 ‘ .9767822 19763699
3.0 2552862 | .204 5198 2060842 1 .2056667 2057667
3.5 —.9456869 | —.9505080 —.9618456 | —.9613337 | —.9616794
4.0 —.4833155 | —.4221211 —.4260400 @ —.4262622 | —.4265317
4.5 5453242 .5022666 6026736 | .6021053 6022367
5.0 9517667 | 9263164 | 9422702 1+ 9418659 . .9417373

superior to algebraic methods. We have experienced only a slight decrease in
this superiority when we let o increase from .1 to 1.

It is anticipated that trigonometric methods can be applied, with similar
success, also to nonlinear differential equations describing oscillation phenomena.
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