
Numerical inversion of Laplace transforms:
an efficient improvement to Dubner and Abate's method

F. Durbin

Commissariat a I'Energie Atomique Centre U—Service Electronique, B.P. 61,
92120—Montrouge, France

An accurate method is presented for the numerical inversion of Laplace transform, which is a
natural continuation to Dubner and Abate's method. (Dubner and Abate, 1968). The advantages of
this modified procedure are twofold: first, the error bound on the inverse f{t) becomes independent of
t, instead of being exponential in t; second, and consequently, the trigonometric series obtained for
fit) in terms of F(s) is valid on the whole period 2T of the series. As it is proved, this error bound
can be set arbitrarily small, and it is always possible to get good results, even in rather difficult cases.
Particular implementations and numerical examples are presented.

(Received June 1973)

1. Introduction
Let f{t) be a real function of t, with f{t) = 0 for / < 0; the
Laplace transform and its inversion formula are defined as
follows:

F{s) =

f(t) =

dt s = a= f" e~" f(t)
Jo

* {fit)} = - L f"+"° <?<Fis) ds

(1)

(2)

a > 0 is arbitrary, but is greater than the real parts of all the
singularities of Fis).
In case of singularities of Fis) to the right of the origin, a

suitable translation of the imaginary axis can always reject
those singularities to the left of the origin.

In all this discussion we therefore assume that (1) and (2)
exist for Re (s) ^ a > 0.

2. Development into trigonometric integrals
Let us expand (1):

F(s) -r
Jo

e "fit) cos cotdt - i f"
Jo

e'"'fit) sin cot dt (3)
|o Jo

Fis) = Re {Fia + ico)} + i Im

We now expand (2), with ds = i dco

/« = i

+ i<o)} (4)

eat (cos cot + i sin cot)

(Re{F(j)} + i Im {Fis)}) i dco (5)
at r f + oo

= - (Re {Fis) cos cot - Im {Fis)} sin cot) dco + i
2n LJ-°°

(Im {Fis)} cos cot + Re {Fis)} sin cot) dco (6)

The imaginary part in (6) cancels out, because of the parity of
Re {Fis)} and Im {Fis)}; using this parity again, we have:

/ (/) = — (Re {Fis)} cos cot - Im {Fis)} sin cot dco (7)

For / < 0, fit) = 0, which means that:

(Re {Fis)} cos cot + Im {Fis)} sin cot) dco = 0 (8)
Jo

Consequently, we obtain 3 formulas for the Laplace inverse fit)
corresponding to Fis):

fit)

AO

_ 2e°' f°n Jo
= -2e"' r°

« Jo

Re {Fis)} cos cot dco (9)

Im {Fis)} sin cot dco (10)

= — | (Re {Fis)} cos cot - Im {Fis)} sin cot) dco (11)
n Jo

3. Method
We first summarise Dubner and Abat's method; this will
enable us to expose easily its natural continuation. Let hit) be
a real function of t, with hit) = 0 for t < 0;
id) Consider sections of hit) in intervals like inT, in + I)T),

construct an infinite set of 2r-periodic functions gnit):

ChinT-t)
n = 0,2, 4,... gnit)=-I hinT+t)

U(n + 2)T-t)

T^t^O (12)
O^t^T (13)
T^t^2T (14)

Volume 17 Number 4 371

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/17/4/371/443923 by U
.S. D

epartm
ent of Justice user on 17 August 2022

rh«n+l)T+t) -T^t^O (15)
n = 1, 3, 5 , . . . gnit) = 1 Kin + 1)7" - t) O^t^T (16)

lh«n - 1)7" + 0 T < / < 2T (17)

ib) Develop each gni0 into cosine Fourier series:

^n(?) = _J^? + Y. An,k cos fV; Qk = k- (18)

(c) Evaluate:

h{t) cos Qkt dt

(O Since it is always possible to write

A(0 = e""/(0
or

we have:

E ^ , k-

(19)

(20a)

(20b);

Jo

_ 2

e""/(Ocos: = -JRe + iQk)} (21)

{F(a)} + £̂ Re | F (a + ' y) } cos y /I (22)

(e) Use relations no. (13, 14, 16, 17, 20a, 20b) to obtain:

) = f(f) +E
n = 0

E + 0 + e2atf(2kT - r)) (23)
= / (0 + ERROR 1 (a, r, T) (24)

In conclusion, for any 0 < / < 2T, we can write:

/ (/) + ERROR1 (a, f, J) =

Re | F ^ + / ̂ } cos ̂ rj (25)

This is Dubner and Abate's formula; ERROR1 is a function of

a, t, T; clearly the factor £ e'2"" f{2kT - t) e2at is the most
* = i

disturbing one since it increases exponentially with t.
Numerically (25) is valid only for t ^ T/2.

