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ABSTRACT

Amass transfer model is developed using the volume-of-fluid (VOF) method with a piecewise linear
interface calculation (PLIC) scheme in ANSYS FLUENT for a free-rising bubble. The mass flow rate is
defined via the interface by Fick’s law and added into the species equation as a source term in the liq-
uid phase using the user-defined functions (UDFs) in ANSYS FLUENT. The interfacial concentration
field for the mass flow rate is discretized by two numerical methods. One of them is based on the
calculation of the discretization length between the centroid of the liquid volume and the interface
using the liquid void fraction and interface normal vectors at the interface cells, while in the second
method the discretization length is approximated using only the liquid void fraction at the inter-
face cells. The influence of mesh size, schemes, and different Schmidt numbers on the mass transfer
mechanism is numerically investigated for a free-rising bubble. Comparison of the developed mass
transfer model with the theoretical results shows reasonable and consistent results with a smaller
time-step size and with cell size.
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Nomenclature

A Interfacial area (m2)
d Diameter (m)
k Mass transfer coe�cient (m/s)
a Mesh scale (m)
ṁ Mass transfer rate (kg/s)
N Number of mesh cells (–)
S Source term (kg/m3 s)
U Velocity (m/s)
V Volume (m3)

Greek Symbols

�X Discretization length at the interface cells (m)
ε Rate of energy dissipation per unit mass viscosity

(m3/s2)
α Void fraction (–)
π Pi number (–)

Subscripts

0 Initial
avg Average
bat Batchelor

CONTACT Furkan Özkan furkan.oezkan@kit.edu

bub Bubble
dis Dissolution
int Interface
Kol Kolmogorov
l Liquid phase
g Gas phase
norm Normalized
sat Saturation
x Cell index in x direction
y Cell index in y direction
z Cell index in z direction

Acronyms

Re Reynolds number
Pe Peclet Number
Sc Schmidt number
Gr Grashof number

1. Introduction

Micro process engineering o�ers the advantage of fast
heat removal and considerable increase in mass transfer
through a high gas–liquid interfacial area in continuous
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operation. The description of the interfacial mass trans-
fer rate between the gas and liquid phases is necessary
to predict the degree of process intensi�cation. In order
to optimize the process conditions and reactor geome-
try, a detailed understanding of the mass transfer pro-
cess is essential. A combination of the shortcomings of
micro scale measurement techniques and the advantages
of computational �uid dynamics (CFD) code to visual-
ize, for example, concentration pro�les encourages the
usage and improvement of CFD research and tools. A
trend in the CFD �eld is to model gas/liquid and liq-
uid/liquid systems in the systems using commercial CFD
code and in-house CFD code based on the volume-
of-�uid (VOF) method for process development and
intensi�cation (Kreutzer, Kapteijn, Moulijna, & Heisz-
wolf, 2005; Qian & Lawal, 2006). Nowadays commercial
CFD code can capture the interface between two immis-
cible phases (Özkan, Wörner, Wenka, & Soyhan, 2007).
TheVOFmethod gives consistent results in experimental
research (Ozmen-Cagatay & Kocaman, 2011; Wang, Su,
Wang, Zhu, & Liu, 2014). The implementation of interfa-
cial mass transfer with coupled mass balance to provide
gas volume shrinkage and the implementation of chemi-
cal reactions in multiphase systems are missing or under
development. However, this is necessary to understand
the e�ects occurring due to mass transfer between the
dispersed phase and continuous phase and to describe
the yield and selectivity of chemical reactions in micro-
structured devices (Kröger, Alke, Bothe, & Warnecke,
2007).

In the present research we have focused on the dis-
cretization of the local mass transfer equation through
the application of Fick’s lawusing twonumerical concepts
in ANSYS FLUENT (ANSYS, 2009). Since ANSYS FLU-
ENT o�ers the usage of mass transfer source term using
theVOFmethod and the piecewise linear interface calcu-
lation (PLIC) scheme, it is possible to add the interfacial
mass transfer based on the concentration di�erence via
user-de�ned functions (UDFs). Therefore, like the study
of Sato, Jung, and Abe (2000) we set the saturation con-
centration at the interface cells as a boundary condition.
The VOF method with the PLIC scheme is based on a
generalization of the method of Youngs (1982) can be
considered in ANSYS Fluent as one of the most accurate
scheme to calculate the void fraction (ANSYS, 2009). The
standard multiphase species equation is used in ANSYS
FLUENT to get the dissolution concentration in the liq-
uid phase. In order to integrate a mass source based on
Fick’s law at the interface cells, the discretization liquid
length (the distance between the interface and the cen-
troid of the liquid volume)must be calculated.We applied
twodi�erent numerical concepts.One is based on the cal-
culation of discretization length between the centroid of

