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Abstract

A numerical investigation of the aeroacoustic characteristics of the flow past a circular cylinder is presented for Reynolds

numbers in the range 2.67× 104 − 3.67× 105, which falls within the upper subcritical and critical regimes. This is

based on Computational Fluid Dynamics simulations using a Delayed Detached-Eddy Simulation (DDES) model for the

aerodynamics of the near-field, which feeds the equivalent source terms into the Ffowcs Williams-Hawkings equation for

far-field noise prediction. The accuracy of DDES in predicting unsteady flow quantities is assessed from an engineering

viewpoint through comparisons with experimental data. Good agreement is found for both the near-field flow quantities

and the far-field noise spectra. The aerodynamic and aeroacoustic characteristics are investigated from two aspects,

the effect of varying the Reynolds number and the sensitivity to the spanwise computational dimension. The results in

terms of the vortex shedding frequency, hydrodynamic forces and far-field noise levels only show small variations in the

subcritical range. However in the critical range, the vortex shedding frequency increases and the noise level decreases

considerably after allowing for the typical sixth power dependence. A spanwise length of 3D is found to be sufficient for

most Reynolds numbers in the critical range, but in the subcritical range, a longer spanwise length is needed and the

sound level may be under-predicted by up to around 4.5 dB by using 3D.
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Introduction

The aerodynamic noise due to flow over cylinders has

been studied extensively as it can represent wide range

of applications in many engineering fields. Flow over a

cylinder typically causes Aeolian tones, which were first

found by Strouhal and have been shown to be associated

with the vortex shedding phenomenon. The particular

interest of the present work is the noise radiated by the

components of a train pantograph, which can be modelled

as circular cylinders. The pantograph is one of the most

important aerodynamic noise sources on a high speed train

since it cannot be shielded by conventional noise barriers

(Thompson et al. 2015). There are many other applications,

notably aircraft landing gear.

The factors affecting the far-field pressure radiated by a

rigid circular cylinder can be illustrated from the following

equation for the mean-square pressure due to vortex shedding

Fujita (2010),

p2(r) =
ρ20U

6
∞St2pC

2
L,rmsLlc

16c20r
2

(1)

where ρ0 is the air density, c0 is the sound speed and r
is the distance between the noise source and the observer.

The cylinder has a span length L and diameter D, U∞ is

the freestream velocity and Stp is the normalized frequency,

or Strouhal number (= fD/U∞) at the peak, where f is

the vortex shedding frequency. lc is the spanwise correlation

length (usually normalized by D, lc = lcDD), and CL,rms is

the root mean square (rms) of the lift coefficient CL, which is

defined by CL = Flift

0.5ρU2
∞

DL
with Flift the lift force. Equation

(1) is derived from Curle’s equation (Curle 1955) and has

been used by Fujita (2010) and King and Pfizenmaier (2009)

among others for the prediction of noise from cylinders.

This equation neglects convective effects. It is valid when

the compact source condition and the far-field condition are

satisfied. A compact source means that the characteristic

length of the noise source is much smaller than the radiated

acoustic wavelength. For Aeolian tone radiation, which is

of interest in the current study, the characteristic length

is considered to be the correlation length of the pressure

fluctuations on the cylinder surface. The far-field condition

means that the distance between the noise source and the

observer is much larger than the acoustic wavelength.

In Equation (1), the parameters Stp, CL,rms and lc depend

on the Reynolds number (Re = U∞D/ν, where ν is the

kinematic viscosity). The variation of these parameters

is caused by the flow conditions, especially the location
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of the transition where flow changes from laminar to

turbulent. Zdravkovich (1997) defined a number of flow

regimes classified by the Reynolds number according to

the location of the transition. Of particular interest to the

current pantograph case are Reynolds numbers in the range,

Re = 2× 104 − 4× 105, which fall in the upper subcritical

and critical flow states. The onset of the critical flow state,

marked by a pronounced decrease in the drag coefficient

CD (where CD =
Fdrag

0.5ρU2
∞

DL
), mostly happens in the

range Re = 1× 105 − 3× 105. With different experimental

conditions, such as different surface roughness and inflow

turbulence levels, the value of critical Reynolds number can

vary significantly (Wieselsberger 1922; Fage and Warsap

1930; Delany and Sorensen 1953; Bearman 1969; Schewe

1983; Farell and Blessmann 1983). For example, Norberg

and Sunden (1987) have shown that this critical Reynolds

number is shifted from 2× 105 to 1× 105 when the inflow

turbulence level is increased from 0.1% and 1.4%. Other

experimental setups, such as wind tunnel blockage ratio,

ratio of cylinder length to diameter and end conditions, also

influence this Reynolds number.

For the subcritical flow state, the boundary layer remains

laminar until separation and the transition to turbulence

occurs in the separated shear layers (Zdravkovich 1997).

The values of CD, Stp and CL,rms are found to be more

or less insensitive to Re with CD ≈ 1.2 (Wieselsberger

1922; Fage and Warsap 1930; Roshko 1961; Cantwell

and Coles 1983), and Stp ≈ 0.2 (Delany and Sorensen

1953; Bearman 1969; Cantwell and Coles 1983). Breuer

(2000) and Kim (2006) performed Large Eddy Simulations

(LES) for a Reynolds number of 1.4× 105 and obtained

good agreement with measurements for CD and Stp.

The capabilities of the Detached Eddy Simulation (DES)

approach for revealing the significant flow features at

Re = 1.4× 105 were investigated by Travin et al. (2000)

who obtained an over-predicted vortex formation length,

and therefore an under-predicted drag coefficient. These

discrepancies with experiments are very likely due to the

dissipative upwind integration scheme adopted in their

method. Mockett et al. (2009) compared their DES results,

using a low-dissipative hybrid scheme of upwind and central

differencing, with Particle Image Velocimetry measurement

data and showed commendable agreement for both time-

averaged and unsteady quantities.

When increasing the Reynolds number to the critical

range, the transition to turbulence happens immediately after

the flow separation, which can disturb the separation and

delay the eddy formation. This leads to a sharp decrease

in CD and CL,rms, and an increase in Stp. Bearman (1969)

observed two major drops in CD with the first drop

accompanied by an intermediate asymmetric flow state in

which a laminar separation bubble consistently forms on one

side of the cylinder only. This asymmetric flow state was

earlier observed by Achenbach (1968) who suggested that it

might be caused by the test conditions since the flow in this

regime is rather sensitive to any small disturbances. When

the second drop happens, the flow recovers symmetry with

the separation bubble appearing on both sides. Regarding

the vortex shedding, a large scatter in Stp exists in the

measurements. Bearman (1969) reported a value of 0.32

when one bubble forms and 0.46 for two bubbles. These

results are consistent with the measured values of Schewe

(1983). Irregular shedding processes, characterised by broad

peaks in the spectrum of CL, were also found within this

range just before the appearance of the bubble (Schewe

1983). The sensitivity of the flow to the location of the

transition to turbulence makes this regime very challenging

for both experimental and numerical investigations. Only

limited numerical studies exist in this regime. Among these,

Roshko (1961) analysed the flow topology by using LES and

Cheng et al. (2017) provided an insight from a skin friction

perspective through LES. Commendable agreement with the

measurements has been obtained in these LES studies with

respect to the variations in CD and Stp.

