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There are many numerical methods available for the step-by-step integration 
of ordinary differential equations. Only few of them, however, take advantage 
of special properties of the solution that  may  be known in advance. Examples 
of such methods are those developed by BROCK and MURRAY [9], and by DENNIS 
Eg], for exponential type solutions, and a method by URABE and MISE [b~ designed 
for solutions in whose Taylor expansion the most significant terms are of relatively 
high order. The present paper is concerned with the case of periodic or oscillatory 
solutions where the frequency, or some suitable substitute, can be estimated in 
advance. Our methods will integrate exactly appropriate trigonometric poly- 
nomials of given order, just as classical methods integrate exactly algebraic 
polynomials of given degree. The resulting methods depend on a parameter, 
v=h~o, where h is the step length and ~o the frequency in question, and they 
reduce to classical methods if v-~0.  Our results have also obvious applications 
to numerical quadrature. They will, however, not be considered in this paper. 

1. Linear functionals of algebraic and trigonometric order 

In this section [a, b~ is a finite closed interval and C ~ [a, b~ (s > 0) denotes the 
linear space of functions x(t) having s continuous derivatives in Fa, b~. We 
assume C s [a, b~ normed by 

s 

(t.tt IIxll = )2 m~x Ix~ (ttt. 
a = 0  a ~ t ~ b  

A linear functional L in C ~ [a, bl is said to be of algebraic order p, if 

(t.2) L t ' :  o (r : 0, 1 . . . . .  p)' 

it is said to be of trigonometric order p, relative to period T, if 

2z~ t = L s l n  r ~ - . t  = 0  ( r = t , 2  . . . . .  p). (1.3) L t = L c o s  r 

Thus, a functional L is of algebraic order p if it annihilates all algebraic poly- 
nomials of degree =<p, and it is of trigonometric order p, relative to period T, 
if it annihilates all trigonometric polynomials of order =< p with period T. 

Functionals of trigonometric order p are comparable with those of algebraic 
order 2p, in the sense that  both involve the same number of conditions. The 
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relationship turns out to be much closer if we let L depend on the appropriate 
number of parameters. In fact, consider functionals of the form 

(1.4) L x=f l l  Ll X + . . .  + ~2pL2p x + L2p+l x, 

where L~ (2 >--t) are fixed linear continuous functionals in C s [a, bJ and //~ real 
parameters. Then the following theorem holds. 

Theorem 1. Let the ]unctionals L~ in (1.4) satis/y the /ollowing conditions: 
(i) L ~ t = 0  ( 2 = t , 2  . . . . .  2 p + t ) .  

(ii) There is a unique set o/ parameters, fla=flo, such that the/unctional L in 
(1.4) is o/algebraic order 2p, that is to say, 

(t.5) det (La~) . 0 (;~ row index, 2 column index I 
\z, 2 = t , 2  . . . . .  2p ] 

Then, /or T su//iciently large, there is also a unique set o/parameters, ~x=fl~ (T), 
such that L is o] trigonometric order p relative to period T. Furthermore, 

(1.6) & ( r ) - + ~ ~  as r ~  oo. 

Pro@ The main difficulty in the proof is the fact that  in the limit, as T-+oc, 
equations (1.3) degenerate into one single equation, L t =0 .  We therefore trans- 
form (t.3) into an equivalent set of equations from which the behavior of the 
solution at T =  oo can be studied more easily. 

In this connection the following trigonometric identities are helpful, 

r 

(1.7) s i n 2 ' ~  = ~ r  -- cos r x) ( r =  t , 2 , 3  . . . .  ), 
0=1 

where ~,0 are suitable real numbers and r The existence of such numbers 

is obvious, if one observes that sin~' 2 =E(t - -cosx) /21 '  can be written as a 

cosine-polynomial of exact order r. Differentiating both sides in (1.7) gives also 

(t.8) sin~r_l x cos-~- = 2 %o sin 0 x (r = t 2, 3 . . . .  ) 
2 2 ' ' 

o=1 

where %0= Q~r~o/r, and in particular %,=cU, 4= 0. 
Equations (t.3) are equivalent to 

L I = 0 ,  

2 ~  ) . 2:rt L t - - c o s r - ~ t  = L s m r  T - t = O  ( r = l , 2  . . . . .  p). 

Because of assumption (i) the first of these equations is automatically satisfied. 
The remaining equations are equivalent to 

(1.9) a, oL t - - c o s ~ T ~ t  = % o L s i n ~ - T - t = 0  ( r = l , 2  . . . . .  p). 
0 = 1  0 = 1  
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Using (t.7) and the l ineari ty of L we have  

2~ t )=  L 2 a ~ o ( l _  
0=1 0=1 

Similarly, using (t.8), we find 

,)_, ] cos ~ T [ ~, T " 

2 ~  
2 z r Q L s i n  r 
Q=I 

Therefore, let t ing 

(t.10) u =  ~ T '  

we can write (1.9), af ter  suitable multiplications,  as follows: 

L [( s inu t )2r - l cosu t }  = 0  

(1 . t l )  ( r =  1, 2 . . . . .  p) .  

This represents  a sys tem of 2p linear algebraic equations in the same number  
of unknowns/5~, the coefficient ma t r ix  and known vector  of which bo th  depend 
on the pa rame te r  u. We show tha t  in the limit as u - ~ 0  the sys tem ( t . t l )  goes 
over  into the sys tem of equations L t ' = O  ( r = t ,  2 . . . . .  2p). 

