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Abstract Representative models of the nonlinear

behavior of floating platforms are essential for their

successful design, especially in the emerging field of

wave energy conversion where nonlinear dynamics can

have substantially detrimental effects on the converter

efficiency. The spar buoy, commonly used for deep-

water drilling, oil and natural gas extraction and stor-

age, as well as offshore wind and wave energy gen-

eration, is known to be prone to experience paramet-

ric resonance. In the vast majority of cases, paramet-

ric resonance is studied by means of simplified ana-

lytical models, considering only two degrees of free-

dom (DoFs) of archetypical geometries, while neglect-

ing collateral complexity of ancillary systems. On the

contrary, this paper implements a representative 7-DoF

nonlinear hydrodynamic model of the full complexity

of a realistic spar buoy wave energy converter, which

is used to verify the likelihood of parametric instabil-

ity, quantify the severity of the parametrically excited
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response and evaluate its consequences on power con-

version efficiency. It is found that the numerical model

agrees with expected conditions for parametric insta-

bility from simplified analytical models. The model is

then used as a design tool to determine the best bal-

last configuration, limiting detrimental effects of para-

metric resonance while maximizing power conversion

efficiency.

Keywords Parametric resonance · Parametric roll ·

Spar buoy · Wave energy converter · Nonlinear

hydrodynamics · Floating oscillating water column

1 Introduction

Spar floating platforms are axisymmetric thin and

long structures that became established solutions for

deep-water drilling, oil and gas extraction and stor-

age, and, more recently, for hosting offshore wind tur-

bines [6,8,27,41]. In fact, in such applications, cor-

rect operational conditions require the floating struc-

ture to be as stable as possible, i.e., unresponsive to the

wave excitation. Thanks to their reduced water-plane

area and long draft, they can be designed so that their

roll/pitch natural periods (Tn,4 = 2π/ωn,4) lay beyond

the typical range of wave periods. However, spar buoys

became popular also in the wave energy field, where

the objective is to maximize the motion just in the

degree of freedom (DoF) where the power take-off

(PTO) system performs the energy conversion, while
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avoiding motion all others [22,25]. In fact, response in

other DoFs would effectively represent a dissipation,

decreasing the power available to the PTO and, ulti-

mately, the power efficiency [19,21,39].

On the one hand, a large Tn,4 makes spar buoys unre-

sponsive in roll/pitch, hence ideal for both classic off-

shore applications and wave energy converters operat-

ing in heave. On the other hand, since Tn,4 is so large,

Tn,4/2 typically falls in the range of operational wave

periods, generating conditions for roll/pitch paramet-

ric resonance to settle [4]. Several experimental stud-

ies have confirmed the appearance of parametric roll

in container ships [35], spar platforms [29] and wave

energy converters (WECs), either spar buoys [7,23] or

self-reacting [5,30,39]. A few studies have purposely

tried to exploit parametric resonance to extract energy,

such as [3,13,43]. Conversely, for other conventional

WEC concepts, parametric resonance is usually unde-

sirable because it is often unexpected, detrimental for

power extraction and threatens the device survivability.

Therefore, representative mathematical models, able to

accurately articulate such a nonlinear behavior, are cru-

cial for reliable design of the mooring system [36],

power-optimizing control algorithms [32,33] and sur-

vivability strategies [19,39]. Furthermore, only compu-

tationally fast models are eligible to be used for exten-

sive simulations required to inform the design and con-

trol tasks.

Parametric resonance in roll is a Mathieu-type insta-

bility, arising when two conditions are met [31]: the

frequency of the excitation force is about twice the nat-

ural frequency of the parametrically excited mode; the

external force exceeds internal dissipations. Parametric

resonance is due to nonlinear time-variations of one or

more parameters of the system. In the case of a float-

ing body, changes are due to variations of the wetted

surface, determined by the relative movement of the

floater with respect to the wave field. The vast major-

ity of models for parametric resonance tend to intro-

duce important simplifications of the system in order

to fit it into an analytical framework: [34] uses multiple

scale perturbation techniques for a 2-DoF model of a

container ship, while [38] uses Markov and Melnikov

approaches; [12] studies parametric resonance for a 2-

DoF model of an archetypal spar buoy, determining

nonlinear vibration modes by the application of asymp-

totic and Galerkin-based methods. Simplified models

are successful in predicting the likelihood of parametric

resonance, but are less informative about the severity of

the parametrically excited response [11,39,42], mainly

due to the mismatch between the simplified analytical

model and the complex real system.

Modeling parametric resonance with analytical appr

oaches usually requires three common but substan-

tial simplifications about: (1) the number of DoFs,

(2) the time-varying parameter and (3) the geometry.