The spanwise correlation is also one of the main factors

affecting vortex-induced sound generation. The knowledge

of the spanwise correlation is particularly important in

determining a sufficient spanwise computational dimension

in three-dimensional numerical simulations to capture the

dynamic features of the largest flow structures. The spanwise

correlation coefficients are not well studied in the literature.

In the measurements of West and Apelt (1997) for Re =
2.2× 104 − 1.3× 105, the correlation coefficients were

found to reduce to below 0.2 for a spanwise spacing of

8D, and the variations with Re were insignificant. Norberg

(2003) summarized a trend of lc/D versus Re based on a

collection of measured data, which showed that the spanwise

correlation length decreases from about 4D to 3.4D when

Re is increased from 3× 104 to 1× 105. Most numerical

simulations have used spanwise computational dimensions

of between 1D and πD (Breuer 2000; Kim 2006; Travin

et al. 2000; Mockett et al. 2009). Breuer (2000) performed

simulations with two spanwise domain lengths, 2D and πD,

and found only small changes in CD and Stp. Travin et al.

(2000) demonstrated that a length of 2D can provide fair

agreement with the experimental results of Cantwell and

Coles (1983). However, through numerical investigations

of spanwise correlation coefficients at Re = 1.66× 105,

Lockard et al. (2007) pointed out that only a span of 18D
was able to capture the complete decay in the correlation.

Regarding the noise radiated by circular cylinders, most

existing studies are for the Reynolds numbers below the

critical range. King and Pfizenmaier (2009) conducted

experimental investigations for Re = 4.4× 104 − 1.4×
105. As one free end was used in their measurements, it was

found that the length-to-diameter ratio should be greater than

25 to avoid its influence on the noise results. An experimental

study on vortex shedding noise characteristics of circular

cylinders can also be found in Latorre Iglesias et al. (2016),

who measured the peak Strouhal number, noise level and

directivity for Reynolds numbers up to 1.2× 105.

The information in the current literature on radiated

noise is rather limited for the critical Reynolds number

range. Fujita (2010) measured the Aeolian tone and surface

fluctuations along the cylinder span for Re = 2.5× 105 −
2× 106. A significant increase in Stp was found when

Re ≥ 3.2× 105, which was considered to be the beginning

of the critical flow regime. In addition, they demonstrated

much weakened spanwise correlations in the critical regime,

together with a dramatic reduction of about 18 dB in the peak

levels of the Aeolian tone.
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The sensitivity of the flow in the critical regime has

been widely pointed out in the literature. This increases the

difficulties in both experiments and numerical simulations,

and thus a large scatter appears in the results. LES

simulations of Rodrı́guez et al. (2015) and Cheng et al.

(2017) have shown the capabilities of representing the main

flow features in this regime. However, the LES approach

is too computationally costly to be used for engineering

applications in the present case. In spite of limitations

of DES, this approach has been shown to be practical

tool that can provide reasonable agreement at subcritical

Reynolds numbers (Travin et al. 2000; Mockett et al.

2009). Rather than attempting a detailed investigation of

physical mechanisms, which demands an approach that is

accurate enough to capture the transition to turbulence,

the current study aims to explore the feasibility of using

DES for noise prediction of cylinder flow in the upper

subcritical and critical regimes. Furthermore, as spanwise

correlation is important for noise prediction but only limited

information exists, the current study will investigate the

spanwise correlation for the relevant subcritical and critical

Reynolds numbers, analyse the influence of the spanwise

computational dimension, and provide an approximate

correction for noise results when a short spanwise dimension

is used.

The numerical methodology applied in this work

is introduced in Section 2 which also describes the

computational setup. A grid sensitivity study is presented

in Section 3. Results on the effect of the Reynolds

number are given in Section 4, where results are compared

with measurement data and analysed in terms of both

flow and noise characteristics. The effect of the spanwise

computational dimension on the sound level is assessed in

Section 5.

Numerical method

Computational methodology

Aerodynamic sound is generated by unsteady fluid motion,

which is governed by the continuity and momentum

equations, as given below, together with the energy equation.

∂ρ

∂t
+

∂ρui

∂xi

= 0, (2)

∂ρui

∂t
+

∂

∂xj

(ρuiuj + pδij − τij) = 0, (3)

where ρ is the density, τij is the viscous stress tensor, p is

the pressure, ui is the flow velocity component in the xi

direction. Here, the tensor summation convention is used,

and i, j = 1 ∼ 3 for the three coordinate directions.

Numerical methods need to be adopted to obtain solutions

to the Navier-Stokes equations. For the purpose of industrial

application, the Reynolds-Averaged Navier-Stokes (RANS)

method is often preferred, but it cannot predict flow

unsteadiness. LES can be used to resolve the large, energy-

containing eddies, but it requires significant computational

resources, especially for wall-bounded flow where very fine

cells are required. Therefore, hybrid unsteady RANS-LES

methods were developed to provide a remedy for both the

limited capability of RANS simulations and the relatively

high computational cost of LES simulations. Specifically,

the RANS model is applied in the boundary layer to save

computational cost whereas the LES model is enabled

away from the boundary layer to resolve the large scale

unsteadiness.

The most common hybrid RANS-LES method is DES,

which was first proposed by Spalart (2000) who applied

the Spalart-Allmaras (S-A) turbulence model for the RANS

region. The switching between RANS and LES is based on a

characteristic length scale,

d̃ = min{ d ; CDES∆ } (4)

where d is the distance to the wall, ∆ is a length scale

specified by ∆ = max{∆x; ∆y; ∆z} (where ∆x,∆y,∆z

are grid sizes in the x−, y−, z−direction, respectively)

and the constant CDES = 0.65 is calibrated for isotropic

turbulence. When close to the wall, d < CDES∆, the RANS

model is employed. Further away from the wall (d >
CDES∆), the LES mode is enabled. Although the DES

model has proved successful in simulating certain flows,

it still has some drawbacks. The criterion for the switch

from RANS to LES can lead to Modelled Stress Depletion

(Fröhlich and von Terzi 2008). This happens when the grid

size is small enough to activate the LES mode inside the

boundary layer but not fine enough to support accurate

LES content. In such a situation, the eddy viscosity, and

therefore the modelled Reynolds stress, drops below the

RANS level, but the mesh is not fine enough for LES to

create adequately resolved stresses to restore the balance.

