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Abstract We construct efficient quadratures for the
integration of polynomials over irregular convex polygons
and polyhedrons based on moment fitting equations. The
quadrature construction scheme involves the integration of
monomial basis functions, which is performed using homo-
geneous quadratures with minimal number of integration
points, and the solution of a small linear system of equations.
The construction of homogeneous quadratures is based on
Lasserre’s method for the integration of homogeneous func-
tions over convex polytopes. We also construct quadratures
for the integration of discontinuous functions without the
need to partition the domain into triangles or tetrahedrons.
Several examples in two and three dimensions are presented
that demonstrate the accuracy and versatility of the proposed
method.

Keywords Numerical integration · Lasserre’s method ·
Euler’s homogeneous function theorem ·
Irregular polygons and polyhedrons · Homogeneous
and nonhomogeneous functions · Strong and weak
discontinuities · Polygonal finite elements ·
Extended finite element method

1 Introduction

Numerical integration is an important ingredient within many
solution techniques in engineering and the sciences. With
the development of new numerical methods, the need for
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accurate and efficient integration schemes has emanated,
due to both the general shapes of the integration domain
and the presence of generalized classes of functions. Con-
forming polygonal finite elements [1–4] and finite elements
on convex polyhedra [5–7] require the integration of non-
polynomial basis functions. The integration of polynomials
on irregular polytopes arises in the non-conforming vari-
able-element-topology finite element method [8,9], discon-
tinuous Galerkin finite elements [10], finite volume element
method [11] and mimetic finite difference schemes [12–14].
In partition-of-unity methods such as the extended finite ele-
ment method (X-FEM) [15,16], discontinuous functions are
integrated to form the stiffness matrix of elements that are cut
by a crack or an interface. Versatility of such methods is due
to their power to handle more complicated internal geome-
tries, albeit at the expense of greater demands on numerical
integration, which points to the need for devising flexible and
efficient numerical integration techniques.

In this paper, we focus on the integration of polyno-
mials on irregular convex polygons and polyhedra. In two
dimensions, the boundaries of the integration region are con-
tained in straight lines and in three dimensions, the domain
is bounded by planes. Also, we are particularly interested
in cases where the integrand is not known explicitly, but
can be evaluated at any point within the domain of integra-
tion. Such cases arise in finite-element and partition-of-unity
methods. There are few choices for the integration of polyno-
mials over general two- and three-dimensional regions. Most
of the available methods in the literature are appropriate for
special forms of polynomials [17–19], or are restricted to the
integration on simplexes and regular polytopes [20–22]. The
most frequently used strategy for the integration of a polyno-
mial over an irregular polygon or polyhedron is to decompose
it into triangles or tetrahedrons and apply well-known inte-
gration rules to each partition. Integration of polynomials
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over n-dimensional polyhedra can also be done by lower-
dimensional integrations over the boundary of the domain
using divergence theorem and/or Green’s theorem [23–28],
or using Euler’s theorem in case of homogeneous func-
tions [17,18]. A method is presented in Ref. [19] for the
efficient integration of powers of linear forms over simplexes
in very high dimensions.

In this paper, we use moment fitting equations to con-
struct quadrature rules for the integration of polynomials on
irregular convex polygons and polyhedra. The moment fit-
ting technique is independent of the shape of the domain
or type of the basis functions, and enables one to construct
integration rules with desirable properties, such as interior-
ity of points and symmetry. These properties are enforced
through adding appropriate constraints to the moment equa-
tions. In Ref. [29], moment fitting was used together with
the node elimination algorithm [30], to construct and opti-
mize quadratures for the integration of polynomials over
arbitrary polygons. The moment equations contain the inte-
gration of the basis functions (polynomials of total degree
up to d) over the domain. These integrations were performed
algebraically in Ref. [29]. Although algebraic integration
of polynomials is straightforward in two dimensions, it is
not generally a well-posed problem in three dimensions,
and therefore extending the technique of Ref. [29] to three
dimensions is unwieldy. It bears mention that for monomi-
als one can use divergence theorem to transform the surface
integrals to line integrals [8], which can be handled effi-
ciently. In three dimensions, successive application of the
divergence theorem results in line integrals over the edges of
the polyhedron [9,26,28]. Lasserre’s method [17,18], which
is a technique for the integration of homogeneous functions
on convex polygons and polyhedra based on Euler’s theo-
rem, transforms the integration of a homogeneous function
on a convex polygon to line integrations over its edges. Sim-
ilarly, one can apply the technique twice for the integration
over a convex polyhedron and transform the volume inte-
grals into line integrals. Lasserre’s formula has advantages
over the divergence theorem: calculation of the normals to
the boundary and projections on the plane are not required
and the integrand remains unchanged. The basis functions
of the moment fitting equations are monomials with respect
to the spatial coordinates, which makes Lasserre’s method
ideal for their integration.

The structure of this paper is as follows. Lasserre’s method
for the integration of homogeneous functions is explained
and the main theorems are presented in Sect. 2.1. A method
for constructing quadratures for the integration of homoge-
neous functions based on Lasserre’s method is presented in
Sect. 2.2. These homogeneous quadratures are used through-
out the paper for the integration of the basis functions. In
Sect. 2.3, we propose a technique for the integration of a lin-
ear combination of homogeneous functions, when the func-

tion is not known explicitly, based on Lasserre’s method and
the solution of a small system of linear equations. We describe
the algorithm for the construction of quadratures for irregular
convex polygons in Sect. 3, followed by several examples. In
Sect. 4, we consider the integration of functions with strong
and weak discontinuities and demonstrate the applicability
of the method through a few examples. We extend the quad-
rature construction scheme to three dimensions in Sect. 5,
both for polynomial functions and discontinuous functions.
We integrate a cubic polynomial on a convex polyhedron and
present two practical examples that arise in crack-modeling
using the X-FEM. The main findings of this study are sum-
marized and some concluding remarks are made in Sect. 6.

2 Lasserre’s method for integration of homogeneous
functions

2.1 Lasserre’s method

Lasserre presented a method for the integration of positively
homogeneous functions over convex polytopes [17,18]. Inte-
gration in � ⊂ R

n is reduced to a number of weighted inte-
grations over the (n − 1)-dimensional faces of �, i.e., �i ⊂
R

n−1 for i = 1, 2, . . . , m, through the application of Euler’s
theorem. The weights of the integrations are functions of
the geometry of � and the degree of homogeneity. The inte-
grations in (n − 1) dimensions can be done using standard
integration schemes in an efficient way. Under certain cir-
cumstances the reduction of the integrations to even lower
dimensions is also possible.

Let f : R
n → R be a real continuous positively homoge-

neous function of degree q, f (λx) = λq f (x) for all λ > 0
and x ∈ R

n . Moreover, assume that the domain of integration
� ⊂ R

n is a convex polytope, which is described as {x ∈
R

n : Ax ≤ b}, with A a real m ×n matrix and b a real vector
of length m. Also, let �i be the (n − 1)-dimensional face of
� : �i = {x ∈ R

n : Ax ≤ b, Ai x = bi } is determined by
the hyperplane Ai x = bi with Ai being the i th row of A.
The face �i is contained in the (n − 1)-dimensional vari-
ety1 Hi and the algebraic distance from the point x0 to Hi is
denoted by d(x0,Hi ) and can be calculated as d(x0,Hi ) =
(bi − Ai x0)/‖ Ai ‖, with ‖ · ‖ denoting the Euclidean norm.
The following theorems from Ref. [17] describe the method.
These theorems are based on Euler’s homogeneous function
theorem, namely

q f (x) = 〈∇ f (x), x〉 ∀x, (1)

where f is a continuously differentiable function and 〈·, ·〉
denotes the inner product of vectors.