In  fact, it is readily seen, by  expansion or otherwise, tha t  for any  integers 
a~O,  r>_t, as u--~O, 

_ _  d a t2r-1, da [( sin'~ t )2r-l cos u ,] __> d ~  
dt a 

d a ( s i ~ t )  2' d ~ ,~r, 
dt ~ . . . .  § ~d~b - 

the convergence being uniform with respect  to t in any  finite interval .  In  par-  
ticular, 

( sinu t ) 2r-1 /2r-1 
cos u t --  --~ 0 

(~ ~ 0), 
II \ ( sinuu~t/2"--1 ti" -+ 0 

so tha t ,  by  the  cont inui ty  of the L a, also 

L s i n u t  2r- -1  t 2 r _  1 ~ [ ( ~  ) c~ 

L s i n u t  2r ~( u ) ->L~ /2 '  

F rom this our assert ion follows immedia te ly .  

Since the l imiting system, b y  assumption,  has a unique solution, flo, the 
ma t r ix  of the sys tem (t .1t)  is nonsingular  for u = 0 ,  and hence remains so for 
u sufficiently small. I t  follows tha t  for sufficiently large T there is a unique 
solution, fla(T), of (1.1t), sat isfying (1.6). Theorem I is proved.  
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Remark 1. Assumption (i) in Theorem t is not essential, but convenient for 
some of tile applications made later. The theorem holds without the assumption 
(i) if the functional L in (t.4) is made to depend on 2 p + t  parameters, 

(1.4') L x =/30 L o x +/51 L1 x + . . .  + fl2p L2p x + L2p+l x, 

and assumption (t.5) is modified, accordingly, to 

(~ row index, ~ column index) 
(t.5') det (L~t~) ~ 0 \ ~ , 2 = 0 ,  t . . . . .  2p " 

The proof remains the same. 

Remark 2. For particular choices of the La it may happen that  the functional 
L can be made of higher algebraic order than the number of parameters would 
indicate. Even if the excess in order is a multiple of 2, this does not mean neces- 
sarily that  a similar increase in trigonometric order is possible. For example, 

L x = / 5  x ( 0 ) +  x ( t ) - - k x ' ( O ) - - ~ x ' O ) ,  / 5=- -1  

if of algebraic order 2, but in general cannot be made of trigonometric order 1, 
since 

2. Linear  mult i -s tep methods 

Linear functionals in C 1 play an important  r61e in the numerical solution of 
first order differential equations 

(2.t) x'  = ! (t, x ) ,  x (to) = Xo, 

in that  they provide the natural mathematical  setting for a large class of numerical 
methods, the so-called linear multi-step methods. These are methods which 
define approximations x,~ to values x (t o + mh) of the desired solution by a relation 
of the following form 

x~+ 1 + ~1 x~ + . - .  + ~ x~+l_ k = h (/50 x'~+l +/51 x', + " "  + & x:+l_k) 
(2.2) 

( n = k - -  l , k , k  + l . . . .  ), 
where 

x~, =- ! (t o + m h, xm). 

Once k "star t ing" values xo, x 1 . . . . .  xk_ 1 are known, (2.2) is used to obtain 
successively all approximations x,~ (m_> k) desired. 

The integer k >  0 will be called the index of the multi-step method, assuming, 
of course, that  not both ~k and/sk vanish. (2.2) is called an extrapolation method 
if/5o=-0, and an interpolation method if /5o =4 = 0. Interpolation methods require 
the solution of an equation at each stage, because x'~+l in (2.2) is itself a function 
of the new approximation x~+ 1. 

I t  is natural  to associate with (2.2) the linear functional 
k 

(2.3) g x = ~ ' , I ~ X ( t o + ( n + l - - 2 ) h ) - - h f l ~ x ' ( t o + ( n + t - - ~ ) h ) l  (~0= t) .  
A=0 

The multi-step method (2.2) is called of algebraic order p, if its associated linear 
functional (2.3) is of algebraic order p; similarly one defines trigonometric order 
of a multi-step method. 
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Since any linear transformation t '  = a t +  b (a =~ 0) of the independent variable 
transforms an algebraic polynomial of degree =<p into one of the same kind, 
it is clear that  (2.2) is of algebraic order p if and only if the functional 

k 

(2.4) L 1 x = F, [ ~  x (k - -  4) - -  fl~ x ' ( k  - -  4)] 
A--0 

is of algebraic order p. Here, the parameter  h has dropped out, so that  the 
coefficients ~ ,  fl~ of a multi-step method of algebraic order do not depend on h. 
The situation is somewhat different in the trigonometric case, where a linear 
transformation other than a translation (or refiexion) changes the period of a 
trigonometric polynomial. By a translation, however, it is seen that  (2.2) is 
of trigonometric order p, relative to period T, if and only if 

k 

(2 .5)  L x = x [(k - 4) h i  - x '  [ (k  - 4)  h i }  

is of trigonometric order p relative to period T. 

For a multi-step method to be useful it must be numerically stable, which 
above all imposes certain restrictions on the coefficients cq (see, e.g., [1, sec. 9]). 
In view of this we shall consider the ~ as prescribed numbers satisfying the 
conditions of stability. Also they shall satisfy 

k 

(2.6) 7~ c~ = 0 (~0 : t) 

to insure algebraic and trigonometric order p = 0. 