This normally occurs when a user gradually refines the

grid to seek grid convergence. This drawback can lead to

unphysical outcomes, such as Grid Induced Separation. In

order to avoid this limitation, a Delayed DES (DDES) model

was proposed by Spalart et al. (2006) which is an improved

version of the DES model. For DDES, a function fd was

added to define the length scale,

d̃ = d− fd max{ 0 ; d− CDES∆ } (5)

where

fd = 1− tanh[(8rd)
3] and rd =

νt + ν
√
ui,jui,jk2d2

(6)

in which ν is the kinematic viscosity, νt is the turbulent eddy

viscosity, ui,j is the velocity gradient component for ui in

the jth direction, k is the von Karman constant, and d is

the distance to the wall. The value of rd equals 1 inside the

boundary layer, and falls gradually to 0 towards the edge

of the boundary layer. With the introduction of the delaying

function fd, it is ensured that the attached boundary layer is

solved in RANS mode.

After obtaining the unsteady flow from CFD simulations,

the flow information can be used as input to calculate the

far-field noise from the following Ffowcs Williams and

Hawkings (FW-H) equation (Williams and Hawkings 1969).

∂2ρ̄′

∂t2
− c20▽

2ρ̄′ =
∂

∂xi∂xj

[TijH(f)]

− ∂

∂xi

[Fiδ(f)] +
∂

∂t
[Qδ(f)] (7)
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where δ(f) is the Dirac delta function, and H(f) is

the Heaviside function. H(f) = 0 inside the integral

surface (f < 0) and H(f) = 1 elsewhere (f ≥ 0). ρ̄′ is a

‘windowed’ variable, which is given by ρ(x, t) outside the

surface and is constant and equal to ρ0 inside the surface,

On the right hand side of Equation (7), the first term,

Tij = ρuiuj + (p− c20ρ
′)− τij , is the quadrupole source

term which normally results from non-linear aerodynamic

phenomena such as non-linear wave propagation, shocks,

vorticity and turbulence in the flow field. The second term,

Fi = Pni − τijnj + ρui(un − vn), is the dipole source

term which is generated by the unsteady forces acting on the

fluid from the object. The third term, Q = ρ0vn + ρ(un −
vn), is the monopole source term which represents the noise

generated by unsteady mass flux through the surface. un is

the fluid velocity component normal to the FW-H integral

surface defined by f = 0, vn is the normal velocity of the

surface.

In the present study, since the interest is in low subsonic

flow (M < 0.3), the influence of compressibility is small,

and the Navier-Stokes equations are solved in incompressible

form. The contribution of the quadrupole sources is not

considered since it is much less significant compared with

other contributions for these low Mach numbers. The FW-

H integral surface is chosen as the cylinder surface. Lockard

et al. (2007) have used the FW-H equation to predict noise

radiated from circular cylinders, and found that there were

only minor differences between the results of using on-

surface and off-surface integration surfaces for a Mach

number of 0.166. When the FW-H is evaluated over the

solid surface and vn = 0 the monopole term also vanishes.

Therefore only the dipole source due to wall pressure

fluctuations is considered.

Computational set-up

Computational domain and boundary conditions The

cylinder modelled has a diameter D of 0.05m. As shown

in Figure 1(a), the computational domain extends over 31D
in the x−direction, with the centre of the cylinder located

at 10.5D from the upstream boundary. In the y−direction,

the width is 21D with an equal distance of 10.5D from

the cylinder centre to the top and bottom. In the spanwise

direction, a length of 3D was chosen according to the

literature (Breuer 2000; Kim 2006; Travin et al. 2000;

Mockett et al. 2009). The extent to which the noise results

will be influenced by a short spanwise dimension will be

discussed in Section 5 where more simulations with longer

spanwise domain length will be considered.

The upstream boundary (x = −10.5D) is set to the

velocity inlet condition and the downstream boundary (x =
+20.5D) is set to the pressure outlet condition. The solid

surface of the cylinder is set to a non-slip wall. The top

and bottom boundaries are set to symmetry conditions. To

simulate cylinders with an infinite span, periodic boundary

conditions are imposed in the spanwise direction. Different

levels of turbulent viscosity ratio between 1 and 5 for the

S-A model were tested at the inlet and little difference

was found in the results. This is because the influence of

the inflow boundary condition diminishes rapidly, and the

viscosity ratio has little influence on flow near the cylinder.

The value of this ratio has been examined in the simulation

Figure 1. Grid configuration. (a) whole domain, (b) in the

vicinity of the cylinder.

results and found to be very low in the boundary layer until

flow separation. Travin et al. (2000) observed a turbulent

separation, not found in the current simulations, by setting

inflow and initial values of 5 for this ratio. The reason for

this inconsistency is unclear.

The simulated cases for various inflow speeds, corre-

sponding to different Reynolds numbers, are listed in Table

1, along with the number of cells in the x− y plane and

along the spanwise direction. The number of cells around

the cylinder surface (Ns) is also given. This is chosen based

on the principles obtained from a grid sensitivity study

that will be discussed later in Section 3. This table also

contains the non-dimensional time step ∆tU∞/D used for

the simulations. The number of cells increases to maintain

the mesh quality for higher Reynolds numbers, e.g. the same

maximum aspect ratios (which appears in the first layer cell

adjacent to the cylinder surface). In this work, the S-A model

is adopted in DDES for flow within the boundary layer, with

a very fine wall-normal spacing near the wall, y+1 ≤ 1. y+1 is

a non-dimensional wall distance, y+1 = uτy1/ν where uτ is

the friction velocity at wall, ν is the kinematic viscosity of

the fluid and y1 is the height of the first layer cell adjacent

to the cylinder surface. A structured mesh is generated for

all the cases. The grids are stretched with a growth ratio

of 1.05 near the cylinder and 1.1 further away. The grids

are refined up to 5D downstream of the cylinder centre to

Prepared using sagej.cls
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Table 1. Computational parameters

U∞ [m/s] Re Grid Ns ∆tU∞/D

8 2.67× 104 4119× 42 46 0.008
15 5× 104 7412× 66 75 0.0075
22 7.33× 104 11359× 86 98 0.006
30 1× 105 14586× 115 124 0.009
35 1.17× 105 14586× 115 124 0.0085
45 1.5× 105 17575× 135 140 0.009
60 2× 105 26623× 165 170 0.0095
110 3.67× 105 58905× 291 320 0.005

provide a good resolution of the unsteady flow in the wake,

as shown in Figure 1. The unsteady flow simulation is carried

out in OpenFOAM 2.3.0, while the aerodynamic noise is

predicted in FLUENT with input of the flow information

on the cylinder surface after obtaining the surface pressure

fluctuations .