1 A variety is the extension of the algebraic curves to higher dimensions,
or more precisely, a set of points that satisfy a system of polynomial
equations.
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Remark Throughout this paper, we will interchangeably use
the tensor representation of coordinates {xi }3

i=1, and the
Cartesian representation {x, y, z}.
Theorem 1 (Integration of homogeneous functions) Assume
that f is continuously differentiable, Vn(�) �= 0, and for all
i = 1, . . . , m, Vn−1(�i ) �= 0. Then
∫

�

f (x)dx = 1

n + q

m∑
i=1

bi

‖ Ai ‖
∫

�i

f dμ

=
m∑

i=1

d(o,Hi )

n + q

∫

�i

f dμ, (2)

where dμ is the Lebesgue measure on the (n−1)-dimensional
affine variety Hi that contains �i (dμ =‖ Ai ‖ dx) and o
is the origin. Vn and Vn−1 denote the n- and (n − 1)-dimen-
sional volume, respectively.

Theorem 2 (Further reduction of integration of homoge-
neous functions) Let f be twice continuously differentiable
and for all i = 1, . . . , m, either �i = ∅ or Vn−1(�i ) �= 0.
Also, assume that for every j = 1, . . . , m, j �= i , either
�i j = ∅ or Vn−2(�i j ) �= 0. Then

∫

�i

f dμ = 1

n + q − 1

⎡
⎢⎣∑

j �=i

di (x0,Hi j )

∫

�i j

f dν

+
∫

�i

〈∇ f, x0〉dμ

⎤
⎥⎦ , (3)

where �i j is the (n − 2)-dimensional face of � defined as
�i j = {x ∈ �, Ai x = bi , A j x = b j }, and Hi j is the affine
variety that contains �i j . For example, in two dimensions
with � being a polygon, �i is the i th edge and �i j is the
vertex of the polygon connecting edges i and j . In three
dimensions, �i is the i th face of the polytope and �i j is
the line segment at the intersection of faces i and j . dν is the
Lebesgue measure on the (n − 2)-dimensional affine variety
Hi j ⊂ Hi , and x0 ∈ Hi is a fixed point that can be selected
arbitrarily.

In Sect. 2.2, we construct quadrature rules based on
Theorem 1 with the quadrature points on the faces of the
integration region. The resulting quadratures are suitable for
the integration of homogeneous functions. In two dimen-
sions, the faces of the region are line segments. Hence, these
quadratures reduce the area integration to line integrations.
The integration can be further reduced to function evalua-
tion at polygonal vertices using Theorem 2. However, this
is avoided since optimal one-dimensional Gauss quadrature
rules are available. In three dimensions, we use the above
theorems to reduce the volume integrals to line integrals and
then apply one-dimensional Gauss quadrature rules.

2.2 Quadratures for homogeneous functions

Theorem 1 can be used to construct quadrature rules for the
integration of homogeneous functions over the integration
region � with all the integration points located on the faces
of the region �i . Assume that Q̄i is a nspi -point quadrature
over �i with the integration points and weights {x̄a

i , w̄a
i }nspi

a=1
and define the operation of Q̄i on a function f as:

Q̄i ( f ) =
nspi∑
a=1

w̄a
i f (x̄a

i ) ≈
∫

�i

f dμ. (4)

Now, obtain the modified quadrature Qi with points and
weights {xa

i , wa
i }nspi

a=1 using:

xa
i = x̄a

i , wa
i = d(o,Hi )w̄

a
i . (5)

The combination of the quadrature rules Q = {Qi }m
i=1 con-

structed over the m faces of �, is a quadrature, with nsp =∑m
i=1 nspi integration points on the faces of the domain, that

can integrate q-homogeneous functions over the integration
region:

Q( f ) ≈ (n + q)

∫

�

f (x)dx. (6)

We will refer to such quadratures as homogeneous quadr-
atures throughout this paper, since they can only be used
to integrate homogeneous functions. For example, in a two-
dimensional setting, with � being a convex m-gon and �i

denoting the i th edge of the polygon, one can obtain Q̄i —a
standard Gauss quadrature rule over the interval [−1, 1] is
mapped to the line-segment �i and the weights of the quad-
rature are multiplied by the length of the i th edge of the
polygon divided by two.

The approximation sign in (4) and (6) pertains to the
approximation error of the quadratures Q̄i , and no further
approximation is introduced in the construction. In other
words, beginning with quadratures that are exact for the inte-
gration of f over the faces of the region, for example a Gauss
quadrature rule for polynomial f , one can obtain an exact
quadrature via (6). The application of homogeneous quadr-
atures is illustrated through the following two examples.

Example 1: Homogeneous quadrature over bi-unit square

We would like to construct a homogeneous quadrature for
the integration of monomials up to order 5 on the bi-unit
square [−1, 1]2. In one dimension, a 3-point Gauss quad-
rature can integrate polynomials up to order 5 exactly.
We take the 3-point Gauss quadrature with the coordinates
ξ = {−0.774596669241483, 0, 0.774596669241483} and
weights w = {0.555555555555556, 0.888888888888889,

0.555555555555556} and map it to the edges of the square.
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Table 1 Positions and weights
of the homogeneous quadrature
over the bi-unit square

a n = 2 in two dimensions

x y Weight

1 −0.7745966692414834 −1.0000000000000000 0.5555555555555556

2 0.0000000000000000 −1.0000000000000000 0.8888888888888888

3 0.7745966692414834 −1.0000000000000000 0.5555555555555556

4 1.0000000000000000 −0.7745966692414834 0.5555555555555556

5 1.0000000000000000 0.0000000000000000 0.8888888888888888

6 1.0000000000000000 0.7745966692414834 0.5555555555555556

7 0.7745966692414834 1.0000000000000000 0.5555555555555556

8 0.0000000000000000 1.0000000000000000 0.8888888888888888

9 −0.7745966692414834 1.0000000000000000 0.5555555555555556

10 −1.0000000000000000 0.7745966692414834 0.5555555555555556

11 −1.0000000000000000 0.0000000000000000 0.8888888888888888

12 −1.0000000000000000 −0.7745966692414834 0.5555555555555556

f q Q�( f )

n+q
a | ∫� f d A − Q�( f )

n+q | a

1 0 4 0

x 1 0 0

x2y2 4 0.444444444444445 1.6 × 10−16

x2y3 5 0 0

Fig. 1 Homogeneous quadrature over the bi-unit square. a Bi-unit
square; and b homogeneous quadrature with 12 points

Also, the weights of the quadrature are modified according
to (5) (see Table 1 and Fig. 1b for the positions and weights
of the quadrature). Let us call this quadrature Q�. In Table 1,
we use Q� to integrate a few (homogeneous) bivariate mono-
mials and present the error of integration—as expected, all
integrations are exact to within machine precision. We use
similar quadratures in Sects. 3 and 4 to integrate the basis
functions in our quadrature construction scheme.

Example 2: Homogeneous quadrature over a regular
hexagon

We construct homogeneous quadratures with nsp points over
each of the edges of the regular hexagon shown in Fig. 2a.
The hexagon is built over a unit circle centered at the ori-
gin. A sample quadrature with nsp = 5 is shown in Fig. 2b.