the liquid volume and the interface using the liquid void
fraction and the interface normal vectors delivered from
the VOF–PLIC scheme, while in the other the discretiza-
tion length is approximated using only the liquid void
fraction at the interface cells. By applying these concepts
it is possible to directly linkmass transfer with the bubble
volume change. In all simulations, ANSYS FLUENT ver-
sion 12 was used. In order to implement interfacial mass
transfer, the de�ne mass transfer (DMT) macro was used
for the calculation of the relevant source terms.

2. Calculation of ṁgl

UDFs allow users tomodify the behavior of ANSYS FLU-
ENT in order to meet their speci�c modeling needs. The
interfacial mass transfer model based on Fick’s law is
implemented using the DMT macro in the VOF–PLIC
model with species transport equations. Multiphase
species transport equation is taken account of at the liq-
uid phase cells in the macro (0< al≤1) since the inter-
nal mass transfer in the bubble is not considered in the
present research. More detail about the methodology is
available in the ANSYS FLUENT theory guide (ANSYS,
2009).

ṁgl is themass transfer from the gas phase to the liquid
phase. Since mass transfer from liquid to gas is not con-
sidered, ṁlg is not accounted for and therefore the source
term (S) is:

S = ṁgl, (1)

where ṁgl is the interfacial mass transfer source between
species O2 in air and the liquid mixture from gas phase
to liquid phase. It can be calculated by Fick’s �rst law as:

ṁgl = −∇CDlA, (2)

where A is the interfacial area and it can be calculated
for each cell by multiplying the cell volume and the
magnitude of the void fraction gradient (Wielage, 2005):

A =

√

(

∂αg

∂x

)2

+
(

∂αg

∂y

)2

+
(

∂αg

∂z

)2

Vcell. (3)

The derivation of the gas void fraction (αg) in the x, y, z
direction is 0 except at the interface cells. This restriction
provides the selection of interface cells since S is 0 except
at the interface cells.

For the gas volume fraction in the cell, αg , the follow-
ing three conditions are possible:

αg = 0: The cell is empty of gas.
αg = 1: The cell is full of gas.
0 < αg < 1: The cell contains the interface between

gas and liquid
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The void fraction for the gas phase in terms of themass
transfer is

∂αg

∂t
+ ∇ · αgU =

S

ρg
. (4)

Calculation of ṁgl at the interface cells is achieved as
long as the void fraction of the liquid phase is greater than
.05 to keep the convergence. Otherwise the concentra-
tion gradient approaches in�nity, since the discretization
length approaches zero without the liquid void fraction
restriction. The gradient of concentration in Equation (2)
is calculated by

∇C =
Csat − Cdis

�X
, (5)

where Csat is the saturation concentration and set by the
user, Cdis is the dissolution concentration in the liquid
phase, and �nally�X is themissing discretization length.
Cdis is normally stored at the center of the mesh cell but
it is assumed that it is at the center of gravity of the cut
liquid volume. The determination of �X is based on the
two alternative numerical concepts presented in Figure 3.

The local void fraction of liquid and normal vectors at
the interface are required in order to calculate �X (for
the PLIC-1 method). The VOF method using the PLIC
scheme delivers this information. Therefore, the numer-
ical concept of the PLIC-1 calculation of �X is more
accurate. In the concept of the PLIC-2 method, only the
void fraction equation is used from the PLIC scheme.
However, in order to calculate �X from the void frac-
tion value, it is assumed that the interface is parallel to
a certain interface cell (in contrast to the PLIC scheme
itself). The discretization length in Equation (5) is thus
approximated.