Only 2 DoFs are commonly used, although interactions

between all 6 DoFs and other ancillary components

(PTO, controller, mooring system, etc.) are important in

generating nonlinearities and have a substantial impact

on mooring loads and power production. Moreover, in

order to fit into a Mathieu-type instability, it is usually

assumed that the only time-varying parameter is the

hydrodynamic stiffness, with simple harmonic varia-

tions. However, due to the 6-DoF motion and the com-

plex intersection between the floater and the wave field,

non-harmonic variations of both the hydrostatic stiff-

ness and external excitation force are to be expected.

Finally, archetypical geometries are usually consid-

ered, because they ease the analytical computation of

main physical properties.

However, fully appreciating the nonlinear complex-

ity of a real system is likely to require overly time-

consuming models based on spatial discretization of

at least the wetted surface [14,39], or the whole fluid

domain [1,28]. Due to their computational cost, these

models are unfeasible for extensive design purposes.

However, this paper implements a computationally effi-

cient nonlinear model which is able to compute in real

time [17] thanks to an analytical representation of the

converter wetted surface. Such a model is able to articu-

late parametric resonance and has been effectively used

to inform the design of the mooring system of a WEC

[16].

The objective of this paper is to provide a com-

prehensive and computationally accessible nonlinear

model, able to articulate parametric resonance due to

nonlinear time-variations of the parameters of the sys-

tem, for a realistic device, comprising complex viscous

losses, PTO, and realistic mooring system. It is shown

that the model agrees with the instability conditions

predicted by simplified models. Moreover, the severity

of parametric resonance and the extension of the region

of instability is computed, also according to a set of dif-

ferent physical properties of the device. In fact, since

the model runs at a fraction of the computational time

typically required by other analogous nonlinear mod-

els, it can be used as a design tool in order to assess the
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impact of parametric resonance for different control

and ballast configurations.

The reminder of the paper is organized as follows:

Sect. 2 introduces parametric resonance and typical

analytical models, focusing on simplifications and mis-

matches with respect to realistic devices. Section 3

presents the device case study while Sect. 4 details

the numerical model implemented. Finally, Sect. 5 dis-

cusses results and Sect. 6 presents some conclusions.

2 Parametric instability

Although floating structures in unidirectional waves are

externally excited only in 3 DoFs (surge, heave and

pitch), under certain conditions they may respond also

in the roll DoF, due to an internal excitation mechanism

activated by time-variations of the system parameters.

Such a phenomenon is related to parametric resonance,

which is usually treated as a Mathieu-type instability

[11]. The Mathieu equation is a second-order differen-

tial equation that represents the equation of motion of

variable χ with the stiffness term varying harmonically

over time with a frequency ω [26]:

χ̈ + (Δ + Λ cos τ) χ = 0, (1)

where τ = ωt and the dot represent a derivative with

respect to τ . The parameter Δ represents a dimension-

less stiffness and Λ is the dimensionless amplitude of

the stiffness variation. In real engineering applications,

the damped Mathieu equation is considered instead,

which is a particular case of the Hill’s differential equa-

tion:

χ̈ + μχ̇ + (Δ + Λ cos τ) χ = 0, (2)

where μ is the dimensionless damping coefficient.

The stability diagram of equations (1) and (2) is

shown in Fig. 1, where Δ =
(

ωn,4/ω
)2

. Two condi-

tions for instability (shaded areas in Fig. 1) arise:

– The excitation frequency is 2/n times the natural

frequency of the system, with n being a positive

integer; primary parametric resonance appears for

n = 1

– The excitation amplitude exceeds internal dissipa-

tions of the system

Fig. 1 Stability diagram of the damped and un-damped Mathieu

equations, shown in (1) and (2). Unstable regions are shaded

While the Mathieu equation can give precious

insight on the conditions for parametric resonance, it is

not applicable for a reliable prediction of the severity

of the parametric response of a floating body, espe-

cially because there is no straightforward correspon-

dence between the coefficient of equation (2) and the

physical phenomenon. In fact, the variations of the stiff-

ness term are, in general, not harmonic, but depend

on the intersection of the floater (moving in 6 DoFs)

and the wave field. Moreover, similar nonlinearities are

expected in the wave excitation force and dissipations

due to viscous drag. Finally, the PTO and mooring sys-

tem can add further nonlinearity in 6 DoF motions.

The substantial mismatch between simplified ana-

lytical models and the physical device is discussed for

a realistic case study of the spar buoy OWC (oscillat-

ing water column) WEC [22], presented in Sect. 3. A

representative model, able to articulate parametric res-

onance, is presented in Sect. 4.

3 Case study

The spar buoy device, schematically shown in Fig. 2, is

a WEC extracting energy from the relative movement

between the floater and the inner water column free

surface, which forces a bidirectional air flow through

a turbine, acting as the PTO system. Therefore, in

ideal operational conditions, pure heave movements

are desirable, while any response in other DoFs would

represent a decrease in the power conversion efficiency.
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Fig. 2 Vertical cross section of the submerged part of the body

(DRT4) at equilibrium. Relevant dimensions are annotated and

declared in Table 1

Main geometrical and physical properties are reported

in Table 1. Note that the air turbine damping effect is

represented here by an equivalent orifice plate of diam-

eter d0 [23].