The aim is to integrate f (r) = 1/rα over the regular hexa-
gon, with r being the distance from the origin. The function
1/rα is homogeneous with degree of homogeneity −α. Since
the domain of integration contains the origin, the integrand
is weakly singular, and domain integration using standard
quadratures over the triangle requires many integration points
to obtain the desired accuracy. To calculate the reference solu-
tion, we use the generalized Duffy transformation [31] after
partitioning the hexagon into 6 triangles by connecting the
origin to the vertices of the hexagon. We increase nsp so that
the result approaches the reference value—the efficiency of
the method for f (r) = 1/

√
r and f (r) = 1/r is demon-

strated in Fig. 2c.
The above technique for finding Q is straightforward and

provides flexibility when the integrand is homogeneous. For
example, in the node elimination algorithm [29,30,32], the
basis functions can be selected as monomials that are homo-
geneous functions (see Sect. 3). However, when the integrand
is a linear combination of homogeneous functions, each of the
terms must be known explicitly so that they can be integrated
separately. This limitation renders the homogeneous quadr-
atures impractical for finite-element or boundary-element
methods, where the integrands are known implicitly and can
only be evaluated at given points. To clarify this issue, let
g(x) = ∑

j g j (x), with g j being q j -homogeneous. The fol-
lowing integral is valid:

∫

�

g(x)dx ≈
∑

j

Q(g j )

n + q j
, (7)
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Fig. 2 Homogeneous quadrature over regular hexagon. a Regular hexagon on a unit circle; b homogeneous quadrature with 30 points; and

c relative error of calculating 1/rα d A using homogeneous quadratures

where Q is the quadrature obtained through (5). If each g j (x)

is not known explicitly, then the value of the integral in (7)
can not be computed. In the next section, a solution is devised
for this problem.

2.3 Application of Lasserre’s method for the integration
of a linear combination of homogeneous functions

Lasserre’s method of integration is an elegant technique for
the integration over convex regions. However, the technique
and the corresponding quadrature rules (see Sect. 2.2) are
limited to homogeneous functions. In the case of a linear
combination of homogeneous functions, additional informa-
tion is required to apply the method: each of the terms in
the sum must be known explicitly and integration is per-
formed for each term individually. In this section, we use
the homogeneous quadratures for the integration of a linear
combination of homogeneous functions without knowing or
evaluating each one of them separately.

Assume that Q is a homogeneous quadrature that can inte-
grate a class of functions � over the region � ⊂ R

n using (6).
Also assume that g(x) can be written as the sum of m homo-
geneous functions: g(x) = ∑m

i=1 gi (x), with gi ∈ � being
qi -homogeneous, gi (λx) = λqi gi (x) for all λ ∈ R, λ > 0.
Note that gi can be the summation of a group of qi -homoge-
neous functions (can contain more than one term). We also
assume that g is well-defined everywhere in R

n and can be
evaluated even outside the region �. One can use (7) to inte-
grate g over the domain, provided that {gi }m

i=1 are known
individually. Here we assume that g can only be evaluated
at certain points (quadrature points) and the functions gi are
not given; nor do we wish to approximate g explicitly with a
few homogeneous functions. According to the definition of
homogeneity, and by writing the integration of a sum as the

sum of integrals, the following is valid:

∫

�

g(λx)dx =
∫

�

m∑
i=1

gi (λx) =
m∑

i=1

λqi

∫

�

gi (x)dx. (8)

Also, the operation of Q on g can be simplified as:

Q(g)=Q
(

m∑
i=1

gi

)
=

m∑
i=1

Q(gi )=
m∑

i=1

(qi + n)

∫

�

gi (x)dx,

(9)

where (6) was used in the derivation of the last term. By
exploiting the homogeneity of gi , one can write:

Q(g(λx)) =
m∑

i=1

λqi (qi + n)

∫

�

gi (x)dx. (10)

The term on left-hand-side of (10) can be evaluated by
manipulating the positions of the integration points of Q:
Q(g(λx)) = ∑nsp

i=1 wig(λxi ) where {xi , wi }nsp
i=1 are the inte-

gration points and weights of Q. Consider a new quadrature
Qλ whose points and weights are defined as {xλ

i = λxi , w
λ
i =

wi }nsp
i=1. Then, one can write:

Q(g(λx)) = Qλ(g(x)). (11)

We arrive at the final equation by substituting (11) into (10)
and replacing the integrals

∫
�

gi dx with Ii :

Qλ(g) =
m∑

i=1

λqi (qi + n)Ii . (12)

Equation (12) has m unknowns {Ii }m
i=1, and holds for any

given λ > 0. It is straightforward to transform (12) into a
linear system of equations by selecting m values for λ and
evaluating the left-hand-side for each of them, as follows:
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⎛
⎜⎜⎜⎜⎜⎝

Qλ1(g)

Qλ2(g)

...

Qλm (g)

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

λ
q1
1 (q1 + n) λ

q2
1 (q2 + n) . . . λ

qm
1 (qm + n)

λ
q1
2 (q1 + n) λ

q2
2 (q2 + n) . . . λ

qm
2 (qm + n)

...
...

...
...

λ
q1
m (q1 + n) λ

q2
m (q2 + n) . . . λ

qm
m (qm + n)

⎞
⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎝

I1

I2

...

Im

⎞
⎟⎟⎟⎟⎟⎠

. (13)

Once (13) is solved and the unknowns Ii are found, the inte-
gration of g follows as

∫
�

g(x)dx = ∑m
i=1 Ii . The square

matrix of coefficients in (13) depends on the degree of homo-
geneity of gi and the m assumed values for λi , and the left-
hand-side contains the operation of nsp-point quadratures
Qλi on the function g—no evaluation of gi is required. The
quadrature construction algorithm in Sect. 2.2 is applied only
once: when Q is created, Qλi are obtained through the mod-
ification of the points of Q.

Example

Consider the numerical integration of g(x, y) = 1 + x2 +
y2 − 2y3 over the unit square � = [0, 1]2. g contains
homogeneous functions g1 = 1, g2 = x2 + y2 and
g3 = −2y3, with the degrees of homogeneity of 0, 2
and 3, respectively. For the sake of illustration, we select
the degrees of homogeneity to be q1 = 0, q2 = 1,
q3 = 2, q4 = 3, and assume λ1 = 1/4, λ2 = 1/2,
λ3 = 3/4 and λ4 = 1. Using the above algorithm, we obtain:
I1 = 1.000000000000000, I2 = 0.000000000000003,
I3 = 0.666666666666662, I4 = −0.499999999999998,
and I = ∑4

i=1 Ii = 1.166666666666667, which agrees
with the exact integration of g over the domain. Notice that
I2 = 3 × 10−15 is consistent with the fact that there is no
term in g with degree of homogeneity of 1.

3 Algorithm for the construction of quadratures
on irregular convex polygons

3.1 Moment fitting equations

A standard and well-known method for the construction
of quadrature rules is the moment fitting equation [33–35]

in which a quadrature is constructed for a class of basis
functions over a fixed domain and a given weight function
by solving the moment equation:

⎛
⎜⎜⎜⎜⎜⎝

∫
�

ω(x)φ1(x) dx∫
�

ω(x)φ2(x) dx

...∫
�

ω(x)φm(x) dx

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

φ1(x1) φ1(x2) . . . φ1(xn)

φ2(x1) φ2(x2) . . . φ2(xn)

...
...

...
...

φm(x1) φm(x2) . . . φm(xn)

⎞
⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎝

w1

w2

...

wn

⎞
⎟⎟⎟⎟⎟⎠

, (14)

where ω is the weight function, and � = {φ j }m
j=1 is the set of

the basis functions defined over the domain of integration �.
The points of the quadrature and the corresponding weights,
{xi , wi }n

i=1, are the unknowns that may be solved for alge-
braically or numerically so that the m moment equations are
satisfied. The resulting quadrature is exact (within the toler-
ance of the solution method) for the integration of the basis
functions. The minimum number of integration points that
can satisfy (14) is a classical problem of numerical analy-
sis which has no solution yet [30]. Each integration point in
n-dimensions, contributes n + 1 unknowns (degrees of free-
dom): n unknowns for its coordinate components and one
for the weight. It can be seen that m/(n + 1) can serve as
an estimate for the number of points required to integrate m
basis functions in n dimensions.