4. The natural continuation of the method
Just as in Section 3, we consider h(t) in the interval
(nT, (n + 1)T), but this time we construct an infinite set of odd
2T-periodic function kn(t). See Fig. 2.

By definition, we have:

(h(t) nT ^ / «$ (« + \)T
« = 0, 1,2, . . .

Similarly, on the intervals (-T, +T), (0, T), (T, 27"), we can
write

[-h(nT - t) -T < / < 0 (26fl)
« = 0 , 2 , 4 , ...kn(t)={ h(nT+t) O ^ t ^ T (26b)

[-A((« + 2)T- t) T < r < 27"(26c)

« = 1, 3, 5, . . . r /,((« + 1)7" + r) - 7 " < t sS 0 (27a)
Arn(/) =1 -h((n + 1)7" - 0 0 < / < T (27b)

[h({n - 1)7" + /) r < ? < 2T (27c)

The Fourier representation for each odd function kn(t) is :

kJLi) = X Bnyk sin k^t= £ Bn,k sin Qkt (28)
* = o -* * = o

Just as for /4nj k, we find:

372

Fig. 2

f(
= e~°'f(t) sin Qkt dt

Summing (29) over n and comparing it with (3):

E *...= |
n = 0 •'JO

e~" Rt) sin Qkt dt =

(29)

Summing (28) over n and multiplying both sides by ef", we
obtain a relation similar to (22):

= - ^ ' Tim | f (a + ik ̂ J sin k ^ (30)

Likewise, on the interval (0,27"), using (20a), (26b), (26c),
(27b), (27c), we find:

| e" ̂ .(0 = fiO + £ e~2°kT UVkT + 0-
e2alfi2kT- 0] (31)

Another representation for fit) is therefore:

/(r) + ERROR2(a, t, T) =

5. Error analysis
Let us write down the two similar expansions (25) and (32):

fit) + I e-2kaTifi2kT + t) + e2alfi2kT- /)] =
* = i

The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/17/4/371/443923 by U
.S. D

epartm
ent of Justice user on 17 August 2022

T i k = i

^-2kaT r ft~il,T i <\ ~2at
fit) + £ \Ji2kT + 0 ~ e2atfi2kT - /)] =

(33)

(3 4)

Clearly, any one of these formulas does not show any specific
advantage: both error terms contain a factor which is expon-
entially increasing with /; however these factors have opposite
signs.
Since we know that F(s) has no singularities for Re F(s) > 0,

then |/(0l is bounded at infinity by some function of the form
Ctm, where C is a constant and m a nonnegative integer.
We consider first the important case of all physical functions
such as |/(/)| < C; then ERROR1 (a, t, T) and
ERROR2 {a, t, T) have the same bound, which is:

IERROR1 (a, t, T)\ -2*.r

+

sinh aT

We are going to reduce considerably this bound as follows:
Let us sum half of both sides of (33) and (34):

/(') + £ e-2akTfi2kT + t) = fit) + ERROR3(o, t, T) =

(35)

= ;= U*e {Fia)} Re <J F[a ik~

(36)

This time, if |/(0l < C, the bound for ERROR3 (a, t, T) is:

IERROR3 (a, /, T)\ ^ f C f " = -r^f— . (37)
t=i e — l

The interest of this result is twofold:
1. ERROR3 (a, t, T) is now bounded by a fixed quantity; this

allows us to use our representation of fit) on the interval
(0, 27) instead of only (0, T/2);

2. This fixed bound depends only on the product aT. Once the
precision Q = MAX {ERROR3 (a, t, T)} is chosen, a is
determined. For example, with aT — 10, we find
Q = C.2 10~9 whereas the original method gave only

5
Q = C. 1(T5, 0 772.

We now consider the case \f{t)\ < C . tm:

|ERROR3(a, /, T)\
k= 1

Z
k= 1

, - 2 * o T ,ik + l)m (38)