Figure 2 and Table 1 refer to a configuration with

draft equal to 7.91 m. However, since parametric reso-

nance depends on inertial properties of the device, six

different ballasts (hence drafts) are considered (DRT1-

DRT6), as tabulated in Table 2. Since each draft con-

figuration is characterized by a different natural period

in roll (Tn,4), a shift of the parametric instability region

is expected.

4 Numerical model

The system can be studied with 7 DoFs, 6 DoFs for

the floater and one additional DoF for the water col-

umn displacement. In this section, for sake of clarity

and generality, the 6-DoF dynamics of the floater are

first presented. It is then straightforward to expand the

system to 7 DoFs. The dynamics and kinematics of

the floater are conveniently represented by two right-

handed frames of reference, as schematically shown

in Fig. 3 for a generic axisymmetric device. The first

frame (x, y, z) is inertial (world-fixed), with the x-axis

along and in the same positive direction of the wave

propagation, the z-axis pointing upwards, with the ori-

gin at the still water level and laying on the axis of the

buoy at rest. The inertial frame is used to describe the

x, ẋ

y, ẏ

z, ż

x̂, u

ŷ, v

ẑ, w

SWL

Fig. 3 Inertial frame of reference (x, y, z), centered at still water

level (SWL), and body-fixed (non-inertial) frame of reference
(

x̂, ŷ, ẑ
)

, after an arbitrary displacement. At rest the two frames

coincide. Velocities according to the inertial frame (ẋ, ẏ, ż) and

the body-fixed frame (u, v, w)

body displacements (ζ ), divided into translations (p)

and rotations (Θ):

ζ =

[

p

Θ

]

, p =

⎡

⎣

x

y

z

⎤

⎦ , Θ =

⎡

⎣

φ

θ

ψ

⎤

⎦ , (3)

where x is surge, y is sway, z is heave, φ is roll, θ is

pitch, and ψ is yaw.

The second right-handed frame of reference is
(

x̂, ŷ, ẑ
)

, fixed with the body, hence non-inertial, and

initially overlapping with the inertial frame when the

buoy is at rest. The body-fixed frame is convenient

for writing the dynamic equation of the system, since

the inertial properties remain constant in time. There-

fore, both forces and velocities are represented in the

body-fixed frame, along the axis of the buoy. Velocities

(ν), divided into translation (v) and rotations (ω), are

defined as:

ν =

[

v

ω

]

, v =

⎡

⎣

u

v

w

⎤

⎦ =

⎡

⎣

˙̂x
˙̂y
˙̂z

⎤

⎦ , ω =

⎡

⎣

p

q

r

⎤

⎦ . (4)

It is worth remarking that forces and velocities are

along time-varying axes, while displacements are along

fixed axes. Therefore, a mapping from body- to world-

frame velocities should be applied, at each time step, in

order to obtain the correct displacements. One possible

mapping is the following:
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Table 1 Main physical properties of the Spar-buoy OWC device (DRT4) shown in Fig. 2, in full-scale

Parameter Value Units

Water depth h 80.00 (m)

Diameter of the top cylinder dc 16.00 (m)

Draft of top cylinder Lc 7.91 (m)

Total submerged length L t 50.91 (m)

Vertical coordinate of centre of gravity zCoG -31.96 (m)

Vertical coordinate of centre of buoyancy zCoB -22.14 (m)

Mass M 2.86 · 106 (kg)

Perpendicular moment of inertia Ix = Iy 1.57 · 109 (kg m2)

Axial moment of inertia Iz 1.12 · 108 (kg m2)

Axial moment of inertia Iz 1.12 · 108 (kg m2)

Metacentric height GM 11.13 (m)

Orifice diameter do 0.8640 (m)

Table 2 Different draft configurations of the device, with consequent shift in natural period in roll

Conf. M (kg) Lc (m) Iy (kg m2) G M (m) Tn,4 (s)

DRT1 2.40 · 106 5.30 1.39 · 109 4.33 27.3

DRT2 2.55 · 106 6.17 1.44 · 109 6.81 23.1

DRT3 2.71 · 106 7.04 1.50 · 109 9.07 20.6

DRT4 2.86 · 106 7.91 1.57 · 109 11.13 19.0

DRT5 3.02 · 106 8.78 1.64 · 109 13.03 17.9

DRT6 3.17 · 106 9.65 1.71 · 109 14.78 17.2

ζ̇ =

[

ṗ

Θ̇

]

=

[

RΘ 03×3

03×3 TΘ

] [

v

ω

]