In the PLIC-1 method the normal vectors of the inter-
face and the α-value are provided from the ANSYS FLU-
ENT code to calculate �X. Figure 4 shows the �owchart
of the �X calculation. More detail about mathematical
calculation method are available in Oezkan (2013). In
order to identify the position of the interface in the cells,
the code iterates. Starting with an initial point in themid-
dle of the cell, the phase volumes are calculated using the
normal vector and this initial point is given as a position
of the interface plane (Figure 5). These phase volumes
are compared with the α-value. If the phase volumes
are not consistent with α, the position of the plane is
changed until this criterion is ful�lled. Then�X is calcu-
lated. Determination of the discretization length is easier
in PLIC-2 method; since cubic cells are used, the indi-
vidual phases are separated into cuboid sections and the
normal vector is rectangular to one of the cell walls. Thus
�X can easily be calculated according to the following

equation for a unit cell length (a):

�X =
1 − α

2
a. (6)

3. Results and discussion

The rise of an air bubble in a water system is simulated
in order to investigate the implementation of the mass
transfer. The oxygen transfer in air is considered for the
interfacial mass transfer. The results for mass transfer are
compared against the numerical approach published by
Bothe, Koebe,Wielage, andWarnecke (2003) and a Sher-
wood correlation by Chao (1962) and Calderbank and

Figure 1. A typical 3D uniform cubic mesh cell (left), and 2D
uniform quadratic mesh cells for the mesh refinement strategy
(right).

Figure 2. A cross-section of the computational domain at
z = 8mm in 3D (left) and 2D (right).
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Figure 3. 2D schematic of interface cells and calculation of �X

based on the PLIC-1 and PLIC-2 methods.

Figure 4. Flowchart for calculating�X in the PLIC method.

Moo-Young (1961). The approach of Bothe et al. (2003)
is applied here for a 1.6× 3.2× 1.6·10−2m 3D compu-
tational domain, discretized with 50× 100× 50 uniform
cubic mesh cells. In the 3D simulations, the computa-
tional domain of Bothe’s benchmark was used for the
one-to-one comparisons. However, in the 2D simula-
tions, the computational domain is modi�ed to avoid
the in�uence of the wall on the bubble rise velocity.

Table 1. Physical properties of liquid and gas at 1 bar and room
temperature.

Medium Liquid Gas

Viscosity (Pa.s) 7.5× 10−2 18.24× 10−6

Density (kg/m3) 1205 1.122
Surface tension (N/m) 0.063
Gas diffusivity in liquid
(m2/s)

62.24× 10−8

Saturation con-
centration
(kg/m3)

0.008

Therefore, the channel diameter in the 2D simulations is
increased to 3.2·10−2m.

A locally uniform square mesh re�nement is provided
in the 2D simulations in the center in order to investigate
the in�uence of grid resolution on mass transfer. After
the re�nement process, the mesh size is 1.6·10−4m in
the �rst mesh re�nement, 0.8·10−4m in the secondmesh
re�nement, and 0.4·10−4m in the third mesh re�nement
for a size of 1.6× 3.2·10−2m(Figures 1 and 2). In order to
minimize the di�erence of the velocity gradient between
unchanged mesh cells and mesh re�nement cells, the
mesh size is reduced step by step.

The bubble is at �uid rest at x,y,z = (8, 8, 8) 10−3m
in 3D and h,r = (8, 0) 10−3m in 2D cylindrical coor-
dinates (Figure 2). The initial bubble diameter at these
positions should have been 4·10−3maccording to Bothe’s
benchmark. In our calculations, it was possible to initial-
ize the bubble diameter as 3.84·10−3m using the mesh
size 3.2·10−4m. The four sides and the bottom wall
are de�ned with no-slip boundary conditions, while a
boundary condition of pressure outlet is implemented on
the top side.

In the present research, the external mass transfer
from air into a miscible water–glycerol mixture at 1 bar
and room temperature was investigated. The physical
properties at 1 bar and room temperature under simu-
lation are listed in Table 1.

Figure 5. Demonstration of iteration in the PLIC-1 method.
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Figure 6. Normalized diameter of the free-rising bubble for the two different�X calculation methods.

Figure 7. Concentration profile in the flow direction (y-axis) in the middle of the channel using the PLIC-1 and PLIC-2 methods.
Note: CWL = concentration wake length of traceable gaseous species in the liquid.

