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Abstract 

Different human activities like combustion of fossil fuels, biomass burning, industrial 

and agricultural activities, emit a large amount of particulates into the atmosphere. As 

a consequence, the air we inhale contains significant amount of suspended particles, 

including organic and inorganic solids and liquids, as well as various microorganism, 

which are solely responsible for a number of pulmonary diseases. Developing a 

numerical model for transport and deposition of foreign particles in realistic lung 

geometry is very challenging due to the complex geometrical structure of the human 

lung. In this study, we have numerically investigated the airborne particle transport 

and its deposition in human lung surface. In order to obtain the appropriate results of 

particle transport and deposition in human lung, we have generated realistic lung 

geometry from the CT scan obtained from a local hospital. For a more accurate 

approach, we have also created a mucus layer inside the geometry, adjacent to the 

lung surface and added all apposite mucus layer properties to the wall surface. The 

Lagrangian particle tracking technique is employed by using ANSYS FLUENT 

solver to simulate the steady-state inspiratory flow. Various injection techniques have 

been introduced to release the foreign particles through the inlet of the geometry. In 

order to investigate the effects of particle size on deposition, numerical calculations 

are carried out for different sizes of particles ranging from mm  10to1 . The 

numerical results show that particle deposition pattern is completely dependent on its 

initial position and in case of realistic geometry; most of the particles are deposited on 

the rough wall surface of the lung geometry instead of carinal region.  

 

Keywords: Particle Transport, Particle Deposition, Realistic Lung Airway, Mucus 

Layer, Pollutant Particles. 

1.0 Introduction 

As a result of industrialization and human activities, especially in the developing 

countries, air pollution has significantly increased over the last and current century.  . 

Inhalation and exhalation, either by nose or mouth, are an essential part of the human 

body mechanisms. During the breathing process, we inhale pollutant particulates mix 

with air that can cause fatal disease. In the case of inhalation, our nasal cavities and 

oral airways act as a filter. Most of the inhaled micron particles basically deposit in 

the nasal cavities and oral region during the inhalation process due to inertial 

impaction and strong turbulent dispersion [Feng and Kleinstreuer (2014)]. The 
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remaining particle passes through the trachea and deposit in the bronchi and alveoli 

[Tena and Clarà (2012)].  

Inhalation and exhalation processes have attracted considerable attention to the 

researchers in recent years. Investigation the deposition pattern of inhaled particles 

in the human lung is very challenging due to the complex geometrical structure of the 

human lung [Kumar et al. (2009); Soni and Aliabadi (2013); Weibel (1963b)]. 

According to the Weibels’s book, most likely in 1731, Rev. Stephen Hales first 

studied the elasticity of the air in human lung and proposed a dimension for the 

surface of the human lung [Weibel (1963a)]. The most comprehensive and simple 

human lung geometry was defined by Weibel’s (1963). In case of modelling and 

simulation of particle transport and deposition in the human lung, Weibel’s [Weibel 

(1963b)] lung model is still being used due to its geometric simplicity. Some 

geometrical developments of the idealized lung model have been conducted to 

overcome its complexity [Finlay (2001); Horsfield et al. (1971); Raabe et al. (1976a); 

Raabe et al. (1976b)]. The most commonly used model for foreign particle movement 

and detention in the human respiratory tract is that distinguished by a regular and 

irregular bifurcation pattern [Nowak et al. (2003); Zhang and Kleinstreuer (2004)]. 

As the Weibel’s based human lung geometry model is not realistic. Therefore, in 

order to obtain the appropriate numerical results for particle transport and deposition, 

the CFD analysts now focus on realistic airway models [Ma and Lutchen (2006); Ma 

and Lutchen (2009); Wall and Rabczuk (2008)]. The anatomical based human airway 

models like Computerized Tomography (CT) scan or Magnetic Resonance Imaging 

(MRI) geometrical models are becoming more popular in the current literature.  

