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Abstract

A numerical method is developed for simulation of hot streak redistribution in a 2-
dimensional model of a turbine rotor. The flow domain is divided into a viscous region
near the blade where the Reynolds-averaged, thin layer Navier-Stokes equations are
solved using an implicit finite volume technique, and an inviscid core region where the
Euler equations are solved using an explicit finite volume method. The computational
mesh consists of an O-mesh and a H-mesh patched together smoothly to cover the
domain of interest. At the interface between the inviscid and the viscous regions the
numerical schemes are connected using a formula that is conservative.

Computations are performed using three different flow conditions. Hot streaks with
a temperature ratio of 2.0 are used. The first test case assumes a fully turbulent bound-
ary layer and a tangential inflow angle of 40°. The result is in agreement with data
from a previous numerical investigation. The second test case is run with a fully tur-
bulent boundary layer while the third test case is run laminar with transition on the
suction surface. In the second and the third test case the tangential inflow angle is 45 °.
The computed solution from all three test cases predicts a migration of hot gas to the
pressure surface, which also has been observed experimentally.
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tics
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Symbols

A cell area

a speed of sound

Cf skin friction coefficient

Cp pressure coefficient

Cp time averaged pressure coefficient

CT time averaged temperature coefficient

c cascade airfoil axial chord length

cp specific heat at constant pressure

D fourth order dissipation function

e total internal energy per unit volume

F x component of inviscid flux vector

Fv x component of viscous flux vector

G y component of inviscid flux vector

G" y component of viscous flux vector

H total enthalpy

i, j grid coordinates

M Mach number

Ft normal unit vector

p static pressure

Pr Prandtl number

P. pitch

q state vector

rp exit static to inlet total pressure ratio

Rec Reynolds number based on axial chord length

Sk constant in Sutherland's formula

T static temperature

t time

u, v Cartesian velocity components

u+ , y+ turbulent inner variables

Vot rotor speed

W hot streak shape function

z, y Cartesian coordinates

,ii, additional Swedish letters
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Greek:

a inlet angle

P8 outlet angle

7 ratio of specific heats

8, y first order difference operators

C() fourth order dissipation coefficient

C, rt computational coordinates

0 spatial wave number

rc thermal conductivity

Ap viscosity

pAz, averaging operators

rk(z) stability polynomial

p static density

7r O-mesh thickness

sP arbitrary scalar function

b flow coefficient

To) vector of characteristic variables

n computational domain

w angular frequency

Subscripts:

av averaged values

i, j grid indices

ihs inlet-hot streak values

is inlet-steady values

iw inlet-wake values

I laminar condition

min minimum quantities

maz maximum quantities

t turbulent condition

w, wall wall value

0 stagnation conditions

Superscripts:

n time level
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Chapter 1

Introduction

1.1 Physical Problem

To achieve a high cycle efficiency and hence a lower fuel consumption in a modern

jet-engine, the gas turbine industry has moved towards designs with extremely high tem-

perature gas leaving the combustor. It is known that the exit flow from the combustor

entering a turbine stage will have wide spatial variations in temperature both radially

and circumferentially. The number of burners and nozzle guide vanes are usually se-

lected so that the locally hot gas will pass through the center of the passage between

two vanes. The temperature tolerance of the guide vanes is usually based on a scaled

average value of the exit combustor temperature. Due to introduction of cooling air in

the nozzel, the turbine entry temperature (TET) measured behind the guide vanes is

lower than the combustor exit temperature. The temperature tolerance of the blades in

the first rotor row is based on a scaled,averaged TET. Recent investigations, however,

have shown that hot gas migrates to the pressure surface of the rotor blade. This can

lead to peak temperatures on the rotor blade that might exceed acceptable metal tem-

peratures by as much as 250°C - 500°C, leading to blade failures. This indicates that

the scaled TET, which is presently used, is too low an estimate for the rotor surface

temperature.

Different methods are presently used to keep the high blade temperatures within

acceptable limits. Three methods are used for direct cooling of the turbine airfoil: In-

ternal cooling passages, showerhead impingement cooling and external film cooling. In

addition to these direct cooling methods, a more implicit method is used. By intro-

ducing dilution cooling air into the hot gas, the exit temperature distribution from the
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combustor can be modified so that the hot fluid which has maximum contact with the

blade surfaces is cooled most. The optimization of the cooling is critically dependent

on the redistribution of the hot streaks coming from the combustor. It is therefore

important that the aerodynamics of the redistribution in the turbine airfoil passages

is clearly understood. It would be of considerable advantage for a turbine designer to

explicitly know the redistribution of both hot and cold fluid when designing a cooling

scheme for the turbine.

In an earlier work by Butler et. al. [51, an experimental and analytical investigation

of the redistribution process for an axial turbine stage were presented. In the experi-

ment, a streak of hot air seeded with C0 2 was introduced at one circumferential location

upstream of the inlet guide vane. The redistribution of the hot streak was determined

by measuring the concentration of CO2 inside the turbine stage. Measurements of CO2

taken on the rotor surface indicated that hot and cold gas had been segregated with the

cold gas migrating to the suction surface and the hot gas to the pressure surface. In

the same paper it was postulated that the segregation effect was due to the difference

in rotor relative inlet angles of the hot and the cold gases. The postulate is based on

an observation by Kerrebrock and Mikolajczak [19] in their work on wake transport in

compressors. The experiment also showed some significant three-dimensional effects,

such as the streamline pattern on the rotor blade caused by secondary flow which, in

turn, was caused by the temperature distortion.

The segregation phenomenon observed in [5] has been investigated numerically by

Rai and Dring [26]. In this paper Rai uses a two-dimensional Navier-Stokes solver

to simulate the redistribution of hot gas in a two-dimensional model of the turbine

stage used in [5]. The paper includes a comparison between Rai's computations and

Butler's measurements. The results are lacking in agreement, especially the temperature

distribution on the pressure surface of the rotor. The postulated migration of hot air to

the pressure surface was not predicted by the computation. The poor agreement between

calculations and experiment was blamed on two basic differences in flow conditions. The

first difference was that the temperature ratio between hot and cold gas was 1.2 in the

calculations and 2.0 in the experiment. In a previous experiment by Stabe, Whitney and
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Moffit [30] it was found that a temperature ratio of 1.2 between hot and cold gas did not

effect the turbine performance. The second difference was that the flow coefficient (ratio

between axial inlet velocity and circumferential velocity) was 0.78 in the calculations

and 0.68 in the experiment. In [261 it was believed the lower flow coefficient would

accentuate the hot streak accumulation on the rotor pressure side.

1.2 Numerical Simulations

The temperature redistribution problem described above is a very challenging prob-

lem for any numerical algorithm due to its strong non linear nature. Provided that

the solution is correct a computational method has some advantages over Butlers ex-

periment. Instead of measuring CO2 concentration as in the experiment, the whole

temperature field including the surface temperature can be obtained directly from the

calculated solution. Viscous phenomenon such as growth of a boundary layer near the

blade surface and vortex shedding from the trailing edge are very local phenomenon.

Their redistribution and transport in large regions of the flow path is basically governed

by the inviscid Euler equations. It is therefore reasonable to assume that, in a narrow

region around the blade the flow is governed by the viscous Navier-Stokes equations

and, elsewhere, governed by the Euler equations. Considering the high computational

cost involved in the simulation of a viscous, unsteady flow it would be advantageous

if the computational domain could be divided into a viscous and an inviscid region.

Instead of using an expensive implicit, time accurate method in the whole domain its

use could then be restricted to the viscous region close to the blade surface and a less

expensive explicit method could be used in the outer, inviscid region.

In a typical turbine blade design the blade will have substantial thickness, it will be

highly cambered and its leading and trailing edges will be rounded. It is therefore clear

that, for a viscous calculation, an 0-type structured mesh is best suited to resolve the

boundary layer around the blade and especially at the leading and trailing edges where

the flow gradients are large. However, to have an O-mesh in the complete computational

domain around the turbine blade does have some disadvantages. Due to the spatial
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Figure 1.1: H and 0-meshes in a 2-D turbine rotor

periodicity the O-mesh will inevitably become very skewed at the inflow and periodic

boundaries and hence increase the numerical errors introduced in the solution. The

strong non-linearity of the incoming hot streak could introduce irrecoverable errors if

the cells at the inflow boundary are too skewed. An H-mesh on the other hand has very

good farfield properties but has the disadvantage of resolving the leading and the trailing

edges very poorly. This leads to the conclusion that for a typical turbine configuration,

no single grid system offers satisfactory grid properties in the entire turbine stator or

rotor passage. Figure 1.1 shows examples of H and C-meshes in a turbine.

The idea of dividing the computational mesh in a turbine passage to patched sub-

grids which matches the different characteristic flow regions, was introduced by Norton,

Thompkins and Haimes [24]. In that paper they divided the computational mesh into an

O-mesh in the viscous region close to the blade, and an H-mesh in the core flow region.

As a numerical algorithm for solving the Reynolds averaged, Navier-Stokes equations,

they used a cell-centered finite volume technique. To integrate the solution in time

an implicit Beam-Warming time integration scheme was used. In both regions the full

17



Navier-Stokes equations were solved with the difference that in the inner O-mesh region

a turbulence model was applied. Due to a pointer system in the solution algorithm,

the scheme became grid transparent and hence very flexible. The idea of splitting the

computational grid into different sub-grids was carried even further by Nakahashi and

Obayashi [21]. In their paper they used a structured C-mesh in the wake and boundary

layer regions and an unstructured, triangular grid in the remaining region. They applied

the mesh generation to a bi-airfoil configuration. In the wake-boundary layer region the

Reynolds-averaged, thin layer Navier-Stokes equations were solved using an implicit

finite-difference algorithm. In the outer region the viscous terms were neglected and

the Euler equations were solved with a finite element method. The method was shown

to give very good results for the bi-airfoil case. Nakahashi et al. also successfully used

their patched zonal method for a two dimensional turbine cascade configuration [221.

1.3 Present Work

In the present work a method to solve the unsteady Reynolds-averaged Navier-Stokes

equations in a two-dimensional turbine rotor configuration is developed. A few of the

ideas described in the previous section are used together with some completely new ap-

proaches. The computational domain is divided into a viscous region close to the turbine

blade and a inviscid region consisting of the core flow. Consistently the computational

mesh is divided into two patched grids, an O-mesh in the viscous boundary layer region

and an H-mesh in the core flow region. In the viscous region an implicit finite-volume

technique is used to solve the thin layer Navier-Stokes equations. A two-layer algebraic

turbulence model due to Baldwin-Lomax is used to model the turbulent viscosity. The

same finite-volume discretization is used for the Euler equations in the inviscid region.

Since the same discretization is used in the two regions the finite-volume operator will

become transparent to the mesh interface. In the inviscid region, however, an explicit

Runge-Kutta time integration algorithm is used to advance the solution in time. To be

able to simulate hot streaks coming in from the stator a special technique for treating

the inflow and outflow boundaries is applied. The two numerical methods that are used
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in the work are described and evaluated in chapters 2 and 3 of the thesis. A thorough

stability and accuracy analysis of the two algorithms is also presented. The generation

of the complete computational grid is described in chapter 4. The generation of the

mesh consists of two different techniques. The first is an algebraic technique to gen-

erate the body fitted O-mesh and the second is an elliptic PDE solver that generates

an H-mesh in the core flow region. In chapter 5 the interface between the explicit and

the implicit methods is discussed. The algorithm used to give a transparent connection

between the two regions is described, and in particular the question of accuracy and

consistency of the interface is discussed.

In chapter 6, the present numerical algorithm is used for the simulation of the tem-

perature redistribution problem described in the beginning of the introduction. Sim-

ulations are performed under three different flow conditions in order to give results

that can be compared with both previous calculations and experiment. The results

include time-averaged surface temperature distributions. The temporal variation of the

temperature distribution is also given to show some of the characteristics of the redistri-

bution. Snapshots of the solution at different time levels of the cycle are given in form

of iso-therm where the convection of the hot streak through the rotor can be studied.

A comparisons between results from the present method, a previous computation [26]

and the experiment [5] is presented for the time-averaged pressure distribution and the

time-averaged temperature distribution.
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Chapter 2

Thin Shear Layer Navier-Stokes Code

Since the main physical objective of this work is to study unsteady heat transfer

effects and temperature redistribution in a turbine rotor with incoming hot streaks it is

reasonable to assume that, in a narrow region around the blade, the streamwise viscous

stresses can be neglected and so the flow is governed by the thin shear layer equations

which will be referred to as the TSL equations. The TSL equations are obtained from

the full Navier-Stokes equations, governing a viscous fluid flow, by neglecting shear

stresses in the streamwise direction. Due to a relatively high Reynolds number and a

large adverse pressure gradient on the suction surface, the flow in the viscous region

close to the turbine blade will inevitably become turbulent. The numerical method used

in this work will not be able to accurately resolve the unsteady turbulent length scales

and therefore a turbulence model will be used.

This chapter will basically give a derivation and a validation of the numerical method

used for the solution of the Reynolds-averaged TSL equations. First a derivation of the

non-dimensional Navier-Stokes equations is given. In the following section the finite

volume approach suggested by Swanson & Turkel [32] is described. The definition and

numerical implementation of boundary conditions are given in the two following sections.

Section 2.7 describes the time integration method used. Since the computations are to

be done time accurately on a mesh with large differences in the cell size, an implicit

Beam & Warming time integration method will be used to advance the solution in time.

The time integration section is followed by a section that describes the linearization of

the flux-vectors. The turbulence model used here is an algebraic method known as the

Baldwin-Lomax method and is described in Section 2.9. A thorough analysis of the

implicit scheme with respect to accuracy and stability is given in Section 2.10. In the

last section of the chapter computational results from two different cases are presented
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in order to validate the code. The flat plate is used to validate both the laminar and

the turbulent version of the code. The laminar model is also validated by solving the

flow in a channel with a 10% thick circular bump.