The comparisons for volume change are based on
a history of normalized diameter (ḋnorm) which is
calculated as

ḋnorm =
ḋBub

d0
, (7)

where dBub is the bubble diameter during the free ris-
ing and d0 is the initial bubble diameter. Figure 6 shows

the progression of the normalized diameter of the bub-
ble due to mass transfer calculated by the PLIC-1 and
PLIC-2 methods with a 50× 100× 50 cells and uniform
mesh. We should note that the results are dependent on
the mesh. The in�uence of the mesh on the 3D calcu-
lations is not investigated in this study due to the high
CPU time, but it is examined in the 2D simulations. From
Figures 6–11 the mesh interval size is 3.2·10−4m.
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Figure 8. Comparison of the numerical results with the empirical Sherwood correlations.
Note: In the numerical results of PLIC-1, the first-order scheme for the momentum and species equation and a 50× 100× 50 mesh
resolution are used.

Figure 9. The concentration distribution at Sc = 1 (left), Sc = 10 (middle), and Sc = 100 (right) at 0.2 s.
Note: The colored scale represents the concentration of oxygen in kg/m3. In the numerical results of PLIC-1, the first-order scheme for
the momentum and species equation and a 50× 100× 50 mesh resolution are used.

The concentration pro�le at the middle line of the
computational domain is shown in Figure 7. Calculation
of �X using the same void fractions in cubic cells gives
similar results for both methods. PLIC-1 is more accu-
rate but on the other hand the calculation time of �X in
PLIC-2 is fast, since the iteration progress is not needed.

Consistent results are obtained in comparison to
results from literature (Bothe et al. 2003; Onea, 2006;
Raymond&Rosant, 2000; see Table 2). The bubble aspect
ratios and bubble velocities of the di�erent numerical
analyses are very near to our results. The hydrodynamic
results as well as the aspect ratio of the bubble also show

good agreement with the experimental observations of
Raymond and Rosant (2000).

There is no available experimental data with which
to compare the concentration distributions. One of the
di�culties lies in measuring the concentration distribu-
tion and values in spatial and time resolution. Investiga-
tions of the bubble dissolution in continuous phases are
under development. However, in the numerical results,
some assumptions are still made, which may produce
di�erences in the experiment; for example, piecewise
incompressible �uids, contaminated in�uence and the
Marangoni e�ect are not considered. Therefore we tried
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Figure 10. Comparison of the numerical results with empirical Sherwood correlations.

Figure 11. Temporal evolution of bubble velocity for different channel diameters with an interval mesh size of 3.2·10−4m in 2D.
Note:W = channel diameter.

to compare our results with theoretical correlations to
prove the models’ under parameter variation.

Awell-known Sherwood correlation fromCalderbank
and Moo-Young (1961) for free-rising bubbles (dBub >

2.5mm) is

Sh = 0.42 Gr1/3Sc1/2, (8)

where the Grashof (Gr) number is

Gr =
d3bub�ρρlg

µ2
l

. (9)

The Sherwood (Sh) number correlation from Chao
(1962) is a function of Re and Sc for bubble spheres with
mobile interfaces as follows:

Sh = 1.13

⎡

⎢

⎣
1 −

⎛

⎜

⎝

2 + 3µg

µl

1 +
(

ρgµg

ρlµl

)0.5

⎞

⎟

⎠

1.45

Re0.5

⎤

⎥

⎦
Pe0.5. (10)

The Reynolds number is calculated according to

Re =
ρldbubUbub

µl
, (11)
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Table 2. Comparison of the experimental results with the data in
the literature at 0.2 s absorption time.

Bothe
(2003)

Onea
(2006)

Raymond
(2000)

PLIC-1
results

CWL (m) 0.014 0.018 – 0.018
AR 0.86 0.87 0.86 0.87
Ubub(m/s) 0.12 0.11 0.13 0.11

Note: CWL = concentration wake length of traceable gaseous species in the
liquid; AR = aspect ratio of bubble).

where dbub is the diameter of the bubble and Ubub is the
bubble velocity calculated by

Ubub =
∑Nx

x=1

∑Ny
y=1

∑Nz
z=1 α

g
x,y,z Uy:x,y,z

∑Nx
x=1

∑Ny
y=1

∑Nz
z=1 α

g
x,y,z

, (12)

whereUy:x,y,z is the y-component of the velocity in all gas
cells, the subscripts x, y and z denote the mesh cell index
in the x-,y-, and z-directions, and Nx, Ny and Nz denote
the number of mesh cells in these directions within the
computational domain.