= JΘν, (5)

where RΘ is the rotation matrix, depending on the Euler
angles Θ , defined according to the 3-2-1 convention as
[10]:

RΘ = Rẑ,ψ Rŷ,θ Rx̂,φ

=

⎡

⎣

cψ −sψ 0

sψ cψ 0

0 0 1

⎤

⎦

⎡

⎣

cθ 0 sθ

0 1 0

−sθ 0 cθ

⎤

⎦

⎡

⎣

1 0 0

0 cφ −sφ

0 sφ cφ

⎤

⎦ ,

(6)

with c and s standing for cos() and sin() trigonomet-

ric operators, respectively. RΘ is applied to transla-

tional velocities. TΘ is applied to rotational ones, and

is defined as follows:

TΘ =

⎡

⎣

1 sφtθ cφtθ

0 cφ −sφ

0 sφ/cθ cφ/cθ

⎤

⎦ , (7)

where t stands for the tan() trigonometric operator.

Note that the singularity of TΘ in ±π/2 is usually not

an issue in wave energy applications, since the ampli-

tude of the pitch angle is, by design, always expected

to be smaller than π/2.

Another consequences of using a body-fixed frame

are Coriolis and centripetal forces, which are normally

neglected under the assumption of small rotational

velocities. Let us define, for convenience of notation,

the skew-symmetric operator S : R
3 → R

3×3 as
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S :

⎧

⎨

⎩

λ ∈ R
3

∣

∣

∣

∣

∣

∣

S(λ)
Δ
=

⎡

⎣

0 −λ3 λ2

λ3 0 −λ1

−λ2 λ1 0

⎤

⎦

⎫

⎬

⎭

. (8)

It follows that S(λ) = −S(λ)T , and that the cross-

product can be written as:

λ × a = S(λ)a (9)

Using such a notation, it is possible to define Coriolis

and centripetal forces as [10]:

FCor = CCorν (10)

=

[

MS(ω) −MS(ω)S(rg)

MS(rg)S(ω) −S(Irω)

] [

v

ω

]

,

(11)

where M is the mass of the body, rg is the vector from

the origin of the body-fixed frame (reference point) to

the centre of gravity, and Ir is the matrix of the moments

of inertia with respect to the reference point.

Finally, the dynamical equation in 6 DoFs for the

floater becomes:

⎧

⎨

⎩

ζ̇ = JΘν

Mν̇ + CCorν =
∑

i

Fi
(12)

where M is the inertial matrix and Fi comprises all

external forces, namely diffraction, Froude–Krylov,

radiation, drag, power take-off and mooring loads. Note

that F ∈ R
6 is a generalized force, composed of a lin-

ear force vector f ∈ R
3, and a torque vector τ ∈ R

3.

Finally, note that the 6-DoF dynamic system in (12) for

the floater is readily expanded to 7-DoFs by appending

the water column velocity to ν and expanding M, JΘ ,

CCor, and F accordingly.

While radiation and diffraction can be assumed as

linear [18,37], a nonlinear representation of FK forces,

viscous drag effects, PTO force, and mooring loads is

implemented, as further explained in following subsec-

tions.

4.1 PTO force

The power take-off system is an air turbine, which con-

verts the alternating air flow induced by the water col-

umn motion relative to the floater. The pressure drop

across the turbine can be simulated using an orifice

plate which, neglecting compressibility [9], induces a

PTO force of:

FPTO =
8ρa A3

a

π2C2
d d4

0

(

˙̂z − ˙̂z7

)
∣

∣

∣

˙̂z − ˙̂z7

∣

∣

∣
(13)

where ρa is the air density, Aa is the cross-sectional

area of the air chamber, Cd is the discharge coefficient

(Cd = 0.6466 [23]), d0 is the diameter of the orifice,

and ˙̂z7 is the velocity of the water column along the

axis of the buoy. Note that FPTO acts on both the buoy

and the water column, but with opposite sign.

The damping introduced to the system by the PTO,

depending on the area of the orifice opening, is a con-

trol parameter that can be used to maximize the power

extraction, as well as hinder the development of para-

metric resonance. Therefore, the sensitivity of the para-

metric roll amplitude and power conversion efficiency

to different d0 configurations has been studied. Diam-

eters in Table 3 are considered, including 4 operational

conditions with the areal ratio between orifice and water

column between 0.65% and 4.31%, one almost-closed

condition, with areal ratio of 0.10% that effectively

makes the water column and floater move together,

and a free-flow condition, with areal ratio of 20% that

makes the floater and the water column move indepen-

dently.

Note that the closed and free-flow conditions are

often alternative solutions in survivability strategies

in severe wave conditions, when avoiding failures

acquires higher priority than producing power. Models

that articulate parametric resonance are crucial in such

analysis, since parametric roll, potentially threatening

the device survival, depends on the damping and stiff-

ness characteristics of the system, which are modified

by the PTO force [39].