2.1 Governing Equations

The system of equations governing a viscous, compressible flow is known as the

Navier-Stokes equations. The full 2-D Navier-Stokes equations, expressed in Cartesian

coordinates and on differential form, can be written as:

aq = a(-F + FV) +a(-G + GV) (2.1)
at ax ay

where:
.p. pu pv

q= pu F pP 2 + p , G puv (2.2)
pv puv pv2 +p

e u(e + ) v(e + P)

0

Fv =, A(u, + v1) + 2u (2.3)

(UY + V)

v(u, + v,) + Au(u, + v.) + 21suu + T

0

GV "(U" + VZ)(2.4)

A(u. + v.) + 2v.

[pU(Uy + v) + Av(uz + v) + 2pv + T (2.4)

where p is the density, u and v are z and y velocity components respectively, p is the

pressure, T is the temperature and e is the total energy per unit volume. The subscripts

and , denotes partial derivatives with respect to z and y. The coefficients of viscosity

A and p that occur in the viscous flux-vectors can be related by the Stokes hypothesis

,A 2 (2.5)
3

The system of equations (2.1) is closed by two equations of state that give a relation
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between the thermodynamic variables. These have the form

p = p(e, p) , T=T(e,p) (2.6)

for a stationary gas. Under the assumption that the fluid is a perfect gas the pressure

relation becomes

p = (- 1)(e- p(u+ v2)) (2.7)

and the temperature relation becomes

T (e - p( 2 + )) (2.8)
Cp P

where Cp is the specific heat at constant pressure and 'I the ratio of specific heats. The

coefficient of viscosity is here related to the thermodynamic variables by Sutherland's

formula which states

with being a constant. The definition of the Prandtl number+ S) (2.9)

with Sb being a constant. The definition of the Prandtl number

Pr = P~ (2.10)

will finally give a relation between the thermal conductivity coefficient c and since

the Prandtl number is approximately constant for most gases.

2.2 Nondimensionalization

The following dimensional upstream quantities are used for the nondimensional-

ization of the fluid and thermodynamic variables: The axial chord length c, speed of

sound a,, density p,, coefficient of viscosity p,,o and temperature Too,. This gives the
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following expressions for the nondimensional (barred) quantities.

X= -,

U

aoo

u=P
2 

Pooaoo

Y

C

1'
v= -

T
T= '
Too'

t
c/ao

P

Poo

(2.11),= Aoo

e

pooa2

Introducing the Reynolds number Re, based on the upstream quantities and on the

axial chord

Re, = pooaooc (2.12)
oothe nondimensionalization of the Na

the nondimensionalization of the Navier-Stokes equations (2.1) yields

aq

where:

a ac
=+ ag

1 (a"V aGi
Re a ad- / (2.13)

pu

, = pU2 + p

puv

0

A(2, - VV)

A(% + .)

AVi(Uv + Vz) + pii(2ui - VV) + ()PT

0

P(i + .z)

p(2VV - fiz)
T19(%, + V9) + pfI(2 %i - .) + (_)pr

pv

, G = p2 + P

P(e + p)[ (~ +~ i~Ti 

(2.14)

(2.15)

(2.16)

The closing equations of state become

P = ( - 1)( - p(u2 + 92))

and

= Y(_- 1) _ - l_( + 2)) FP

(2.17)

(2.18)
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and finally the Sutherland law becomes

- T 1+ (2.19)

where Sk = - . For convenience the overbar will now be dropped in all subsequent

equations.

2.3 Spatial Discretization

To be able to solve the Navier-Stokes equations numerically some sort of spatial

discretization has to be performed. Following a standard approach of a finite volume

technique (cf. [101) the computational region, denoted , is divided into a number of

quadrilaterals forming a computational mesh. Integrating equation (2.13) over f will

give the Navier-Stokes equations in integral form. If in addition Greens theorem is used

this integral form becomes

faq dV+ (Fdy-Gd) i (FVdy- GVd) (2.20)

n an an

where the line integrals are evaluated in a counter-clockwise direction. This integral

relation holds on each quadrilateral subdomain wij as well as on the entire region f.

If it is assumed that the state vector q is piecewise constant on each cell and the cell

shape is fixed the integral can be written for each cell as

dt iAi + f (F-dy-GdF)= Re- G (Fd- Gd .21)
aw;i awii

where Aij denotes the area of cell i, j. The approximation of the line integral proposed

by Swanson & Turkel [32] can be used under the assumption that the flux-vectors F, G,

F" and G" are piecewise constant on the cell boundary. The semi-discrete formulation

of the integral equation will become (see fig. 2.1 for notations)
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J

V

X

Figure 2.1: Identifying computational mesh.

( - 2A9j[-(Fi+li + Fij)Aya - (Fi-lj + Fij)Ay,

+(Gi+l + Gj)AzIa + (Gi-ij + Gij)Az,,]

1
+ 24, [-(Fii+l + Fij)Ayb - (Fi-1 + Fi)Ayd

TAij

+(Gi+l + Gii)AZb + (Gij-1 + Gii)Azd]

+ ReA(+FbAyb + FdAyd - GaXb - GdAd)

= -R(q-ij, q-j i, , qi+lj, qij+) (2.22)

where Ax and Ay are x and y components of the tangential vector defined on each cell

face (see Fig. 2.1). Note that because of the TSL assumption F" and G" are assumed to

be zero on faces a and c. The method of describing the gradients of a function in a finite

volume manner was proposed by Peyret & Taylor [25]. The method has successfully

been used by Swanson & Turkel [32] and by Miiller & Rizzi [20] . The method can be

described as follows. The gradient of a arbitrary scalar function o = p(z, y) taken at

point p' in the volume V' can be expressed by the following approximation (see fig. 2.2

for notations)

f VdV f dA 4

(PZ) P)p = VP n VI V- V Alak (2.23)
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Figure 2.2: Identifying viscous cells in the computational mesh.

where the line integral is evaluated counter-clockwise and thus n in the sum are the

normal face vectors. op is assumed to be constant along each cell face. In the TSL

limit the cell faces a' and c' becomes small compared to b' and d'. Figure 2.3 shows

the computational mesh in the boundary layer region close to the wall. With the TSL

assumptions the approximation of the line integral becomes:

fpdA
av' 1

V'I V- ((ObAYb' + d'AYd' , -iOb'AZb' - 'Pb-d Ad) (2.24)

where again Ax and Ay are the z and y components of the tangential vector defined on

the two cell faces. This will give the following approximation of the gradient at point

p':

(P) A' + i+ (,Yb + (Pd'Ad') (2.25)A~i + A+i+l

2
(Y)'= Aj + Ai+ (-ObZb', - PdXd) (2.26)

where Aij is the area of cell ij. There is, however, a problem with the above formulation

of the viscous terms. If the flow is stagnant or has uniform velocity and the mesh is non-

orthogonal the viscous terms are non-zero. To get around this problem the following

approximation is made. Instead of taking both the sides in the computational cell into

account in the line integral the averaged value is used. Equations (2.25) and (2.26)

willhence become
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X

Figure 2.3: Boundary layer cells with large aspect ratios, i.e. a', c' < b', d'

2

p Aii Ai i + Ai(+l2.27)

2

(v)' = + A 2+ ((ob - (od) Azv , (2.28)Ai + Aii+l

Using these expressions for the gradients one can observe that the four viscous

terms in Eq. (2.22) are functions only of their two closest mesh points and therefore the

following holds:

FJ = Fb(ii+l, qii)

Fd = F (Qij, qij-l)

Gu = G (qii+l, %i)b =

Gd = Gd(Qi%,Qij-l)

Using the notations in figure 2.4, an explicit expression of the discretized viscous

flux-vector components can be derived. In the figure the indices N and S indicates the

state vector values north and south of the centerline C. The averaging procedure is

performed so that the viscous flux vectors are evaluated at point p on the centerline C.
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C

Figure 2.4: The face between two cells where the viscous flux vectors are evaluated

(point p).

Using Equations (2.27) and (2.28) the F" terms at interface C can be written as

Fr'(N, S) = 0 (2.29)

CN + S AAN + As

=AN + AS )

AN+ As
= (Z+As

= Z+A 5

2
(2(-UN + US) AYp - (N - Vs) AXp)

3

((-VN + VS) &AYp + (UN - us) AXN)

[(N + ((-N + VS) AYp + (UN - US) AX)

+ uN + US) (2(-UN + US) Ap -(VN - VS) AX,)

1 1

+ (7- 1)Pr( - T N + Ts) AzP]

Similarly the viscous Gu terms can be written as:

G'(N,S) = 0

G(NS) = (AN )((-+ (S ( VN S) AY + (UN-US) A,)G-2 N, ) = AN + As V _ iVa YPI Y US) AX)I

AN + As

AN + AS

2
2(2(tv - Us) &xp, - (-UN + US) AuYp)
3

[(UN U ((-VN + Us) Ay, + (UN- US) AxP)

+ N3 2 ) (2(vN- S) AX - (-UN + US) Ap)

+ -)Pr(TN - T) P]

Here AN is the area of the north cell and As is the area of the -south cell.
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FV(N, S)

F3 (N, S)

FV (N, S)

(2.30)

(2.31)

(2.32)

G'(N, S)

GI(N, S)

(2.33)

(2.34)

(2.35)

(2.36)
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expressions are, however, only valid for interior points. At the boundaries one has to

apply the methods described in section 2.6.

2.4 Artificial Dissipation

It is well known that the cell centered scheme Equation (2.22) is by itself nondissipa-

tive and hence not stable upon integration in time. To obtain stability and uniqueness

some extra dissipation has to be added. The fourth order dissipative terms given by

Jameson [161 and Eriksson [10] will be used. With the dissipative terms added to the

fluxes in Eq. (2.22) the semi-discrete formulation becomes

(dt) Ai [-(Fi+l + F)Ay, - (Fi-ii + Fji)Ay.

+(Gi+li + Gi)Az6 + (Gi-li + Gij)AxZ]

1
+ -(Fq+l + Fii)Ayb - (Fii- + Fii)Alyd

+(Gii+l + Gii)Azb + (Gii-1 + Gii)Ad] + Dij

=-Rii (2.37)

where Dij denotes the dissipative terms and Rij the residual. The dissipation factor

Dii(q) has the form

Dij(q) = d+, ij - di-_,i + di,ji+ - di,ji+ (2.38)

where

di+ , = Ci(4)2j (qi+,2j - 3qi+1j + 3. - qi-ij) (2.39)

dij+ + (ii+2 - 3q,,+ + 3q, - q,-1) (2.40)

The coefficients e) j and 4)+ j are normalized by a factor proportional to the size of

the cell. This fourth order dissipation provide background smoothing of the solution

throughout the domain. The smoothing term acts as a global filter that suppresses

spurious saw-tooth error waves.
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It was pointed out by Agarwal and Deese [1] that the added dissipation in the

body normal direction tends to mask the real viscosity, especially if a turbulence model

is used. Following their concept the coefficient C(4) in the normal direction were set to

zero in the close neighborhood of the blade. For the boundary cells an alternate formula

is used instead of the one described above. The theory due to Eriksson [11] based on

energy-decreasing boundary damping terms is used. In this theory the i-directional

damping terms at i = 1 and i = 2 are the same as in Eq. (2.38) and the d's are modified

to

do = 0 (2.41)

dj = e(4 ) (q3 - 2q2 + qly) (2.42)

The same holds for the terms at the other boundaries.

2.5 Boundary Conditions

For the TSL code described here applied to channel flows there are two kind of

boundary conditions. These are solid wall boundary conditions and inflow/outflow

boundary conditions. Later on when connecting the TSL code to the explicit Euler

code the inflow/outflow boundary conditions will be replaced by interface boundary

conditions. Which will be described in detail in chapter 5.

2.5.1 Solid Wall Boundary

The no-slip condition on a solid, impermeable wall requires

Uw = u, = 0 (2.43)

where the subscript , denotes the wall value. The temperature boundary condition can

be of two different types. It can be either a specified wall temperature as a function of

the arc length

T, = T () (2.44)
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or a zero heat-flux condition for an adiabatic wall

(-) =0 (2.45)

where n denotes the wall-normal.

2.5.2 Inflow/outflow Boundary condition

The test cases run in section 2.11 require boundary conditions on the inflow and

outflow boundaries respectively. These are not physical boundary conditions but just

imposed mathematical boundaries to restrict the computational area. The following

choice of boundary conditions is consistent with the hyperbolic system eq. (2.1). At the

upstream boundary (inflow) the stagnation pressure Po, stagnation temperature To and

the flow angle ac are specified and the static pressure p is extrapolated from the interior.

At the downstream boundary (outflow) the static pressure p is specified and the other

flow variables are extrapolated from the interior.

2.6 Numerical Implementation of Boundary Conditions

2.6.1 Solid wall

The contribution to the line integrals in eq. (2.13) at the solid wall can be written

as

I(q) = f ([F- i F,-G G * ) ds (2.46)
wall

where is the normal at the solid wall. If the dot product is carried out this integral

reads

0

(q) E + v s(2U - vv)n3 + (U + v2)n da (2.47)

pn + v p(u + + v,)n + 2(2v, - uz)n 3
T( r 

-- i II (?-1)PI on~~~~~3-
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Using the finite volume approximation eq. (2.22) that assumes that the variables are

piecewise constant on each finite segment along the boundary the integral can be ap-

proximated by

0

I(q) pn + E - A8 (2.48)
pn" + E ((u. + vz)nm + I2(2v - u.)n)

aT
(7-l)Pr n wall

This indicates that we have to evaluate the pressure, velocity gradients, viscosity coeffi-

cient and temperature gradients at the wall. The wall pressure is obtained by assuming

the boundary-layer approximation for the pressure to hold on the body contour. That

is, the normal pressure gradient is assumed to be zero at the wall, and hence the wall

pressure is taken to be equal to the pressure in the first cell.

