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Abstract: The symmetry design of the system contains integer partial differential equations and
fractional-order partial differential equations with fractional derivative. In this paper, we develop
a scheme to examine fractional-order shock wave equations and wave equations occurring in the
motion of gases in the Caputo sense. This scheme is formulated using the Mohand transform (MT)
and the homotopy perturbation method (HPM), altogether called Mohand homotopy perturbation
transform (MHPT). Our main finding in this paper is the handling of the recurrence relation that
produces the series solutions after only a few iterations. This approach presents the approximate
and precise solutions in the form of convergent results with certain countable elements, without any
discretization or slight perturbation theory. The numerical findings and solution graphs attained
using the MHPT confirm that this approach is significant and reliable.

Keywords: Mohand transform; homotopy perturbation method; shock wave equation

1. Introduction

In recent decades, various fractional models in science and technology have been
designed in terms of nonlinear partial differential equations (PDEs), such as plasma physics,
fluid dynamics, nonlinear optics, quantum mechanics, solid-state physics, mathematical
biology and chemical kinetics [1–3]. Fractional differential equations have been widely
used to model complex phenomena in various branches of science and engineering, such
as wave propagation, lattice vibration, optical fiber, nanotechnology and biology [4,5].
The scientific theory of shock waves played a role in the problems of motion of gases and
compressible liquids in the second half of the 19th century. They are described by nonlinear
hyperbolic PDEs and can be written in their simplest form as [6]

Dα
℘ϑ(=,℘) + f

(
ϑ(=,℘)

)
=
= 0, = ∈ R, ℘ > 0 (1)

with the initial condition

ϑ(=, 0) = ϑ0(=), = ∈ R. (2)

The shock wave equation is a nonlinear PDE and has given an important contribution
to various studies, such as those of explosions, traffic flow, glacier waves and airplanes
breaking the sound barrier. Goswami et al. [7] used an effective scheme based on the
Sumudu transform and the homotopy perturbation method to find the numerical solutions
of time fractional Schrodinger equations with harmonic oscillator. Singh and Gupta [8]
presented the homotopy perturbation method (HPM) to examine the numerical solution of
the time fractional shock wave equation and wave equation. Allan and Khaled [9] employed
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the Adomian decomposition method to provide the analytical solution of the shock wave
equation. Das and Kumar [10] proposed a method for calculating the approximate solution
of the shock wave equation and shallow water equation with time derivatives. Later, many
researchers [11–14] have developed different strategies to achieve the approximate solution
of nonlinear shock wave equations of fractional order.

A differential problem of symmetry is a modification that generates the differential
equation continuously in such a way that these symmetries can help to achieve the solution
of the differential equation. Solving these equations is sometimes easier than solving the
Volterra integro-differential equations [15]. Symmetries can be identified by solving a set
of connected ordinary differential equations. PDEs of fractional order are PDEs whose
symmetry condition is separated into two segments of integer order and fractional order, and
the linear scheme of fractional PDEs reveals a wide dimensional trivial solution continuously.
Various numerical and analytical approaches have been demonstrated to attain the semi-
analytical solution of nonlinear PDEs, such as the (G′/G)-expansion method [16], the neural
network approach [17], the variational iteration method [18], the Exp-function method [19],
the homotopy perturbation method [20], the homotopy analysis method [21], residual power
series [22], the residual power series method [23], the quasi-wavelet method [24], the Haar
wavelet method [25] and the two-scale approach [26]. New developments of the HPM can
be found in [27,28].

The aim of this paper is to present the idea of the MT coupled with the HPM for
the numerical investigation of nonlinear shock wave equations of fractional order. The
obtained results are expressed in terms of series with easily computable components. This
series solution converges to the exact solution rapidly. This study is summarized as follows:
In Section 2, we demonstrate some basic preliminary concepts. In Section 3, a new strategy
is sorted out to handle nonlinear expressions. In Section 4, some numerical examples are
demonstrated to determine the competence of the proposed strategy, and at last, some
results are discussed with our conclusions in Sections 5 and 6.