Grid sensitivity study

To ensure the validity of the calculations, the effects

on turbulence statistics of the spatial resolution, the

temporal resolution and different numerical schemes for

the convection terms have been investigated for Re = 1×
105 (U∞ = 30 m/s). At this Reynolds number, laminar

separation happens on the verge of transition which makes it

more grid-sensitive compared with turbulent separation cases

(Travin et al. 2000). Travin et al. (2000) and Breuer (2000)

have found that mesh convergence is difficult to achieve

at Reynolds numbers in the upper subcritical regime. In

addition, the switch to the LES mode, which is activated after

massive separations in the present simulations, increases this

difficulty as the filter width depends on the grid resolution.

Therefore, in the present study, grid changes are viewed more

as tests of soundness and sensitivity than as a search for

convergence.

It is not realistic to perform the grid sensitivity study at all

Reynolds numbers as the present study involves simulations

of flow at 8 speeds, and for the highest Reynolds number, the

grid contains nearly 20 million cells; using 240 processors,

it still needs at least 4 weeks to finish one simulation.

Considering the computational cost and the large amount

of work, the Reynolds number chosen as the reference case

to check the grid sensitivity was located in the middle of

the range considered, at the upper end of the subcritical

Reynolds number range. The meshes generated for other

Reynolds numbers (see Table 1) follow the guidelines

obtained after the grid sensitivity study in this section.

Table 2 lists all the cases run for the grid sensitivity

study. ARs and ARz represent the aspect ratios in the first

boundary layer cell of the circumferential and spanwise

size to the wall-normal size respectively. These are also

the maximum aspect ratios for the whole domain since

∆y here is y1 which is the smallest grid size in the wall-

normal direction. The dimensionless time step (∆tU∞/D)

of 0.009 corresponds to a physical time step of 1.5×
10−5 s, and ensures that the maximum Courant-Friedrichs-

Lewy (CFL) number is less than 2. The CFL number is

defined as: CFL = ∆tU∞/∆x, where ∆x is the smallest cell

size in the streamwise direction. Although a second-order

implicit scheme is used for the time integration, which can

provide stable solutions for much higher CFL numbers, an

appropriate time step should still be determined to resolve the

physics of the flow and retain the computational efficiency.

The pressure-velocity coupling term is modelled by the

PIMPLE algorithm, which combines the SIMPLE and PISO

algorithms (Versteeg and Malalasekera 2007).

The influences of two discrezation schemes, second-order

upwind (2nd order UP) and Limited Linear, are investigated

for the convection term in Case 1 and Case 2. Cases 3

and 4 check the temporal resolution and the spanwise grid

resolution respectively on the basis of Case 2. In Cases 2, 5

and 6, both spatial and temporal resolutions are considered.

The grid was refined by a factor of
√
2 in both x− and z−

directions and the time step was reduced to maintain the

same maximum CFL. This refinement strategy is the same as

considered by Travin et al. (2000) where the grid is refined in

all directions simultaneously, instead of one at a time. Case

7 includes a further refinement of the wake region on the

basis of Case 5. Based on Case 7, the temporal resolution

and the spanwise grid resolution are examined in Cases 8

and 9, respectively.

Results are reported in Table 3 in terms of the rms

lift coefficient, CL,rms, mean drag coefficient CD, peak

Strouhal number Stp, and base pressure coefficient Cpb

(pressure coefficient at the back of the cylinder). The

pressure coefficient, Cp, is defined as, Cp = p−p∞

0.5ρU2
∞

with p

the pressure on the cylinder surfaces, and p∞ the reference

pressure chosen as the pressure at the inlet. θsep is the

separation angle, estimated based on where the skin friction

crosses zero. Lr is the recirculation length from the back

of the cylinder to the zero-mean-velocity point on the

centreline, and is normalized by D. Experimental results

from Cantwell and Coles (1983), LES results from Breuer

(2000) and DES results from Travin et al. (2000) all at Re =
1.5× 105 are given for comparison. In Breuer’s LES results,

Case B1 is the refined mesh based on Case A1, but the results

from Case A1 give a better agreement with experiments.

Temporal convergence is achieved after an initial time

duration of 0.2 s as the values of CL,rms and CD do not

change with longer sampling time. The final statistics were

gathered from 0.25 s to 1.0 s, corresponding to 450 non-

dimensional time units (t∗ = tU∞/D), which is sufficient

to obtain a representative sample of 90 shedding cycles

(for Stp = 0.2). Table 3 shows a strong correlation among

Lr, −Cpb, CD and CL,rms. A shortened recirculation length

Lr corresponds to higher −Cpb, CD and CL,rms. This is

consistent with the findings of Travin et al. (2000).

Prepared using sagej.cls
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Table 2. Numerical resolutions and schemes for grid sensitivity study

Cases Grid ARs ARz ∆tU∞/D Scheme

1 10926× 81 175 200 0.009 2nd order UP

2 10926× 81 175 200 0.009 Limited linear

3 10926× 81 175 200 0.0045 Limited linear

4 10926× 151 175 100 0.009 Limited linear

5 13050× 115 135 140 0.009 Limited linear

6 16950× 151 100 100 0.0045 Limited linear

7 14586× 115 135 140 0.009 Limited linear

8 14586× 115 135 140 0.0045 Limited linear

9 14586× 151 135 100 0.009 Limited linear

Table 3. Summary of the global flow parameters from the grid sensitivity study

Cases CD Cl,rms Stp θsep(
◦) −Cpb Lr/D

1 0.91 0.25 0.214 81 0.72 1.1

2 1.07 0.43 0.2 82 0.82 0.9

3 1 0.37 0.2 82 0.78 0.95

4 1.17 0.68 0.183 85 0.98 0.72

5 1.19 0.65 0.19 83 1 0.78

6 1.35 1.12 0.183 90 1.25 0.4

7 1.25 0.73 0.19 84 1.1 0.6

8 1.18 0.68 0.19 84 0.9 0.75

9 1.25 0.75 0.19 87 1 0.5

Exp Cantwell and Coles (1983) 1.24 - 0.18 77 1.21 0.5-0.6

LES Breuer (2000) (Case A1) 1.24 - 0.204 96 1.40 0.57

LES Breuer (2000) (Case B1) 1.45 - 0.204 95 1.76 0.34

DES Travin et al. (2000) 1.08 0.29 0.21 77 1.04 1.1

Comparing Case 1 and Case 2, it can be seen that

the 2nd order upwind scheme (used in Case 1) gives an

excessive recirculation length and under-predicted values

of −Cpb, CD and CL,rms as a consequence of significant

numerical dissipation due to the upwind nature of the

scheme. These results are improved with the Limited Linear

scheme (used for all other cases). This is one of the

total variation diminishing schemes, which combine the

upwind and centred schemes to minimize diffusion and

retain stability (Versteeg and Malalasekera 2007). With

improved temporal resolution (Case 3), both CD and CL,rms

are reduced, especially CL,rms for which a difference of 14%

is observed. However, as the spatial resolutions are coarse

in Case 2 and 3, it is better to draw conclusions about the

temporal resolution based on an improved spatial resolution,

which is investigated further for Case 7 below. From Case

2 to Case 5, a shortened recirculation length is predicted,

thus giving higher CD and CL,rms. The results from the finer

grid of Case 5 give a better agreement with the experiments.