PW = Pk,1 (2.49)

were k, 1 indicates the center of the solid computational cell showed in Fig. 2.5, indicated

by a dot. The velocity gradients are obtained by linearly extrapolating the gradients in

the two cells closest to the solid wall. In figure 2.5 these two cells are indicated as dashed

cells with index i, 1 and i, 2. By using eq. (2.23) on these two cells, with us = v = 0,

two values on the gradient are obtained. Finally the value on the wall is computed by

4 1
V~ '= 4VtDi, - 1VSi,2 (2.50)

The temperature boundary condition can either be a specified wall temperature or an

adiabatic wall. In the first case there are no problems. The temperature gradient is

calculated in the same way as the velocity gradient. Since the temperature is specified

at the wall the viscosity coefficient p is given by Sutherlands formula using the specified

wall temperature. If the adiabatic wall condition is used, the temperature gradient is

by definition equal to zero, and the wall temperature used in Sutherlands formula for p

is simply taken to be the temperature in the first cell

Tw = Til (2.51)
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Figure 2.5: Identifying viscous cells in the computational mesh close to a solid wall

2.6.2 Inlet/outlet

At the far field boundary the extrapolated flow variables are given by

3 1
flace = 2i/o- 2Voi/o-1 (2.52)

where the values i/o are taken at the cell closest to the boundary and i/o - 1 at the cell

next closest to the boundary. At the inlet the state vector components are determined

from:

Pin - Pextr

Pin

(PU)in

i -Po /\ Pin X

( _- )Ho Po

= Pin/2(Ho - ((l p ) cos(c)

(2.53)

(2.54)

(2.55)

(2.56)(P,)in = (pu)in tan(ce)

ein= Pin + [(PU)n + (v)" ] 
-- 2 Pin

(2.57)

where Petr is the static pressure obtained from the above described extrapolation for-

mula, Po is the inlet total pressure, Ho is the inlet total enthalpy and ct is the inlet flow

angle.
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At the outlet the state vector components are determined from:

Pout = Pspec (2.58)

Pout = Pextr (2.59)

(Pu)out = (PU).ztr (2.60)

(PV)out = (pv)sztr (2.61)

Pout 1 [ 2 211eout out o (2.62)
eout= 1 + 2 [(PU)2ut + (PV)' out] (2.62)

2.7 Time Integration

Since the TSL equation governs a viscous flow it is necessary to accurately resolve the

boundary layer. This calls for clustering of grid points in the normal direction near the

solid wall, and will inevitably lead to mesh cells with large aspect ratios. In performing

time accurate calculations on meshes with large differences in cell size, it is not advisable

to use an explicit scheme since the size of the cell governs the stability criterion. An

implicit scheme, however, in general does not have the same stability restriction as an

explicit scheme. Hence, even if an implicit scheme is more computationally expensive

it is preferable to the explicit scheme.

It was established in Section 2.3, Eq. (2.22) that the semi-discretized Navier-Stokes

equations could be written as

(dq) = -R(qil, q,-1,, , i, q+l, qi+) (2.63)

A solution to this equation can be found by integrating in time. In this section a

numerical time-integration scheme for solving eq. (2.63) will be derived. Consider the

discretization of the time derivative given by

dqn+l- 1 + 'qn -_ sib ±qn-l (2.64)
dt At A qt

Combining equations (2.63) and (2.64) gives

1+ Aqn - gAqn- = -Rn+ (2.65)L~~~~~~~~~rt ~ ~ ~ ~ ( . 5
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Since the left hand side is at time level n + 1 this is an implicit scheme, and can be

shown to be identified as

* The 1st order Backward Euler formula for b = 0

* The 2st order Backwards difference formula for = 

Since the term Rn+l is non-linear, it must be approximated by a Taylor series

expansion:

(2.66)R"+1 n + aR nAq n
R -I R AqnY

where OR is the Jacobian matrix and Aqn = qn+l - qn. Inserted in Eq. (2.65) and in

an abbreviated form the scheme will look like:

(I·+At
(+6- O+ 

(aR n) At Rn +n-Aq = ¥¥ + Aqk -
1P + -1 1P + 

(2.67)

The Jacobian matrix will split up into six different terms to become:

Aq = ( OaR ) Aqif + (a) tR n

Q'C

Aqi + Oq A+l qi+lj

+ aaR )
+ \cOif1 J qOR + a }s

A% _1 i Ib,d R ( )Aq + aq+l'

Using the explicit expression of the right hand side eq. (2.22), the terms in the split

Jacobian becomes

i-li

- Aa) i+j
aq ""ji+ii

- AXd) 
8q qA ij-

- -G AXb
8Oq ii+1

- (Ax, +
(ap (Av. + AY,)

(a(AYb + Ayd)
41 

Ai, aqi-1 d +

· _ q+i aAyb +;A-y Yqi+ I

8Gd
o7 AXd)

Oqij-x

iqi+x}

Axc))
.,

- a (aXb + AXd))O q /I
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(OR)
c qJ

8G
- Aze

1

2Ai

1

2Aj

6 8R( OR )

( OR )

( OR )

( OR )4-1iil J
aR \

(fqi~ji

aR

aR
,9qii J

1

2A 3

1

2Aij

a(yAbd
(lAq

1

2A,ij

1

2Aij

Ai+1 (2.68)

aq

d,6q



aYd + -Azd - , b Y +
2i ii % aij

aG a zb)
aqij

When inserting eq. (2.68) in eq. (2.67) the time integration becomes:

At
+ 

Aql,

At
+ I+1

[

[

a{ dR ,"

dR n

(%-)

, + ( aR )

(aR ;d
A%-I- + '9 ,d

+ aaR )&qi+l]

Aq,, + (aR) Aqj+

= - t Rn + A n-I

Abbreviated, this becomes:

(I + At 8 B) Aq= At
--- R" +
tt+-

Using the approximate factorization suggested by Beam and Warming [3] this scheme

becomes

At6iA) Aq =(I+ At 
VP--R" +;t,+l

0 Aqn-1
0+1

These equations are solved in three steps
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(2.69)

(2.70)

(2.71)

(2.72)

Aii1

'O + 1
11 An-I

'A + 

At 8iB + ('



* Step 1: Calculate Ai from (I + t 6iB) A = - lRn + Aqn-

* Step 2: Calculate q from (I + i+AA) a Aq .

* Step 3: Update solution by qn+l = qn + Aq.

This scheme was originally suggested and developed by Beam and Warming [3] and

is often referred to as the Beam-Warming scheme. A rigorous accuracy and stability

analysis of this scheme is given in Section 2.10.

2.8 Linearization of Flux Vectors

The Taylor expansion eq. (2.66) yielded a Jacobian matrix. Equation (2.69) gives

the different terms that the Jacobian consists of. It is easily seen that four Jacobians

are needed. These are: A, G , a' and G . The two first are the derivatives of the

inviscid flux-vectors. These are obtained by using the chain rule

=Fi aFi ,Vk 1 <_ i,j,k < 4 (2.73)
aqj aTk aqj

and

OGi Gi aV k1 < i,j,k < 4 (2.74)
aqi avk aqj

where the F and G are the flux vectors, q is the state vector and v is an intermediate

vector defined as:

P

V6= P I= (-)(e-(P) 2) (2.75)

The viscous terms are handled in a similar manner. Here, however, the intermediate

vector v is defined as:

= = (2.76)
v I _ Jp)

,_. f1 (pU)+(p,p'1
TY 7(- 1)('p 2 l' 
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It is convenient to introduce an intermediate vector to make it easier to work out

the complicated chain rules involved. Considering the discretized viscous terms it can

be seen that the important flow and thermodynamic variables in the viscous terms is

the temperature T, the x- and y-velocities u and v and the coefficient of viscosity p and

therefore a natural choice of intermediate vector would be:

T

[vI (2.77)

Since p is dependent of the temperature T through Sutherland formula it is convenient

to calculate af as a middle step. This will give

aFy a _ aF a aT
(2.78)alt aqj a p aT aqj

First define the temperature as a function of the state vector variables:

T 7(pu)2 + (p) (2.79)

which gives us the first partial derivatives needed:

aT = ( _ 1) (2 (pu)2 + (PV)2)

aT pu

aT pV

ap = -7(-1)P

aaT = _7(7_ lP21
aT= '( Y1)- (2.80)

ae p

Next intermediate variable is u or in terms of the state vector u . The derivative of

this with respect to the state vector becomes:

Au _pu

ap p2

au 
apu P

au 
apr

au
= (2.81)ae
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and similarly for the v variable:

Ov pv

Op p2

ap

apo v

= (2.82)
e

Sutherland's law gives ,u as a function of the temperature T see Eq. (2.9). The derivative

of p w.r.t. T can be written:

aT i (3T k(T -X)2) (2.83)

Using this derivative and the previous information about the derivative of T the deriva-

tive of w.r.t. the state vector becomes:

ap aT p

C1,U o aT

dOpu aT pu

Op _Op AT

apv AT dpv

aO _ p aT
de aT ae

(2.84)

These expressions can now be used in equations (2.73) and (2.74).

2.9 Turbulence Model

It was noticed that in the case of a laminar flow solution around a turbine blade, a

large non-physical separation bubble appeared on the suction surface of a turbine blade.

To be able to suppress this separation the flow has to become turbulent. However, the

method described above is unable to predict turbulent flow and hence a turbulence

model has to be introduced. The relatively simple two-layer algebraic model described
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by Baldwin and Lomax [21 is used. The simplicity lays in the fact that it does not add

any new equations to the original Navier-Stokes equations and one does not have to find

the edge of the boundary layer.

Following the idea of Baldwin and Lomax the turbulence is simulated by a eddy

viscosity coefficient Pt that is added to the molecular viscosity p. The Reynolds heat

flux terms are approximated using the constant Prandtl number assumption. The model

gives the following expression for the viscosity coefficient p and heat flux coefficient r

= + Pt (2.85)

K = (P + (2.86)

where the subscripts and t refers to laminar and turbulent quantities. The main idea

of the two layer model is that the eddy viscosity pt is determined by

t = f (Pt)inner Y Ycrossover (2.87)

t (Pt)outer, Y > Ycrossover

where y is the distance from the wall and crossover is the smallest value on y where the

both expressions are equal. The inner viscous term is determined using the Prandtl-Van

Driest formulation and the outer decaying viscous term is governed by the Klebanoff

intermittency factor. A fully detailed and easy to read description of the model, with

given values on various constants, can be found in reference [2].

2.10 Accuracy and Stability

2.10.1 Spatial Part

On an equidistant mesh (, PI) with grid spacing Af and At in each direction, one

can show that the finite volume formulation is equivalent to the central finite difference

formulation. This is convenient since both accuracy and stability analysis are usually

performed using the finite difference formulation of operators such as the average and

difference operators. To prove the equivalence between the two methods consider the
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Euler equation in differential form

aq F aG
+ aat + aaG = (2.88)

The semi-discrete formulation of this equation using finite differences can be written as

dqi + I +jF(qi) + A1 ,+6G(qii)=O (2.89)
dt -rl

where the standard notation 8- for backwards difference operator and pu+ for forward

average operator is used. These operators applied to some function piq are defined as

6,pij = ((ij - i-lj)

;,Pij = (Pij- j- )

4r;Ai = 2 (!0ij+ + ij) (2.90)

In the case of the finite volume formulation, consider the inviscid form of the operator

given in Equation (2.22) (FV = G = 0) given on an equidistant, orthogonal (, t7) mesh.

Note that on this mesh Aii = At Al. The following identity can be observed

IAl (\- (F(qi+li) - F(q-lj)) At + 2(G(qi+l) - G(qI-1)) A)

+ S;L4F(qii) + n +6G(qi) 0

which shows that the finite volume operator is identical to the central finite difference

operator.

To study the accuracy of the spatial finite volume operator, a simplified model

equation will be used. In a general curvilinear coordinate system (,o) the model

equation is defined as
du du au 82U

+ e + ea9 = a2 (2.91)

where

X,X, ER, v, > O (2.92)

This scalar, model equation is closely related to the linearized momentum and energy

part of the TSL equation. If the coefficient ,7 = 0, then the equivalent Euler equation is
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recovered. Since it was shown above that finite volume and finite difference formulations

were identical following discretization will be used

au
i _- 1

at/ A 2 ,t u 1 + O(A72) (2.93)

Inserted in the model equation will give the semi discrete equation

au [A~e + 1 7 6.. 6l ]U = ] (2.94)

Using a straight forward Taylor expansion will finally give following expression

a,, u , au a2,a+ a + = O(A2,A 2) (2.95)

where the right hand side is the size of the truncation error which indicates that the

spatial finite volume discretization is of global second order accuracy.

2.10.2 Temporal Part

The implicit time integration algorithm (Eq. (2.65)) introduced in Section 2.6 can

be identified as a linear multi-step differentiation formula. The original formula is

A1 + 'q+g - * kgA-' = -Rn+' (2.96)
At At

Rewriting this formula using the standard notation k = At will give

q.+ ( 1 + 2 qn + ( + ) n- (1 ) Rn+ (2.97)

which is a standard form of writing linear multistep formulas. The characteristic poly-

nomials for this specific formula are

p(z) = z2+ ++ 1) (2.98)

o(z) = (1 )z2 (2.99)
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Accuracy

The (p) Pade approximant to log z at z = 1 is defined as the unique rational function

p(z)/la(z) that satisfies

(Z) = logz+o ((z1)P+1)

= [(z- 1) - (Z - 1)2 + (z-1) - ... ] +O ((z-)P+1) (2100)

By definition a linear multistep formula has order of accuracy p if and only if its charac-

teristic polynomial satisfies Equation (2.100). For the backward differentiation formula

defined above, the ratio of the characteristic polynomial can, after Taylor expanding

a(z) - 1, be written as

P(Z) = [(-1)- -)(z-1)2 + (1- )(z-1)3 + ((z - )P+)] (2.101)

and hence for p = = p = 2 gives second order accuracy and for & = 0 p = 1

gives first order accuracy.