I t  is then well known (~1, sec. 61) that  to any given set of k + l  coefficients 
~ satisfying (2.6) there corresponds a unique extrapolation method with index k 
and algebraic order k. Letting therefore k = 2 p  we can apply Theorem t to 
L = L h, identifying 

2p 
(2.7) L~. x = - -  h x '  [(2p - -  4) h I (1 <-- ~--< 2p),  L2p.1 x = F~ ~ x ~(2p --  4) hi. 

~.--0 

I t  follows that  there exists a unique extrapolation method with even index 
k =  2p and trigonometric order p relative to any sufficiently large period T. 
Again, as is well known, given k + 1 coefficients ~a, there corresponds a .unique 
interpolation method with index k and algebraic order k + t .  Letting now 
k + 1 = 2p, a similar application of Theorem I shows the existence, for T sufficient- 
ly large, of an interpolation method with odd index k =  2 p -  l and trigonometric 
order p relative to period T. Furthermore, in the limit as T-->oz, the resulting 
methods of trigonometric order p reduce to those of algebraic order 2p. 

The essential parameter  is actually not T, but h / T ,  as is seen if the conditions 
(tAt) of trigonometric order p are written down for the functional L h. Since 

dt  cosu : ( 2 r c o s 2 u t  - -  t ) ,  

d_[(dt Si~unuU--~t)*'l = 2r(S--i~u~t) ~ ' - l c ~  

Numer. Math. Bd. 3 2 7  
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one f inds ~ 
k 

k = E ~(sinE"~k-"~ hl)5'-1 coslu(k- ~lh], 

k k 
cos [u(k - ~)hi = ~, ~ (sin [~ (k= ~!!,J )5, 

~=o u ~=o u , " 

Divid ing  the first  re la t ion b y  h 2"-1, and the  second relat ion b y  h 2", and le t t ing  

v = 2 U h =  T~ h, 

one ge ts  1 
k 

k 

= [ - v  

2r  ~ ,  fl~ v cos (k - -  ~) v = ~ 
.~=0 2 = v 

(r - -  1,  2 . . . . .  p ) .  

W e  summar ize  our f indings in the  following 

T h e o r e m  2. In  correspondence to each set o/coe]/icients ~ with zero sum there 
exist unique sets o/ coeHicients $a(v), fl~(v) depending on the parameter 

v = 2 ~ h / T ,  

such that/or v su//iciently small, 

(2.9) x,+~ + ~, x .  + - - .  + ~sp x,+~_~p = h [fl~ (v) x,~ a . . . .  + flsp (v) x',+~_~p] 

is an extrapolation method o/ trigonometric order p relative to period T, and 

(2.f0) x,,+~ + ~ x ,  + -. .  + ~sp-~ x ,+5-2p 
= h [~* (v) x'.+~ + ~* (v) x'. + . . .  + ~'~_~ (v) x'.+~_5 p] 

is an interpolation method o[ trigonometric order p relative to period T. The fl~ (v) 
solve the system o/ linear algebraic equations (2.8) with k = 2 p ,  flo----O, the fl*(v) 
solve the same system with k = 2 p - -  t and with no restrictions on the fl's. As v--->O 
the multi-step methods (2.9) and (2A0) reduce to those o/algebraic order 2p, respec- 
tively. 

3. E x i s t e n c e  c r i t e r ion  for  t r i g o n o m e t r i c  m u l t i - s t e p  m e t h o d s  

Theorem 2 es tabl ishes  the  exis tence of t r igonomet r ic  mul t i - s tep  methods  only 
for v----2~h/T suff icient ly small.  A more precise condi t ion on v is furnished b y  
the following 

If  r = ~  the coefficient of fl~ in the first relation, to be meaningful, must  be 
defined as unity. 
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T h e o r e m  3. Multi-step methods 
to period T, exist i] 

(3.t) Iv] < rain (vp, 

where vp is the smallest positive zero 

(2.9) and (2.10) of trigonometric order p, relative 

(3.2) c a(v) = 

2 ~  
-2~;- - - )  (v : 2 ~ h / T ) ,  

o/the cosine-polynomial 

/ (p~+l ) /2  , I 

Here, vp(m) denotes the number o/ combinations o/ p nonnegative 2 integers not 
exceeding 2 p - - t  which have the sum m. 

Proof. The linear functional associated with the extrapolation method (2.9) is 

2p  

L x ~ ~/54 L~ x + L~p+l x, 

where L a x :  -- h x 'E(2p - A) h] (1 <: ~ <~ 2p) and L~p+l is given such that  L2~+1 t : 0. 
Similarly, 

~p- -1  

L , x :  Y, ~ * L *  x + L * ~ x  
A=0 

with L*:L~_,.1, * L ~ p l : 0 ,  is the functional associated with the interpolation 
method (2.10). I t  is apparent, therefore, that the conditions (1.3) of trigonometric 
order for these particular functionals give rise to a system of 2p linear algebraic 
equations in the unknowns/~ and/~*, respectively, the matrix of which in either 
case is given by  

/ v s i n ( 2 p - -  I )v  v s i n ( 2 p - -  2) v ... v s inv  0 \ 
# 

/ - v c o s ( 2 p - l ) v  - v c o s ( 2 p - 2 ) v  . . .  - v c o s v  - v  
! [ 2 v s i n 2 ( 2 p - 1 ) v  2 v s i n 2 ( 2 p - 2 )  v ... 2 v s i n 2 v  0 

\ p v s i n p ( 2 p - - l ) v  p v s i n p ( 2 p - - 2 )  v . . .  p v s i n p v  0 
x 
\ - - p v c o s p ( 2 p - -  l ) v  -- p v c o s p ( 2 p - -  2) v ... - - p v c o s p v  - - p v  

The instance v : 0  (in which B is singular) is sufficiently dealt with by  
Theorem 2. Theorem 3 will therefore be proved if it is shown that B (v) is non- 
singular for all nonvanishing values of v satisfying (3.1). 