Each term of the series of positive terms w(&) = e~2kaTik + \)m

is decreasing uniformly to zero foi k > kl; therefore JT u{k)

and

\:
,-2xaT (x + \)m dx

are of the same nature. Clearly the integral is convergent;
consequently, a being some positive constant such that:

X uik) = a e-2xaT(x + l)m dx
k=l J 1

we obtain the bound:

ERROR3 (0, /, T) ^ aC(2r)m
foo

e~2xaT (x + l)m dx (39)

The computation of the integral is straightforward:
(Gradshteyn and Riszhik, 1965)

j °° e'2xaT (x + l) m dx = e2aT | °° e~2uaT 1

2m + I

In conclusion:
IERROR3 (a, t, T)\

ix + l)m dx = e2aT | e-2uaT if du

- 1) . . . (m - k + 1)
(2ar)k

2m-A

• ' (2ar)m + 1

A", a1(a2, . . .,am+1 = Constants .

(40)

Again, we see that the error term decreases very quickly with
aT, but this time depends also upon T.
Comparison of equations (36) and (11) shows that our

approximation is formally equivalent to the application of the
trapezoidal rule to (11), the integration step being n/T. But the
error bound we obtained, proportional to exp(— 2aT), is
much tighter than the bound directly associated with the
trapezoidal rule, which decreases like l/T2.
On the other hand, by applying directly the trapezoidal rule

to (9), (10), or (11), therefore using implicitly a fundamental
result (de Balbine and Frank, 1966), according to which this
rule is as good as any other rule of quadrature for infinite range
Fourier integrals, one could not have seen the influence of the
parameter aT.
But above all, the possibility of cancellation for 2 exponenti-

ally increasing opposite error factors would not have been in a
conspicuous position.

6. Numerical implementation
Since we are going to compare Dubner and Abate's method
with the modified one, over the interval (0, 27"), we change T
into T/2 in (25) and (36).
Also, the infinite series involved can only be summed up to

a number NSUM of terms; therefore truncation error Et and
roundoff error Er must be accounted for:

4e
f{t) + ERROR 1 (a, t,T) = ^—

f

|~-J Re {Fia)} + "T Re \FL + ik ^ 1 cos ^ rl

(o, r, 7") = ^ - iRe{F(a)} +

(41)

fit) + ERROR3 (a
NSUM

^ t - Im 1F| o (42)

We have proved in Section 5 that both ERROR 1 (o, /, T) and
ERROR3 (o, /, 7") decreased with exp i~aT); but practically,
for each /, Er and Et are amplified by the factor exp iat)/T;
too large a value of aT would require too large a value of
NSUM for a given accuracy.
We also have tried various convergence acceleration methods,

e.g. epsilon algorithm, Euler method and others (D. Shanks,
1955), but all these procedures are efficient only when the terms
of the original series decrease monotonically in modulus.

Volume 17 Number 4 373

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/17/4/371/443923 by U
.S. D

epartm
ent of Justice user on 17 August 2022

F(s) being a Laplace Transform, we know that

Re

and

lk~T

T („ / . . I n
\mlF\a + ik —

tend to 0 when k tends to infinity; to apply efficiently one of
the above mentioned procedures, one would have first to find,
in each case, the value of k after which

decreases monotonically to 0. This is virtually impossible for
the very complicated F(s) we had to invert, as shown in Section
8.
An economical, and, up to now, successful way of doing such

summations is the following one: the real and imaginary part
of F(s) are evaluated together through a complex, single
precision arithmetic subroutine, but are converted into double
precision constants for the summation up to NSUM; the
results are then turned back to single precision expressions.

Thus one avoids time and storage consuming systematic
double precision computation; NSUM can be determined by
the convergence criterion:

Re Ka + i NSUM — and

ImlF a + i NSUM t=
eT (43)

- exp (aT)

e = 10"6 to 10-10 .
We found that aT = 5 to 10 gave good results for NSUM
ranging from 50 to 5000.
For a fair comparison between Dubner and Abate's method

and the modified method, we took NSUM terms for the cosine
series, but we used NSUM/2 sine terms and NSUM/2 cosine
terms for the modified method.
Clearly, the running time will be less for the 2nd method,

since the subroutine which anyway computes

Re

and

Im

using complex arithmetic has to be called NSUM/2 times
instead of NSUM times.
We tested the following examples:

function 1: F(s) = s(s + I)"2 ; f(t) = 0/2) sin (0
function 2: F(s) = s~l exp (- 10s); f(t) = U(t - 10)
U = Heaviside's step function.
We took aT = 5, T = 20, NSUM = 2000.
METHOD 1 = Dubner and Abate's method
METH0D2 = Modified method.
The computer was an IBM 370/155, run through the time shar-
ing option (TSO). See Tables 1 and 2 for the results.