Stability

The time stability criterion for the second-order backwards differentiation formula is

obtained by analyzing the scheme applied to the model equation

dq
t aq (2.102)

where a is some complex constant. Applied to this equation, the associated stability

polynomial rk(z) for the scheme can be defined as

1rI(z) = p(z) - ka(z) (2.103)

where again k = At a. For the present scheme the stability polynomial will look like

r(z) = ( 1 Z (+ 12 Z+ (l (2.104)

where b = . According to Theorem 1.9 in [341 a linear multistep formula is time-stable

for a particular value A = At a if and only if all the roots of xr(z) satisfy Izi < 1, and
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any root with Izl = 1 is simple. With 1 = 2 in Equation (2.104) the roots to the

stability polynomial are found to be

1 2 i1 (2.105)

2

By definition the stability region of a linear multistep formula is the set of all k E C for

which the formula is time-stable. Figure 2.6 shows the stability region for the second-

order backwards differentiation formula. For each value of k the maximum Izi is found

and referring to the stability plot the scheme is shown to be at least A-stable i.e. stable

in the complete left half plane. The model Equation (2.91) will be used to investigate

the stability of the full implicit scheme. The solution to the semi-discrete version of this

model equation can be written in terms of its discrete Fourier modes, which inserted in

the semi-discrete model equation will give the following equation

dqmn
dt - qmn (2.106)

where

sP = ~2A; (1- cos(Oq)) - i + sin(O)) (2.107)

In Figure 2.6 it can be seen that there is no restriction on the imaginary part of p as

long as the real part is < 0. By definition v, > 0, e, q < 0 and therefore sp will always

be in the left half plane. Since the time integration scheme it at least A-stable and the

eigenvalues are in the left half-plane, the full scheme is unconditionally stable. For the

TSL Navier-Stokes equations v,1 can be identified as the coefficient of viscosity in the

momentum and energy parts of the equation.

Here it has been shown that the Beam-Warming scheme is unconditionally stable

for a linear hyperbolic scalar model equation. In practice, however, the approximate

factorization of the scheme and the fact that the Euler equations are non-linear will yield

a stability criterion. Depending on mesh geometry and flow conditions this scheme has

been shown to have an optimal CFL number ranging from 2 up to 100.

44



-6

, ) =
Ixl= j

Figure 2.6: Stability region for second order backwards differentiation formula (exterior

of innermost closed contour).

2.11 Code Validation

Although based on known methods such as the finite volume technique and the

Beam and Warming time integration scheme the present method has been developed

entirely from scratch. As always is the case when developing a numerical code a number

of test cases must be run to check the accuracy of the code. In order to validate the

present viscous code three test cases have been run. The test cases are:

* Subsonic, laminar, low Reynolds number flow over a fiat plate.

* Subsonic, turbulent, high Reynolds number flow over a fiat plate.

* Subsonic, laminar, low Reynolds number flow over a circular arc bump in a chan-

nel.

These three cases should give enough information about the accuracy of the code. For all

three cases there are a large number of results available in the literature for comparisons.
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Below are presented some of the numerical results obtained from the two different cases.

2.11.1 Flat Plate

The flat plate is a good test that gives information about the accuracy of both

laminar and turbulent viscous terms in the code. The numerical results obtained for the

laminar case may be compared with the Blasius solution (cf. Schlichting [281). Although

the Blasius solution is obtained under the assumption that the flow is incompressible,

the results from a compressible calculation should be in good agreement with the Blasius

solution if the free stream Mach number is chosen sufficiently low .

The same as above is true for the turbulent flow over a flat plate. That is, if the Mach

number is low enough the results from a compressible computation should agree with

the ones obtained with an incompressible assumption. The results can be compared

with the results from a power-law solution given in White [35].

Laminar

For the laminar case the following flow conditions were chosen to give approximately

incompressible conditions:

Moo = 0.2

Re = 104

Pr = 0.72

Sk = 0.4

The plate was also assumed to be adiabatic. The solution was obtained on a 65 x 33

mesh with the upper boundary 2c away from the plate which gives a mesh stretching

ratio of 1.15. Comparisons between the computed results obtained with the present

method, and the Blasius solution taken from [28], is shown in Fig. 2.7 and Fig. 2.8. To

avoid influence from the singularity at the leading edge of the plate, comparisons of the

velocity profile shown in Fig. 2.7 is taken at 50% of the chord. The numerical result is

in very good agreement with the Blasius solution. In Fig. 2.8 the skin friction along the
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plate is presented, and it shows good agreement with the Blasius solution.
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Figure 2.7: Velocity profile at 50% chord of the flat plate

0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000

x

Figure 2.8: Skin friction along the fat plate
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Turbulent

For the turbulent case a 65 x 61 size computational mesh was used where 33 points was

used on the flat plate. The mesh stretching in the normal direction was 1.1 and the

upper boundary was located 206 away from the flat plate, where 6 was measured at the

outflow boundary. The following flow conditions were used to give approximately the

same conditions as in an incompressible case.

Mo = 0.5

Re = 106

Pr = 0.72

Prt = 0.9

Sk = 0.4

As in the laminar case the plate was assumed to be adiabatic. The transition point was

set at 30% of the chord where Re0 was approximately 400. Figure. 2.9 shows the skin

friction Cj as a function of x/c. The symbols represent the computational result which

shows a smooth transition to turbulence at 30% chord. Indicated in Fig. 2.9 is also the

laminar Blasius solution and the power-law estimate

Cf , 0.026 Re; 1/7 (2.108)

given in [35]. Figure 2.10 shows the inner variable u+ = u/v' as a function of the inner

variable y+ = y v*/v where v = f/7r7p is the wall-friction velocity. The computed

result (symbols) are compared with the inner law sublayer

u+ = + (2.109)

and the logarithmic overlap layer

u+= In y+ + 5.0 (2.110)
0.4

also obtained from White [35]. For both the skin friction and the velocity profile cases

the agreement between computations and theory is fully satisfactorily.
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2.11.2 Circular Arc

The circular arc bump in a channel is a commonly used test case both for viscous

and inviscid computational methods. The geometry is often referred to in the literature

as the Ni-bump since Ni was one of the first to use it as a test case to validate his inviscid

Euler solver [23]. For moderate Mach and Reynolds numbers Chima [6], Davis [7] and

Kallinderis [18] have performed viscous calculations both for laminar and turbulent flow

on this geometry.

The computational mesh used consisted of 65 x 33 grid points which were clustered

in the region of the boundary layer and at the leading and trailing parts of the bump.

The width of the channel is equal to the length of the bump and the thickness to chord

ratio of the bump is 10%. The geometry and the mesh size are identical to the ones used

in [6] and [7]. This test case was run at inlet Mach number Moo = 0.5 and Reynolds

number 8000. The temperature was specified on the bump and on the aft-wall to be

equal to the inlet stagnation temperature. On this boundary the non slip condition,

u = v = 0, was also imposed. At the inflow boundary the total pressure Po, the total

enthalpy Ho and the flow angle a were specified. The pressure was extrapolated from

the interior. At the outflow the static pressure p was specified and the density p and

the velocity components u, v where extrapolated. At the upper boundary an inviscid,

symmetry condition was imposed. The same boundary condition was imposed before

the bump. All flow conditions and boundary conditions are the same as in refs. [7]

and [6]. The mesh topology and the different flow conditions imposed at the different

boundaries are shown in Figure 2.11.

Symmetry boundary

Specify:

PO , HO, 

Ext.:
Pressure

Specify:

Petat.

Extrap.:

, ,@

Symmetry bound. T = 7'in, P = Pestrap., a = = 0

Figure 2.11: Computational mesh and flow conditions for the 10% circular arc cascade
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In Figure 2.12 a comparison of the wall pressure obtained by different numerical

schemes is shown. Figure 2.13 shows a comparison of the skin friction along the bump.

The overall agreement between the different methods is good. As one would expect the

major discrepancies between the results are in the region where the bump ends and the

straight slit starts. As can be seen in the skin friction plot the flow is separated in this

region. The cell centered method (present method) predicts a slightly larger separated

region than the node based method ([7]). Other numerical experiments on the same

geometry showed that the cell based scheme was more sensitive to grid discontinuities

than the node based.
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Figure 2.13: Skin friction along the circular arc cascade
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Chapter 3

Unsteady Inviscid Code

Numerical simulation of unsteady effects in cascades such as wakes and hot streaks,

calls for a time accurate method. The methods used for advancing a flow solution in

time can be divided into two groups, namely the explicit and the implicit methods. The

Beam-Warming time integration method described in the previous chapter is an example

of an implicit method. For the purpose of studying unsteady flow in cascades it would,

however, be very expensive computationally to apply an implicit method in the whole

domain. The main numerical idea in this work is to combine a fast explicit method

and a non CFL restricted implicit method. The explicit method has the advantage

of being fast but with the drawback of being restricted by the CFL criterion. In the

major part of the cascade region the flow is inviscid and hence governed by the Euler

equations. From a computational point of view an inviscid/Euler region is well suited

for an explicit method. The cells in the computational mesh in an inviscid region may

have uniform size which optimizes the CFL criterion and hence the allowable time step

for the explicit method.

In this work an explicit centered finite volume method will be used to solve the

unsteady Euler equations in the inviscid regions of the cascade. The governing equations

will be described in the first section. This section also gives the non-dimensionalization

of the equations. In the second section the finite volume method is described. The one

step, three stage Runge-Kutta type time integration algorithm is described and analyzed

in the following section. In the last section the unsteady, non-reflecting inflow/outflow

boundary conditions are described.
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3.1 Governing Equations

An inviscid, compressible flow is governed by the Euler equations. The Euler equa-

tions can be derived from the Navier-Stokes equations by neglecting the viscous terms.

In two-dimensions these equations can be written in conservative form asA- ( +ay) (3.1)
where the vectors q, F and G is given by

P pu pv

q = pu, F = pu V (3.2)

e ,,(u(e+p) 'v(e+P)

where p is density, u and v are cartesian velocity components, p is pressure and e energy

per unit volume. To close system Eq. (3.1) an equation of state is needed. Assuming

that the gas is perfect the equation of state becomes

e= P +1 (2 + 2) (3.3)

where y is the ratio of specific heats.

The variables used with the Euler equations must match the Navier-Stokes variables.

Therefore the Euler equations are non-dimensionalized using the axial chord c, upstream

speed of sound a and upstream density poo. Using this choice of variables the non-

dimensional quantities become

z y tt-, = t
C C c/aoo

U V 

P e
2 ' e= 2

pooaOO Pooaoo
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3.2 Finite Volume Method

For the numerical solution of the spatial part of the Euler equations Eq. (3.1), a

cell centered finite volume method is used, which is identical to the one used for the

viscous Navier-Stokes equations in the previous chapter. The method has been used

successfully on the Euler equations by Eriksson [10], who used it for two-dimensional

cascade flow. Following the same idea as in the Navier-Stokes case, the Euler equations

are put in integral form. Using Green's theorem the equations are

/ dV + (Fdy -Gdx) = (3.5)
n an

The first approximation is to divide the domain n into a number of quadrilateral sub-

domains wij forming a structured computational mesh. The integral form of the Euler

equations Eq. (3.3) is valid on each quadrilateral subdomain wij as well as on the en-

tire region . If it is assumed that the state vector q is piecewise constant on each

quadrilateral the integral can be written for each cell as

dqtiii+ f (Fdy-Gdz)= (3.6)
Bwij

where Ai denotes the area of cell i, j. The line integral approximation can be used

under the assumption that the flux-vectors F and G are piecewise constant on the

cell boundary. The semi-discrete formulation of the integral equation will become (see

fig. 3.1 for notations)

dq 1
dt ij [ l-(Fi+iy + Fii)AY. + (Filj + Fi1)Aye

+(Gi+lj + Gii)Az. - (Gi-xl + Gii)Axc]

1
+ - [(Fii+i + Fii)Ab - (Fii- + Fi)Ayd

-(Gii+l + Gij)Axb + (Gii-I + Gij)AXd]

= R(qi_j,qij-,qij,qi+j, qi$+j) (3.7)

where the solution vector q is given in the center of the cell. The scheme is conservative

and consistent. Referring to Section 2.10 the spatial operator is second order accu-

rate on an equally distant mesh. The cell centered scheme Equation (3.6) is by itself
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J

Figure 3.1: Computational cell oij. Aza and Ay, being the components of the tangential

face vector a

non-dissipative and hence not stable when integrated in time. To obtain stability and

uniqueness some extra dissipation has to be added. For consistency the same fourth

order dissipative term given in Section 2.4 will also be used here.

Together with proper boundary conditions on both the flux vectors and the dissi-

pation operator, Equation (3.7) forms a large system of non-linear ordinary differential

equations. This system will be solved using an explicit time integration algorithm.

3.3 Explicit Time Integration

Since the work concerns unsteady calculations it is important that any numerical

algorithms used to solve Equation (3.7) is of a high order of accuracy. Runge-Kutta

type multistage schemes is a class of explicit schemes that are widely used for numerical

solution of ODE's. These methods are designed to give high accuracy. In this work a

second order accurate 1-step, 3-stage scheme will be used. The algorithm has been used

extensively by Rizzi and Eriksson [9] to achieve steady solutions to the Euler equations.
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The system of ordinary differential equations Eq. (3.7) with additional boundary

conditions defines an initial value problem which can be written as

dq = R(q)
dt

q(0) = qo (3.8)

Numerically this initial

defined by

q(t)

q'(tn+l)

q**(tn+l)

q(tn+l)

value problem will be solved using a 1-step, 3-stage scheme

given

= q(tn) + AtR(q(t.))

= q(tn) + lAt R(q(tn)) + 2AtR(q*(tn+l))

= q(tn) + IAtR(q(tn)) + IAtR(q**(tn+l))
2 2 (3.9)

Accuracy

To show the accuracy of the scheme (3.9) a Taylor expansion has to be performed. Let

the notation q be the usual notation qn = q(tn). By Taylor expanding q and R the

following is obtained

qn+l = q + t + (d at+...
kdt) 2 -t2

(3.10)

R(q*) = R(qn) + (dR) ( -un) + (d ) (U*-n)2+... (3.11)
R(q**) = R(qn) + ( (u - u") + (Ud2 (3.12)

(dR) (u I (U** uq), (3.12)

The following chain rule relation is also needed to show the order of accuracy of the

scheme

dq = dR(q) dR(q) dq
dt2 dt dq dt(3.13)

Inserting these relations in Equation (3.9) and skipping all the tedious algebra involved,

one ends up with following expression

dq
d R(q) = O(At' )

Tt
(3.14)
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which shows that the truncation error is of order At2 and hence the integration scheme

is second order accurate.

Stability

The stability region for the Runge-Kutta scheme is obtained by analyzing the scheme

with the equation
dq
d = aq (3.15)

where a is some complex constant. Applying the Runge-Kutta scheme to this equation

gives the following relation

qn+l_ =(1 + At a + -At2 a2 + At3ca3)q (3.16)
2 4

If k = At a the stability region is defined as

D = [complex k: 1 + 12 + < (3.17)

and is plotted in Figure 3.2.