Replacing the trigonometric functions in B (v) by Euler 's expressions and 
applying a few obvious elementary operations on rows and columns of the 

In terms of partitions (more commonly used in combinatorial analysis) which 
involve positive integers with given sum, we have 

vp(m)=~#_x(2p--1, m)+~p(2p--  1, m), 

where ~t k(l, m) denotes the number of partitions of m into k unequal parts not ex- 
ceeding 1. 

27* 
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result ing mat r ix ,  one shows tha t  the de te rminan t  of B is equal  to 

~ - ~  ~ L 2  w~ ~0 ~ 

wp+l wp+l w~+l w0P+ 1 2p 1 2p--2  "-"  

det B (v) = (pl)~ 2 -p  i p v 2p e -p*(2p-1) iv wCp-_11 wCp-_~ .. .  w~-a w0~_l 

W ~ p - 1  Zb'2p-2 - ' -  ~f31 ZgJo 

t 1 . . .  1 t 

The last  de te rminan t  is a minor  of the Vandermonde  de te rminan t  

(W.~ = e i ~ v )  . 

u 2p w~_l w,~P ~o ~p 
. . . . . . . . . . . . .  2p--1  

up w ~ l  ~ ~ 0 ~ [ = / / ( " - ~ ~  H ( ~ - ~ o ) ,  

[ a=O OGa<O<=2p--1 
. . . .  . . . ;  

namely,  up to the sign ( - -1)  p, the coefficient of uP in the expansion along the  
first column. F rom the r ight -hand side it is seen tha t  this coefficient is equal  to 

(-t)~p(Wo,W~ ..... ~2p ~) H (wo-~~ 
0 ~ a < 0 ~ 2 p - - 1  

where ap denotes the  p- th  e lementary  symmet r i c  function in 2p variables.  There-  
fore, 

det  B(v)  = (p[)22-PiPv~Pe-P'I2p-1)i~ap(Wo,W 1 . . . . .  w2p ~) I I  (~o- ~~ 
(3.3) 0~.<~_<2p-1 

(~ = ~v). 
For  the product  in (3.3) we have 

II (~o- w~ I-I ~(~+~ H Ee ~(~-~ ~-~~ 
a <  0 a <  0 a < ~  

= (2i)P(2p-1) e,p(2p-1)'~v H sin {-(9 - -  a) v. 
a<O 

Also, 
% (w0, wl . . . . .  w2p_l) = y. e(~l+~,+-.-+zp/iv, 

where the sum extends  over  all combinat ions  (21, '~2 . . . . .  2p) of p nonnegat ive  
integers not  grea ter  than  2 p - - 1 .  Thus,  

det  B (v) = ( - -  1) p (p l) 2 22p(p-I/v ~p • 
(3.4) x Ee-~P~2P-I~'~ I I  s i n { . ( 9 - - a ) v .  

0 < a < e < 2 p - 1  

I t  is seen from this tha t  B (v) for v ~= 0 is singular if and only if ei ther  the ex- 
pression in brackets  or the product  following this expression vanishes.  

As regards the first expression we can write it in the form 

p (3 p--1)/3 p (8 p--1)/2 

e-~pI2p-ll- y, %(n) e~"V= Y~ ~,p(n) eE--~pc2p-~IJ% 
n = p  (p--l)/g n = p  (p--1)/2 
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with vp (n) as defined in Theorem 3. Consider first the case p even. Then, by  
a shift of the summat ion  index, the last sum is seen to be 

p~/2 
Z vp(P~--�89 e'i~. 

n-- --p*/2 

Since the de terminant  (3.4) is real, this stun mus t  be real too, which is only 
possible if 

vp (p~ - -  l p  + n) = vp (p2 _ ~p  _ n) (p even).  

Our sum then becomes 

p~12 
(3-5) vp(p 2 -  �89 + 2 ~,vp(p 2 -  �89 -- n) c o s n v  (p even).  

n = l  

Analogously, if p is odd, the sum in question is 

n=p(~p~--l)/2 n=(p(2p-ll+l)12 vp (n) g [n-~p(2p-1)]iv 

(p*+l)/2 

Since this again must  be real we also have  

v~ , (pz - -~p+~- -n )=vp(p2- -~p- - �89  (p odd), 

and our sum becomes 

( P ' + l l / " (  1 1 ) v 
(3.6) 2 2 vp / 9 2 -  2 p - - ~ - - - n  c o s ( 2 n - - t ) ~  (p odd). 

n = l  

Subst i tu t ing (3.5) and (3.6) for the bracketed expression in (3.4) we finally obtain 

(3.7) det B ( v ) =  (--  t)P(p!)222P'-eP+lv2PCp(v) H sin �89 - a ) v ,  
O<=a<o~gp--1 

with Cp(v) as defined in (3.2). 