One can see that METHOD2 gives accurate results on (0, 2T),
whereas METHOD1 breaks down for t ^ T/4. It is interesting
to notice that for function 2, which possesses a discontinuity
at t = 10, METHOD2 gives a numerical value, namely
0-506790, very close to its theoretical one,

i[/(10 + 0) + /(10 - 0)] = 0-5 ;
METHOD 1 does not follow this discontinuity.

7. Final implementation
The 'Fast Laplace Inverse Transform'. This implementation
will be called 'FLIT' in the sequel.

Table 1

Test function 1 F(t) = (t/2) sin / = £C~

t

0-0
1-0
2-0
3-0
4-0
5-0
6-0
7-0
8-0
9-0

10-0
11-0
12-0
13-0
14-0
15-0
16-0
17-0
18-0
190

Method 1

0-12437E + 00
0-49700E + 00
0-78468E + 00

-0-10387E + 00
-0-17074E + 01
-0-20114E + 01

0-17604E + 00
0-30208E + 01
0-28200E + 01

-0-15723E + 01
-0-56405E + 01
-0-25923E + 01

0-76657E + 01
0-13538E + 02
0-13008E + 01

-0-25504E + 02
-0-34295E + 02
-0-34397E + 01

0-42842E + 02
0-44738E + 02

1-510"

'{sis2 + I)"2}

Method2

0-62186E -
0-42566E +
0-90776E +
0-14530E +

-015867E +
-0-24075E +
-0-77050E +

0-23865E +
0-39821E +
0-17886E +

-0-28202E +
-0-55413E +
-0-31588E +

0-28427E +
0-69941E +
0-48254E +

- 0-24241E +
-0-82514E +
-0-67196E +

0-15511E +

1-210"

01
00
00
00
01
01
00
01
01
01
01
01
01
01
01
01
01
01
01
01

FLIT

0-62186E
0-42565E
0-90775E
0-14530E

-0-15867E
+ 0-24075E
-0-77050E

0-23865E
0-39821E
0-17886E

-0-28202E
-0-55413E
-0-31588E

0-28426E
0-69941E
0-48254E

-0-24241E
-0-82514E
-0-67196E

0-15511E

1-110"

- 01
+ 00
+ 00
+ 00
+ 01
+ 01
+ 00
+ 01
+ 01
+ 01
+ 01
+ 01
+ 01
+ 01
+ 01
+ 01
+ 01
+ 01
+ 01
+ 01

Exact F(t)

0-0
0-42073E + 00
0-90929E + 00
0-21168E + 00

-015136E + 01
-0-23973E + 01
-0-83824E + 00

0-22994E + 01
0-39574E + 01
0-18543E + 01

- 0-27201E + 01
-0-54999E + 01
-0-32194E + 01

0-27310E + 01
0-69342E + 01
0-48771E + 01

-0-23032E + 01
-0-81718E + 01
-0-67589E + 01

014236E + 01

Running time •«— (seconds)

374 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/17/4/371/443923 by U
.S. D

epartm
ent of Justice user on 17 August 2022

Table 2

Test Function

<

2 F{t) = U(t -

Method 1

10) = <£-{^exp^lO,)}

Method2 FLIT Exact Fit)

0-0
1-0
2-0
3-0
4-0
5-0
6-0
7-0
8-0
9-0

10-0
11-0
12-0
13-0
14-0
15-0
16-0
17-0
18-0
19-0

015367E - 01
017966E - 01
0-25222E - 01
0-37186E - 01
0-56909E - 01
0-89423E - 01
0-14304E + 00
0-23142E + 00
0-37715E + 00
0-61742E + 00
010147E + 01
0-10179E + 01
0-10252E + 01
010371E + 01
010569E + 01
0-10568E + 01
0-11430E + 01
012314E + 01
0-13771E + 01
0-16173E + 01