To investigate the stability of the full explicit scheme, the model Equation (2.91)

given in chapter 2 , will be used with vn = 0. Since this is a hyperbolic equation the

solution can be written in terms of its Fourier modes. The semi-discrete version of this

model equation also has a solution consisting of discrete Fourier modes. In two space

dimensions a general mode of the discrete solution can be written as

q(Cm, n, t) = q(t) ei(kmA f+knAt7) = q(t) ei(m8e+n' ) (3.18)

Inserted in the semi-discrete model equation this gives the following equation

dqmn
dqm =p q-mn (3.19)
dt

where

P = -itf sin(Ge) + 7 in(0)) (3.20)

The stability region (Figure 3.2) has as a bound on the imaginary axis I(k)I < 2 where

! denotes the imaginary part and, as defined above, k = Atpo. The bound on the real
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!11 + + E2 + E31 < 1
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Figure 3.2: Stability region for the 3-stage Runge-Kutta method

axis is -2 < R(k) < 0 where R denotes the real part. Choosing IAel/AC and IlA,/Ar

to be the largest, modulus of the eigenvalues, of Jacobian matrix in the Euler equations

(see ref. [27]) will give a conservative estimate on the largest possible time step. Using

these eigenvalues will give the following CFL restriction

IJ' + I + a(41 + I1) < 2 (3.21)

where u is the total velocity, I and ,m the normal face vectors in the i and j directions

and a the local speed of sound. If e = ,% 0.01 are chosen, the real part of k is going

to be well within the stability region. The imaginary part of the stability region even

gets larger for small negative values on k (see Figure 3.2).

3.4 Solid Wall Boundary Condition

At a solid wall the normal mass flux is of course zero but the unsteady pressure at

the wall will contribute to the momentum flux. If n .v = 0 (n being the normal vector)
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at some part aSolid of the integration path aw in Eq. (3.6) it is easy to see that the

contribution to the path integral from the aSolid part becomes

0

(Fdy - Gdx) AYi, Pi,(3.22)
aSolid

O

The pressure at the wall pi,, is obtained by a linear interpolation procedure. Again

using the index notation in Fig. 3.3 the wall pressure is given by

3 1
Pi, = P , - Pi,2 (3.23)

2 2

S

0

i, 2

*i, 1

S

S

Solid wall

Figure 3.3: The computational mesh close to a solid wall

3.5 Unsteady Inflow/Outflow Boundary Conditions

At the inflow and outflow boundaries the method described by Giles [12] will be

used. The method is based on an analysis of the unsteady 1-D Euler equations. The

Euler equations can be written in non-conservative form as

+ A-'l = O (3.24)

where

q= u A= O u 1 (3.25)

P 0 pa2 u
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where a is the local speed of sound. Only linear perturbations from the uniform flow qgo

will be considered and hence Ao is a function only of the steady flow and Aq = q - qo is

the unsteady fluctuation. The perturbation form of the Euler equations is now written

as

aq + Ao q = (3.26)

Ao can be diagonalized by a similarity transform since Ao is nondefective, i.e. multi-

ple eigenvalues of Ao corresponds to linearly independent eigenvectors. A theorem from

linear algebra states that (see reference [31]) Ao is nondefective if and only if there is a

non-singular matrix To such that

u O O

To6lAoTo = u + c 0 = A (3.27)

O O u-C

where the diagonal elements are Ao's eigenvalues. It can also be noted that the ith

column of To is an eigenvector corresponding to Ai, and the ith row of To 1 is a left

eigenvector corresponding to Ai. Since Ao is a constant matrix, To and To 1 are constant

as well. Multiplying Eq. (3.26) from the left by To-1 gives the characteristic equation

at + AO d =0 (3.28)

where D = To'lAq. The vector P is known as the linear characteristic variables which

in detail can be written as

Ap

02 = (AU) + A
poco

0 = -(Au) + P (3.29)
poco

By assuming no variation in the y-direction, the fourth equation in the 2-D case is given

by

a+4 + u904 =O (3.30)

where

04 = AV (3.31)
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By checking the eigenvalues for a subsonic flow one can see that 41, 42 and 4 are

propagating downstream and 03 is propagating upstream. In order to prevent spurious

reflection of waves at the inflow boundary three characteristic variables, 41, 42 and 4,

are specified to be zero and one, 43, is extrapolated from the interior nodes. At the

outflow boundary one characteristic variable, 43 is specified to be zero and the other

three are extrapolated.

To allow for specified unsteadiness at the inflow boundary such as velocity defects

and hot streaks, requires modification of the characteristic variables 41,2,, 43, 4 so

that these are perturbations of some known inlet disturbance.

1 = (Ap)- ¢A
C.

02 = (Au) + AP
Piacin

4s = -(AU) +
PisCis

04 = Av (3.32)

where Ap = p- ini, Au = u - ui,,, Av = v - vi,j and Ap = p - Pin. The subscript inl

refers to the known inlet value and the subscript i, refers to the steady flow variables

in the stator frame.

3.6 Wake Models

Two different kinds of inflow disturbances will be used in this work. The first is

a sinusoidal velocity perturbation that is used as a test case for the unsteady Euler

code. The velocity defect model was suggested and used by Giles [13]. The second is a

temperature excess simulating a hot streak from a burner in a jet-engine.
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3.6.1 Velocity Perturbation

In the velocity wake model used for the test case it is assumed that the wake flow

is parallel, that the static pressure is uniform and that the total enthalpy is uniform.

To be able to compare computed results with those from a linear method, the velocity

defect is defined to be sinusoidal. The flow variables are given by

Piw = Pie

uiw = ui, (1 -Dsin(2rt))

ViW = vi, (1-D sin(21rt7))

NW - lyPis (3.33)p = a-1 (He. -- (Ut + V2

where the subscript i, denotes inlet-steady values and iw denotes the inlet-wake values.

The constant D is the fractional velocity defect. Hi, is the inlet-steady total enthalpy

related to the other quantities by

H = e + (3.34)
P

The parameter Yr is defined by

y + Vrot.t - tan(ai,)z 
Pa

where Vot. is the rotational speed, ai, is the inlet-steady flow angle and P, is the

pitch. The final inlet flow in the rotor frame is obtained by applying a Lagrangian

transformation

Pi, (z,y,t) = Pi ( )

uin (,y,t) = Uiw(r)

in ( ,yt) = vi ()- Vrot.

Pinl(z,t) = Pi. () (3.36)
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3.6.2 Hot Streak

A model similar to the one used for the velocity perturbation is used for the tem-

perature excess. To be consistent with the physical problem it is assumed that the

flow is parallel along the inflow boundary. It is also assumed that the Mach number,

static and total pressures in the hot streak are the same as in the free flow. The initial

temperature excess given in [51 is more or less a square well. This distribution will,

after convection through the stator row, be assumed to have been diffused slightly. The

smoothed distribution is given by a cubic spline function W(C) which has a smooth

transition region spanning over 10% of the pitch. Under these assumptions the inlet

flow quantities are given by

Pihs = Pin

Tih. = Tin(1 + D W(s()))

Pik s= Pin(1 + DW((t)))

Uihs = Uin[l+DW(9(t))21

Vih = in[1 + DW(a(r7)) 4 (3.37)

As before the subscript ihs denotes inlet-hot streak values and in denotes the inlet-

steady values obtained from a steady-state calculation in the rotor frame. Min is the

inlet Mach number, D is the fractional temperature excess and W is the distribution

function shown in Figure 3.4.
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Figure 3.4: Continuous transition function simulating the hot streak

Periodicity is enforced through the function s(1) in Equation (3.37) which is a pe-

riodic sawtooth function defined by

1 1
(,) = ,n -, - < r < n + (3.38)

2 2

and graphically shown in Figure 3.5. The parameter Yq is defined by

y + Vot.t - tan(ai,)
P.

Once again the final inlet flow in the rotor frame is obtained by applying a Lagrangian

transformation

pin (y, t) = Pih ()

,in(,y,t) = Uihs.(n)

i (, y, t) = vih. (7)- Vrot.

Pia (, , t) = Pih () (3.40)
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3.7 Flat Plate Test Case

In order to validate the unsteady Euler code quantitatively a very simple linear test

case is considered. The test case has previously been used by Giles [13] to validate an

unsteady Euler code. The flow situation is a low amplitude sinusoidal gust entering a

flat plate cascade. As pointed out by Giles, this flow case can be analyzed using the

program LINSUB, developed by D. Whitehead [36 based on the linear perturbation

theory of S. Smith [29].

Table 3.1 lists the relevant flow and geometry parameters. The values chosen are

exactly the same used by Giles. The wake defect was chosen so that it was big enough to

avoid machine accuracy problems and small enough to ensure the solution to be linear.

Table 3.1: Parameters for flat plate test case

Pitch/chord (P,/c) 0.57735

Stagger angle 300

Mach number (steady flow) 0.7

Wake flow angle -30 °

Wake velocity defect 0.05

Reduced frequency k = (wc/Uaxial) 12.5664
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The verification of linearity of the solution was done by Fourier transforming (DFT)

the resultant unsteady pressure distribution on the blade, and checking that the second

Fourier mode of both lift and moment was less than 1% of the first linear Fourier mode.

Computational results were obtained on three different grids. The basic coarse grid

dimensions were 124 x 11. Doubling these dimensions gives the medium grid 247 x 21

and doubling again gives the fine grid 493 x 41. All three grids extended one chord

length upstream and down stream from the blade row respectively. The calculations

were carried out long enough to ensure that the lift were converged within 1% . The

calculations on the coarse grid were started from a uniform flow and required about

25 cycles for convergence. The calculations on the finer meshes were started from an

interpolated solution of the previous solution and were run about 15 cycles each.

The unsteady pressure distribution on the flat plate was Fourier transformed by a

DFT-program and then non-dimensionalized as specified by Whitehead, to be able to

compare it with LINSUB. Figs. 3.6 and 3.7 shows the real and imaginary components

of the complex amplitude of the first Fourier mode of the pressure jump across the flat

plate. The symbols are the solution obtained by LINSUB. The agreement between the

two solutions is very good. The major discrepancies are in the imaginary component at

the trailing edge which can be explained by the fact that the method is cell centered

and hence does not have a computational point exactly at the trailing edge. The 1//x

singularity at the leading edge is surprisingly well resolved, even if one can trace some

minor oscillations.
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Table 3.2 shows a comparison of the unsteady lift and moment coefficients obtained

on the three different grids. The solution on the coarse grid is very far from the one

obtained by LINSUB. The solutions obtained on the finer grids are much better. On

the finest grid the error is approximately 3%. As was observed by Giles, a Richardson
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extrapolation is possible since the leading error is proportional to the mesh spacing.

Using a Richardson extrapolation formula an even better result were obtained. The

extrapolation is given by

pexact pfine + 1 (fine _pcoarse) (3.41)

The coarse solution is here taken to be the 247 x 21 solution and the fine solution the

493 x 41 solution. The results are given in Table 3.2. The extrapolation reduced the

error to within 1%.

Table 3.2: Unsteady lifts and moments for flat plat cascade

Code mesh lift Moment

size Real Imag Real Imag

124 x 11 -0.356 -0.255 -0.226 -0.061

Present 247 x 21 -0.510 -0.463 -0.343 -0.139

Euler 493 x 41 -0.503 -0.500 -0.345 -0.160

extrap. -0.501 -0.512 -0.346 -0.167

LINSUB -0.501 -0.517 -0.347 -0.166
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Chapter 4

Mesh Generation

One crucial component in the numerical simulation of a fluid flow using the two pre-

viously defined methods is the computational mesh. The cell-centered, central difference

methods described in chapters 2 and 3 are shown to be sensitive to mesh discontinuities

such as sharp kinks in mesh lines. These types of discontinuities will especially give rise

to problems if they appear in regions where the flow is subject to large gradients. One

of the novel features of this work is that the mixed viscous-inviscid numerical algorithm

is run on a mixed viscous-inviscid grid. In the mesh strategy suggested in this chapter

the total computational mesh will consist of two non-overlapping sub-grids and hence

it is important that the interface between the two meshes is smooth. It is also desirable

that the mesh generation algorithm is sufficiently flexible so that it can be used for a

variety of different geometries. Some properties such as mesh stretching, clustering of

grid points etc. must be easy to define and change.

In this chapter two different mesh generation techniques are described. In the first

section an algebraic technique that generates an O-mesh close to a cascade blade is

defined. The next section shows a technique based on the solution of an elliptic PDE.

The PDE method is used to generate a mesh in the domain between two cascade blades.

Finally the algorithm for generating the complete computational mesh is given.

4.1 Viscous Mesh

The first grid of the two is defined as the inner viscous grid. This grid will be

defined close to the blade where the flow is highly viscous and hence governed by the

Navier-Stokes equations. The inner grid must have the following properties
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* It must be dense enough in the direction normal to the blade to be able to resolve

the boundary-layer around the blade.

* The stretching in the direction normal to the blade must be within a certain

limit for the numerical simulation of the viscous stresses to be at least first order

accurate.

* The region around the leading and trailing edges must be sufficiently resolved.

These properties indicate that the O-mesh structure will be best suited for the inner

mesh. The O-mesh structure is defined as a structured grid that has one parameter

line runing around the profile and one runing in the normal direction to the profile (see

Fig. 4.1). Consequently the mesh only has two boundaries.

Figure 4.1: O-mesh structure around a NACA0012 profile

4.1.1 O-mesh Generation

In this work a very simple algebraic method is used for the O-mesh generation. The

generator is essentially based on two basic spline routines, a cubic spline routine for the

basic grid point distribution and a penta spline routine for the collocation functions.
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By changing parameters in these routines it is easy to cluster points in areas where

gradients are expected to be large.

Numerical procedure

Given a number of points defining the pressure and suction surfaces of the blade, a

standard cubic spline routine is used to parameterize the complete surface. The routine

gives as an output besides position of a surface point also the 1st and 2nd derivative

at that point. Since it is a cubic spline routine these derivatives are both continuous.