4.2 Mooring force

The mooring system, schematically shown in Fig. 4,

is based on experiments performed in Plymouth, UK

[7]. It is composed of three lines, equally spaced in the

radial direction around the vertical axis of the buoy at

rest. Each line is divided in three segments, connecting

the anchor to a jumper (line of length L1), then to a

clump weight (line of length L2), and finally to the
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Table 3 Different orifice diameters and areas, and areal ratio with respect to the area of the water column

d0 (m) Area (m2) Areal ratio (%)

0.1863 0.0273 0.10 (≈ closed)

0.4739 0.1764 0.65

0.6968 0.3813 1.40

0.8640 0.5863 2.15

1.2218 1.1724 4.31

2.6351 5.4536 20.0 (≈ free-flow)
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Fig. 4 Schematics of the mooring system layout for configura-

tion DRT4, with three lines 120◦ apart. Each line comprises an

anchor, a jumper, and a clump-weight. Figure modified from [16]

buoy (line of length L3). Relevant parameters for the

equivalent full-scale model of the mooring system are

tabulated in Table 4.

A quasi-static model is defined to compute the ten-

sion on each line depending on the 6-DoFs displace-

ments of the attachment points of the buoy and conse-

quently obtain the total forces and torques acting on the

floater, around the origin of the body-fixed frame and

along its axes. Relying on the fact that for this system

each line has a relatively high tension when compared

with their mass, it is possible to model each mooring

line segment as a rigid and inelastic line. Consequently,

for each line, two equations are written for the verti-

cal and horizontal force equilibrium, one for the torque

balance, and two for imposing geometrical constraints

[16].

4.3 Nonlinear hydrodynamic forces

The main source of time variations of system param-

eters inducing parametric instability are nonlinear

Froude–Krylov forces [39], which are the integral of

the undisturbed pressure field onto the instantaneous

(time-varying) wetted surface (Sw(t)) of the floater:

fF K = fg +

∫∫

Sw(t)

Pn dS, (14a)

τ F K = rg × fg +

∫∫

Sw(t)

Pr × n dS, (14b)

where P is the pressure field, fg is the gravity force,

n is the unity vector normal to the surface, r is the

generic position vector, and rg is the position vector

of the centre of gravity. For geometries of arbitrary

complexity, it is necessary to perform a spatial dis-

cretization of the wetted surface by means of plane

mesh panels [14], implying the use of a computation-

ally expensive re-meshing routine to recompute, at each

time step, the submerged portion of the device. How-

ever, for axisymmetric geometries as spars, a conve-

nient analytical representation of the wetted surface can

be defined, using cylindrical coordinates (̺, ϑ) in the

body-fixed frame. The integral in (14a), for example,

after appropriate mapping from inertial frame to body-

fixed frame, becomes [16]:

fF K = RT
Θ fg +

∫∫

Sw(t)

P(x̂, ŷ, ẑ) n dS

= RT
Θ fg +

π
∫

−π

̺2
∫

̺1

P(̺, ϑ)
(

e̺ × eϑ

)

d̺ dϑ,

(15)

The analytical description of the instantaneous wet-

ted surface, hence the integrals in (15), enables compu-

tation in about real time and, therefore, extensive sensi-

tivity analysis and design optimization [16]. Paramet-

ric coupling is mainly due to nonlinear Froude–Krylov

forces, shown in (15). This can be verified by inspection

of the mathematical structure of an analytical represen-

tation provided in [24], obtained thanks to multivariate
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Table 4 Parameters of the full-scale mooring system for configuration DRT4, based on the experimental tests in [7]

Parameter Value Units

Line diameter dl 32 (mm)

Net line density ρ∗
L 3.55 (kg/m3)

Jumper mass MJ 4030.5 (kg)

Jumper density ρJ 123.00 (kg/m3)

Jumper mass MC 36140 (kg)

Clump-weight density ρC 8097.50 (kg/m3)

Length anchor→ jumper L1 143.28 (m)

Length jumper→clump-weight L2 37.01 (m)

Length clump-weight→buoy L3 50.40 (m)

Radius at the anchor Ra 211.2 (m)

Depth at the anchor h 80 (m)

Attachment radius at the buoy Rb −9.28 (m)

Attachment depth at the buoy hb −2.58 (m)

Taylor expansion. The formulation in (15) is notionally

equivalent to the one in [24], relying on direct numeri-

cal integration instead of series expansion.

A further source of nonlinearity is the viscous drag

force, acting in all DoFs with a notional quadratic

dependence on the relative velocity between the floater

displacement and the fluid velocity field. Due to the

typically long draft of a spar, an integral formulation is

adopted, using the same coordinates as in (15) [16].