However, for Case 6, although the finest grid and time step

are used, the results move away from the experimental ones.

It should be noted that for Case 6, early activation of the LES

mode inside the boundary layer was found (not presented

here) even though it is not common for the DDES model,

which may be a reason for the unexpected prediction of all

parameters.

The mesh which gives the best agreement with the

experimental data is Case 7 in which the wake region of Case

5 is further refined. Both CD and CL,rms reduce slightly when

the non-dimensional time step is decreased from 0.009 to

0.0045, in Case 8, but the differences are smaller than those

between Cases 2 and 3. In comparison to the mean values,

the rms values are much more sensitive to the numerical

resolution. Finally, improving the spanwise resolution on the

basis of Case 7 leads to only a 1.6% increase in CD and a 4%

change in CL,rms, as can be seen in Case 9.

More detailed comparisons in terms of the mean surface

quantities and the wake region statistics are given in Figures

2 and 3. Figure 2(a) shows the the distribution of the

mean pressure coefficient around the cylinder, while the skin

friction along the cylinder surface, scaled by
√
Re, is given

in Figure 2(b). The skin friction coefficient, Cf , is defined as

Cf =
τw

0.5ρU2
∞

, with the wall shear stress, τw = µ
(

∂u
∂y

)

y=0

,

where µ is the dynamic viscosity, u is the flow velocity

parallel to the wall and y is the distance normal to the

wall. (
∂u

∂y
)y=0 = 0 represents the separation point. Hence,

the point where Cf first crosses the x−axis is the separation

point, and where it returns to positive values marks flow re-

attachment.

Figure 2(a) shows that as the grid is refined from Case 2

to Case 7, the base pressure coefficient (i.e. for θ = 180◦)

becomes closer to the measurement data. The base pressure

can be an indicator for the behaviour of CD, which has

been found to agree well with the measurement for Case 7

(see Table 2). Furthermore, the minimum pressures from the

current simulations are all slightly lower than that from the

measurement, but higher than the LES results of Kim (2006).

With refinements in the grid, the minimum pressure departs

further away from the measurement. As mentioned above,

grid refinements do not always lead to better agreement. In

addition, the location of the minimum pressure occurs further

downstream for the current simulations, which may account
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Figure 2. (a) Mean pressure coefficient along the cylinder

surface. ×, Exp. Re = 1.4× 10
5 (Cantwell and Coles 1983); ◦,

LES. Re = 1.4× 10
5 (Kim 2006). (b) Mean skin-friction

coefficient scaled by
√
Re. • Exp. Re = 1× 10

5 (Achenbach

1968). – –, Case 2; –.–, Case 5; —, Case 7.

for the delayed flow separations, as shown in Figure 2(b).

A separation angle of θ = 84◦ is predicted in Case 7 which

is higher than the measured value of 77◦. The maximum

of Cf from Case 7 is lower than the experiment, with a

difference of 6%. At the rear of the cylinder, Cf crosses the

x−axis again and a region between θ = 120◦ − 147◦ exists

with small positive Cf in the current simulation although not

in the experiment. This represents a small counter-rotating

vortex due to the reattachment of the backflow. This positive

Cf region was also predicted by Travin et al. (2000) but in a

slightly different range, θ = 115◦ − 140◦.

Figure 3(a) shows the profile of the mean streamwise

velocity, Ux, along the centreline in the wake of the cylinder.

Figure 3(b) shows the normalized Reynolds stress, u′v′/U2
∞,

at x/D = 1 which is 0.5D away from the back of the

cylinder. It can be seen in Figure 3(a) that refining the

grid leads to a reduced recirculation length. The finest grid,

Case 7, shows excellent agreement with the LES A1 results

of Breuer (2000) for x/D ≤ 2.5. For x/D > 2.5, the LES

results are generally lower than both the experiment and

the current simulations. Although the minimum value of

Ux and the recirculation length from Case 7 are slightly

overpredicted compared with the experiment, the differences

are small. A correct prediction for the recirculation length

is important as it can reflect the primary vortex shedding

process. It has been seen that a smaller Lr can lead to

increases in both CD and CL,rms. Normally, the Reynolds

stresses in the wake region are not easy to predict.

Nevertheless, a good agreement is obtained between Case 7

and the measurement, as shown in Figure 3(b), although the

magnitudes of the peaks are slightly overpredicted. Notable

differences with the measurement, e.g. the shifted peak

location and the inflections between the peaks, are found for

Case 2 and 5 and can be attributed to the overprediction of

the recirculation length.
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Figure 3. (a) Mean streamwise velocity along the centreline.

(b) Mean Reynolds shear stresses at x/D = 1. ×, Exp.

Re = 1.4× 10
5 (Cantwell and Coles 1983); ◦, LES A1.

Re = 1.4× 10
5 (Breuer 2000); △, LES B1. Re = 1.4× 10

5

(Breuer 2000); – –, Case 2; –.–, Case 5; —, Case 7.

These comparisons suggest that DDES can provide

fairly reliable predictions of the time-averaged and rms

quantities. Since Case 7 gives the best agreement with both

experimental and previous LES results in terms of CD,

Stp and CL,rms, it is therefore used for Re = 1× 105 in

the remainder of the study, see Table 1. For other speeds

the meshes are generated according to the same principles
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to provide similar resolution as Case 7. For example, the

maximum cell aspect ratios in the first boundary layer remain

nearly unchanged.

Reynolds number effect

Having established a suitable meshing strategy, this section

studies the effect of varying the Reynolds number on

aerodynamic and aeroacoustic characteristics of flow over a

cylinder.

Aerodynamic characteristics

The results obtained for different Reynolds numbers are

plotted in Figure 4 in terms of the drag coefficient, the

peak Strouhal number and the rms value of lift coefficient.

Available experimental and LES data from various sources

are plotted for comparison. From the present simulations it

can be seen that for Re ≤ 1× 105, CD, Stp and CL,rms are

more or less independent of Re with CD = 1.0− 1.2, Stp =
0.19− 0.20 and CL,rms = 0.6− 0.7. These values show

commendable agreement with the measurements.