For the mesh generation the normal derivatives are needed. It is easy to transform the

derivatives obtained from the spline functions to the desired normal derivatives. Using

a penta spline collocation function, mesh points are distributed along the blade surface.

This function can cluster points in the region of interest such as the leading and trailing

edges. The set of points generated by the spline functions will now define the inner

boundary of the O-mesh. An excellent description of general spline functions can be

found in [4].

The rest of the O-mesh is now built up from the points on the inner boundary. By

using the constant r defined as the mesh thickness, and by using the normal deriva-

tives given by the spline function the outer boundary can be defined. By combining

corresponding points on the inner and outer boundary linearly, the normal grid lines

are defined. Let nz and n. be the components of the normal vector on the blade. Let

further (,, y,) be some point on the surface. The corresponding point on the outer

mesh boundary is the given by the linear expression

[ =zXO - .e +Tg nz (4.1)

yo y + r ny

where the thickness parameter rg is given as percent of axial chord length. Grid points

can now easily be distributed along each normal grid line.

The ratio between the height of two consecutive computational cells is known as the

stretching. One can show that the stretching in the normal direction puts a restriction on

the accuracy of the numerical evaluation of the viscous stresses. To.be able to globally

72



control the stretching of the mesh in the direction normal to the blade, the normal

distribution function is defined as follows. If the parameter r, defines the stretching in

the normal direction, the first mesh point lays on a distance A1 from the blade surface.

The first spacing A1 is defined by

A1 N-1 (4.2)
n

n=l

where N is the number of grid points in the normal direction. The jth grid point on a

normal mesh line is given by the following collocation formula

'xi = zo+A1 rin,
i= 1 (4.3)

y = Y, + A1 r ny

Figure 4.2 shows an O-mesh generated by this method around a typical turbine blade.

Figure 4.3 shows an enlargement of the mesh at the leading edge.

This very simple mesh generation algorithm gives surprisingly good results. The

method gives mesh lines that are normal to the blade surface which minimizes the

skewness of the mesh in the boundary-layer region. Non-skewness is a desirable property

especially if the boundary layer flow is turbulent. Due to its simplicity this method

suffers from one major drawback. For highly cambered blades the mesh lines might

cross each other. However, for the geometries considered in this work crossing mesh

lines have not been a problem.
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Figure 4.2: Viscous O-mesh generated around a typical turbine blade

Figure 4.3: Enlargement of the mesh in the leading edge region of the blade shown in

previous figure
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4.2 Inviscid Mesh

The second mesh is defined as the outer inviscid grid. It is defined in the region

where the flow is basically governed by the inviscid Euler equations. This grid as well

as the previous 0-mesh, is subject to some basic constraints

* The cell size must be as uniform as possible to ensure no severe CFL restrictions

on the Euler solver.

* The grid must be dense enough in the direction normal to the flow to be able to

resolve incoming wakes and temperature defects.

The best mesh structure satisfying these constraints is the H-mesh structure. This mesh

can be described as having one parameter line running in the streamwise direction and

one in the direction normal to the flow. However, the mesh lines do not necessarily have

to be in these directions even if they usually are. The basic thing about the mesh is that

it globally forms a logical quadrilateral. The mesh used in the channel flow problem in

section 2.8, fig. 2.11 is an example of a H-mesh.

For generating the inviscid outer grid a method based on the solution of an elliptic

PDE will be used. This method was first suggested and developed by Thompson [33].

The most commonly used method for controlling the grid point distribution, using the

method of PDE, is solving the Poisson equation where the non-homogeneous source

terms are the mesh-controlling terms. Giles [14], however, has suggested an algebraic

method for the grid control which will be briefly described below. The algebraic method

increases the flexibility of the grid point distribution and is also shown to be more robust

than the Poisson method.

Poisson's Method

Let the coordinates (, y) define the physical space and let the coordinates (, ri) define

a transformed computational space. The transformation is constructed by specifying
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the desired grid points on the boundary of the physical domain. The distribution of

grid points on the interior is then determined by solving

xzz + G,, = p(, ) (4.4)

rizz + v = ((, 7) (4.5)

where P and Q are the source terms that control the grid point distribution. Equa-

tions (4.4) and (4.5) are then transformed to computational space by interchanging

the roles of independent and dependent variables. This yields a system of two elliptic

equations of the form

azef - 2]sXz, + 'yz,, = -J 2 (Pze + Qz,,) (4.6)

aYe - 2P6ye, + ,Yy" = _J 2 (py + Qi,) (4.7)

where

= 2 + I

B = 2v7 +Y,

= hX +Y e

J = zeY - xYte (4.8)

These equations are solved on an uniformly spaced grid in the computational plane

and P and Q control the grid point distribution. This transformation gives a one-one

correspondence between the points in the two spaces. The choice of the functions P and

Q is not a trivial task. Badly chosen source terms might even give rise to convergence

problem in the corresponding numerical method.

Algebraic Method

The algebraic method suggested by Giles [14] is based on the solution of the Laplace's

equation rather than the Poisson's equation. Following the same concept as in the

Poisson method the transformed set of coordinates (, r7) is defined by the equations

.zz + yvv = 0 (4.9)
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7zz + 
1
vkv = 0

After changing variables the equations become

azee - 2flx, + 7yz,, = 0 (4.11)

aye - 2,6ye0 + 7Y7,, = 0 (4.12)

where a, , and 7 are defined by Equation (4.8). Instead of solving Equations (4.11)

and (4.12) on an uniformly-spaced computational grid, algebraic manipulations are

performed directly on the computational grid. This method gives a good direct control

possibility on the mesh in physical space. Again the (, y) coordinates for the bound-

ary nodes in the physical space are specified. Equations (4.11) and (4.12) are solved

numerically using finite differences and iterative SLOR methods.

To illustrate the method a mesh generated in a channel with a bump. The bump

thickness was 50% of the channel height. Figs. 4.4 and 4.5 shows the mesh in the

computational domain and the resulting mesh in the physical space. As can be seen

in these figures the resolution at the leading and trailing edges is very bad. The cells

closest to the lower wall are much to large. To improve the mesh some manipulations

were made on the computational mesh. Figure 4.6 shows the new computational mesh.

A function that increased the stretching in the normal direction was applied in the

neighborhood of the leading and trailing edges. The resulting mesh in the physical

domain, shown in Figure 4.7, indeed shows great improvements.
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Figure 4.4: Uniformly spaced computational grid

Figure 4.5: Pure Laplace mesh in a channel with a 50% thick bump

Figure 4.6: Non-uniform computational mesh where the kinks indicates the leading and

trailing edges
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Figure 4.7: Improved mesh in the channel

4.3 Final Mesh

In the two previous sections, two different mesh generating techniques have been

defined individually. In order to create a complete, mixed computational mesh these

two methods must be combined together. The complete mesh is to be used in a two-

dimensional cascade row, simulating a rotor in a turbine. For the general flow case in a

cascade the computational domain could be very large. The problem can, however, be

simplified considerably by observing that a cascade row consists of an infinite number

of blades stacked periodically and by assuming that incoming disturbances in the flow

are spatially periodic with the same period as the blade spacing. Using this assumption,

the computational domain required is limited to the domain between two blades and

therefore only two meshes are needed. These are, as defined in the previous sections,

the O-mesh around a blade and the H-mesh in the region between two blades.

The first step is to create the O-mesh around the blade. Assuming that one has a

rough idea of the thickness of the boundary layer, the outer mesh boundary is defined

to be well outside the thickest part of the boundary layer (the boundary layer at the

circular trailing edge not included). The mesh spacing, and number of mesh points

in the normal direction is dependent on the current flow condition i.e. basically the

Reynolds number and whether the flow is turbulent or laminar. Having defined the

outer mesh boundary, the number of mesh points in normal and streamwise directions
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and the normal mesh stretching the O-mesh can be generated.

The second step is to generate the H-mesh in between the blades. Since the H-

mesh is generated by an elliptic PDE method, all the boundaries around the domain

must be defined. The first obvious boundary is the outer boundary of the O-mesh

which defines parts of the upper and lower H-mesh boundary. Even if non-reflecting

boundary conditions are used the computational domain is extended one chord length

downstream and upstream respectively. Two lines having the same length as the blade

spacing (pitch), are defined one chord length upstream and downstream. These lines

are the left and right boundary of the H-mesh. To get a reasonably smooth transition

between the O and the H meshes, two angles a and are defined. The rays connecting

the O-mesh boundary and the left and right boundaries makes angles a and i with the

horizontal axis and hence the position of the left and right boundaries are fixed. The

domain and the different boundaries are shown in Figure 4.8. Once the outer boundary

is fixed the H-mesh can be generated.

Outer o-mesh boundary

Axial chord
* C 

Figure 4.8: Geometry description of H-mesh outer boundary

The following algorithm is used to generate the full computational mesh
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* Define the blade geometry and give O-mesh thickness r9 .

* Generate the O-mesh.

* Define leading and trailing edge angles a and 8.

* Use the outer boundary of the O-mesh, a, , chord length c and pitch p to define

the H-mesh boundary in the physical space (see Figure 4.8).

* Generate the H-mesh.

In Figure 4.9 is shown a full mesh generated by this method around a typical turbine

rotor cascade. In this figure it can be seen that there are kinks in the interface region

Figure 4.9: Complete mesh around a cascade without interface smoothing

between the two meshes. Since the numerical methods used here are sensitive to discon-

tinuities these kinks have to be smoothed out. An easy way of smoothing these kinks is

to run a redistribution program based on splines along the interface line. The program

redefines the position of the mesh points in a predefined region around the interface

line. A smoothing program with 6 mesh points bandwidth was run on the mesh shown

in Figure 4.9. The result after the smoothing is shown in Figure 4.10.
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Figure 4.10: Complete mesh around a cascade with interface smoothing
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Chapter 5

Viscous-Inviscid Interface

The main theme in this chapter is to describe the connection of the two different

numerical methods described in chapters 2 and 3. As indicated earlier in the introduc-

tion, the two methods are to be used simultaneously on two different meshes that are

defined on two regions with different flow structures. The complete combined region

is the flow region in a two-dimensional cascade configuration. The two sub-domains

being, a viscous boundary layer region where an implicit scheme is used and a inviscid

channel region where an explicit scheme is used. As was shown, these two methods are

second order accurate both in space and time. The main concern when these methods

are combined together is to be able to maintain global second order accuracy even if

the methods are locally first order accurate. Since the two schemes use the same spatial

discretization method, the spatial operator can be considered to be working on the com-

plete computational domain, unrestricted by the fact that the complete mesh consists of

two different mesh topologies. For consistency, in performing an unsteady calculation,

it is important that the fluxes between the two regions are calculated at the same time

level. It is also important that the spatial smoothing is allowed to operate freely over

the interface at the accurate time level.

The first section of this chapter reviews the discrete, spatial finite volume operator

derived in chapters 2 and 3. The operator is given in a form that emphasizes the flux

properties of the schemes. Using this flux form of the spatial operator makes it easier

to point out the interface parts of the operator when studying the temporal algorithms.

The second section describes the temporal interface between the implicit and the explicit

methods.
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5.1 Spatial Interface

The spatial discretization of the Euler and Navier-Stokes equations given in the vis-

cous and inviscid chapter, chapters 2 and 3, is known as the finite volume method. The

spatial operator associated with the finite volume method was introduced in Eq. (2.22)

and in Eq. (3.7). Using a more compact form this operator can be rewritten as

if i
Aii a@;jt k=i-1 fk=j-1

where sa, is the averaging operator defined by

je ji = 2 +i

ij = 2 ((Pij+1 + i) (5.2)

and the matrix H(qi) has the flux vectors F and G as columns thus

H(q) = (F(q) + G(q) :5) (5.3)

The vectors I and A are the face vectors of the cell wij in C and sq directions respectively

(see Figure 5.1).

Interface Region

As long as each cell in the computational domain has only four closest neighbor cells,

the previously described spatial finite volume operator will always be consistent which

implies at least first order accuracy. The most critical point along the intersection

between the two mesh topologies is the point where the H-mesh splits and is joined by

the O-mesh. As can be seen in Figure 5.2 all cells in this critical region have only four

faces and hence only four closest neighbors. The spatial operator along the interface

line will always have four points in one region and one point in the other. Provided that

the interface line is defined to be located outside the boundary layer, i.e., the viscous

terms in the last layer of cells in the O-mesh can be neglected, the steady state spatial

operator is consistent along this line. It was found that the numerical scheme became
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Figure 5.1: Computational mesh in C and q direction

Figure 5.2: Points in the spatial finite volume operator and mesh singularities
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unstable if the singular point (six joining mesh lines) was inside the strong gradient

region of the leading edge. Fortunately when simulating the actual physical problem

with hot streaks in the inflow, the periodically passing hot streaks did not give rise to

any problem.

5.2 Temporal Interface

It was shown in the second chapter that the spatial finite volume operator was of

global second order accuracy. It was also shown that both the implicit and the explicit

time integration algorithms were second order accurate individually. For the complete

mixed temporal scheme no proof will be given that it is second order accurate. The full

temporal scheme might in fact be less than second order accurate along the interface

line but it is definitely consistent and hence at least first order accurate. In this section a

description of the temporal algorithm along the interface line is given. Some persuasive

arguments are given that the possible lack of accuracy in the interface region does not

affect the global accuracy.

In Figure 5.3 a graphical representation of the procedure at the interface is given.

The arrows between the inviscid and viscous regions indicates the fluxes calculated at

each stage. Note that the extrapolation update done in the viscous region is not used as

a permanent update but just to enforce consistency in the inviscid region. The temporal

matching between the viscous and inviscid regions can be described as follows

1. Calculate the flux through the interface between the inviscid and viscous region

at time level n, i.e. Ft = (F",, + Fnn.)