Wandzura and Xiao [36] and Xiao and Gimbutas [30]
applied Newton’s least squares method to numerically
solve (14) for the construction of high-order quadrature rules
over the triangle, the square and the cube and then proposed
the node elimination algorithm—one of the integration points
was removed and (14) was solved again to get a quadrature
with one fewer integration point. This procedure was con-
tinued until convergence of Newton’s method could not be
achieved anymore. Mousavi et al. [29] employed the node
elimination algorithm to build symmetric quadratures for
regular n-gons with n = 5, 6, 7 and 8. They also showed
that the method is not restricted to regular domains—moder-
ate degree close-to-minimal quadrature rules were produced
over arbitrary convex and concave polygons. Node elimina-
tion algorithm was also used for the integration of discontin-
uous functions by replacing the weight function with a step
function [32]. A nice feature of the node elimination algo-
rithm is that the Newton iterations are only for the optimi-
zation of the quadrature rule and the output of each iteration
is a solution of (14) by construction. One can stop the itera-
tions as soon as the acquired quadrature is deemed suitable.
In this paper, we fix the positions of the integration points
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Fig. 3 Algorithm for the
construction of a quadrature for
an irregular convex polygon.
a Domain of integration;
b homogeneous quadrature for
the integration of basis
functions; c locations of
integration points (25 points);
d final quadrature over the
quadrilateral (21 points, relative
norm of quadrature
error = 4 × 10−16); e locations
of integration points are random
combination of the polygonal
vertices using barycentric
coordinates (21 points, relative
norm of quadrature
error = 7 × 10−16); f locations
of integration points are selected
as the grid points over a box
containing the polygon (21
points, relative norm of
quadrature error = 1 × 10−16)

over an irregular polygon and find the corresponding weights
by solving (14). On knowing the locations of the integration
points a priori, (14) turns into a linear system of m moment
equations and n unknown weights. In general, the matrix of
coefficients A ji = φ j (xi ) can be non-square and we solve
it in a least squares sense, that is, a solution with the min-
imum norm is sought. Solutions with some zeros are more
desirable, because they imply fewer number of integration
points.

Construction of a quadrature by moment fitting involves
a one time calculation of the left-hand-side (lhs) of (14)
that can be done algebraically (the integration boundaries are
piecewise analytical curves) or numerically, using standard
integration schemes such as Gauss quadrature rules. Diver-
gence theorem can also be applied to convert the domain inte-
grals into boundary integrals that can be carried out in a more
straightforward manner [8,9]. In two dimensions, when the
goal is to produce a quadrature for the integration of polyno-
mials of order d or lower, the set of basis functions � includes
all bivariate monomials up to order d, Pd = {xiy j , i, j ∈
Z, i + j ≤ d}. Note that Pd contains homogeneous functions
and the method described in Sect. 2 can be applied to cal-
culate lhs. Moreover, � can take on the form of any other
set of basis functions that are linearly independent and cover
the space of polynomials up to order d. For example, one
may start with the monomials Pd and orthogonalize them for
the given weight function over the integration region via a
Gram-Schmidt procedure [29,30]. It bears mention that the
integration of the orthogonal polynomials can be done using

integration of homogeneous functions, of course with some
extra steps.

3.2 Description of the algorithm and examples

In this section, we explain the algorithm for the con-
struction of quadrature rules with polynomial-precision on
irregular convex polygons. Consider the quadrilateral shown
in Fig. 3a. We will construct a quintic quadrature using
the moment fitting equations to illustrate the algorithm.
The basis functions in (14) consist of bivariate monomials
xiy j , i + j ≤ 5 (21 basis functions), with the weight func-
tion ω set to unity. Therefore, we need a quadrature that can
integrate polynomials of total order up to 5 to calculate the
lhs. In one dimension, for example along the polygon edges,
a 3-point Gauss quadrature rule is sufficient for the integra-
tion of polynomials up to order 5. Following the description
provided in Sect. 2.2, a quadrature rule with 12 points is cre-
ated with all the points lying along the edges (see Fig. 3b).
This rule can integrate the basis functions using (6) and is
then adopted to calculate the lhs of (14). Having 21 equa-
tions to satisfy in (14), it is reasonable to expect at least 21
unknowns—there should be at least 21 integration points.
For the locations of the integration points, we find the cen-
troid of the polygon and connect it to the vertices and the
middle of the edges and then pick 3 points over each of
them (Fig. 3c). After solving the moment equations using
a least squares fitting, 21 non-zero weights are obtained, cor-
responding to 21 integration points: this is a quadrature rule
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that can integrate polynomials of total order up to 5 over
the polygon (see Fig. 3d). The positions of the integration
points can be selected differently: for example, as a combina-
tion of the polygonal vertices using a barycentric coordinate
with random coefficients (Fig. 3e). In Fig. 3f, a mesh-grid
over the box containing the quadrilateral is constructed and
the points that fall inside the domain are used as the integra-
tion points. The three quadratures shown in Fig. 3d–f, have
21 points and integrate polynomials of order 5 over the quad-
rangle. We calculate the relative norm of the quadrature error
(called relative error from now on) as

Erel
Q = ‖ I (�) − Q(�) ‖

‖ I (�) ‖ , (15)

where, � is the set of num f basis functions and I (�) and
Q(�) are vectors of length num f with Ii = ∫

�
φi dx and

Qi = Q(φi ). The relative error of these quadratures is of
order 10−16. Some of the weights of the integration points
are negative.

To show the versatility of the approach, we construct quad-
rature rules of orders 3, 5 and 7 over irregular convex poly-
gons with 4, 6, 8, 10, 11 and 12 number of vertices (see Fig. 4).
Figure 4a–f presents quadratures of order 3 with the posi-
tion of the integration points determined using diagonals and
bisectors of the polygon, as shown in Fig. 3c. In two dimen-
sions, there are 10 monomials in the space of polynomials
up to order 3. Hence, 10 integration points are expected and
realized, with the exception of the bi-unit square in Fig. 4a,
which is a special case and fewer points are obtained. This
can be explained in light of the symmetry of the square and
the quadrature—the integral of many of the basis functions
is identically equal to zero, which is satisfied by choosing a
symmetric quadrature. The relative error of the quadrature
in all these examples is of order 10−16. Figure 4g–l shows
quadrature rules of order 5 with random distribution of inte-
gration points. The relative error of the quadrature in this
case is of order 10−13, which can be attributed to the poor
distribution of the points. One can choose points that are
more evenly distributed, e.g., by selecting a larger ensemble
of random points. However, this increases the computation
of the matrix of coefficients A ji in (14). We simply modi-
fied the random coefficients so that the integration points are
attracted towards the polygon vertices and edges: the results
are shown in Fig. 4m–r for order 5 quadratures. The relative
norm of the quadrature error is reduced to the order of 10−15

as a result of better distribution of the integration points. This
reveals the important effect of the locations of the integration
points on the accuracy of the quadrature; at the same time,
it indicates that one has the freedom of placing the points
at certain locations of interest at the expense of losing some
accuracy. Figure 4s–x pertains to order 7 quadratures with
mesh-grid distribution of integration points, with the rela-
tive norm of error of order 10−15. The lower accuracy of the

quadrature is due to the ill-conditioning of the matrix of coef-
ficients. The number of integration points for quadratures of
order 5 and 7 are 21 and 36, respectively, which is equal to
the number of basis functions in each case.

4 Quadratures for discontinuous functions

In many applications of numerical methods, the integrand
may contain a discontinuity over the domain of integration.
For example, such is the case in partition-of-unity meth-
ods like the extended finite element method for modeling
cracks [15] and material interfaces [16]. Two different types
of discontinuity exist in these applications: weak discontinu-
ity, where the derivative of a continuous function is discon-
tinuous, e.g., |x|; and strong discontinuity, where the function
itself is discontinuous, e.g., the generalized Heaviside func-
tion. A technique will be presented in the following sections
to construct quadratures for handling strong and weak dis-
continuities. For some of the existing methods for integrating
discontinuous functions, see Refs. [32,37–39].