Now, Cp(v)~= 0 for 0 < I v [  < vp if vp is the smallest  posi t ive zero of Cp. Also, 
the  sine-product  in (3-7) is cer tainly nonvanishing for O<  I v ] < 2,n/(2p 1). 
Therefore,  d e t B  (v) is nonvanishing for 

~ Ivl <min( %' ~;--~ 1 )' 
which proves our theorem. 

For  reference we list the cosine-polynomials Cp(v) for p =  t, 2, 3: 

Cl (v) = cos -~ 
2 ' 

C~(v) = t + cos v + cos 2v,  

v v v + c o s 7  v v C 3 (v) = 3 cos -~ + 3 cos 3 ~ + 2 cos 5 ~ ~ + cos 9 2 - .  
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One finds easily that 
7~ 

V l =  7/:, 7) 2 = v ~  l =  

so that the bounds in (3A) for p = i ,  2, 3 are respectively ~, ~/2, 2z~/5 

We also note from (3.2) that 

(3.8) o < Iv I < p~ 

is a sufficient condition for nonvanishing of det B (v). 

4. Trigonometric extrapolation and interpolation methods of Adams' type 
Multi-step methods with 

~ 0 = - -  ~1= 1, ~ =  0 (2>  1) 

and maximal algebraic order for fixed index are called Adams methods. In 
this section we list methods of trigonometric order that correspond to Adams' 
extrapolation and interpolation methods in the sense of Theorem 2. The 
coefficients fl~(v) and /5~(v) are obtained as the power series solution of the 
appropriate system of equations (2.8) where coefficient matrix and known vector 
are expanded into their Taylor series. 

Adams extrapolation methods o/trigonometric order p 
~p 

x.+l  = x .  + h E/sp~(~) x'.+l_~ ( v =  2~  h/T) 

3 ( 1 - - I  v2@~;oV4+... ), 

5 55 {1 95 v 2 , 79 v4_[_...), 
132 t 792 

3 7 ( t  - 421 2 ' t92t  - 4 - -  ) 
f l~a=  2 4 \  444v  t 1332~ v ~ - " "  , 

4277 (t - -  
/581 = t440 

fla2 - -  7923 
1440 

f lza = 1440 1 9 9 8 2  ( 

fla4 - -  7298 
1440 

2877 (t 
/535 = i-4~6 

flaa - -  475 
t 440 

I U2 

1522 = -  59 ( t__  923v 2 , 15647 4 + . . . )  
24 \ 708 t -21 240 v , 

,20 v ' '  

5257 v2 @ 196147 v 4 @ . . .  ) 
3666 439920 ' 

( 2341619 ) t 48607 v2 2c v4 + . . .  
15 846 633 840 ' 

107647 v2_{ 2791381 v 4 + . . . )  
29946 513360 ' 

t 69473 v 2_~ v 4 @ ...  
21 894 2 627 28O ' 

10433 vZ + 20683 v4 
5754 3 2 8 8 0  - - ' "  ") 

( I +  15154 2'  1015 ...); v ~ 273-6 v4 ~ 
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Adams interpolation methods o/ trigonometric order p 
2p--i 

x, ,vl=X,~+h Z fl~a(v) x'n+l-a ( v=2~h/T)  

1 (1 + I v24- 1 v4 ) 
/~*0=r  7 2  -i2d + "  ; 

flz*o= $4(1-} - ~ v24- -i20-11 v' '-- " "/, /~*1 ---~ 2419 \(t-- 2284~3 - vg 4- ;630- V4 -/" " ') ' 

/ ~ ' 2  - -  5 (1 .... 1.. v~ - 7 v 4 
24 12 72 

475 (1 -~- 
fl*0 = i ~ g d  

1427 ( r = ~ t - 

t l  ,, , 193 v 4 + . . . ) ;  +)  
55 v 2 + 500267 v44-.. .)  

114 22800 -- ' 

5!49 v2 - 15139837 V4+. . .  ) 
8562 342480 ' 

/5"~ = -- 79486 ( 1 -  t63-v2 1964441 V4+. . . )  
114 10640 ' 

1446 57840 ' 

/5* 4 -  173 (1 + 2 9  v2 - 22688263 v 4 + . . . )  
1440 1038 41 520 ' 

27 (1 13 vZ 187111 v 4 + . . . ) ;  
f l * s = ~ \  4- 6 -  240 
. . . . . . . . . . . . . . . . . . . . . . .  . 

As shown in Section 3 the series for flpa and fl~, certainly converge for Iv I < rp 
where r ,=az,  r2=~/2, ra=2Jz/5. 

We also note the explicit formulae 

sin } v tan �89 v 
/~1, = ~ - ,  - / ~ 1 ~  = / ~ * 0 -  

V C O S g V  U 

5. Tr igonometr ic  ext rapola t ion  and interpolat ion methods  of St~rmer 's  type 
Linear multi-step methods are also used in connection with differential 

equations of higher order, in particular with second order differential equations 
in which the first derivative is absent, 

r 
(5.t)  x"  = ! (t, x ) ,  x (to) = xo ,  x'( to)  = Xo. 

They take here the form 

(5.2) x,+ x + o~ 1 x n + . - -  + 0% X.+l_ k = h 2 (flo X'n+l 4- fll x'n' 4 - ' "  + fl~ x'n+l-~), 

x ~  = / (to + m h, x~) .  