0-67834E - 02
0-67859E - 02
0-67897E - 02
0-67967E - 02
0-68076E - 02
0-68250E - 02
0-68566E - 02
0-69171E.- 02
0-70523E - 02
0-74942E - 02
0-50679E + 00
010056E + 01
0-10060E + 01
010061E + 01
0-10062E + 01
0-10062E + 01
010063E + 01
0-10063E + 01
010064E + 01
0-10065E + 01

0-67836E - 02
0-67842E - 02
0-67859E - 02
0-67905E - 02
0-67965E - 02
0-68244E - 02
0-68248E - 02
0-68520E - 02
0-69223E + 02
0-71546E - 02
0-50738E + 00
010061E + 01
0-10063E + 01
0-10064E + 01
0-10065E + 01
0-10065E + 01
0-10065E + 01
0-10065E + 01
0-10065E + 01
0-10066E + 01

0-0
0-0
0-0
0-0
0-0
0-0
0-0
0-0
00
0-0
0-5
1-0
1-0
1-0
1-0
1-0
1-0
1-0
1-0
1-0

2-020" 1-520" 1-415" Running time -«— (seconds)

As Dubner and Abate did, we are going to use the Fast
Fourier Transform (FFT) to speed up the computation and to
increase accuracy; but this time, FFT will be more efficiently
applied: there will be one real and one imaginary argument
entered into the FFT subroutine, instead of one real argument
only.
If we require / (/) for N equidistant points tj = jAt = jTjN

j = 0,1,2,... N — 1, (42) can be written:

with

and

., 2;r

Fisk) = Re {Fisk)} + i l m {Ffe)}

/(/,) + ERROR3 (a, t,T) + E, + En =

[fNSVIH

-h Re {F(a)} + Re | Z ^| cos kj t? + ,- sin kj |

Putting
(44)

N N
and since WJk = ^ (* + " O , / = 1, 2, 3 , . . . , we can group
terms like Re {F(o + i{k + IN))} andlm {F(a + i(k + /JV))},
and write:

+ ERROR3 (a, f, T) + Er + Et =

)\-i Re Re Tf
A(k) == ^2 Re IF ((a + i{k + IN)

B(k) = Z Im IN) ^

Table 3

00

fit) = 2 £ (

r FLIT

-2^) = ̂ ^ {2/j(l + exp(-ls))}

Exact Fit)

0-0
1-0
2-0
3-0
4-0
5-0
6-0
7-0
8-0
9-0

10-0
11-0
12-0
13-0
14-0
15-0
16-0
17-0
18-0
19-0

1-006615
2-012790
1-006321
0-000511
1-007322
2-012833
1-005719
0-000549
1-008010
2-012913
1-005268
0-000820
1-009086
2-013551
1-005602
0-002814
1-013075
2-019597
1-017248
0-039362

4-047'

1-0
2-0
1-0
0-0
1-0
2-0
1-0
0-0
1-0
2-0
1-0
0-0
1-0
2-0
1-0
0-0
1-0
2-0
1-0
0-0

Running time
*- (seconds)

(Cooley and Tukey, 1965; Gentleman and Sande, 1966;
Cooley, Lewis, and Welch, 1967).
To be able to use this formulation, we must take

NSUM = L x N, but this is not a limitation. The input
arrays for the FFT are A(k) and B (k); the output arrays are

Volume 17 Number 4 375

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/17/4/371/443923 by U
.S. D

epartm
ent of Justice user on 17 August 2022

AX{j) and BX(j), with AX(j) = f{tj).
We tested FLIT again with our two previous test functions;

we took L = 20 in order to have NSUM = 2000 for
METHOD 1, METHOD2, and FLIT. Tables 1 and 2 show the
improvement from the right to the left. Again N = 100; only
20 points are printed.
To be sure of FLIT's efficiency, we tested the difficult case of

a function f(t) with an infinite number of discontinuities:

/ (0 = 2 E (~ 0* U(t - 2k), whose value is 2 for
* = o

2k < t < 2k + 1

and 0 for 2k + 1 < / < 2(k + 1). Here

F(s) = 2/J(1 + exp(-2s)) .
We ran this test with T = 20, aT = 5, L = 50, NSUM = 5000,
N = 100. The results are displayed in Table 3.