Sc =
µl

ρlD
. (13)

In order to compare the numerical results with the
empirical correlations we altered the di�usion coe�cient
arti�cially by a factor of 10 and 100 (corresponding to
Sc = 10 and Sc = 1, respectively). Figure 8 shows the
Sherwood numbers over the logarithmic Peclet num-
bers. The numerical Sh results calculated in Figure 8
overestimate themass transfer calculated from the empir-
ical results.

Figure 9 shows the concentration gradients in the liq-
uid at Re = 7.06 for di�erent Sc numbers. For Sc = 1, a
very long concentration wake length and width can be
observed. The concentration gradient at Sc = 10 is less
in comparison to the concentration gradient at Sc = 1.
The concentration length andwidth is also smaller. In the
real physical case (at Sc = 100) the concentration length
and width are qualitatively similar to the experimental
observations by Francois, Dietrich, Guiraud, and Cock
(2011).

In all simulations for the pressure-velocity coupling
scheme, the pressure-implicit with splitting of operators
(PISO), which is based on a higher degree of approxi-
mate relation between the corrections for pressure and
velocity, is implemented. The comparison of quadratic
upstream interpolation for convective kinetics (QUICK)
and �rst-order schemes for mass and species equations
is shown in Figure 10 by plotting the numerical Sher-
wood number against the bubble rising-time. In �rst-
order schemes quantities at cell faces are determined by
assuming that the cell-center values of any �eld variable
represent a cell average value and the face quantities are

identical to the cell quantities. For the quadrilateral and
hexahedral meshes, ANSYS FLUENT also provides the
QUICK scheme for computing a higher-order value of
the variable at a face. QUICK-type schemes are based
on a weighted average of second-order-upwind and cen-
tral interpolations of the variable, and give more accurate
solutions on structured meshes. From Figure 10 it can
be seen that the numerical Sherwood number is high at
the beginning of the bubble rise since there is almost no
gas concentration in the liquid phase. In the comparison
of the schemes, the numerical Sherwood number with
QUICK scheme is between the theory of Chao (1962)
and the theory of Calderbank and Moo-Young (1961),
whereas the �rst-order scheme overestimates the mass
transfer. The QUICK scheme is used in the 2D simula-
tions because of its greater accuracy.

For the geometry of the computational domain, the
approach of Bothe et al. (2003) was followed for one-
to-one comparison in the 3D simulations. However, the
investigations for the in�uence of wall boundary con-
dition on bubble rise velocity have been done in 2D
using an interval mesh size of 3.2·10−4m to save CPU
time. The diameter of the channel was varied between
approximately two and eight times the diameter of the
bubble. The line W = 16·10−3m corresponds to the
bubble velocity using the benchmark of Bothe et al.
(2003) in Figure 11. As the channel diameter increases,
so does the bubble rise velocity. The in�uence of the
channel diameter on the bubble velocity minimizes after
the channel width reaches six times the bubble diam-
eter and it almost disappears at a channel diameter
of 32·10−3m. Interestingly, the bubble velocity at the
steady-state zone approaches 0.13m/s, which is an exper-
imental observation from Raymond and Rosant (2000)
(see Table 2). In�uence of the pressure outlet on bubble
velocity can be observed after 0.17 s when the chan-
nel diameter is greater than 16mm. The bubble velocity
at the channel diameter of 8·10−3mm reaches clearly
a steady state earlier compared to other bubble veloc-
ities at channel diameter bigger than 8·10−3mm. It
reaches a steady state earlier. If the channel diameter is
greater than 8mm then the required time in the transient
zone increases. Since the channel diameter of 32·10−3m
has no in�uence on the bubble rise velocity, it was
selected for the investigation of interfacial mass transfer
calculations.

In order to continue the investigations on the in�uence
of the mesh size on mass transfer, we switched to axis-
symmetric 2D simulations and implemented the PLIC-1
method. A time-step size (10−6 s) onmass transfer for the
smallest mesh size (4·10−3m)was implemented in all 2D
simulations. For momentum and species equations, the
QUICK scheme was implemented.
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Table 3. Influence of grid resolution on mass transfer.