The terminology introduced in Section 2 extends in an obvious manner to this 
new situation. With the multi-step method (5.2) there is now associated the 
functional 

k 

L x = ~ , ~ o ~ a X ( t o + ( n + l - - 2 )  h ) - - h 2 f l a x " ( t o + ( n + l - - 2 ) h )  1 (~o= t) .  
Z = 0  
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Theorem I (with the modification mentioned in Remark I on p. 384) can then 
be applied to this functional provided that not  all the values of % are fixed in 
advance. Otherwise our assumption (t.5') would not  hold. Except for this 
provision, however, the construction of multi-step methods (5.2) of trigonometric 
order follows the same pattern as outlined in Sections 2 and 4 for first order 
differential equations. 

We content ourselves in this section with listing a few methods that result 
if one takes 

(5.3) 0 ~ - 0  for ~.> 2. 

In the algebraic case such methods of maximal order (for given index k) are 
called St6rmer methods (cf., e.g., ~3, p. 125~). 

St6rmer extrapolation methods o/trigonometric order p 
2p-1 

Xn+l+O~pl(V) Xn--O~p2(V)Xn 1 = h2 ~,/~p,a. (v) x'n;l_,~ ( v = e x h / T )  
2=1 

% i = - - 2 ,  ~ 1 2 = t ,  f l 1 1 = 1 - - I  v2 + ~  v4+ .  ..; 
12 360 

~ 2 1 = - - 2 ( t - - - 6 - v ' +  ; 6 v 6 + " "  ), 

13 (1 t9V,  7 , + . . . ) ,  

1 ( I v2 + 7 va+...  ) fl23=,2 1 + ~  ~26 ; 

2 ( 9V2 @ r  1 -  7 37 ~v a 4-...) 
t20 ' ' 

o c 3 1 ~ - - - - - 2 ( I - -  27  v 6 @ . . .  ) 2~0- , ~a2 = - -  ~ 3 1 -  I , 

299 (t 4315 v2 4_ 7357 v ' + - - . ) ,  
flal ~ 24-0 5382 -- 49680 

fl32-- 176( 1 3181 v2q_ 264593 v a +  ..) 
240 792 47520 ' 

t94 ( t - -  2047 2 38129 
flaa = 240 -582 v + -7~0--  v4 + "") 

fls4-- 96 (1--  913v 2 +  6 9 2 3  v ' - l - . . . )  
240 432 2 5 920 ' 

fl35= 2_~O_O(tq_ 2 2 t - 2 - - 1 7 5 2 1  342 -o ~- 4~-0~0 v4-{ - ..-); 
�9 . . . . . . . . . . .  , . . . . . . . . .  

StOrmer interpolation methods o/trigonometric order p 
2p~2 

x~+l + ~ 1  (v) x~ ~- ~ (~) x,,_~ = h~ ~ ~~ x~+l" _ ~ (~ = 2 ~ h/T)  
a~O 

I v2_/_ 11 4 301 6 
a*l = - - 2 ( 1  + ~ -  2~v + - 7 ~ v  - + ' " ) ,  

~*~ = - ~'1 - ~,  /~*o = t + 1112 v~ + 3~3~ v~ + . . . :  



Numerical integration ot ordinary differential equations 393 

I (t ! v 2 4 - ~ v 4 +  ) 
C~* - - ' 1  f12*o= 12 + 4 - -  120 ~ ' 1 = - - 2 ,  22--  , "'" 

,9 (t + 221 v2 ,7521 ) 
f l*O= 24{) 5 4 2  -i-' _ _  V 4 + . . .  41 0 4 0  

204 (1 - -  79 v 2 4- ' l  039 v ~ + . . . ) ,  

14 [1 95 v g _  § _ _  . fl*== 240 \  § 18~3V4 "") ,  f l*a= 2 4 0 ( I  - 1 6 v 2 - - 4 7 t l  v ' - - . . . ) ,  
42 9 2160 

fl*4-- 1 ( t +  31 ~ , 3899o,4 ) 
240 18 u T 2 1 6 0 - v  @. . -  ; 

The series for %a,fl, a converge if Ivl < r p  where r l = o ~ ,  rz==/2, those for 
%~.,flp~. converge if I~1<~ where r*=a/3, r*=ar/2. This  can be  shown b y  
reasonings similar to, but more  complicated than,  those in Section 3- The values 
of ra, r* were not obtained because of the  complexi ty  of the calculations required. 

We also note the  explicit formulae 

2 (1 --COS V) 
( 2 s ~  ~-~ t~ : G  = - 2 ~os ~ ~ to  = > ( 2  cos ~ _ T l }  fl~l = ~-- zT---j ' 2 c o s v - - I  ' " 

6. Effect o f  uncerta inty  in the  choice  of  T 

Multi-step methods  of t r igonometr ic  order presuppose the  knowledge of the  
period T of the solution, if it is  periodic, or of a suitable substi tute,  if the solution 
is only oscillatory. Precise knowledge of this k ind  is usual ly  not available in 
advance,  so tha t  one has to r e ly  on sui table es t imates  of T. Since T enters on ly  
through the pa rame te r  v=2~h/T a n d  T = ~  gives the  classical mult i -s tep 
methods,  one expects  that  uncer ta in t ies  in the value of T should no t  seriously 
impair the effectiveness of t r igonomet r ic  mul t i -s tep methods  (when applicable) 
as long as T is not s ignif icant ly  underest imated.  