4.1 Strong discontinuities

In this section, we construct efficient quadrature rules that
can integrate discontinuous functions without partitioning
the domain. For this purpose, similar to Ref. [32], we solve the
moment equations (14) over the entire domain after replac-
ing the weight function with a discontinuous function. The
difference between our method and the technique presented
in Ref. [32] is two-fold: (1) we evaluate the lhs of (14) using
homogeneous quadratures presented in this paper, which
results in fast and efficient evaluation of the integrals; and (2)
we fix the locations of the integration points and solve a lin-
ear system of equations to obtain the corresponding weights.
The number of integration points numx is proportional to
the number of basis functions num f present in the moment
equations (numx ∝ num f ), and is not affected by the
shape of the domain or the configuration of the discontinuity.
A node elimination algorithm can still be applied to the final
quadrature to reduce the number of integration points (in this
case, one will have numx ∝ num f/(n + 1) in R

n), with the
additional cost of optimization iterations. We will skip this
step in the quadrature construction scheme presented here.

The algorithm for the construction of a discontinuous
quadrature is similar to the one presented in Sect. 3.2 for
polynomials, except that the weight function is set to the
generalized Heaviside function and the lhs of (14) is eval-
uated differently. We explain this step through an illustra-
tive example. Consider an irregular convex polygon with the
discontinuity shown in Fig. 5a. The generalized Heaviside
function assumes a value of +1 above the discontinuity (in
�+) and −1 below the discontinuity (in �−). We intend to
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Fig. 4 Examples of
quadratures for irregular convex
polygons with 4, 6, 8, 10, 11
and 12 vertices. a—f Order 3,
uniform distribution of points as
described in Sect. 3.2, relative
norm of quadrature error of
order 10−16; g–l order 5,
random distribution of points,
relative norm of quadrature error
of order 10−13; m–r order 5,
random distribution of points by
manipulating the coefficients,
relative norm of quadrature error
of order 10−15; s–x order 7,
locations of integration points
are selected from a mesh-grid
over the polygon, relative norm
of quadrature error of order
10−15

create a discontinuous quadrature Qd over � = �+ ∪ �−
so that

Qd( f (x)) =
∫

�

f (x)H(x)dx =
∫

�+
f (x)dx −

∫

�−
f (x)dx,

(16)

where f ∈ Pd is any bivariate polynomial of total order
up to d. Therefore, the basis functions include all bivariate

monomials up to order d, i.e., the set of num f = (d + 1)

(d + 2)/2 functions {xiy j , i + j ≤ d}. To calculate the
lhs of (14), we construct two homogeneous quadrature rules
according to Sect. 2.2: Q�+ over �+ and Q�− over �−
(see Fig. 5b–c, respectively). The specific combination of
these quadratures Q�± = {xi , wi , x j ,−w j } with {xi , wi }
being the points and weights of Q�+ and {x j , w j }, the points
and weights of Q�− , is used to evaluate lhs of (14) when
the weight function ω(x) is set to H(x). Once the lhs is
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Fig. 5 Quadrature rules for the
integration of discontinuous
functions (third-order).
Positions and weights of the
integration points are given in
Table 2. a Domain of
integration with the vertices
{(0, 0), (3, 1), (4, 3), (3.5, 4.5),

(−1, 4)} and discontinuity along
the line segment (−1.4, 3.5)

− (4, 1); b and c
homogeneous quadratures for
the regions above and below the
discontinuity; d discontinuous
quadrature with random point
locations; and e discontinuous
quadrature with the points over
a uniform grid

Table 2 Positions and weights of the third-order discontinuous quadrature of Fig. 5d–e

Random (Fig. 5d) Grid (Fig. 5e)

i x y Weight x y Weight

1 2.030241295714621 2.597014923281813 5.259758278578383 0 0.9 1.587737294772927

2 0.575502333815737 0.918565661655079 4.143633224938724 1 0.9 1.079974233075154

3 2.576917760316822 1.445092921668437 6.512309005913230 2 0.9 1.382344556733680

4 3.263901657120155 2.931503735932006 0.729577138635700 0 1.8 −0.959879385332657

5 2.936777960149114 3.724976205005987 −2.218084949967891 3 1.8 −1.139067959819840

6 −0.039262994659703 3.310174585512278 −1.479457307747831 0 2.7 2.582736653755316

7 1.670892704369278 1.387545264684462 −6.176843962296525 2 2.7 −0.209285340241211

8 2.998733611229552 2.231920174438180 −7.300223363309703 0 3.6 −2.310728683746903

9 1.464520359366653 3.598738697185424 −4.218905860779358 1 3.6 −1.802603037978114

10 0.434344672882670 2.209435467495819 1.579104229133715 3 3.6 −3.380361898119840

Integrand Relative error of integration

H(x, y) 2.8 × 10−15 1.8 × 10−14

H(x, y)x 5.9 × 10−16 1.7 × 10−15

H(x, y)y2 6.8 × 10−16 6.8 × 10−16

H(x, y)xy2 1.7 × 10−16 6.8 × 10−16

H(x, y)(x3 − xy + 1) 4.0 × 10−16 1.6 × 10−15

calculated, the rest of the steps in the quadrature construc-
tion is similar to those for the integration of polynomials. See
Fig. 5d–e for the final quadrature when the integration points
are selected randomly and over a uniform grid, respectively.
In this example, we construct a third-order quadrature rule
with the points and weights given in Table 2. Also, we cal-
culate the integration of bivariate monomials multiplied by
the generalized Heaviside function and compare the results
with the exact ones in Table 2—all the relative errors are
of order 10−14 or smaller. Note that the first four functions
in Table 2 belong to the set of basis functions used for the

construction of the quadrature, and the last one is a non-
homogeneous polynomial times the generalized Heaviside
function.

Since the homogeneous quadratures are only applicable
to convex domains, it follows that �+ and �− must also be
convex so that Q�+ and Q�− can be constructed. When the
discontinuity has a single kink inside the integration region
(see Fig. 6), for example, when a crack kinks inside a finite
element, calculating the lhs through the homogeneous quadr-
atures is always possible, provided that the element (�) is
convex. The reason is that depending on the configuration
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Fig. 6 Kink discontinuity

of the discontinuity, one of the subregions above or below
the crack remains convex and one can write the integration
over the concave subregion as the difference between the
integration over the entire region and the convex subregion:
∫

�

f (x)H(x)dx

=
⎧⎨
⎩

2
∫
�+ f (x)dx − ∫

�
f (x)dx if �+ is convex.

∫
�

f (x)dx − 2
∫
�− f (x)dx if �− is convex.

(17)

Therefore, the only added computation is to determine
whether �− or �+ is convex; then the lhs is calculated using
two homogeneous quadratures, one over � and the other one
over the convex subregion.

We show a few examples of quadrature rules for the inte-
gration of discontinuous functions in Fig. 7. Figure 7a–f
shows fourth-order quadratures, each having 15 integra-
tion points with random distribution (there are 15 linearly
independent monomials in P4). The discontinuity is along
a straight line. The quadratures depicted in Fig. 7g–l are
sixth-order and for a kinked discontinuity with 28 integra-
tion points (random distribution). The relative norm of the
quadrature error for all the quadratures of Fig. 7 is of order
10−14 or smaller.

4.2 Weak discontinuities

In case of a weak discontinuity, the integrand takes on the
form of two different polynomials on either side of the
interface. For this reason, two quadratures are constructed:
one for each side (similar to the method in Ref. [39]).
The resulting quadratures are exact and the total num-
ber of integration points over the cut element depends on
the order of the quadrature, not on the shape of the ele-
ment or the geometry of the interface, i.e., numx ∝ 2 ×
num f for num f = (d + 1)(d + 2)/2 when d is the
polynomial order of the quadrature. We present a simple
illustrative example to show how quadratures over poly-

gons can be used to integrate weakly discontinuous func-
tions.