2. Preliminary Concepts

Definition 1. Let ϑ(℘) be a function precise for ℘ ≥ 0 [29]; then, we have

L [ϑ(℘)] = V(r) =
∫ ∞

0
ϑ(℘)e−r℘d℘,

which is said to be a Laplace transform, where ℘ is a function (i.e., a function of the time domain),
defined on [0, ∞), to a function of r (i.e., of the frequency domain).

Definition 2. If V(r) symbolizes the Laplace transform of ϑ(℘), then

ϑ(℘) = L −1V(r),

is termed as the inverse Laplace transform of V(r).

Definition 3. Mohand and Mahgoub [30,31] developed the MT to facilitate ordinary and PDEs.
Let the MT be expressed with the help of operator M (.). Then =⇒

M [ϑ(℘)] = S(r) = r2
∫ ∞

0
ϑ(℘)e−r℘d℘, k1 ≤ r ≤ k2, k1, k2 ∈ N

where k1 and k2 are constants. On the other hand, if S(r) is the MT of ϑ(℘), then ϑ(℘) is said to be
the inverse of S(r), so

M−1{S(r)} = ϑ(℘) =⇒ M−1 is the inverse MT.

One may see that the Laplace transform and the Mohand transform differ in the function of r (i.e.,
the frequency domain).
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Lemma 1. The MT of a function of fractional order is [32]

M {Sα(℘)} = rαS(r)−
n−1

∑
k=0

uk(0)
rk − (α + 1)

, 0 < α ≤ n

Proposition 1. Let M {ϑ(℘)} = S(r); then, the MT of ϑ′(℘) has the following properties:

(a) M {ϑ′(℘)} = rS(r)− r2ϑ(0);

(b) M {ϑ′′(℘)} = r2S(r)− r3ϑ(0)− ϑ2ϑ′(0);

(c) M {ϑn(℘)} = rnS(r)− rn+1ϑ(0)− rnϑ′(0)− · · · − r2ϑn−1(0).

Definition 4. The fractional derivative [15] in the Caputo sense is

Dα
τϑ(=,℘) =


∂nϑ(=,℘)

∂℘n , α ∈ N

1
Γ(n− α)

∫ ℘
0 (t− φ)n−α−1ϑn(φ)∂φ, n− 1 < α < n

3. Idea of MHPT

In this section, we construct the idea of the MHPT to find the approximate solution of
fractional problems. Therefore, consider a differential equation of fractional order

Dα
℘ϑ(=,℘) + Rϑ(=,℘) + Nϑ(=,℘) = g(=,℘), (3)

ϑ(=, 0) = h(=), (4)

where Dα
℘ =

∂α

∂℘α
is an operator with fractional order α; ϑ is the function in the direction of

spital = and time ℘; R is the linear; N represents the nonlinear differential operator; and
g(=,℘) is the source term. Employing the MT in Equation (3), we obtain

M
[

Dα
℘ϑ(=,℘) + Rϑ(=,℘) + Nϑ(=,℘)

]
= M

[
g(=,℘)

]
, (5)

using the differentiation property of the MT, we obtain

rα
[

R(r)− rϑ(0)
]
= −M

[
Rϑ(=,℘) + Nϑ(=,℘)

]
+M

[
g(=,℘)

]
,

which leads to

R(r) = rϑ(0)− 1
rα

M
[

Rϑ(=,℘) + Nϑ(=,℘) + g(=,℘)
]
.

Using the initial condition (4), we obtain

R(r) = rh(=)− 1
rα

M
[

Rϑ(=,℘) + Nϑ(=,℘) + g(=,℘)
]
,

thus, operating the inverse MT, we obtain

ϑ(=,℘) = G(=,℘)−M−1

[
1
rα

M
[

Rϑ(=,℘) + Nϑ(=,℘)
]]

, (6)

which is called the recurrence relation of ϑ(=,℘), where
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G(=,℘) = M−1

[
rh(=) +M

{
g(=,℘)

}]
.