5 Results

A refined set of representative regular waves is con-

sidered, with period (Tw ∈ [5 s, 20 s]) and height

(Hw ∈ [0.5 m, 5.5 m]) in the typical range of opera-

tion. However, waves with excessive steepness (higher

than 6%) are excluded from the analysis due to physical

constraints of the linear potential flow theory. Figure 5

shows an example of the amplitude of the displace-

ments in 6 DoFs of the floater (configuration DRT4),

with the orifice diameter that maximizes power produc-

tion. Dashed and dash-dotted red lines highlight Tn,4/2

and Tn,4, respectively.

As expected, parametric resonance produces a roll

response in the vicinity of Tn,4/2, with the instability

region widening as the wave height increases, with a

consequent increase in the amplitude of oscillation. The

motion in sway is induced by the coupling with roll due

to mooring and hydrodynamic restoring forces. Since,

in axisymmetric floaters, the natural period in pitch

(Tn,5) is the same as in roll, also pitch is prone to experi-

ence parametric instability. In fact, Fig. 5 shows a clear

local increase in pitch around Tn,4/2. Similarly to the

sway-roll pair, also surge is coupled with pitch. Finally,

note that also the yaw DoF shows a local response only

around Tn,6/2, due to parametric instability induced by

a nonlinear stiffness effect in the tangential direction of

the mooring lines at the fairleads [16].

The increase in surge, sway, roll and pitch DoFs is

the main reason why parametric resonance has signif-

icant impact on the device survivability and design of

the mooring system. On the other hand, it is possible to

notice a local drop of heave response when parametric

roll appears. In fact, since parametric instability opens

a channel to internally transfer energy from heave to

other DoFs, the power available to the PTO and the

conversion efficiency decreases. This process is partic-

ularly evident in the time traces and envelope shown

in Fig. 6. Since parametric roll response has a signif-

icantly longer transient than externally excited DoFs,

it is possible to remark the energy transfer from heave

to roll, making the heave displacement decrease as roll

increases. Despite the fact that the drop in heave ampli-

tude is apparently small, the generated power experi-

ences a significant decrease, showing how detrimental

parametric resonance is for energy absorption and con-

version.

Figures 5 and 6 show that parametric resonance is

not just evident in roll, which is excited only internally,
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Fig. 5 Motion amplitude of the six DoF of the floater DRT4 for the optimal orifice diameter. Dashed and dash-dotted red lines are at

Tn,4/2 and Tn,4, respectively. The dashed green line is at Tn,6/2

but also in heave and pitch, that show a clear pertur-

bation at the resonance instability frequency as para-

metric resonance arises. The waterfall plots and maps

in Figs. 7 and 8 represent the fast Fourier transform

(FFT) for different incoming wave frequencies ωe, at a

constant wave height (Hw = 3m). All frequencies are

normalized by the natural period in roll/pitch. All the

spectral energy in roll is focused around ω/ωn,4 = 1

and only when ωe/ωn,4 = 2, generating roll oscilla-

tions at a frequency which is half the excitation fre-

quency.

The spectral energy in the pitch DoF is divided into

two regions. Similarly to roll, parametric pitch gener-

ates a response at ω/ωn,4 = 1 when ωe/ωn,4 = 2.

Parametric pitch is superimposed to the linear behav-

ior that makes the floater pitch at the same frequency

of the excitation force. This is particularly evident in

the map in Fig. 8, since the spectral energy lays on the

bisector of the plane, i.e., at ω = ωe.

Further insight in the nonlinear dynamic response of

the system can be obtained from the resonance curve in

roll, as shown in Fig. 9. For each of three relevant points

in the parametric resonance region (Tw equal to 9 s, 9.5 s

and 10 s), the phase portraits of heave, roll and pitch are

presented in Fig. 9. Moreover, the Poincaré map shows

frequency doubling, especially in the rotational DoFs.

Note that the markers in the phase portraits are taken

at the peaks of the incoming wave.

The influence of changes of initial conditions is stud-

ied in Fig. 10, where the phase portraits of a wave in the

parametric resonance region (Hw = 3 m, Tw = 9.5 s)

is studied for 9 different initial conditions (φ0): one

at φ0 = 0.5◦, and 8 from 0 to 17.5◦, with step equal

to 2.5◦. Although such initial conditions span around

the steady-state amplitude of the limit cycle, the same

attractor is reached. Figure 10 also shows a similar pat-

tern for the transient which, although faster for larger

initial conditions, presents the same drop of the enve-

lope after about 55 s of simulations. Furthermore, note

that the transient from φ0 = 0◦ is much longer than the

one from φ0 = 0.5◦. However, since the exact zero in

real applications is highly unlikely (if not impossible),

in the simulations used to produce all other results, an

initial condition of φ0 = 0.5◦ is assumed, in order to

reduce transient periods.
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Fig. 6 Example of time trace (in grey) and envelope (in blue)

for heave (top), roll (middle) and generated power (bottom) for

configuration DRT4, with d0 = 0.864 m, in parametric resonance

conditions (Tw = Tn,4/2 = 9.5 s and Hw = 3 m). (Color figure

online)

Finally, it is worth to reconstruct the stability dia-

gram using the results of the numerical simulations.