8. Conclusion
We wish to mention here the specific problem which brought us
to develop FLIT; it might interest some electrical and elec-
tronical engineers.
We had to find the influence of various parameters upon the

response of a circuit containing a coaxial cable. The Laplace
expression for the voltage across the impedance loading this
coaxial cable was:

V(s) = Co VoZ(0,s) -V
-(o,s) J

with:

r
\ZC

i
sinh yl + Z cosh ylj

Z + Zc tanh yl
ZC + Z tanh yl

7 = ZC=
G + Cs

R, L, G, C: cable constants.
/: length of the cable.
Z: load impedance.
Vo, Lo, Ro, Co: electrical parameters of the circuit; their

influence upon the circuit response is
investigated.

Whenever we decided to compare theory and experience, the
computed voltage was found to be identical to what was
observed on the scope.
A FORTRAN listing is available on request; the author

would welcome the submission of any difficult case he has not
thought of.

Acknowledgement
I wish to thank Mr. Jacques Chartier for many fruitful dis-
cussions about this work.

References
COOLEY, J. W., and TUKEY, J. W. (1965). An algorithm for the machine calculation of complex Fourier series, Math. Comp., Vol. 19, pp.

297-301.
COOLEY, J. W., LEWIS, P. A. W., and WELCH, P. D. (1967). Application of the Fast Fourier Transform to the computation of Fourier

integrals, Fourier series, and convolution integrals. IEEE Transactions, Vol. AE-15, pp. 79-85.
DE BALBINE, G., and FRANKLIN, J. (1966). The calculation of Fourier integrals, Maths. Comp., Vol. 20, pp. 570-589.
DUBNER, R., and ABATE, J. (1968). Numerical inversion of Laplace transforms by relating them to the finite Fourier Cosine transform,

JACM, Vol. 15, No. 1, pp. 115-123.
GENTLEMAN, W. M., and SANDE, G. (1966). Fast Fourier Transforms. Procs. AFIPS. Joint Computer Conference, Vol. 29, pp. 563-578.
GRADSHTEYN, I. S., and RIZHIK, I. M. (1965). Table of Integrals, Series and Products, New York and London, Academic Press.
SHANKS, D. (1955). Non-linear transformations of divergent and slowly convergent series, / . Math, and Phys., Vol. 34, pp. 1-42.

Book review
Functional Analysis of Information Processing, by Grayce M. Booth,

1974; 269 pages. (John Wiley, £7-70.)

This book has to be judged in the context of the claims made for it
in the preface and introductory chapter.
Its aim is to provide an aid to the information systems analyst,

designer, or programmer in the analysis of complex computer
systems. For this purpose a new approach is put forward—the
approach of the structured, functional analysis of information pro-
cessing. The functions referred to are all related to the processing
machine, i.e. the computer, hardware and software. The approach
is 'really a method of logically structuring the systems analysis and
design process. It will also furnish (the designer) with a complete
set of hardware and software functions which he can evaluate when
designing an information processing system.'
In practice the author offers a six level scheme of hierarchically

classifying a computer system, ranging from level I—the network
level (two components: information processing, and network
processing) to level VI—the level of device techniques.
Like most classification schemes it is often arbitrary and sometimes

idiosyncratic. For example, the category 'simulation' (level VI)
appearing in the level V category of 'other languages' puts simulation
of one computer on another in the same class as simulation languages,
and it is the only place in which emulation is described.
The rigid structure imposed by the six level classification system

prohibits analysis where more than six levels may be appropriate.
Thus the title operating systems much used in the text cannot be
found a place in the classification, all operating system functions
being separately defined under the level III—classification, 'software
functions'.

More seriously, many functions important to the designer are not
classified or may be missing altogether. No reference is made to
different methods of file access organisation, such as index sequential,
random algorithmic, lists, or inverted files. The level V entry—
printers has no lower level components although a designer could
well be concerned with further entries such as line printers, character
printers, impact printers, non-impact printers and sub-classes of
these.
The analysis provides descriptions of class components in various

levels of detail but little in the way of quantitive information which
could help the systems designer. Hence, it fails in its major objective.
It is to some extent redeemed by the clarity of the writing indepen-

dent of the system of classification. Some of the descriptive pieces, as
for example those relating to data management, and its component
data description language and data manipulation language, are well
written but not detailed enough for anything except a first appraisal.
The main use of the book may be as a check-list of systems com-
ponents for information systems designers.

F. F. LAND (London)

376 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/17/4/371/443923 by U
.S. D

epartm
ent of Justice user on 17 August 2022