It  is instructive to  s tudy from th is  point of view the  simple initial value 
problem 

( 6 ~ )  

which has  the solut ion 

::=(? ;)x x,o,=(,0) 
x/ /--(cosq 

\sin t] 

Every mul t i -s tep method  of t r igonometr ic  order =>t relat ive to period 2at is 
exact in this case, so that  t h e  example allows us to  isolate the effect of inaccu- 
rately es t imat ing  the  period. 
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Let  us select Adams '  interpolat ion me thod  of t r igonometr ic  order t, which 
can be wri t ten  in the form 

(6.2) x~+ 1 = x~ + h t_an �89 (x,n+ 1 + x'n) (v = 2 ~ h/T). 
v 

The correct choice of T is 2~,  giving v=h .  We consider now T to be some 
"e s t ima te "  of 2 x  and use 

2 n  

T 

to measure  the  qual i ty  of the es t imate  (underestimation,  if 4 >  1, overest imat ion,  
if 4 <  l, precise es t imate ,  if ,~= 1). 

Let t ing  
1 = ~- tan - -  

appl icat ion of (6.2) to (6.1) then  gives 

= X n At- 72 (~ Xn+l 
\ 

or else, collecting terms,  

I f  we set 

,~h 
2 ' 

1 [1 - -  T 2 
x ~ + l - -  l + z 2  ~ 2 r  

= tan  �89 
we get 

( c o s * 9  - 
x~+l = \sin 0 cos *9] x . .  

Obviously,  

(6.3) *9= 2 a r c t a n ( '  tan  Z:_). 

The n- th  approx imat ion  x.  to the solution of (6.1) is thus obta ined by  ro ta t ing  

the initial vector  Xo = (t0) n- t imes through the angle ~9, where .9 is given by  (6.3). 
Therefore 

= (c~  
x~ \ sin n *9] 

which shows tha t  the  approximat ions  have  the correct ampli tude,  bu t  phase errors 

(6.4) e~=n(*9- -h )=nh{h -arc tan ( - l~ - tan  ~2h ) -- t} .  

If 4--1 then  e ~ = 0 ,  as we expect.  In  the l imit  as 7t-+0 we obtain  the phase  
error of the me thod  of algebraic order 1, which in our example  is the t rapezoidal  
rule. The expression in curled brackets ,  as function of ~, has  a behavior  as shown 
in Figure t .  I t  is seen from this,  in part icular,  t ha t  the error in absolute value 
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is less than the error at 2 = 0  for all 2 with 0 <  ~<20 where 20> t. This means 
that in using the modified trapezoidal rule (6.2) we may overestimate the period 
as much as we wish, and even underestimate it 
somewhat, and still get better results than with 
the ordinary trapezoidal rule. On the other hand, 
the curve in Figure t also shows that the error 
reduction is not very substantial unless ~ is close 
to 1. If h =  .1, for example, there is a gain of at 
least one decimal digit only if the estimated period 
differs from the true period by 5 % or less. 

- - j ~ l  L 

Fig .  I 

7. Numerical examples 

An important class of differential equations to which trigonometric multi-step 
methods may advantageously be applied is given by equations of the form 

(7.1) x " +  P( t )  x = o, 

where P(t) is a nearly constant nonnegative function, 

(7.2) p(t) = Po [1 + p (t)~ __> 0 (t __> to). 

Here, Po is a positive constant and p (t) a function which is "small" in some 
sense for t ~  t o. 

Equation (7.1) may be considered a perturbation of x"+Pox=O,  the dif- 
ferential equation of a harmonic oscillator with angular frequency VPo . This 
suggests the following values of T (and thus of v) as natural choices in methods 
of trigonometric order, 

(7.3) r = 2~ /VPo ,  v = h l ? ~ .  

If one is willing to select these values anew at each step of integration, one can 
improve upon (7.3) by using 

(7.4) T = T~ = 2~/gP(t,), v = % = h UP(t,) 

in the computation of x,,+l. 

Particularly favorable results are expected if t o is relatively large and p (t) 
such that 

OQ 

(7.5) f [p(t)l dr< o~, 

in which case it is known that x = c 1 cos VPot + c~ sin VPot+ o (t) (c 1, c 2 constants, 
t-->o~) for every solution of (7.t). Our first example belongs to this type. 

Example1. x"+(lOO@ 4 f i . ) x=O , 0 < t 0 ~ t ~  10. 

The general solution can be expressed in terms of Bessel functions, x =  

qVijo(tOt)+c2VtYo(tOt ). We single out the particular solution VtJo(lOt ) by 
choosing the initial values accordingly. Table I below shows selected results 
(every 50th value, using to= 1, h =  .02) obtained by the St6rmer extrapolation 
methods of algebraic order 2 and 4, and of trigonometric order t and 2, in this 
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order 3. In  the la t ter  two methods the cons tant  value (7.3) of T was used, tha t  
is, T--~z/5 ,  v =  .2. 