However, as discussed in Sect. 2, several simplifica-

tions are needed to fit the model of (12) into the equa-

tion in (2). Let us consider the uncoupled roll DoF and

neglect nonlinearities due to the excitation force, kine-

matics, PTO and mooring systems. Let us consider the

linearized definition of hydrostatic stiffness in roll [10]:

K4 = ρg∇

(

Ia

∇
− BG

)

(16)

where ρ is the water density, g the acceleration of

gravity, ∇ the submerged volume, Ia the geometrical

moment of inertia of the water plane area, and BG

Fig. 7 Example of waterfall plot for roll (top) and pitch (bottom)

for configuration DRT4, with d0 = 0.864 m and Hw = 3 m. The

corresponding map is shown in Fig. 8. A waterfall plot repre-

sents a series of fast-Fourier transforms for different excitation

frequencies (ωe). Frequencies in the horizontal axis are normal-

ized by the natural frequency in roll (ωn,4)

the distance between centres of buoyancy and grav-

ity. Using the same numerical framework described in

Sect. 4.3, the time-varying ∇ and BG can be computed

according to the 6-DoF displacements [15]. Since the

time-variations of K4 are not exactly harmonic, the

amplitude Λ is estimated as half the excursion from

peak to trough of K4 and normalized by its mean. The

resulting (Δ − Λ) coordinates are shown in Fig. 11,

where the colour of each marker is proportional to the

amplitude of the roll response. In this way, the stability

diagram can show both regions of instability and the

severity of the parametric response.

Consistently with Fig. 1, the main unstable region is

located around Δ = 0.25 and widens as Λ increases,

with a corresponding increase in roll amplitude. A

small roll response can be also found at Δ = 1. The

reduced extension of this secondary unstable region

is due to viscous losses. Note that the area of primary

instability is wider than the one predicted by the simpli-

fied analytical model (as shown in green in Fig. 11 and

in Fig. 1), highlighting the value of using a more rep-

resentative model of higher complexity for advanced

design considerations.

In order to provide a rough comparison with Fig. 1,

the non-dimensional linear dissipation coefficient (μ)
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Fig. 8 Example of

waterfall colour-map for roll

(top) and pitch (bottom) for

configuration DRT4, with

d0 = 0.864 m and

Hw = 3 m. The

corresponding plot is shown

in Fig. 7. A waterfall map

represents a series of

fast-Fourier transforms for

different excitation

frequencies (ωe).

Frequencies in the

horizontal axis are

normalized by the natural

frequency in roll (ωn,4)

Fig. 9 Resonance curve in roll, for configuration DRT4 and Hw

of 3 m. Dashed and dash-dotted red lines are at Tn,4/2 and Tn,4,

respectively. Phase portraits are shown for Tw equal to 9 s (left),

9.5 s (middle), and 10 s (right). The markers in the Poincaré maps

are taken at the peaks of the incoming regular wave. (Color figure

online)
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Fig. 10 Phase portrait for configuration DRT4, Hw = 3 m and

Tw = 9.5 s, d0 = 0.864 m, for 9 different roll initial conditions.

The systems show only one attractor, since the same limit cycle

is obtained, regardless of the initial condition considered
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Fig. 11 Reconstructed stability diagram from numerical simu-

lation for configuration DRT4 and d0 = 0.864 m. The green lines

show the theoretical limits of stability for μ = 0, as in Fig. 1.

Maximum non-dimensional damping term (μ) of 0.032. (Color

figure online)

is defined [11]:

μ(ω) =
B(ω) + Clin

(Ix + A(ω)) ω
(17)

where A is the radiation added mass, B is the radi-

ation damping, and Clin is an equivalent linear vis-

cous drag coefficient. Clin is chosen a posteriori such

that the resulting linear viscous force dissipates the

same energy of the nonlinear force over the same peri-

odic time window [40]. Using the definition in (17),

μ, which depends on the incoming wave and motion

response, reaches the maximum value of 0.032.

The discussion carried out so far is based on regu-

lar waves since, being monochromatic, they are fit to

clearly describe the frequency-dependent attitude of the

system. However, since real waves are panchromatic

stochastic processes, the instability excitation may dif-

fer. Ref. [2] studies more realistic non-sinusoidal wave

profiles, still inducing instability into the system, while

[44] discusses how the instability regions become wider

as the noise intensity increases, while tongues of insta-

bility domains rise up. This is consistent with experi-

mental observation [23] and numerical modeling [20]

of a WEC prototype. Note that the proposed NLFK

force calculation can be also applied to irregular wave

conditions, as discussed in [20]. Regions of instabil-

ity become wider because of the spread of spectral

energy content across the frequency range. However,

due to an unsteady and non-uniform energy supply

at the parametric resonance frequency, transients are

longer and a sustained instability is reached for a larger

overall excitation, namely a larger wave height. Never-

theless, numerical simulations in irregular wave condi-

tions become more sensitive to the representation vis-

cous losses, which have a direct impact on the transient

evolution [20].