The approximate solution of Equation (3) can be expressed in terms of the power series

ϑ(=,℘) =
∞

∑
n=0

pnϑn(=,℘), (7)

and

Nϑ(=,℘) =
∞

∑
n=0

pn Hnϑ(=,℘), (8)

where p ∈ [0, 1] is an embedding parameter and considered as a small parameter, whereas
ϑ0(=,℘) is an initial guess of Equation (3). The following strategy can be operated to
acquire He’s polynomials as

Hn(ϑ0 + ϑ1 + · · ·+ ϑn) =
1
n!

∂n

∂pn

(
N
( ∞

∑
i=0

piϑi

))
p=0

. n = 0, 1, 2, · · ·

With the help of Equations (7) and (8), we can obtain Equation (6) as

∞

∑
n=0

pnϑn(=,℘) = G(=,℘)− pM−1

[
1
rα

M

{
R
( ∞

∑
n=0

pnϑn(=,℘)
)
+

∞

∑
n=0

pn Hnϑn(=,℘)

}]
.

Equating the similar components of p, we obtain

p0 : ϑ0(=,℘) = G(=,℘),

p1 : ϑ1(=,℘) = −M−1

[
1
rα

M

{
Rϑ0(=,℘) + H0

}]
,

p2 : ϑ2(=,℘) = −M−1

[
1
rα

M

{
Rϑ1(=,℘) + H1

}]
, (9)

p3 : ϑ3(=,℘) = −M−1

[
1
rα

M

{
Rϑ2(=,℘) + H2

}]
,

...

Thus, we can generate Equation (7) in the collection of orders as

ϑ(=,℘) = ϑ0(=,℘) + p1ϑ1(=,℘) + p2ϑ2(=,℘) + +p3ϑ3(=,℘) + · · · . (10)

Let p = 1; the analytical solution of Equation (3) is

ϑ(=,℘) = lim
N→∞

N

∑
n=0

ϑn(=,℘). (11)

We put forward this strategy in the strength of upcoming mathematical applications.

Theorem 1. Consider that = and ζ are two Banach spaces with I : = → ζ as nonlinear operator,
such that ϑ; ϑ∗ ∈;=, ‖I(ϑ)− I(ϑ∗)‖ ≤ K‖ϑ− ϑ∗‖, 0 < K < 1. According to the Banach
contraction theorem, I has a unique fixed point ϑ, i.e., Iϑ = ϑ. Let us recall Equation (11); we have
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ϑ(=,℘) = lim
N→∞

N

∑
n=0

ϑn(=,℘), (12)

and let us assume that =0 = ϑ0 ∈ Sp(ϑ), where Sp(ϑ) = {ϑ∗ ∈ = : ‖ϑ− ϑ∗‖ < p}; then, we
have

(B1)=n ∈ Sp(ϑ),

(B2) lim
n→∞

=n = ϑ.

Proof. ( B1) In view of the mathematical induction for n = 1, we have

‖=1 − ϑ1‖ = ‖T(=0 − T(ϑ))‖ ≤ K‖ϑ0 − ϑ‖.

Consider that the result is true for n = 1, so

‖=n−1 − ϑ‖ ≤ Kn−1‖ϑ0 − ϑ‖.

Thus, we have

‖=n − ϑ‖ = ‖T(=n−1 − T(ϑ))‖ ≤ K‖=n−1 − ϑ‖ ≤ Kn||ϑ0 − ϑ‖.

Hence, using (B1), we have

‖=n − ϑ‖ ≤ Kn‖ϑ0 − ϑ‖ ≤ Kn p < p,

where p is a contact point of a super norm S, which shows =n ∈ Sp(ϑ).
B2: Since ‖=n − ϑ‖ ≤ Kn||ϑ0 − ϑ‖ and limn→∞ Kn = 0.

Therefore, we have limn→∞‖ϑn − ϑ‖ = 0⇒ limn→∞ ϑn = ϑ.