Consider the domain � = (−1, 1)× (−1, 1) with the two
subregions �1 and �2 shown in Fig. 8a. �2 is a circle with
the radius R, centered at the origin, and �1 = �\�2. The
aim is to integrate a function f (x) over � with f = f1 over
�1 and f = f2 over �2. Figure 8b–c, respectively, shows
a surface and a contour plot of f over the domain. To per-
form the integration, we divide the domain into numel ×
numel square divisions, similar to the finite element discret-
ization. If an element is entirely inside �1 or �2, a Gauss
quadrature rule is used to integrate the corresponding func-
tion. For the elements that are cut by the interface, the cir-
cular cut is approximated with numseg linear segments (see
Fig. 8d–e) and two quadratures are constructed for the two
subregions. First, the quadrature over the convex subregion is
constructed. The lhs for the concave subregion is calculated
by integrating over � and subtracting the contribution from
the convex subregion, using the quadrature of the convex
subregion. The exact integration can be performed algebra-
ically. It should be noted that the error is caused by approx-
imating a circle with linear segments (or equivalently, �2

is approximated with an n-gon), and the numerical integra-
tion over the partitions is exact within machine precision.
The convergence curves of the relative error of integration
are shown in Fig. 8f for numel = {10, 20, 40, 80, 160} and
numseg = {2, 4, 6}. Sample quadrature points for a 20 × 20
mesh with numseg = 4 is shown in Fig. 8h–i when the subre-
gions are partitioned into triangles and on using our integra-
tion scheme with random distribution of points, respectively.
The rate of convergence in all cases is close to 2, which is
consistent with the relative error of approximating the area of
a circle with n-gons, as n is increased: Erel = 1 − n

2π
sin 2π

n
(see analytical relative error in Fig. 8g). In Fig. 8g, we replace
the circle with an n-gon and construct a quadrature over the
n-gon. The filled squares in this figure pertain to the relative
error in calculating the area of the circle using our quadratures
(numerical relative error). To decrease the modeling error, the
interface can be represented using higher-order curves as in
Ref. [40].

5 Extension to convex polyhedra

In this paper, the main component of the quadrature construc-
tion scheme is the integration of the basis functions. We con-
sider bivariate or trivariate monomials as the basis functions,
and positions of the integration points can be selected ran-
domly using barycentric coordinates. In two dimensions, we
apply Theorem 1 to break the area-integrals into sum of line-
integrals over the boundary of the region that can be carried
out efficiently. However, in three dimensions the situation
is more complicated since now the boundary is comprised
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Fig. 7 Examples of
discontinuous quadratures over
irregular convex polygons with
4, 6, 8, 10, 11 and 12 vertices.
Locations of integration points
are random with modified
weights. a–f Fourth-order for a
straight discontinuity, 15
integration points, relative norm
of quadrature error of order
10−14; g–l sixth-order for a
kinked discontinuity, 28
integration points, relative norm
of quadrature error of order
10−14

of a few surfaces (we assume planar facets, i.e., convex
polygons in three dimensions). Boundary integrations can
be performed by subdividing them into triangles or by con-
structing quadratures over polygons, but neither of them is
appealing due to the increased complexity. To overcome this
difficulty, we use Theorem 2 and reduce the surface inte-
grals over the faces of the polyhedron to one-dimensional
integrals over the edges of the polyhedron (see (3)). Note
that (3) contains the integration of the gradient of the basis
functions over the faces of the domain. These integrations
are circumvented by recursion without any added compu-
tational cost: the gradient of a monomial of total degree
p is another monomial of total degree p − 1, which is
also included in our basis functions. For example, for the
monomials up to order 2, {1,x, y, z,x2,xy,xz, y2, yz, z2},
one starts the integration of the basis functions from the
lowest order: φ = 1 with a zero gradient. Then the gra-
dient of the linear terms x, y, z, is a constant and its inte-
gration over the boundary is available. The gradient of the
second order terms are linear terms, and so on. With this

approach, the surface integrals are suppressed and the vol-
ume integrals are performed using only line integrals. The
following algorithm explains the method for the integration
of trivariate monomials over an irregular convex polyhe-
dron.

Algorithm (Integration of trivariate monomials over an
irregular convex polyhedron)
Input: Highest order of monomials d, domain of integration
� with the faces {�i }m

i=1
Output: Integration of the monomials of total order up to d
over the domain lhs

1. Get the monomials � = {xiy j zk, i + j + k = p, p =
0, 1, . . . , d; i = p, p − 1, . . . , 0; j = p − i, p − i −
1, . . . , 0}. Let φ j be the j th monomial. Number of basis
functions is num f = (d + 1)(d + 2)(d + 3)/6.

2. Form the connectivity matrix C and the coefficient matrix
F with the size num f × 3 so that ∂φ j/∂xi = FjiφC ji (no
summation implied) and {xi }3

i=1 ≡ {x, y, z}.
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Fig. 8 Integration of weakly
discontinuous functions.
a Domain of integration;
b surface plot of the integrand;
c contour plot of the integrand;
d sample discretization of the
domain and discontinuity;
e dividing the cut element into
two regions using a piecewise
linear approximation of the
discontinuity; f relative error of
the integration; g relative error
for calculating the area of the
circle by approximating it by
n-gons and using our
quadratures; h integration points
by partitioning the cut elements
into triangles; and i integration
points using our quadratures
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3. Calculate the matrix B with the size num f × m using (3)
so that B ji = ∫

�i
φ j dμ. Lower rows of B, which pertain

to higher orders of the monomials, are calculated using
the higher rows that correspond to lower degrees of the
monomials.

4. On computing the integral of all the monomials over the
faces of the domain (B), use (2) to find lhs.

Remark Forming the matrices C and F is trivial and is
only based on how the set of basis functions � is ordered.
These matrices are only used to keep track of the gra-
dients of the basis functions (express them in terms of
the lower-order monomials). For example, the following
shows the matrices F and C for the set of basis functions
� = {1,x, y, z,x2,xy,xz, y2, yz, z2}:

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1
1 1 1
1 1 1
1 1 1
2 1 1
3 2 1
4 1 2
1 3 1
1 4 3
1 1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
1 0 0
0 1 0
0 0 1
2 0 0
1 1 0
1 0 1
0 2 0
0 1 1
0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is easy to verify that the equality ∂φ j/∂xi = FjiφC ji holds
for j = 1, 2, . . . , 10 and i = 1, 2, 3. For example, for j = 8
and i = 2 one has: φ j = y2, Fji = 2, C ji = 3, φC ji = y

and hence the equality ∂y2/∂y = 2y.

Remark The surface integration of the monomials in (3) is
avoided through the following manipulation:

∫

�i

〈∇φ j , x0〉dμ =
∫

�i

3∑
k=1

x0k
∂φ j

∂xk
dμ

=
3∑

k=1

x0k

∫

�i

FjkφC jk dμ

=
3∑

k=1

x0k Fjk BC jk i ,

where x0k is the kth coordinate component of the point x0.