As the Reynolds number is increased above 1× 105,

a sharp decrease occurs in CD. This is often called the

drag crisis, which marks the onset of the critical flow

state. The Reynolds number here is called the critical

Reynolds number which can vary significantly with different

test conditions, such as different inflow turbulence levels

or surface roughness (Norberg and Sunden 1987; Fage

and Warsap 1930; Achenbach and Heinecke 1981). This

critical Reynolds number is also extremely sensitive to

numerical techniques (Rodrı́guez et al. 2015; Cheng et al.

2017). A small numerical perturbation introduced because

of grid quality, numerical scheme or numerical model

may be sufficient to trip the flow transition, which leads

to a considerable scatter in the results in the literature.

Nevertheless, on the whole, the value predicted by the current

simulations, Re = 1× 105, is within the acceptable range of

the measurements and the LES simulations, and the trends

in CD and CL,rms in the critical range are well predicted by

the current simulations. As can be seen, shape decrease from

1.25 at Re = 1× 105 to 0.54 at Re = 3.67× 105 occurs

for CD, which is consistent with the measured data. CL,rms

shows a similar trend, falling from 0.73 to a minimum of

0.058. The information in the literature on CL,rms is rather

limited for the critical range, and a large scatter exists. The

rms value is normally difficult to predict, but DDES obtains

a reasonable agreement with the measured data. As CL,rms is

an integration of the surface pressure fluctuations associated

with the lift dipole, it is expected that the noise level will

be related to this and will reduce greatly in the critical flow

regime.

The significant changes in CD and CL,rms in the critical

flow regime can be associated with the length of the eddy

formation region, Lr, which is defined as the distance

from the back of the cylinder to the zero-mean-velocity

point on the centreline. The variation in Lr/D with Re
is plotted in Figure 5 which also includes the variations

in the minimum pressure (−Cpmin), the separation position

(θsep) and base pressure (−Cpb). The separation angle results

should be treated with some care as the separation angle is

sensitive to the numerical resolution, as shown in Section 3.
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10-1

100

C
L,

rm
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Figure 4. Variations of CD (a) and CL,rms (b) with Reynolds

number. �, present simulations; +, LES simulations of

Rodrı́guez et al. (2015); N, LES simulations of Cheng et al.

(2017). (a) ⋄, Achenbach (1968); ◦, Delany and Sorensen

(1953); △, Schewe (1983); ∗, Cantwell and Coles (1983); –.–,

Wieselsberger (1922); – –, Fage and Warsap (1930). (b) ×,

Moeller and Leehey (1984); ⊲, Keefe (1962); ∗, Szepessy and

Bearman (1993); N, West and Apelt (1997); —, Fung (2012); –

–, Loiseau and Szechenyi (1974).

Nevertheless, the same criteria for mesh generation are used

at different speeds, which allows comparison between the

cases. The resolutions of θ due to the mesh size around the

cylinder, ∆θ, for different speeds are listed in Table 4.

From Figure 5(a) and 5(b), it can be seen that −Cpmin

and θsep vary in a similar manner. This is due to the fact

that flow separation is closely related to the region of

favourable pressure gradient (∂P/∂x > 0) in the front part

of the cylinder which enables the flow to accelerate. An

increased favourable pressure gradient region, and thus a

lower minimum pressure (Cpmin), will lead to a delayed

flow separation. For Re ≤ 105, −Cpb and θsep remain almost

constant, whereas for Re > 1.17× 105, −Cpmin increases

rapidly, which results in a larger region of favourable

pressure gradient, and thus a delayed flow separation. High

correlation is also found between −Cpb and Lr. When the

flow enters the critical state, the eddy formation length is
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Table 4. Resolutions of θ in mesh around cylinder.

U∞ [m/s] 8 15 22 30 35 45 60 110

∆θ [◦] 8.0 4.9 3.7 2.9 2.9 2.6 2.1 1.1
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Figure 5. Variations of (a) −Cpmin, (b) θsep, (c) −Cpb and (d) Lr/D with Reynolds number.

significantly extended and the low pressure region moves

downstream away from the base of the cylinder. This results

in a decrease in −Cpb and weakens the alternate pressure

fluctuations on the cylinder surface; therefore CL,rms reduces

as well.

Aeroacoustic results

Time histories of flow solutions from CFD are fed to a FW-

H solver for far-field noise prediction, with the integration

surface placed on the cylinder. 72 far-field receivers are

uniformly distributed on a plane parallel to the incoming flow

with a radius R = 100D = 5 m from the cylinder surface.

θ = 90◦ (θ is measured clockwise from the leading edge of

the cylinder) is directly above the cylinder. The predicted far-

field pressure time history is used to calculate its spectrum.

The power spectral density (PSD) is computed based on

Welch’s method using a Hanning window with an overlap

of 50% following Hu et al. (2006).

Figure 6 compares the 1/6 octave band noise spectra

from the current simulations at the Reynolds numbers

in the subcritical range (Re = 2.67× 104 − 1× 105) with

the measurement of Latorre Iglesias et al. (2016). The

measurement was carried out in an open jet anechoic wind

tunnel for Re = 2.59× 104 (subcritical). The receiver is

located at θ = 90◦ where the radiated noise is mainly

influenced by the lift fluctuations. In the simulations, the

surface pressure, used as input for the noise calculation,

was sampled over 60 shedding cycles after the flow had

statistically converged. The measurement data were scaled

by U∞ (to the speed of 30 m/s), D, L, and r based on

Equation (1) to allow comparison with the simulated results.

The simulations at different speeds are also normalized to

U∞ = 30 m/s. The narrow band spectra were then converted

to 1/6 octave bands, which are chosen to provide sufficient

details of the spectral shape while allowing the spectra to be

easily distinguishable. Finally the results are plotted against

Strouhal number, St.

As shown in Figure 6, the spectra are characterised by

a dominant peak which is associated with the fundamental

vortex shedding. The normalized frequency of this primary
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Figure 6. Comparison of the normalized 1/6 octave band noise

spectra between current simulations and the measurements by

Latorre Iglesias et al (Re = 2.59× 10
4).

peak obtained from the simulations varies slightly with

the Reynolds number and deviates slightly from the

measurement. However, the deviations are caused by the

different central frequencies of the 1/6 octave bands for

these cases when expressed in terms of St. From the narrow

band spectra (not shown here), Stp = 0.183 is found for the

measurement and values in the range 0.19− 0.20 for the

simulations.