2. Make a predictor step with the Runge-Kutta formula throughout the inviscid

mesh. q* = qf + At R n (Euler forward step)

3. Update the boundary cells in the viscous region using the extrapolation formula

q* = qn + Aqn- 1

4. Calculate the flux through the interface between the inviscid and viscous region
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at time level n + 1, i.e. Ft = (Fvise + F*n)

5. Make a corrector step with the Runge-Kutta formula through out the inviscid

mesh.q** = q" + 1 At (R* + R")

6. Calculate the flux through the interface between the inviscid and viscous region

at time level n + 1, i.e. Ft = (Fi c + Fnv)

7. Make a corrector step with the Runge-Kutta formula through out the inviscid

mesh.qn+ = qn + - At (R** + R")

8. Save the flux through the interface calculated by F+l = (Fn + F*nt)

9. Make an implicit step through out the viscous region using the interface flux

calculated in the explicit step

n- + , X , X I X

qn+l = qn + ½itt (F(qg) + F(q*"))

** , 1 , I X

q** = qn + ½it (P(q") + F(q*))

, X , X I X)

q = qn + t F(qn) 

0 s d 

Time level

q-* = q

X I X

q = q + A q

X X , 

X
vr: ...

Figure 5.3: Three stages in the Runge-Kutta time stepping scheme. Viscous and inviscid

part

The fourth order smoothing (artificial dissipation) of the fluxes described in chapter

2 is imposed at each stage of the explicit scheme and in the beginning of the implicit

step. To smooth the last two cells before the interface in both the regions, two points

in the other region are needed for the five-point smoothing stencil. Two layers of cells

next to the interface in each region are buffered and stored independently to be used

for smoothing. The buffer values in the viscous region follows the updating described

above and therefore the smoothing is always performed at the correct time level.
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The algorithm described above is second order accurate everywhere except in the

interface region. In the interface region, however, the scheme is consistent since the in-

termediate extrapolation update (qn+l = q +Aqn-l) in the viscous region is consistent.

Consistency indicates that the scheme is at least first order accurate. The algorithm

presented above is adequate in the interface region up to the second corrector step where

the fluxes through the interface of the boundary cell are based on the predicted value in

the viscous region rather then the corrected values. The first step is identical on both

sides of the interface boundary since the Euler step and the extrapolation step are both

first order accurate. Considering the spatial operator at the last corrector level ()*

Aii, (k 1 [~H(q)] " , + ++ [H((-)] ' m- + .

(5.4)

where the only difference is in the averaged flux on the boundary (underlined term).

However, the disturbance introduced to the scheme by averaging at different stages

that might give local first order accuracy are not going to effect the global second order

accuracy of the full scheme. This rather controversial statement is based on a theorem

by Gustafsson [15] which states that for convergence, the accuracy of the boundary

conditions to an interior scheme can be of one order less than the scheme it self.
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Chapter 6

Hot Streak Simulations

The two-dimensional numerical simulation algorithm described in the previous chap-

ters is used to simulate the redistribution of hot gas streaks in the rotor of a turbine

stage. The hot streaks in the rotor originate from the combustor in a jet engine. They

are convected through the stator with a minimum of mixing i.e. maintaining most of

their original shape. The streak will not affect the flow features in the stator or along its

boundary. The streaks leave the stator at a high angle relative to the rotational axis and

enter the rotor where the computational domain is defined. The primary objective of the

present numerical investigation is to try to predict and understand the observed migra-

tion of hot gas to the pressure surface of the rotor blade [5]. The migration phenomenon

has previously been investigated numerically by Rai [26] using a full Navier-Stokes code

in a complete two-dimensional turbine stage (stator + rotor) but with flow conditions

differing from the ones used in the actual experiment. The intention of this work is

to match the experimental conditions closer than the previous numerical investigation.

This chapter will present results from three different computations.

The configuration in which the calculations are performed is taken to be a two-

dimensional version of the experimental setup used in reference [5], the mid span section

of the rotor in the full turbine stage. The actual experiment was conducted at United

Technologies Research Center (UTRC) in their large scale rotating rig so the rotor will

henceforth be referred to as the UTRC rotor. The original experiment was run at

almost incompressible conditions with the outflow Mach number from the rotor being

approximately 0.2. The steady inflow and outflow boundary conditions, upon which

the unsteady boundary conditions are based, were obtained by performing a steady

computation using the inviscid Euler solver UNSFLO developed by Giles [12]. For the

UNSFLO computation the inflow angle a, inflow stagnation enthalpy and outlet static to
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Figure 6.1: two-dimensional rotor geometry with inlet and exit flow conditions

inlet total pressure ratio were specified. The steady calculations yield the inflow/outflow

boundary values for the Mach number and the flow angles (a and A). The geometry and

the inlet/exit flow conditions are shown in Fig. 6.1. The unsteady computations were

started from a field initialized by averaging the inflow and outflow steady conditions.

The dependent variables were, as described in chapter 2 and 3, nondimensionalized

with respect to the axial chord c, the steady inflow values of density po, the speed of

sound c,, the temperature Too and the coefficient of viscosity po. In the rotating frame

the unsteady inlet boundary conditions for the unheated gas become

vin = Mia sin(a)

Vint = Mim cos(a)

Pin, = 1.

1
Pilrd = -

'7
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At the exit the boundary conditions become

Ucz = M.. sin(6)

ez = M. cos( )

Pinl Uin
P. =

UO:

Pe' = Pin (1 + 72 M2) r

where the subscripts inl and e refer to the inlet conditions and outflow conditions

respectively and where rp is the specified ratio between exit static pressure and the

inlet stagnation pressure.
Pez

rp P in

The values in the stator frame are obtained by simply adding the rotational speed of

the rotor V,,t to the y-component of the velocity vij. The rotational speed is given by

Vrtr = trint 

where ostator is the exit flow angle from the stator in the stator frame. To specify

the boundary values in the hot gas, the assumptions introduced in chapter 3 will be

used. These were, the static and total pressure in the hot streak are the same as in

the unheated gas and hence the Mach number is also the same. Let A define the ratio

between the hot and the cold gas then the following holds for the hot streak in the

stator frame

Uhs = UinI V

Vhs = (Vinl + Vrt) Va

PinJ
Ph = A

Pha = Pinl

where the subscript h represents the hot streak. The final boundary conditions are

defined and implemented using Equations (2.72) and (2.73).

To be able to compare the results both with the experimental data and with previous

calculations, three different simulations were performed. The test cases were run at two
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Table 6.1: Inflow/outflow boundary values for different flow coefficients

I = 0.78 = 0.68

Inlet Mach no. (Mia) 0.12 0.11

Exit Mach no. (M,.) 0.2 0.2

Inlet flow angle (c) 410 46 °

Exit flow angle () 24.330 24.030

Pressure ratio (rp) 0.9725 0.9725

different flow coefficients, where the flow coefficient is defined as

Uinlet

and with two different turbulence assumptions. In [26] Rai used the flow coefficient

= 0.78 and the temperature ratio A = 1.2. In order to see what a higher temperature

in the hot streak does to the flow field and the temperature distribution along the blade,

the temperature ratio will be held at A = 2.0 in all three test cases. In the first test case

the flow coefficient will be ~ = 0.78 and the boundary layer will be assumed to be fully

turbulent. In the actual experiment 0 was set to 0.68 and A was set to 2 and therefore,

for the second and third computation, the flow coefficient will be 0.68. As in the first

test case, the boundary layer in the second test case is assumed to be fully turbulent.

To investigate the effects of a laminar or a turbulent boundary layer and the effects

of transition the third test case is run with a laminar pressure surface and a partly

laminar suction surface. Table 6.1 shows the inflow and outflow conditions obtained by

UNSFLO for O = 0.78 and for 0 = 0.68. It can be seen that the flow conditions do

not differ much between the two cases with the exception of the inflow angle a. In flow

situations like those considered in this work it is reasonable to assume that the blade

wall is adiabatic i.e. there is no heat flux at the blade surface. In both computations

the Reynolds number, based on axial chord and inlet speed of sound, was chosen to be

106 to match the experimental data as well as Rai's computational data.

The three computations were performed on the same computational mesh. The

inviscid H-mesh consisted of 193 x 51 mesh points and the viscous O-mesh consisted of
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Figure 6.2: Computational mesh in the UTRC rotor

129 x 21 mesh points which gives a total of 12552 mesh points. For the O-mesh the

stretching factor in the normal direction was set to 1.1 . To get a good resolution of

the trailing edge, 15 mesh points were specified around the trailing edge circle. The full

mesh is shown in Fig. 6.2, and enlarged details of the leading and trailing edge regions

are shown in Figs. 6.3 and 6.4. To get a good temporal resolution, 2000 iterations were

performed for each cycle (blade passing). For all test cases, this was shown to give a

CFL restriction corresponding to CFL = 1.65 in the inviscid region and CFL = 6.50

in the viscous region. 7 cycles were needed to obtain a periodically converged solution

from the free stream condition. All computations were performed on an 3-processor

Alliant FX-8 computer for which the program has been optimized. The computational

cost per iteration was computed to be 8.1 CPU seconds which gives a total of 4.5 CPU

hours per cycle. It was found that the solution of the two sets of tri-diagonal equation

systems took approximately 80% of the total computational time.

Even if the intention of the present simulation is to be as close to the experimental

setup as possible there are still some major differences. One must bear these differences
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Figure 6.3: Computational mesh around the leading edge of the UTRC rotor
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Figure 6.4: Computational mesh around the trailing edge of the UTRC rotor
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in mind in the process of analyzing the computational results and comparing them to

the experimental data. As pointed out by Rai and Dring in ref. [26], the most important

differences between the calculations and the experiment are:

1. The actual flow is three-dimensional in nature whereas the present calculation is

only two-dimensional.

2. The experimental configuration has 22 stator airfoils and 28 rotor airfoils and

therefore the incoming wakes does not have the same spatial period as the rotor

spacing.

3. In the experiment, the hot gas entered the system through only one stator passage.

The periodicity condition used in the calculation produces one hot streak per

rotor blade thus resulting in a much greater amount of hot gas entering the rotor.

Another factor is that the hot streak in the experiment only existed over one third

of the span while the two-dimensional code more closely simulates a hot streak

existing over the whole span.

6.1 Fully turbulent flow with flow coefficient b = 0.78

To be consistent with the computation performed by Rai, the first test case is run

with a flow coefficient = 0.78. It is also assumed, to be consistent with Rai, that the

flow around the blade is fully turbulent. This can be justified by the fact that the flow

originates from the combustor and hence contains a high level of free stream turbulence.

By considering the time averaged wall pressure distribution in [26] it is reasonable to

assume that, even without the incoming hot streaks, the laminar boundary layer will

become turbulent very quickly due to an adverse pressure gradient on the suction side

and a pressure peak on the pressure side.
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Figure 6.5: Time averaged surface pressure coefficient, ~ = 0.78

Pressure distribution

Figure 6.5 shows the time-averaged pressure coefficient (p) as a function of the nor-

malized axial distance /c. The pressure distribution is defined as

(Pave - P) (6.1)
P i - p,,

where Pa,, is the static pressure time-averaged over one cycle. Fig. 6.5 also shows

the experimentally obtained pressure distribution, which was obtained without any

incoming hot streaks. The general agreement between computation and experiment is

good. There are, however, some discrepancies in the leading edge region. The differences

can be explained by the fact that the rotor relative flow angle is different in the hot and

cold fluid. This can be understood by considering the velocity triangles shown in Fig. 6.6.

In the figure the subscripts hs and col correspond to hot and cold fluid respectively and

the superscripts stat and rot indicates stator and rotor relative velocities. Also indicated

is the difference in flow angle Ac. A different time averaged angle of attack will give

rise to a different pressure distribution. The random fluctuations in the pressure at the
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Figure 6.6: Velocity triangles for hot and cold fluid show difference in rotor relative flow

angle

end of the blade correspond to the points on the trailing edge circle and are probably

caused by numerical errors.

Temperature distribution

In Figure 6.7 is shown the time-averaged temperature coefficient CT along the blade

surface. The surface length is nondimensionalized with respect to the axial chord c.

The temperature coefficient is defined as

T- T
CT = - (6.2)

where T is the area averaged inlet temperature and T,oo is the temperature in the

unheated free stream. It can be seen that the temperature coefficient varies around 1 as

expected. A peak in the temperature appears in the beginning of the pressure surface

where the hot streak intersects with the blade. Following the pressure surface, the

average temperature slowly rises from 1.15 to about 1.4 and finally collapses under 1 at

the trailing edge. On the suction surface the average temperature reaches a maximum

of about 1.15 at the crest of the blade and then linearly decreases to a value of 0.9 at

the trailing edge.
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Figure 6.7: Time averaged surface temperature distribution, ~ = 0.78

Figure 6.7 also shows the numerical results of Rai and the experimental results. The

results obtained with the present method are, on the suction surface, in close agreement

with Rai's data. On the pressure surface, however, the present solution predicts a higher

average temperature which indicates that a higher temperature ratio in the hot streak

does indeed effect the computed flow field solution around the cascade. In comparison

with the experiment, the present numerical solution show some major differences. With

the flow conditions specified for this test case, the present method did not predict the

same amount of migration as was experimentally observed.

Unsteady temperature distribution

The unsteady temperature distribution along the blade surface is shown in Figure 6.8.

The figure shows the time evolution of the temperature distribution over two blade

passages. In the figure the time is nondimensionalized with the cycle time. It can

be seen that the variation between high and low temperature is more accentuated on

the suction surface than on the pressure surface. This was also observed by Rai as he

considered the absolute difference between max and min temperature ITMa - Tinl as
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Figure 6.8: Time evolution of the surface temperature distribution, i = 0.78

a function of the blade surface. This phenomenon can be explained by the fact that

the hot streak is convected much faster on the suction side than on the pressure side.

Due to the fact that the diffusive time scale is much smaller than the convective, the

boundary layer on the suction side can be considered to be quasi-steady and hence the

temperature on the blade surface will be the same as the temperature at the edge of

the boundary layer.

The hot streaks seems to attach at the leading edge and be slowly convected down-

stream on the pressure surface. This will force the hot streak outside the boundary

layer to wrap around the blade and eventually mix with the cool fluid along the pres-

sure side. This will account for the relatively steady temperature distribution found

on the pressure surface. The way the temperature peak at the leading edge on the

pressure surface decays in time, indicates that the hot streak is being diffused rapidly

in the turbulent boundary layer. This is quite in order since the turbulence model will

increase the thermal diffusion.
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6.2 Fully turbulent flow with flow coefficient = 0.68

In order to match the actual experiment more closely, the flow coefficient for this

second test case is set to be 0.68 which corresponds to a higher rotational speed and

hence a higher tangential inflow angle.