5.1 Numerical examples

5.1.1 Irregular heptahedron: unit cube minus a tetrahedron

As the first example, we construct a third-order quadrature
(total order of the polynomials to be integrated exactly is 3)
over the domain shown in Fig. 9. The integration region is a

Fig. 9 Irregular heptahedron: unit cube minus a tetrahedron

Table 3 Coordinates of the vertices and connectivity of the faces of the
irregular heptahedron

Vertices x y z

1 1 0 0

2 1 1 0

3 0 1 0

4 0 0 0

5 1 0 1

6 1 1/2 1

7 1 1 1/2

8 1/2 1 1

9 0 1 1

10 0 0 1

Faces Connectivity

1 1, 2, 7, 6, 5

2 2, 3, 9, 8, 7

3 3, 4, 10, 9

4 5, 10, 4, 1

5 1, 4, 3, 2

6 5, 6, 8, 9, 10

7 6, 7, 8

unit cube minus a tetrahedron constructed over one of the ver-
tices of the cube. The region can be defined using 10 vertices
and 7 faces with their coordinates and connectivity given in
Table 3. There are 20 monomials in the basis function set of
polynomials up to order 3. These monomials are integrated
with 576 basis function evaluations. Note that the basis func-
tions are trivariate monomials and their evaluation at a given
point is inexpensive. The final quadrature has 20 integration
points as expected. See Table 4 for the positions and weights
of the points. For the exact integration (to assess the accu-
racy of our quadrature), we integrate the monomials algebra-
ically over the unit cube and then subtract the contribution
of the tetrahedron. Quadrature rules for exact integration of
polynomials over tetrahedrons are available in the literature
(for example, see Refs. [41–43]). The relative error of the
produced quadrature is of order 10−15. The relative error of
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Table 4 Positions and weights
of a quadrature of total order 3
over the irregular heptahedron

The distribution of the points is
random

x y z Weight

1 0.6319856330992721 0.3524980414890462 0.5412161514545703 −0.9935165550012063

2 0.6112764603706613 0.2842460438220646 0.3456663600269569 0.4033411913031856

3 0.7476367049213167 0.3048071046880173 0.3881636404073822 0.3486049059653523

4 0.3648365197758032 0.6166082077388840 0.2553757324215449 0.6661329163980730

5 0.5074440285205465 0.7460607627741637 0.3985478210006686 −0.0369030487247123

6 0.4765105250092727 0.7079144951920009 0.3014705556484012 −0.1503012511953231

7 0.4104124440063532 0.4843159604043282 0.3126199335638323 −0.5158977668411902

8 0.2692967426831230 0.3394285421344097 0.3704014498867298 0.3070782226304006

9 0.6741626711862849 0.2655279045109828 0.6247633334584989 −0.0317604469387270

10 0.5278539603101956 0.5783627395311751 0.5223108126435833 −1.3252374753063219

11 0.6571567227924915 0.5223598802072030 0.7874698497496101 0.2380062727700985

12 0.7744535851182366 0.4747523895799468 0.6538825745568189 0.3340618048260526

13 0.7698639943845597 0.6625050391811230 0.3944470991755144 0.0209383090819375

14 0.6857658120815648 0.7421898806441541 0.4698496012443164 1.0239289693080991

15 0.8413216125986441 0.7701327382165640 0.5201915416006866 −0.2841310347465771

16 0.5248245683630873 0.6774033818011266 0.7610592011515803 −0.2510202750282448

17 0.3089164830432281 0.6565782869258732 0.7789157096197711 0.5779875685280845

18 0.4818905673003364 0.4508105701035444 0.6867311245003529 0.9238438135851143

19 0.3906034486580987 0.4372177475524537 0.8125540888317655 −0.8860899028736067

20 0.4253557947192131 0.2923358620856172 0.7756170122266641 0.6101004489261785

Integrand Relative error of integration

1 5.6 × 10−16

x 6.9 × 10−16

xy2 1.8 × 10−16

z3 5.8 × 10−16

y3 − xyz + z2 + 2 7.4 × 10−16

integration of a few trivariate monomials are also presented
in Table 4: the quadrature is almost-exact for monomials with
total order 3 or lower.

Due to absence of a quadrature for the integration
over general convex polyhedra, one can subdivide it into
tetrahedrons and then use quadratures over partitions for the
numerical integration. In the case of the present example, the
integration region can be divided into 16 tetrahedrons, and by
using the 5-point cubic quadrature of Ref. [42], one obtains
80 integration points over the entire region. Furthermore,
when partitioning is used, the number of integration points
depends on the shape of the domain and connectivity of the
faces in addition to the polynomial order of the quadrature,
whereas in our algorithm, the number of integration points
is proportional to the order of the quadrature, regardless of
the shape of the domain.

5.1.2 Irregular polyhedron with many faces

To show the flexibility of the quadrature construction algo-
rithm, we apply it to a more complicated domain. Consider

Fig. 10 Convex polyhedron with 18 vertices and 19 faces

the convex irregular polyhedron2 shown in Fig. 10 with 18
vertices and 19 faces given in Table 5. The algorithm for the
construction of the polyhedron is described in Yip et al. [44].
We construct a cubic quadrature over the domain and pres-
ent the weights and positions of the integration points in
Table 6—the resulting quadrature has 20 integration points

2 An irregular polyhedron is one whose faces may be irregular
polygons.
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Table 5 Coordinates of the
vertices and connectivity of the
faces of the convex polyhedron

Vertices x y z

1 2.956100000000000 3.293900000000000 5.000000000000000

2 2.998750000000000 5.000000000000000 3.251250000000000

3 2.998750000000000 5.000000000000000 6.748750000000000

4 3.043590000000000 6.793590000000000 5.000000000000000

5 3.247500000000000 3.002500000000000 5.000000000000000

6 5.000000000000000 5.000000000000000 1.250000000000000

7 5.000000000000000 3.094740000000000 3.155260000000000

8 5.000000000000000 3.094740000000000 6.844740000000000

9 5.000000000000000 5.000000000000000 8.750000000000000

10 3.530000000000000 7.280000000000000 5.000000000000000

11 5.000000000000000 6.912500000000000 3.162500000000000

12 5.000000000000000 6.912500000000000 6.837500000000000

13 6.843040000000000 3.191740000000000 4.901300000000000

14 6.843040000000000 3.191740000000000 5.098700000000000

15 6.541670000000000 5.000000000000000 7.208330000000000

16 6.276090000000000 6.593480000000000 5.880430000000000

17 6.276090000000000 6.593480000000000 4.119570000000000

18 6.541670000000000 5.000000000000000 2.791670000000000

Faces Connectivity

1 2, 1, 3

2 5, 1, 2, 6, 7

3 5, 8, 9, 3, 1

4 10, 4, 2, 6, 11

5 10, 4, 3, 9, 12

6 5, 7, 13

7 9, 15, 14, 8

8 9, 15, 16, 12

9 10, 12, 16

10 6, 7, 13, 18

11 6, 18, 17, 11

12 15, 16, 17, 18

13 2, 3, 4

14 5, 13, 14

15 5, 14, 8

16 10, 16, 17

17 10, 17, 11

18 15, 18, 13

19 15, 13, 14

and integrates all polynomials up to order 3 over the region
(see the integration errors in Table 6). Similar to the pre-
vious example, for the calculation of the exact integrals, the
domain is partitioned into tetrahedrons (32 tetrahedrons) and
5-point tetrahedral quadratures are employed. The total num-
ber of basis function evaluation for the construction of the
quadrature is 1152.

