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Abstract 

A breast cancer detection technique using multi-static radar is proposed herein.   For 

the first time, images are produced using this technique, using backscatter data produced 

from an anatomically realistic 2D MRI-derived FDTD model of the breast.  Successful 

detection of a 2-mm-diameter tumour is demonstrated, although clarity of detection is 

dependent on mitigating antenna mutual coupling and skin reflections. 

1. Introduction 

Breast cancer is one of the most common cancers in women. In 2003, in the US 

alone, it is estimated that a woman will be diagnosed with breast cancer every 3 minutes 

[1].  X-ray mammography is currently the most effective detection technique [2], however 

it suffers from relatively high missed- and false-detection rates and involves uncomfortable 

compression of the breast.  X-rays are also ionising and this poses limitations on the 

frequency of screening. 

Microwave detection of breast tumours is a non-ionising, potentially low-cost 

modality that relies on the dielectric contrast between healthy and malignant breast tissues 

[3,4].  The work presented in this paper falls under the class of ultrawideband microwave 
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radar techniques, which take advantage of the relatively large microwave scattering cross 

sections of malignant tumors [5].  Previous theoretical investigations of such techniques 

have focused on monostatic system configurations [5-8].  This contribution presents results 

from a hitherto unexplored variant, based on a multistatic radar technique originally 

developed for use in landmine detection [9]. 

2. Technique Proposed Herein: Multistatic Radar 

The problem of detecting buried antipersonnel landmines bears considerable 

likeness to the detection of breast tumours.  In both cases the objective is to detect the 

presence of a compact object with dielectric properties distinct from the surrounding lossy, 

inhomogeneous medium.  This is problematic due to the trade-off between resolution and 

depth (a result of the increasing dielectric losses with frequency) and the presence of clutter 

(unwanted reflection from the medium).   

The technique employed to counter clutter in [9] may be briefly described as 

follows.  In Figure 1, an array of N antennas is close to, or in contact with the medium of 

interest.  Each antenna in turn transmits a pulse and a single time-shared detector records 

the received signal yi(t) at each of the other antennas.  Since monostatic operation is 

excluded and as interchanging transmit and receive antennas would not produce any 

additional information, the total number of transmissions recorded is 2/)1( −NN .   

The recorded data is then synthetically focussed at any point of interest in the 

volume beneath this ground by time-aligning the signals yi(t), using the estimated 

propagation time Ti from the transmit antenna A to the receive antenna B via the point of 

interest C.  The return from C is then computed by integrating the data over a window 

corresponding to the transmit pulse width τ: 
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where wi are factors that are applied to compensate for differences in the predicted 

attenuation between the round-trip paths (depending on the depth of point C and the 

spacing from A to B). 

The signal processing approach of Eq. (1) is similar to other time-shift-and-sum 

beamforming algorithms [5-7] but differs from them in its use of all possible 

transmit/receive combinations in the array.  In an operational system the increased number 

of observations may be exploited to offer additional clutter rejection.  We note that other 

clutter-suppression options such as least-squares optimal beamforming [8] have not been 

explored here.  

A validation exercise, using modelled data, is described in the following section. 

3. Test Model 

A 2D FDTD model was used to simulate an antenna array placed along the surface 

of a naturally flattened breast of a patient in a supine position.  The model was generated 

from MRI data using the procedure described in [7].  Tissue dielectric properties are 

assumed to be frequency-independent; normal breast tissue heterogeneity is assigned 

average values of 9.8rε =  and 0.4σ =  S/m with a ±10% variation about the average and 

the properties of the 2-mm-diameter malignant tumor are assumed to be 50rε =  and 

7σ =  S/m.  A 2-mm-thick layer of skin ( 36rε =  and 4σ =  S/m) is included.  An 

immersion medium with dielectric properties matching average normal breast tissue is 

assumed to be present above the antenna array and breast in the simulations.  
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In the 2-D model, the antenna array consists of 17 hard sources, equally spaced and 

spanning 8 cm in the lateral direction.  In each simulation, one element in the antenna array 

is excited with a short pulse.  Magnetic fields (proportional to induced current) are observed 

and recorded at all antenna locations.  

4. Results 

Figure 2 and Figure 3 demonstrate the results of applying Eq. (1) to backscatter data 

from the FDTD simulations.  Mutual couplings between the antennas, and the reflection 

from the skin-breast interface must be reduced as much as possible.  One simple technique 

that could be used in practice would be to calibrate the array by recording the couplings 

with the array in contact with a uniform skin/breast phantom.  Figure 2 shows the results 

obtained using this technique (using calibration data from an FDTD model incorporating a 

homogeneous breast).  In this image, the 2-mm tumour is clearly visible at the correct 

location, with a signal strength 18 dB above the highest response from the surrounding 

clutter. 

While a calibration of this sort should be possible in practice, its success will be to 

some extent patient-specific.  One alternative is to employ windowing techniques to 

eliminate the unwanted signals.  In this case, the time delays for the unwanted signals are 

computed and the corresponding signals are neglected in the focussing process without any 

calibration or subtraction.  The results (Figure 3) are noticeably degraded compared with 

Figure 2;  however the tumour is still clearly identifiable and stands at least 6 dB above the 

surrounding clutter.   An alternative not explored here involves the use of a data-adaptive 

algorithm to estimate the undesired artifact in each channel using the backscatter 

waveforms [8]. 
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5. Conclusions 

Initial results have been presented using a multi-static radar approach to imaging of 

the human breast.  These results, using data from a realistic FDTD model, demonstrate 

successful detection of a small tumour in a lossy, inhomogeneous human breast.  The radar 

returns from the inhomogeneous structure of the breast do not significantly mask the the 

tumour, even if an initial calibration of the array is not possible.  Future work includes the 

development of 3D FDTD models and an experimental system employing an array of wide-

band patch antennas, a Vector Network Analyser, and a tissue equivalent phantom.   
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Figure 1: Transmit antenna A, receive antenna B, point of interest C. 
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Figure 1: Transmit antenna A, receive antenna B, point of interest C. 
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Figure 2: Breast image reconstructed from backscatter waveforms, after mutual 

couplings and skin reflections have been removed via calibration. (tumour at x=0, z=-

3cm) 
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Figure 3: Breast image reconstructed from backscatter waveforms, after mutual 

couplings and skin reflections removed have been removed using windowing. (tumour 

at x=0, z=-3cm) 
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