Good agreement is found for the level of the primary

peak between the simulation at Re = 5× 104 and the

measurement. Compared with other Reynolds numbers, the

spectrum at Re = 5× 104 has a broader primary peak with

a slightly lower noise level. This implies that the flow at

this Reynolds number is less coherent in vortex shedding

and more three-dimensional, which has been confirmed by

investigation of the correlation coefficient (see Section 5

below). The deviation in the normalized spectral peak level

between different Reynolds numbers is up to 4.5 dB. In

addition to the primary peak, a harmonic peak at three times

the frequency of the primary peak is found for both the

measurement and the simulations at three of the speeds, but

the peak has higher levels in the simulations. Differences

with the measurement are also observed at frequencies below

the primary peak. The predicted levels are generally lower

except at Re = 5× 104. It is worth pointing out that in the

measurement, free ends of the cylinder were used which

could cause some addition noise that can influence the

overall spectrum.

In order to assess the effect of the Reynolds number on

the noise in the critical flow regime, the 1/6 octave band

noise spectra for Re ≥ 1× 105 are presented in Figure 7.

For easy comparison the noise level has been corrected to

that at Re = 1× 105 based on the speed factor of U6 in

Equation (1). As can be seen, the frequency of the primary

peak gradually increases at higher Reynolds numbers and no

second harmonic peak is found at these Reynolds numbers

in the critical regime. The increase in Stp in the critical

region was also pointed out by Fujita (2010) who carried out

measurements in a low-noise wind tunnel with end plates

applied. In his measurements, the value of Stp was found

to increase from around 0.2 in the subcritical range to a

maximum of 0.45 at 7.4× 105. Figure 7 shows a significant

drop in level occurs between Re = 1× 105 and 1.17× 105

at the primary peak and at high frequencies, but the drop is

not as large at low frequencies. Above Re = 1.17× 105, the

noise level still decreases with increasing Re but to a smaller

extent. The maximum difference in the spectral peak level

between the various cases is about 17 dB, which indicates

the great effect of the Reynolds number on the noise level

in the critical flow regime when the velocity factor (U6) is

taken out.
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Figure 7. Normalized 1/6 octave band noise spectrum for

different Reynolds numbers in the critical flow regime.

The variation in the peak level of the 1/6 octave band

spectra and the overall sound pressure level (OASPL) with

Reynolds number is presented in Figure 8. Here the OASPL

is determined over the normalized frequency range St =
0.05− 2. The level difference ∆SPL is defined here as,

∆SPL = SPLU − 60 log10(U)− SPLaverage (8)

where SPLaverage is obtained by averaging the noise levels

for subcritical Reynolds numbers, after removing the speed

dependence, by subtracting a factor of 60 log10 U . ∆SPL is

only expected to be related to Stp, CL,rms and lc, which are

dependent on the Reynolds number. As can be seen, similar

trends are obtained for the 1/6 octave peak SPL and the

OASPL as a function of Re and the reductions in them in

the critical Reynolds number range are nearly equivalent. In

Figure 8, the measured results from Fujita (2010) are also

presented. In these measurements, the onset of the critical

regime is at Re = 3× 105. To allow for comparison, the

results are plotted against Re/Recrit. The results for ∆SPL

show a similar behaviour to the plot of CL,rms against the

Reynolds number (Figure 4(b)). The noise levels are found

to vary within 3 dB in the subcritical Reynolds number

range, while in the critical range, a significant Reynolds

number effect is found. A sharp decrease of 12 dB occurs

immediately above the critical Reynolds number 1× 105.

After this, ∆SPL decreases more slowly and the level is

almost unchanged from Re = 2× 105 to Re = 3.67× 105.

The maximum decrease in the critical regime is about 17.5

dB in the present simulations. This shows a good agreement

with the change in the noise level of 18.5 dB in the
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measurements although the measured result appears to level

off more quickly.
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Figure 8. Variations of ∆SPL with Reynolds number. ◦, 1/6

octave peak SPLs from present simulations; �, from present

simulations Recrit = 1× 10
5; �, from experiments of Fujita

(2010) Recrit = 3× 10
5.

Figure 9 shows the far-field noise directivity for different

Reynolds numbers. Again the flow speed effect has been

subtracted. As can be seen, a dipole noise pattern is predicted

for all the presented Reynolds numbers with the maximum

located at θ = 90◦, 270◦, which is mostly influenced by

the lift fluctuation, and the minimum at θ = 0◦, 180◦,

determined by the drag fluctuation. The extent of the noise

reduction in the critical range is similar for the lift and

drag components. The differences between the maxima and

the minima are generally around 16 dB in the subcritical

Reynolds number range except at Re = 1× 105, where a

much lower noise level appears at θ = 0◦ and 180◦, resulting

in a higher difference of about 26 dB. In the critical Reynolds

number range a difference of about 18 dB is found, which is

similar to that found in the subcritical range.

Effect of the spanwise domain length

As discussed in Section 2.2.1, in the current simulations, a

spanwise length of 3D has been used for the simulations at

Reynolds numbers, Re = 2.67× 104 − 3.67× 105. In this

section the effect of the spanwise domain size on noise

results is investigated. In order to clarify the extent to which

the spanwise flow features are captured by the simulations,

correlations along the spanwise direction for all Reynolds

numbers are calculated and presented in Figure 10. The

correlation coefficient for pressure is given as,

Rab =
papb

prms,aprms,b

(9)

Here papb indicates the product of fluctuating pressure at

two points a and b separated by ∆z along the span, which

is averaged over the span and time. Since periodic boundary

conditions are employed in the computations, the maximum

separation that can be considered is half of the span length.

Figures 10(a) and 10(b) show the results for the surface

points at θ = 90◦, which is close to the mean flow separation

Figure 9. Far-field noise directivity for different Reynolds

number normalised to 30 m/s (Re = 1× 10
5). (a) Subcritical

flow regime; (b) critical flow regime.

point (θ = 85◦ − 90◦), while Figures 10(c) and 10(d) are at

θ = 120◦ which is behind the separation point. As can be

seen from Figure 10(a), for subcritical Reynolds numbers,

the correlation coefficients at θ = 90◦ hardly drop with

increasing separation distance; there is an exception at Re =
5× 104, where a relatively low value of 0.45 is found

at the maximum separation distance. A lower correlation

coefficient indicates enhanced three-dimensionality of the

flow. This explains the lower and broader peak that was

found at Re = 5× 104 for the noise spectrum (see Figure 6).

As Re is increased to the critical range, the surface pressure

becomes much less correlated, which indicates a more three-

dimensional flow. Figure 10(b) shows that the correlation

coefficient at the maximum separation distance reduces from

around 0.8 in the subcritical range to 0.4 at Re = 1.5× 105,

and thereafter to less than 0.2 at Re = 2× 105 and 3.65×
105. Smaller correlation lengths are therefore expected for

these critical Reynolds numbers.