5.1.3 Three-dimensional discontinuous quadrature

Next, we construct a discontinuous quadrature over a tetra-
hedral element with a kinked discontinuity. The coordinates
of the vertices are (0, 0, 3), (1, 0, 0), (1, 1, 2) and (0, 1, 0)

and the kinked discontinuity is contained in the two planes:
z = 2.1 and y + z = 2.6 (see Fig. 11 for the geometry of the
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Table 6 Positions and weights
of a quadrature of total order 3
over the convex polyhedron

The distribution of the points is
random

x y z Weight

1 4.065709795565736 4.162155997653544 4.727895668889981 −4.459294221326440

2 3.945006242841623 4.296614254864239 5.032658948186411 22.87208005330276

3 3.956317838457130 5.072225279458875 4.081156810615234 −0.890007097566054

4 4.020727362544046 5.152664082058308 5.790992552942226 −10.61392242972703

5 3.929908521745204 6.037653413585427 5.161937640050013 15.22165357649155

6 4.984059196662368 5.146949262353924 3.188314234217299 34.12331154456583

7 5.000688428115388 4.819017447794130 3.565541876877864 −33.99782458590353

8 5.075009194166556 4.144397175475000 3.845760521061140 13.35934747869531

9 5.094651222398438 4.007924304779445 5.708146462338654 −13.18999331236275

10 4.867348506541593 3.834165799201663 6.297954735625012 5.291279053463872

11 4.894822158847349 4.820980719998183 6.499507455597497 −20.27676190196261

12 4.890851876647310 4.819388016389012 6.879695758948051 26.41441472166087

13 4.881218611500460 5.932051595186250 4.213149790015777 −11.84276904057738

14 4.848351922830217 5.963614996717538 5.844249251200039 2.458566427981979

15 5.828300751817223 4.115615418801242 4.963750462040973 17.63578040648104

16 5.924660436836890 5.112274393992814 6.296378681170026 −0.582049204212033

17 5.653195583059173 5.886988405049809 5.618342631081721 3.177444663755516

18 5.558007746733869 5.604394796117942 4.702997087185103 8.896897888579491

19 5.660217464475206 5.919982983444119 4.482252027916771 8.091914418585316

20 5.715307400851893 4.972397189965120 4.082262791570251 −10.58932553713920

Integrand Relative error of integration

1 7.3 × 10−14

x 1.3 × 10−15

xy2 4.2 × 10−16

z3 7.0 × 10−16

y3 − xyz + z2 + 2 2.9 × 10−15

Fig. 11 A tetrahedron with a
kinked discontinuity. a The
geometry of the tetrahedron; and
b and c configuration of the
kinked discontinuity with a
faceted plot and a wire plot,
respectively

domain and configuration of the discontinuity). To the best of
the authors’ knowledge no such quadrature is available in the
literature due to the complexity of the domain of integration,
and the only way to integrate the discontinuous functions
over the domain is by splitting it into partitions over which
quadratures are available. Knowing that the whole element
(tetrahedron) and at least one of the divisions are convex,
one can use our algorithm to integrate the basis functions.
We use the generalized Heaviside function as the weight of

the quadrature, which is equal to +1 in the top part and −1
in the bottom part. A cubic-order quadrature with 20 inte-
gration points is constructed over the prescribed cut element
(see (14) and (16) for the construction and application of the
quadrature). The positions and weights of the discontinuous
quadrature and the error of integration for a few functions
are given in Table 7. The relative norm of the quadrature
error is of order 10−15. The exact integration, for assess-
ing the accuracy of the constructed quadrature, is performed
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Table 7 Positions and weights
of a discontinuous quadrature of
total order 3 over the tetrahedral
region with a kinked
discontinuity

The distribution of the points is
random

x y z Weight

1 0.1079216435081310 0.1921795617491350 2.1869169638870836 −3.4967228111342404e−2

2 0.3669171402013682 0.5242212498412852 1.6003911521693723 −3.6559490812528794e−1

3 0.4197717668686998 0.5175403284264654 2.1029584801309684 7.1726907130123252e−2

4 0.2903258958952928 0.2030787521730345 2.0518317391067797 1.6667513346687882e−2

5 0.7734608718787533 0.7242319240942249 1.9766565558394811 −1.9032981859213351e−2

6 0.1794753580487591 0.3195668064538020 2.2814449955427860 7.5169545910981517e−2

7 0.7995222151169968 0.2898294265366389 0.9743594111317917 −6.0359297152038166e−2

8 0.6366396200268585 0.4345619228138845 1.7739511928746992 −1.0508713657398933e−1

9 0.5273418308141421 0.3909274012135061 0.6211105610358407 −4.6640612759658195e−2

10 0.7182437804258545 0.3279721455315767 0.3938212906355516 −2.3898179565953151e−2

11 0.6627864674694264 0.1482731620564133 0.6951081682731412 −6.3419482422352333e−2

12 0.8904666463249593 0.8134473164460133 1.5241767359161287 −2.4462222940832466e−2

13 0.6087797602119128 0.6157547781274360 1.4132657175141268 2.1828291064126790e−1

14 0.5591142497297681 0.8985413799029798 1.2882323421402608 −9.4525955981570708e−2

15 0.7575232763004042 0.9607222966033672 1.5029316407538882 3.5707485562175838e−2

16 0.2101307769911550 0.5184471122703831 0.9918617930864817 −2.2010185438599939e−2

17 0.1088855673897929 0.6993636220976017 0.5937580983275270 −1.0679725124058820e−3

18 0.1488562938657627 0.7881832864143193 0.2390370394327937 −5.2027165939133833e−2

19 0.4505413118541209 0.5918263700870281 0.4042741391488967 4.3965331968486124e−4

20 0.7094585777078288 0.6693188963782386 0.8921174548683573 −1.6027105689891447e−1

Integrand Relative error of integration

H(x, y, z) 6.7 × 10−16

H(x, y, z)x 3.2 × 10−16

H(x, y, z)xy2 1.1 × 10−15

H(x, y, z)z3 2.9 × 10−15

H(x, y, z)(y3 − xyz + z2 + 2) 1.3 × 10−15

using (17): the top division is prescribed in terms of the tet-
rahedron minus the bottom division which is partitioned into
tetrahedrons for the sake of integration, and a 5-point quad-
rature over the tetrahedrons is used (13 tetrahedrons). The
number of basis function evaluations for the quadrature con-
struction is 576.

6 Concluding remarks

We presented a technique for the integration of polynomi-
als over irregular convex polygons and polyhedrons. While
the position of the quadrature points were predetermined,
moment equations were solved in order to obtain the corre-
sponding weights. We chose the number of integration points
to be greater than the number of equations, and then solved
the moment equations in a least-squares sense to obtain the
sparsest solution. With this technique, one has the freedom to

select the integration points at desired locations. The number
of integration points in the produced quadrature is propor-
tional to the polynomial order of the quadrature, and is not
affected by the geometry of the integration domain. In con-
trast to our approach, the number of integration points in
the quadratures obtained through partitioning of the domain
depends on the shape of the polytope in addition to the poly-
nomial degree. For discontinuous functions and for subre-
gions that are concave (e.g., due to a kinked discontinuity),
the number of conformal subregions can grow and partition-
ing also becomes more challenging. Furthermore, adopting
our quadrature scheme becomes favorable when the compu-
tation of the integrand is cost-intensive or when there is a
need for the quadrature to be used repeatedly.

The added cost of our quadrature construction scheme
is to calculate the integral of monomials over the domain,
which was done using Lasserre’s method—surface and vol-
ume integrals were reduced to line integrals using Euler’s
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homogeneous function theorem, and then Gauss quadrature
rule over the interval was employed. The resulting quadra-
tures are almost-exact and can be used in the finite element
method with irregular convex polygonal and polyhedral ele-
ments, as well as in the extended finite element method for
weak discontinuities. In case of a strong discontinuity, we
incorporated the generalized Heaviside function, which is a
discontinuous function, as the weight in the moment equa-
tions—the resulting quadrature can integrate discontinuous
functions (polynomials times the Heaviside function) over
the cut polygonal/polyhedral element without partitioning it.
The discontinuous quadrature can also be used over cut ele-
ments when there is a kink, provided that at least one of the
regions remains convex. Several numerical examples were
presented that demonstrated the application of the method for
practical problems. Our algorithm permits accurate numeri-
cal integration of polynomials on irregular convex polygons
and polyhedrons, and also alleviates the need to partition the
elements for applications in the extended finite elements with
cracks and material interfaces.
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