0.2 0.4 0.6

Z/C

0.8 1.0 1.2

Figure 6.9: Time averaged surface pressure distribution, ~ = 0.68 fully turbulent

Pressure distribution

A comparison between the numerically and the experimentally obtained time-averaged

pressure coefficient Cp is shown in Figure 6.9. The pressure coefficient was defined in

Eq. (6.1). The experimental data was, as for the case with 4 = 0.78, obtained without

incoming hot streaks. The agreement between experimental and computational data is

good with a small difference in the leading edge region. As in the previous test case the

differences can be explained by the differences in relative flow angles shown in Figure 6.6.

The wiggles in the leading edge region of the pressure surface is due to a combination of
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poor mesh resolution and a minimum of artificial smoothing in the streamwise direction

in the boundary layer.

Temperature distribution

Figure 6.10 shows the averaged temperature coefficient as a function of the rotor blade

surface length. Near the leading edge on the pressure surface there is a peak in the

temperature indicating the position where the hot streak first hits the blade. From this

peak, the temperature increases almost linearly along the pressure surface. It starts at

a value of ~ 1.25 behind the peak and ends at 1.4 at the trailing edge circle where

it drops to 1.0. On the suction surface between the leading edge and the crest of the

blade, the temperature rises from about 1.10 to 1.15. From the crest, the temperature

decreases linearly down to the trailing edge where it takes on the value of 0.9.

A c

Present method

o Experimental data 161

D Rai's method 12861 ( = 0.78)

T.E.
e 
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G3 

0 O

3 P. P. T.E.

Pressure side

L.E.

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Figure 6.10: Time averaged surface temperature distribution, = 0.68 fully turbulent

In Figure 6.10 is also shown the experimental data. The agreement between the

experimental data and the computational results is, as in the previous case, still quite

poor. The peak averaged temperature does not reach the same high value in the compu-

tation as in the experiment. However, in Fig. 6.10 one can notice an indication of more
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Figure 6.11: Time averaged surface temperature distribution

heat accumulation on the pressure surface. As pointed out also by Rai, the higher axial

flow angle a for k = 0.68 will accentuate the the segregation of hot and cold gas between

the pressure and suction surfaces. The differences between the two computations can

clearly be seen in Figure 6.11 where an enlargement of the the average temperature

distribution from the two cases is shown.
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6.3 Transitional flow with flow coefficient = 0.68

The effect of isolated wakes on a laminar and transitional boundary layer was in-

vestigated in an experiment by Doorly, Oldfield and Scrivner [8]. It was found that an

isolated passing wake induced a rapid and complete transition of an otherwise laminar

boundary layer to a temporarily fully turbulent state. The level of freestream turbulence

in that specific test case was very low. This is of interest to the hot streak investigation

since the original experiment by Butler only had one hot streak coming in from the

stator and probably a very small amount of freestream turbulence. It is possible that,

since the pressure peak is much weaker for this inflow angle, the flow on the pressure

surface is laminar. It is also possible that the flow on the suction surface is transitional

due to the strong pressure gradient.

In a second experiment, however, the freestream turbulence was increased to 2%

intensity and the wakes were more closely spaced. It was found that the successive

turbulent patches eventually merge to form a continuously turbulent boundary layer.

This experiment is closer to a real flow situation which indicates that the fully turbulent

assumption made in Section 6.1 and Section 6.2 is more physically correct.

Considering the time averaged pressure distribution obtained from the experiment,

the transition point on the suction surface should be located about 65-70% of the axial

chord from the.leading edge. At this point the pressure gradient changes from favorable

and becomes adverse. The transition point on the pressure surface was chosen just

before the trailing edge circle in order for the flow to be turbulent around the trailing

edge.

Temperature distribution

Figure 6.12 shows the averaged temperature coefficient as a function of the rotor blade

surface length. Near the leading edge on the pressure surface there is a peak in the

temperature indicating the position where the hot streak first hits the blade. From this
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Figure 6.12: Time averaged surface temperature distribution for q = 0.78

peak, the temperature increases almost linearly along the pressure surface. It starts at

a value of 1.25 behind the peak and ends at 1.4 at the trailing edge circle where

it drops to 1.0. On the suction surface between the leading edge and the transition

point the temperature increases from about 1.15 to 1.2. At the transition point the

temperature coefficient suddenly drops to about 1.0 and then linearly decreases down

to the trailing edge where it is 0.9.

In Figure 6.12 is also shown the experimental data and the results from the fully

turbulent calculation. There is a significant difference between the two computational

results. On the suction surface, the temperature is higher for the laminar case up to the

transition point where it drops and becomes lower than in the turbulent case. The peak

averaged temperature does not reach the same high value in the computation as in the

experiment. It is remarkable to note that the temperature distributions on the pressure

surface are so similar for the laminar and turbulent cases. Further, it is interesting to

notice the drastic drop in temperature when the flow changes from laminar to turbulent.

This numerically simulated temperature decrease due to transition, makes it reasonable

to believe that it is transition that causes the experimentally observed temperature

decrease at 0.2 arclength from the leading edge on the suction surface.
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It is now clear that the turbulence model is a crucial part of the simulation and that

the model affects the flow features. The choice of transition point is also of great im-

portance. It can be discussed whether transition should be enforced or if the boundary

layer should be fully turbulent. Based on the fact that the actual flow from a combus-

tor contains a high level of freestream turbulence it is reasonable to believe that the

boundary layer is fully turbulent. However, the combustor exit flow turbulence will not

be homogeneous so it may only be possible to model it effectively by an true unsteady

method.

Unsteady temperature distribution

In Figure 6.13 the time evolution of the surface temperature distribution is shown. At

the leading edge can be observed the periodic impact of the hot streak on the blade.

The behavior of the temperature is more dramatic on the suction surface than on the

pressure surface. Due to a higher convection speed, the differences between maximum

and minimum temperatures are larger on the suction surface. It can be seen that

the temperature differences are much smaller at the transition point on the suction

side. The thermal diffusivity increases after the transition point and the high and low

temperature parts of the gas mix faster which is in agreement with the theory. It is

interesting to note that, with the exception of the leading edge region, the temperature

on the pressure surface stays almost constant during the whole cycle.

Temperature contours

One of the big advantages of using a computational approach is that it yields, as a part

of the calculation, not only surface temperatures but also the temperature distribution

in the entire computational region. The figure sequence 6.15 - 6.18 shows four snapshots

of the temperature field in the rotor at four different time stages in the cycle. These are

at 25, 50, 75 and 100 % of the cycle time. In all figures the temperature is represented

by iso-clines where the lower temperature levels have been filtered out. The hot streaks
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Figure 6.13: Time evolution of surface temperature, b = 0.68

are in between the two narrow bands of iso-clines representing the transition between

hot and cold gas.

Figure 6.18 shows the solution at time level 1.0 which is equal to the solution at

time level 0.0. Five different phases of the hot streak redistribution can be identified.

The first is the left most stage in the inflow where the hot streak is being convected

towards the blade row, indicated by A in the figure. The second stage is the one close

to the leading edge where the hot streaks have started to interact with the pressure

perturbation from the blade. A first indication of bending of the streak can be noticed

at station B in the figure. In the third stage the hot streak has impinged on the pressure

surface of the blade (station C) and is slowly being convected along the surface. Due

to the acceleration gradient in the high speed region between the pressure and suction

surface of two consecutive blade, the streaks starts to deform and form a V shape (D)

which is referd to as bowing. In stage four the hot streak has been wrapped around

the blade and the outer contours downstream of the trailing edge are being effected
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Figure 6.14: Inviscid wake transport in the UTRC rotor at = 0.34

by the vortex shedding at the trailing edge (E). At this stage it can be seen that the

redistribution of the hot streak is dominated by convection on the suction surface and

by a combination of convection and heat diffusion on the pressure surface. Finally in

stage five the chopped remainder of the hot streak is being convected downstream and

out of the computational domain (F).

An inviscid wake transport phenomenon was investigated by Joslyn, Caspar and

Dring [17]. They used the same geometry as in this work, to investigate the inviscid

transport of an infinitesimal wake velocity defect through the rotor. The results were

compared to a smoke trace experiment and showed good agreement. The flow coefficient

in their computation was much smaller than in the present calculation (~ = 0.34).

However, the same qualitative flow features such as wake chopping and wake bowing

were observed in both Joslyn's calculation and the present calculation. Figure 6.14 that

was taken out of reference [17] shows Joslyn's calculated wake transport. In comparison

with the figure series 6.15 to 6.18 it can be seen that the wake on the pressure surface

is convected much faster in the inviscid case than in the viscous.
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By considering the sequence of solutions illustrated in Figures 6.15 - 6.18 it is easy

to see that the hot streaks are being dissipated as they convect downstream even in

regions where viscous effects were assumed to be negligible. This indicates that the

central, finite volume scheme strongly dissipates the solution in flow regions with strong

gradients. The dissipation of the hot streak leads to a decrease in peak temperature in

the hot streak. The fact that the hot/cold temperature ratio was not constant at 2.0 in

the upstream region, might contribute to the absence of the experimentally measured

temperature peak on the pressure surface (see Figure 6.12). In a real flow situation,

however, the high level of freestream turbulence will indeed cause dissipation of the hot

streak.

A considerable amount of smoothing and too few mesh points around the trailing

edge is the most probable reason that the vortex shedding in this simulation is weaker

than the one observed by Rai.
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Figure 6.15: Temperature contours, t = 0.25

Figure 6.16: Temperature contours, t = 0.5
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Figure 6.17: Temperature contours, t = 0.75

Figure 6.18: Temperature contours, t = 1.0
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Chapter 7

Conclusions

In this work a numerical algorithm for simulating an unsteady, two dimensional flow

in a turbine rotor have been developed. The basic philosophy in the development of the

code was to divide the flow region into sub-regions with different flow characteristics.

In regions where viscous effects dominated the flow, the unsteady Reynolds-averaged

thin layer Navier-Stokes equations are solved. In turbulent regions a Baldwin-Lomax

turbulence model is used to model the turbulent flow characteristics. The unsteady

Euler equations are solved in regions where viscous effects were assumed to be negligible.

The objective of this study was two-fold:

* To assess the possibilities of using a mixed viscous-inviscid, implicit-explicit nu-

merical scheme for unsteady flow simulations on patched grids.

* To study the redistribution of hot streaks in turbines with emphasis on the mi-

gration of hot gas to the pressure side of the rotor blade.

On each different flow region a structured computational mesh is defined. The different

meshes are patched together to create a complete computational mesh. A standard finite

volume technique is used to solve the spatial part of the governing equations both in

the inviscid and the viscous regions. In the viscous region an implicit Beam-Warming

time-integration scheme is used to accurately advance the flow solution in time. An

explicit three-stage Runge-Kutta method is used for time integration in the inviscid

region. An accuracy study shows that the two numerical methods are both spatially

and temporally second order accurate. A Von-Neumann stability analysis shows that

the implicit scheme is unconditionally stable for a mixed hyperbolic/parabolic model

equation, and that the explicit scheme is conditionally stable with a Courant number

of 2 for a hyperbolic model equation. Unsteady non-reflecting boundary conditions are
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used in order to allow waves to pass through computational boundaries without being

reflected. These boundary conditions also allow prescribed non-uniformities such as

velocity wakes and hot gas streaks to enter the computational domain. Calculations

on different test geometries under different flow conditions gives results which are in

excellent agreement with experiments, previous calculations and analytic solutions.

For a turbine rotor the two dimensional computational region is divided into a

viscous region close to the blade where an O-mesh is generated, and an inviscid region

in the through flow region where a H-mesh is generated. The H-mesh is created using

an elliptic grid generator and the 0-mesh using an algebraic technique based on splines.

The two meshes are patched together and the interface region is smoothed in order to

prevent numerical errors.

The two outermost layers of computational cells in each mesh configuration consti-

tute the interface region between the viscous and the inviscid region. The interface is

transparent to the finite volume operator since the structure of the operator is identi-

cal on the different meshes. The interface is likewise transparent to the fourth-order

dissipation operator. To achieve time accuracy the flow field is solved simultaneously

on the different regions. In the interface region the temporal integration is locally first

order accurate. This, however, does not affect the global second order accuracy of the

scheme.

The numerical method is used to investigate the redistribution of hot streaks in a

turbine rotor. A two dimensional model of a UTRC turbine rotor is used as a test geom-

etry. An experiment and a previous calculation have been performed on this geometry,

regarding the transport of hot streaks. In the first calculation the flow coefficient was

= 0.76, the temperature ratio between hot and cold gas was 2.0 and the flow around

the rotor blade was assumed to be fully turbulent. A comparison between results ob-

tained from a previous calculation and results generated by the present code showed

favorable agreement. The time-averaged pressure distribution calculated for this case

was correctly predicted by the code. The migration of hot gas to the pressure surface

is predicted for these flow conditions.
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To match the original experimental setup more closely the second and third test

cases are run with a flow coefficient of 0 = 0.68 and a temperature ratio of 2.0. The

prediction of a larger hot gas migration due to a higher axial flow angle was verified by

the two calculations. As in the previous case, the pressure distribution along the blade

is correctly predicted.

In the third test case the effect of transition was studied. The pressure surface

was forced to be laminar and on the suction surface a transition point was chosen at

a position where the pressure gradient becomes adverse. At the transition point the

temperature decreases rapidly which is in agreement with the experiment. It is the

author's opinion that the magnitude of hot gas migration to the pressure surface is

significantly dependent on the differences in flow coefficient. Whether the boundary

layer is fully turbulent or transitional is precluded from playing any significant role

of the migration. It is also believed that some of the differences between experiment

and computation are due to the three dimensional nature of the flow which can not be

simulated by a 2D code.

For future work the following items are suggested:

* Development and implementation of a more accurate turbulence model.

* Perform an inviscid calculation under the same conditions to establish the impor-

tance of viscous effects on the migration of hot gas.

* Extension of the numerical code to be able cover a full turbine stage with stator

and rotor.
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