 

Inhaled particle deposition in the human lung is mainly caused by inertial impaction, 

Brownian diffusion, gravitational sedimentation and interception [Choi and Kim 

(2007)]. The airborne particle deposition in human respiratory tract is principally 

governed by its shape [Hofmann et al. (2009); Kasper (1982)] and size [Hofmann 

(2011)]. Submicron-particles, which are less than 0.5 µm are initially deposited in the 

human lung by Brownian diffusion [Hofmann (2011)], while larger particles are 

deposited by sedimentation and inertial impaction. Breathing pattern is also 

responsible for particle deposition in human airways. Due to the long residence time 

slow breathing patterns are more effective for sedimentation and Brownian diffusion, 

whereas impaction is favoured by fast breathing pattern[Hofmann (2011)]. [Zhang 

and Kleinstreuer (2002)] have investigated the air flow structure for nanoparticle in 

the upper airway. They have investigated the turbulent effect on the tracheobronchial 

area. Cebral and Summers (2004) have investigated the pressure and flow pattern for 

tracheal and central bronchial in anatomically realistic model and their investigation 

concluded that decreased pressure and increased shear stress in the stenosis part. 

Taherian et al. (2011) have performed the unsteady air flow simulation for a CT scan 

based realistic geometry and have shown the velocity distribution and variation of the 

vorticity in the lung. Farkas and Szöke (2013), first time created the mucus layer on 

their non-realistic geometry to simulate the particle deposition. However, they have 

considered a constant thickness of mucus for all generations which are not 

physiologically correct. From the above review, most of the above work has been 

conducted for non-realistic lung geometry. Moreover, none of them investigated the 

realistic injection properties. 

 

In the present study, we have developed a model for realistic particle transport and 

deposition in human lungs by creating lung geometry directly from the CT scan 
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image obtained from an adult healthy patient. We have also applied realistic injection 

properties to release particles from the inlet and studied the effect of particles’ sizes 

on the deposition.   

 

2. Geometry Generation 

 

In the present study, we have generated the realistic geometry of the human airway. 

There are several steps to generate the geometry from CT scan or MRI data. First, we 

have collected the CT image data from a radiologist from a local hospital and the data 

format is DiCom. The second step is to use AMIRA, the geometry generation 

commercial software to create the 3D geometry. Then, we have imported the 3D 

geometry into another software, GEOMAGIC for surface construction. Finally, 

SOLIDWORKS was used to create the mucus layer inside the geometry.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                      

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 1(a) CT scan data visualization, (b) Surface rendering and airway visualization, 

(c) 3D geometry of human lung, and (d) mucus layer of the geometry. 

 

Fig. 1(a) represents the visualization of CT scan data and Fig. 1(b) represents the lung 

airway geometry after clearing the raw materials from the geometry. Fig. 1(c) 

represents the 3D human lung geometry and Fig. 1(d) represents the geometry with 

the mucus layer. As we know the mucus layer thickness varies from generation to 

generation, thus we have generated a multi-thickness mucus layer on our geometry.    

(c) (d) 

(a) (b) 
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2. Numerical Methods 

 

The complete 3D geometry is imported in ANSYS 15.0 software for simulation 

purpose. The computational mesh was generated in ANSYS Workbench. A good 

quality unstructured mesh is generated for the geometry with some inflation layers to 

correctly capture the boundary layer. Dense mesh has been created on the bifurcation 

zone where higher velocity gradients are expected. The orthogonal quality of the 

mesh is calculated as 0.61 above the recommended 0.2 value [put ANSYS manual as 

reference]. We have generated an unstructured mesh with 1500000 nodes. The grid 

refinement test is also conducted to obtain the grid independency on numerical 

solution. The numerical solution of particle transport and deposition are carried out 

by Lagrangian particle tracking method. We have used the Lagrangian based Discrete 

Phase Model (DPM), where the air is treated as continuum phase and particle is 

treated as disperse phase. The continuum phase is governed by the Navier-Stokes 

equations and the disperse phase can exchange mass, momentum and energy with the 

continuum phase. In the DPM, the interaction with the continuous phase is 

considered. We have set the mucus layer properties with the density, 998.2 kg/m
3
 and 

the viscosity, 0.89 kg/ms. The pressure-velocity coupling and second order pressure 

spatial discretization have been used. The residual convergence criteria are set to 10
-

06
. Different injection properties have been used to release the particle from the inlet 

surface. The boundary conditions used in FLUENT to solve the particle transport and 

deposition are; the velocity inlet and pressure outlet. The velocity magnitude at inlet 

is considered as 1 m/s and the zero pressure at pressure outlet. A no slip condition is 

set at the wall. The discrete phase model conditions are used as trap as the boundary 

condition type. The boundary condition trap means as soon as the particle will touch 

the wall, it will capture at the wall. 