4. Numerical Examples

In this segment, we deal with the MHPT to present the analytical and numerical
solutions of time fractional shock wave equations and time fractional wave equations. The
obtained results of these two problems show the performance and high accuracy of the
suggested approach. The graphical results declare that this approach has good agreement.

4.1. Example 1

Consider the time fractional shock wave equation

Dα
℘ϑ +

( 1
c0
− γ + 1

2
ϑ

c2
0

)
D=ϑ = 0, (=,℘) ε R× [0, T], 0 < α ≤ 1, (13)

where c0 and γ are constants, and γ is the specific heat. If c0 = 2, and γ = 1.5, the study
case under consideration relates to the flow of air, as

∂αϑ

∂℘α
+
(1

2
− 5

16
ϑ
) ∂ϑ

∂= = 0, (14)

with the initial condition

ϑ(=, 0) = e
−
=2

2 . (15)

Taking the MT of Equation (14), we obtain

M

[
∂αϑ

∂℘α
+
(1

2
− 5

16
ϑ
) ∂ϑ

∂=

]
= 0.
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Using the definition of the MT, we can write it as

R(r) = rϑ(0)− 1
rα

M

[(1
2
− 5

16
ϑ
) ∂ϑ

∂=

]
.

The inverse MT is

ϑ(=,℘) = ϑ(=, 0)−M−1

[
1
rα

M

{(1
2
− 5

16
ϑ
) ∂ϑ

∂=

}]
,

which is the recurrence relation of Equation (14); now, using Equation (7) together with the
HPM, we obtain

∞

∑
n=0

pnϑn(=,℘) = ϑ(=, 0)− pM−1

[
1
rα

M

{
1
2

∞

∑
n=0

pn ∂ϑn

∂= −
5
16

∞

∑
n=0

pnϑn
∂ϑn

∂=

}]
, (16)

by comparing, we can obtain the iterations

p0 : ϑ0(=,℘) = ϑ(=, 0),

p1 : ϑ1(=,℘) = −M−1

[
1
rα

M

{
1
2

∂ϑ0

∂= −
5

16
ϑ0

∂ϑ0

∂=

}]
,

p2 : ϑ2(=,℘) = −M−1

[
1
rα

M

{
1
2

∂ϑ1

∂= −
5

16

(
ϑ0

∂ϑ1

∂= + ϑ1
∂ϑ0

∂=

)}]
,

...

which give the solutions

ϑ0(=,℘) = e−
=2
2 ,

ϑ1(=,℘) =

[
1
2

xe−
=2
2 − 5

16
xe−=

2

]
tα

Γ(α + 1)
,

ϑ2(=,℘) =
1

256

[
− 25e−

3=2
2 + 80e−=

2 − 64e−
=2
2 + 75=2e−

3=2
2 − 160=2e−=

2 − 64=2e−
=2
2

]
t2α

Γ(2α + 1)
,

...

Proceeding with a similar process, the other elements of ϑn can be calculated, and the series
solutions are thus completely obtained. This series converges to the exact solution for high
iterations. Finally, the analytical solution of ϑ(=, t) can be obtained by using Equation (10),
which is in full agreement with [6,13].

4.2. Example 2

Again, assume the time fractional wave equation

Dα
℘ϑ + ϑD=ϑ− D==℘ϑ = 0, (17)

with the initial condition

ϑ(=, 0) = 3 sech2
(=− 15

2

)
, (18)
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According to the HPTM, the recurrence relation of Equation (17) can be written as