Table I reveals an average increase in accuracy of about  three decimal digits 
in favor of the tr igonometric extrapolat ion methods.  This - -  it  should be noted - -  
is at practically no extra  cost in computat ion,  since the modified coefficients 
of the tr igonometric methods,  if (7-3) is used, need only be computed once, at  

Table 1. StOrmer extrapolation method o/various algebraic and trigonometric orders. 
Example  1 with t o = 1 

alg. ord. p=2 alg. ord. p=4 trig. ord. p=l trig. ord. p=2 exact 7D values 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

--�9 
.234 590 1 

--.1425368 
.001 887 5 
.1393247 

--.233O076 
.247 293 5 

--.1773539 
�9 047 026 8 
�9 099 305 5 

--.2459358 
�9 235433 7 

--.  148 524 7 
.0143880 
.1234167 

- - . 2 2 0  565 0 
.24613O4 

--.1924022 
�9 O771940 
.0620548 

--.245 935 8 
.236205 5 

--.149 587 t 
.0t4 725 7 
�9 

- - . 2 2 4  061 9 
.251 1024 

--.1972536 
�9 O79 880 6 
.O63 2O9 7 

- - . 2 4 5  935 8 
.236211 5 

--.149 5966 
�9 014 734 9 
.124801 5 

--.224 O63 0 
.251 1101 

--.1972659 
�9 079 893 8 
.063 199 7 

--.245 935 8 
.236 208 5 

--. 149 593 7 
.0147338 
.1248002 

--.224 0592 
.251 1049 

--.1972606 
.0798900 
.063 200 7 

the beginning of the computat ions.  If the choice (7.4) is made an addi t ional  
a decimal digit is gained on the average, the amoun t  of comput ing being some- 
what  larger than  before. 

St6rmer interpolat ion methods of algebraic order 2 and of t r igonometric  
order 1, applied to Example  t,  gave results which are 10--20 t imes worse than  
the corresponding results in Table 1, the t r igonometric  method being, on the 
average, more accurate by  2�89 decimal digits. The in terpola t ion method of 
algebraic order 4, however, is almost t00 t imes bet ter  t han  the corresponding 
extrapolat ion method. Nevertheless there is also here an improvement  of about  
1 ~ decimal digits in favor of the t r igonometric  modification. 

Larger values of t o would pu t  t r igonometric  methods into an even more 
favorable light. As t o decreases from t to 0, t r igonometric  methods gradual ly  
lose their  superiority. 

In  our next  example - -  a Mathieu differential  equat ion - -  the relation (7.5) 
is not  satisfied any  more. 

E x a m p l e g .  x " + t O O ( t - - o ~ c o s 2 t )  x = O ,  / o = 0 ,  x o = t ,  x ; = 0  ( 0 < a ~ l ) .  
We integrated this equat ion for various values of ~ using the same methods 
and the same step length h =  .02 as in Example  t.  An independent  calculation 
was done with the help of Nys t r6m's  method,  which was also used to ob ta in  
s tar t ing  values. Selected results (every 25th value) of the St6rmer extrapolat ion 
methods,  in  the case ~ =  .1, are displayed in Table 2 a. Trigonometric  order, 
also in  this example, is to be unders tood relative to period T=az /5 .  

a Calculations were done on ORACLE in 32 binary bit  floating point arithmetic 
(the equivalent of about 9 significant decimal digits). The final results were rounded 
to 7 decimal places. -- The author takes the opportunity to acknowledge the able 
assistance of Miss RIITH BE~cSO~ in performing these calculations. 
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The results in Table 2 follow a similar pa t te rn  as those above in Table 1, 

the main  difference being a reduction,  to roughly half the size, of the improvement  
of t r igonometr ic  methods  over  the algebraic ones. The average gain in accuracy 
is now about  1} decimal  digits. The remarks made above on interpolat ion 

methods  hold true also 'in Example  2, except  for the reduct ion just  mentioned.  
Obviously, as c~ decreases to 0, t r igonometr ic  methods  become increasingly 

Table 2. Stdrmer extrapolation method o/various algebraic and trigonometric orders. 
Example 9 with ~ =.1 

t alg. ord. p = 2  alg. ord. p = 4  trig. ord. p - - I  trig. ord. p = 2  exact 7D values 

0 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3-5 
4.0 
4.5 
5.0 

1.000 000 0 
�9 076 716 5 

--.903 5098 
--.7105151 

.198 5482 
�9 971 5966 
.2552862 

--.9456869 
--.483315 5 

.5453242 
�9 951 7667 

1 .000  000 0 
�9 069029 5 

-- .905 644 8 
-- .69O 865 6 

.228 764 3 

.967 9083 

.2O45198 
--.9505080 
--.422121 1 

.5922666 

.9263164 

1.000 000 0 
.0685134 

--.9O89870 
--.694 247 2 

.2304036 
�9 976 463 3 
�9 206 084 2 

--.961 845 6 
--.426O40O 

.602673 6 
�9 942 270 2 

1.000 000 0 
�9 069 127 3 

--.908 0120 
--.693 845 3 

.231 1394 
�9 976 782 2 
.205 666 7 

--.96t 333 7 
--.4262622 

.602 1053 

.941 8659 

1 . 0 0 0 0 0 0 0  
.069 208 5 

--.9084179 
--.693 96O 8 

.2309590 

.9763699 
,205 766 7 

--.961 6794 
--.426 531 7 

.6o2236 7 

.941 7373 

superior to algebraic methods.  We have  experienced only a slight decrease in 

this superior i ty  when we let ~ increase from .t to I. 
I t  is an t ic ipa ted  tha t  t r igonometr ic  methods  can be applied, with similar 

success, also to nonlinear differential  equat ions describing oscillation phenomena.  
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