 

3. Results and Discussion 

3.1 Simulation without Mucus Layer 

In order to investigate the foreign particle transport and deposition, at first we have 

simulated the model without any mucus layer inside the geometry. The simulations 

are carried out for three different particles sizes, m1 , m5  and m10 . The effects of 

particle size on respiratory deposition have been obtained. According to the physics 

behind deposition, larger particle should deposit in the upper airway. Fig. 2(a) 

represents the particle deposition comparison for the three different particles’ sizes. 

One thousand and sixteen particles are released in this simulation and it is observed 

that in the case of m10 particles, 428 particles are deposited in the first generation 

and the rest of the particles have escaped from the simulations. Among the 428 

deposited particles, 159 particles are deposited within the first 100 iterations, which 

represents that most of the particles are deposited in the upper portion of the 

generation. In case of m5  particles, 358 particles are deposited among the 1016 

particles, which is less than m10 particles and the same scenario can be observed for 

the m1 particles. 
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Fig. 2(a): Particle deposition comparison for different sizes of particles, particle 

transport comparison for 2(b) m10 , 2(c) m5 and 2(d) m1 .  

 

Fig. 2(b) represent the particle transport scenario for m10 particles though the two 

daughter branches of the first generation. The diameter of the two daughter branches 

is different and the diameter of the zone 6 is much larger than zone 7. It will be 

almost 1.5 times larger than zone 7. An interesting scenario is that the branching 

pattern of the zone 7 is more vertical than zone 6. As the diameter of zone 6 is greater 

than zone 7, in general, most particles should escape through zone 6. However, 

realistically most of the particles have escaped through zone 7 despite its lower 

diameter. The reason for that is that zone 7 is much more vertical compared to zone 6. 

That is why, larger particle choose this way due to their larger size and inertia. Fig. 

2(c) and Fig. 2(d) exhibit the same scenario for particle transport through the two 

daughter branches.  

In order to get a clear idea about the inspiratory deposition pattern, the deposition 

scenarios for m10  particle are visualized. Fig. 3(a) represents the particle deposition 

pattern for m10 particles. However, for the realistic geometry, we observed that 

most of the particles are deposited in the wall surface instead of carinal region. It 

should be noted that the particles have been released by using the inlet surface nodes. 

The geometrical structure of human lung is not symmetrical and due to its uneven 

surfaces, the geometrical shape is very complex. On the other hand, non-realistic 

geometry is symmetrical in shape and it does not have any curve, bends or wave on 

its wall surface. Moreover, in case of non-realistic geometry, the carinal angle is 0
45 . 

On the other hand, for the realistic geometry, the carinal angle is found to be more 

than 0
90 . As we know, large particle are deposited in the upper portion of the lung 

airway and inertial impaction is the main mechanism for large particle deposition. In 

general, all the particles we inhale from the atmosphere follow the air streamline. 

However, during their movement, when any curve, bends or uneven surface appears 
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in front of them, they can’t follow the air stream due to its large inertia. As a result, 

those particles are captured by the wall surface.  

 

 

 

 

 

 

 

 

 

 
                                                                                                                                                  

                                     (a) (b) 

Fig. 3: Inspiratory deposition pattern of m10 particles (a) Injection-I (b) Injection-II 

Fig. 3 (a) shows that a large number of particles is deposited at the very upper portion 

of the trachea. Fig. 3 (b) depicts that less particles are deposited at the upper portion 

of the trachea. Two different injection properties have been used for these two cases 

and the deposition pattern is different for individual injection. The injection-I and 

injection-II contains 1016 and 800 particles respectively and the initial positions of 

the particles are different.  

 

Fig. 4 (a) and Fig. 4 (b) represent the respiratory particle deposition pattern for m5  

particles for different injection. The deposition pattern shows that a large number of 

particles deposited at the two daughter bronchiole as well the parent bronchiole. We 

can clearly see that fewer particles are trapped in the right bronchiole compared to 

m10  particle. If we compare the two daughter bronchioles, then of course larger 

particles are deposited at the right bronchiole i.e. zone 7. In case of realistic lung 

geometry, right branch of the geometry is more vertical than left one. That is why 

most of the particles have a tendency to go through the right bronchiole. As a result, a 

large number of particles are deposited at the right bronchiole. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Inspiratory deposition pattern of m5 particles (a) Injection-I (b) Injection-II 

The inspiratory particle deposition scenario for m1 particles is shown in Fig. 5(a). 