Mesh size (m) 3.2×10−4 1.6×10−4 0.8×10−4 0.4×10−4

ṁavg (kg/s) 1.12×10−9 1.4×10−9 1.44×10−9 1.4×10−9

kavg(m/s) 3.5×10−3 4.3×10−3 4.4×10−3 4.3×10−3

Shavg 20.1 26.3 27.7 27.2

The in�uence of the mesh size on the Sherwood num-
ber is shown in Table 3. The numerical average of the
Sherwoodnumber between 0.05 and 0.15 s (in the steady-
state zone) is calculated as follows:

Shavg =
∑n

n=1
kavgdbub

D

n
, (14)

where n is the number of selected time points and kavg
is the average mass transfer coe�cient, de�ned as

kavg =
ṁavg

A(Csat − Cavg)
. (15)

For the direct numerical simulations, the consis-
tency of the minimum-length scale is essential. The Kol-
mogorov length scale should be used for velocity gra-
dients as its implementation avoids viscosity domina-
tion and provides the smallest scales of turbulence. In
addition, for the concentration �eld the Batchelor scale
describes the smallest length scales of large �uctuations
in concentration before molecular di�usion dominates.
Determination of the Batchelor length scale provides a
true numerical coupling between the di�usive transport

of species equation and the momentum equation (Batch-
elor, 1959). Therefore, for a precise and direct numeric
simulation, the length scale of the unit cell and thus
in the interface cell should be in the range of the Kol-
mogorov and/or Batchelor length scales, which should be
considered for the velocity and concentration gradients.

The correlation of the Kolmogorov length scale is:

LKol =
(

v3

ε

)0.25

, (16)

where v is the kinematic viscosity and the energy dissi-
pation ε is de�ned as

ε = Ububg. (17)

The Kolmogorov length scale is 6.7·10−4m. The
Batchelor length is the ratio of Kolmogorov length scale
to the root of the Schmidt number:

LBat =
LKol√
Sc

. (18)

The Batchelor length (0.67·10−4m) is 10 times smaller
than the Kolmogorov length scale for our case. It can
be seen that in the case of mass transfer simulations,
when the Schmidt number is greater than unity it plays
a signi�cant role in determining the mesh size in the
computational domain.

According to the Batchelor length scale, the required
minimummesh size is 0.67·10−4m for having the realis-
tic concentration gradients in our case. The independent

Figure 12. Influence of mesh size on the normalized diameter of the bubble versus time using the PLIC-1 method in 2D.
Note: P.O. = pressure outlet.
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Figure 13. Influence of grid resolution on the numerical Sherwood number using the PLIC method.

mesh size on mass transfer was found in the range of
the Batchelor length scale. The in�uence of the mesh
size on diminishing bubble diameters (calculated with
an assumption of spherical bubble) is shown in Figure
12. The in�uence of the mesh size on the bubble diam-
eter disappears after the second mesh re�nement. Figure
13 shows the in�uence of the grid resolution on the
numerical Sherwood number against time. Oscillations
are observed at a lower grid resolution, perhaps due to
the parasitic currents and/or huge concentration di�er-
ence at the interface cells. They disappear only with the
�nest mesh size. After the second mesh re�nement, the
Sherwood number approaches 27 (see Table 3).

4. Conclusions

In this present direct numerical mass transfer investi-
gation for a free-rising bubble, two numerical meth-
ods (PLIC-1 and PLIC-2) of calculating discrete inter-
facial concentration gradients at the interface cells were
compared, and the results are very similar. The PLIC-1
method is more accurate but also more time consuming
than the PLIC-2 method. The interfacial mass transfer
source term in the mass balance equation was linked to
the void fraction and the species conservation equation
using a DMT macro in ANSYS FLUENT.

The results of the numerical Sherwood number are
in accordance with the theoretical results as long as

su�cient grid resolution and high-order schemes for
spatial discretization with low time-step sizes are imple-
mented. However, the challenge of direct measurement
of the local concentration �eld in two-phase �ows makes
it di�cult to quantitatively evaluate the comparison of
numerical results with experimental results. This devel-
oped tool works well for immiscible �uids when their
density ratio is around unity. Deviation from unity
causes mismatching of the mass �ow rate and the vol-
ume shrinkage rate. In order to provide the balance of
mass and volume change, the void fraction equation
as well as the velocity �eld at the interface should be
de�ned accordingly. Therefore it is more meaningful to
use the individual source term macros instead of the
DMT macro.
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