ϑ(=,℘) = ϑ(=, 0)−M−1

[
1
rα

M

{
ϑ

∂ϑ

∂= −
∂

∂℘

( ∂2ϑ

∂=2

)}]
,

Now, using Equation (7) together with the HPM, we obtain

∞

∑
n=0

pnϑn(=,℘) = ϑ(=, 0)− pM−1

[
1
rα

M

{ ∞

∑
n=0

pnϑn
∂ϑn

∂= −
∂

∂℘

( ∂2

∂=2

∞

∑
n=0

pnϑn

)}]
, (19)

by comparing, we can obtain the iterations

p0 = ϑ0(=,℘) = ϑ(=, 0),

p1 = ϑ1(=,℘) = −M−1

[
1
rα

M

{
ϑ0

∂ϑ0

∂= −
∂

∂℘

(∂2ϑ0

∂=2

)}]
,

p2 = ϑ2(=,℘) = −M−1

[
1
rα

M

{
ϑ0

∂ϑ1

∂= + ϑ1
∂ϑ0

∂= −
∂

∂℘

(∂2ϑ1

∂=2

)}]
,

...

which give the solutions

ϑ0(=,℘) = 3 sech2
(=− 15

2

)
,

ϑ1(=,℘) = 9 sech2
(=− 15

2

)
tanh

(=− 15
2

) ℘α

Γ(1 + α)
,

ϑ2(=,℘) =

[
− 27

2
sech8

(=− 15
2

)
+ 81 sech6

(=− 15
2

)
tanh2

(=− 15
2

)] ℘2α

Γ(1 + 2α)

−
[

63
2

sech6
(=− 15

2

)
tanh

(=− 15
2

)
− 36 sech4

(=− 15
2

)
tanh3

(=− 15
2

)]℘2α−1

Γ(2α)
,

...

Proceeding with a similar process, the other elements of ϑn can be calculated, and the series
solutions are thus completely obtained. This series converges to the exact solution for high
iterations. Finally, the analytical solution of ϑ(=,℘) can be obtained by using Equation (10) as

ϑ(=, 0) = 3 sech2
(=− 15− ℘

2

)
, (20)

which is in full agreement with [6,13].

5. Results and Discussion

In this segment, we demonstrate the physical interpretations of the illustrated prob-
lems. We observe that the HPTM is fully capable of handling time fractional shock wave
equations. Figure 1a–d show the surface solutions of ϑ(=,℘) for various time fractional
equations in Brownian motion, and it is observed that ϑ(=,℘) reduces with the growth of
= and ℘ for α = 0.25, 0.50, 0.75 and 1. Figure 2a–d show the surface solutions of ϑ(=,℘)
for the analytical solution obtained by the MHPT and the exact solution for various values
of = and ℘, respectively. It is observed that ϑ(=,℘) increases with the increase in = and
decreases with the increase in ℘ for α = 0.25, 0.50, 0.75 and 1.
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(a) (b)

(c) (d)

Figure 1. The surface solutions of u(=,℘) with respect to = and ℘ for distinct values of α. (a) Surface
solution of ϑ(=,℘) when α = 0.25. (b) Surface solution of ϑ(=,℘) when α = 0.50. (c) Surface solution
of ϑ(=,℘) when α = 0.75. (d) Surface solution of ϑ(=,℘) when α = 1.

(a) (b)

(c) (d)

Figure 2. The surface solutions of ϑ(=,℘) with respect to = and ℘ for different values of α. (a) Surface
solution of ϑ(=,℘) when α = 0.25. (b) Surface solution of ϑ(=,℘) when α = 0.50. (c) Surface solution
of ϑ(=,℘) when α = 0.75. (d) Surface solution of ϑ(=,℘) when α = 1.
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6. Conclusions

In this paper, we successfully apply the HPTM to achieve the approximate and ana-
lytical solutions of nonlinear time fractional shock wave and wave equations. This study
demonstrates the importance of fractional derivatives and the technique of dealing with
the recurrence relation. Since the MT is limited to linear problems only, whereas the HPM
is applicable to nonlinear problems, we conclude that the MHPT is the best tool to provide
significant results for both linear and nonlinear problems. The MHPT is here directly
applied to obtain the series solutions. The present scheme shows higher efficiency and
fewer computations than other approaches studied in the literature. All the iterations were
calculated with the help of MAPLE Software. The solution graphs show that this approach
is suitable for a broad variety of nonlinear fractional differential equations in science and
engineering. In future work, this approach could further be extended to solve various
nonlinear obstacle problems.
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