From this figure we can clearly observe that very few numbers of particles are 

deposited at the left bronchiole. The deposition pattern for parent bronchiole is also 

different compare to larger particle deposition. It is interesting to mention that a good 

number of particles are deposited in the upper section of the parent bronchiole. Fig. 

(a) (b) 
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5(b) depicts the particle deposition pattern for different injection. This figure shows 

that fewer numbers of particles are deposited at the upper portion.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Inspiratory deposition pattern of m1 particles (a) Injection-I (b) Injection-II. 

3.2 Simulation with Mucus Layer 

We have also investigated the particle transport and deposition for our lung geometry 

with mucus layer. The particle transport and deposition pattern have been investigated 

for m10 , m5  and m1 particles. We have injected the particles by using the nodes of 

the inlet surface and the numbers of injected particles are 1054. All appropriate 

mucus layer properties have been added to simulate the particle transport and 

deposition. In order to show the deposition pattern, we have collected the trapped 

particle coordinates on the lung wall. After creating the mucus layer inside the 

geometry, the diameter of the inlet surface reduces. As a result, the deposition pattern 

shows a significant difference compared to the case without mucus layer. Fig. 6(a) 

represents the inspiratory particle deposition pattern for three different sizes of 

particles. Fig. 6(a) shows that there is a significant difference between the particle 

depositions for the three different sizes of particles. The graph for m10 particle 

shows that a large number of particles is deposited in the first generation compare to 

two other size particles. 
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                                 (c)                                                                (d) 

Fig. 6(a): Particle deposition comparison for different size particle, particle transport 

comparison for 6(b) m10 , 6(c) m5 and 6(d) m1 particle.  

 

Fig. 6(b) represents the particle transport scenario for m10  particles. From the 

figure, we can clearly see that a large number of particles are escaping through zone 

7. As we explained earlier, two daughter bronchioles are not symmetrical and their 

diameters are also different. In this case, zone 7 is the smaller daughter bronchioles 

with small diameter compare to zone 6. In general, due to the large diameter of zone 

6, most of the escaped particle should go through the zone 6. But, in this case, most of 

the particles are escaping through the zone 7 because this bifurcation is more vertical. 

Fig. 6(c) and Fig. 6(d) represents the particles transport scenario for m5  and 

m1 particle respectively.  

 

                                                (b) 

 

 

 

 

 

 

Fig. 7: Inspiratory deposition pattern of m10 particles (a) Injection-I (b) Injection-II 

Fig. 7(a) and Fig. 7(b) represent the respiratory particle deposition scenario for two 

different injection properties. From the above figure, we can clearly see that the 

deposition pattern is different for different injection. Fig. 7(a) shows that a good 

number of particles are deposited at the top of the carinal angle. On contrary, Fig. 7(b) 

shows that only couple of particles is deposited at the top of the carinal angle.  

 

4. Conclusion 

 

In order to obtain the accurate numerical results of particle transport and deposition in 

human lung, it is really important to carry out numerical simulations for realistic lung 

geometry. To investigate the effects of the particle initial position on deposition, 

different injection techniques have been used and our results suggest that particle 

deposition is completely dependent on its initial position. The numerical simulations 

also suggest that the complex geometry of the airway plays an important role in the 

respiratory deposition. The numerical results also conclude that most of the particles 

are escaping through the right daughter bronchiole. In order to obtain the effects of 

mucus layer on deposition, we have carried out the simulation for two cases- with 

mucus layer and without mucus layer. We have drawn the deposition graph based on 

number of iterations. The particle deposition comparison graph shows a significant 

difference between these two cases. The deposition efficiency noticeably increases 

for m10 particle in case of mucus layer. The following conclusion can be drawn 

from the above simulations: 

i) The particle deposition pattern is dependent on its initial injection position.  
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ii) Respiratory geometry plays an important role in case of deposition and the 

deposition pattern is dependent on lung geometry.  

iii) Most of the larger particles have escaped through the right bronchiole in spite 

of its small diameter.  

iv) The deposition efficiency significantly increased for larger particle in case 

mucus layer.  
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