The correlation coefficients decrease more rapidly at θ =
120◦ for both subcritical and critical Reynolds numbers,

as can be seen in Figure 10(c) and 10(d). This is due
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Figure 10. Correlation coefficient as a function of separation distance for different Reynolds numbers at different surface locations.

(a) θ = 90
◦, subcritical Re; (b) θ = 90

◦, critical Re; (c) θ = 120
◦, subcritical Re; (d) θ = 120

◦, critical Re.

to the fact that the spanwise structures are well-correlated

before or just after the flow separation, e.g. at θ = 90◦,

whereas these structures break down into smaller scales as

they develop, resulting in weaker coherence at θ = 120◦.

Especially for Reynolds numbers in the critical range, the

minimum correlation coefficients reduce to generally less

than 0.2 at this location. This suggests that a span length of

3D is sufficient to represent the flow features in the critical

range.

Although it has been found by other researchers that there

are only small differences in aerodynamic results with span

lengths up to 2πD, and most work has used span lengths

between 1D and πD (Breuer 2000; Travin et al. 2000; Kim

2006; Mockett et al. 2009), it is still necessary to clarify to

what extent the noise level will be affected by changes in

the spanwise length in the model. The spanwise correlation

length is important for noise prediction as indicated in

Equation (1), so the spanwise domain size has to be sufficient

to include several correlated segments.

Additional simulations with longer spanwise dimensions

are therefore carried out. It has been found from Figure

10 that the minimum correlation coefficient did not drop

much for subcritical Reynolds numbers, but reduced to

lower values for most of the Reynolds numbers in the

critical regime. Therefore, the study here focuses mainly

on subcritical Reynolds numbers. Figure 11 shows the

variations in the correlation coefficient obtained with

different spanwise lengths for different Reynolds numbers.

The spanwise grid resolution is kept the same. The results

are presented for θ = 90◦ where the coefficient drops

slowest. As can be seen, for all these Reynolds numbers,

the minimum correlation coefficient decreases gradually

with increasing spanwise length. For Re = 2.67× 104, a

sufficiently low value below 0.2 at the maximum separation

distance is obtained when the spanwise length is increased

to 24D. A correlation length of 3.6D was then calculated by

integrating the coefficient over half of the spanwise length,

which is consistent with the value of about 4D indicated

by Norberg (2003) at similar Reynolds numbers. When

the Reynolds number is increased (see Figure 11(b) and

11(c)), the spanwise length required to make the correlation

coefficient reduce to low values becomes shorter; this is 6D
for Re = 5× 104 and 9D for 1× 105. In addition, negative

values of correlation coefficient are found for Re = 1×
105 with L = 18D, which may be due to the insufficient

sampling time. The influence of the spanwise length on the
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Figure 11. Correlation coefficients as a function of the spanwise separation distance for different spanwise lengths. (a) U∞ = 8

m/s, Re = 2.67× 10
4; (b) U∞ = 15 m/s, Re = 5× 10

4; (b) U∞ = 30 m/s, Re = 1× 10
5; (b) U∞ = 45 m/s, Re = 1.5× 10

5.

correlation is also investigated for a Reynolds number in the

critical region, Re = 1.5× 105, as shown in Figure 11(d).

It seems that doubling the spanwise length to 6D hardly

changes the correlation in this case. Longer span lengths are

not considered for this Reynolds number.

Far-field noise is calculated in all cases with different

spanwise domain lengths. The peak Strouhal number is

found to be insensitive to the spanwise dimension. However,

the spectral level varies. Figure 12 shows the changes in

the far-field noise level, represented by OASPL, caused

by the spanwise length included in the model. ∆OASPL

is the difference in the level between different spanwise

lengths and a reference length Lref = 3D after applying

the length correction, 10 log10(L/Lref). It is shown that for

Re = 2.67× 104, the maximum variation when changing

the spanwise dimension is about 4.5 dB at L = 18D.

When further increasing it to L = 24D, the level is nearly

unchanged. For Re = 1× 105, the maximum variation is 2.6

dB at L = 12D, but when the length is further increased

to 18D, the level difference reduces to 1.5 dB. As this

corresponds to the critical Reynolds number, the rms lift

coefficient may be affected when varying the spanwise

length for this case. For Re = 5× 104 and 1.5× 105, shorter

spanwise lengths are sufficient to obtain converged data, with

variations of only 1.0 dB and 0.3 dB respectively when the

span is extended beyond L = 3D.

In the current research, a large number of cases have

been run. The computations would be unaffordable if a long

spanwise length was used to achieve sufficiently low values

of the correlation. Therefore the predictions have been based

on a span length of 3D while recognising that the sound

level may be under-predicted by up to around 4.5 dB for

Reynolds numbers in the subcritical regime. The variations

for Reynolds numbers in the critical region appear to be at

most 1.5 dB.

Conclusions

The aerodynamic noise from circular cylinders at Reynolds

numbers 2.67× 104 − 3.67× 105 have been investigated

by using a hybrid method of CFD analysis based on

DDES and the FW-H acoustic analogy. A grid sensitivity

study, carried out at Re = 1× 105, showed a reasonable

convergence although CL,rms was sensitive to the grid

refinement. In spite of the sensitivity, good agreement

was obtained with the measurements for both mean and
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spanwise length.

fluctuating flow quantities. The predicted noise spectra also

gave commendable agreement with measurements for the

peak frequency and the peak level.

The effect of varying the Reynolds number on the aerody-

namic and aeroacoustic characteristics was investigated. As

a compromise between the required accuracy and affordable

computational cost, DDES has been shown in the present

study to be a practical tool that can provide reasonable pre-

dictions for the time-averaged and rms quantities. The results

show a sharp decrease in CD and CL,rms accompanied by

an increase in Stp for the critical Reynolds numbers. These

changes are comparable to values from measurements. The

flow in the subcritical regime is found to be insensitive to

the Reynolds number and only small variations exist in the

noise level and the peak frequency after allowing for the

speed effect. Significant reductions in the noise levels of

up to 17 dB were found in the critical Reynolds number

range, corresponding to Re ≥ 1.17× 105 in the current

simulations. The amount of reduction is close to that reported

by Fujita (2010) of about 18.5 dB. The reductions can be

attributed to the much lengthened eddy formation region and

the enhanced three-dimensionality that have been observed

in the current simulations.

As the spanwise correlation length is important in

predicting the radiated noise, a sufficient computational

dimension is needed. A spanwise length of 3D was found to

be sufficient for most critical Reynolds numbers to allow the

correlation coefficient reduce to low values, whereas for most

subcritical Reynolds numbers, longer spanwise lengths were

necessary. Using a spanwise length of 3D the sound level

may be under-predicted by up to about 4 dB for subcritical

Reynolds numbers.
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