5.1 Sensitivity analysis

As discussed in Sect. 2 and shown in Sect. 5, the like-

lihood of parametric instability mainly depends on the

natural period of the parametrically excited DoF, i.e.,

inertial and restoring properties in that DoF. In addition,

the severity of the parametric response also depends on

the overall stiffness of the system, as well as internal

dissipations. Since the model proposed in this paper is

able to quantitatively predict the amplitude of the para-
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Fig. 12 Amplitude of roll response for configuration DRT4 varying the orifice diameter (the smaller d0, the larger the PTO damping).

Dashed and dash-dotted red lines are at Tn,4/2 and Tn,4, respectively. (Color figure online)

Fig. 13 Optimal orifice diameter (for maximum power extraction while avoiding survivability conditions) for different draft configu-

rations
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Fig. 14 Roll amplitude (using orifice diameters in Fig. 13) for different draft configurations

Fig. 15 Optimal power extracted (using orifice diameters in Fig. 13) for different draft configurations
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metric response, depending on changes of virtually any

parameter of the system, it is used to perform a sensi-

tivity analysis that can inform and effectively guide the

design of the system.

The first parameter considered is the diameter of the

orifice plate, tabulated in Table 3, emulating the damp-

ing action of the PTO system. The PTO force, shown in

(13), is the control action that is normally used to max-

imize the absorbed power while remaining compliant

to constraints, usually related to the safety of compo-

nents of the system. In fact, in case of extreme wave

conditions, the control strategy should prioritize sur-

vivability over power production. A common strategy

is to increase the PTO damping in order to avoid rel-

ative motions between parts whose relative movement

is normally used to extract energy [39]. However, this

strategy can be counterproductive if the system is prone

to parametric resonance, since a stiffer system tends

to experience larger parametric response, potentially

threatening the device integrity [39]. This is shown in

Fig. 12 for configuration DRT4, where parametric roll

increases in amplitude and width as d0 decreases (as

the PTO damping increases).

The second relevant parameter considered in the

sensitivity analysis is the ballast or, alternatively, the

consequent draft. Table 2 shows the 6 different draft

configurations, the draft of the top part of the floater,

and the consequent natural period in roll, which is the

most important parameter determining the region of

parametric instability. As the draft increases (due to a

higher ballast at the bottom part of the converter), both

the hydrostatic stiffness (due to increase in BG) and the

rotational inertia increase. The increase in hydrostatic

stiffness presents an higher importance over the inertia

variation and, consequently, Tn,4 decreases. Therefore,

parametric instability is expected to appear at lower

periods as the draft increases. Figure 13 shows the

map of optimal d0 that maximize power production

for each wave condition, while ensuring survivability.

At a period of about 14 s, all configurations present

a relatively large value for the optimum orifice plate

diameter. This is associated with an improved excita-

tion of the OWC due to the reduction of the turbine

damping effect, since the OWC heave natural period is

observed at 14 s. Using d0 from the maps in Fig. 13,

Fig. 14 shows the amplitude of parametric response for

the different draft configurations.

As expected, the condition for parametric resonance

shifts to lower periods as the draft increases. However,

the width of the unstable region, as well as the ampli-

tude of response, considerably shrinks as Lc increases.

Remarkably, configuration DRT6 is almost unaffected

by parametric response, likely due to the increase in the

rotational hydrostatic stiffness, which make its relative

variation less significant.

Ultimately, since the system is a wave energy con-

verter, the most important quantity to consider is the

converted power, as shown in Fig. 15. For all configura-

tions, a clear local drop of power production is visible

around the region of parametric instability, confirm-

ing the detrimental effect of parametric resonance for

all draft configurations. Overall, the best configuration

appears to be DRT4, with a wider and higher-power

conversion region, as shown in Fig. 15, and a rela-

tively low and localized parametric response, as shown

in Fig. 14. From Fig. 15, it seems that configuration

DRT6 is the one where the power extraction is less

affected by parametric resonance, as the relevant power

spectrum falls between the two instability regions at

around Tn,4/2 and Tn,4. Ultimately, two conflicting

design objectives should be balanced, namely power

conversion capabilities, shown in Fig. 15, and oper-

ability/survivability, which depends on several differ-

ent aspects, including roll response, shown in Fig. 14.

One potential proxy for survivability is the resulting

mooring load, as considered in [16], or the maxi-

mum pitch/roll angle, which may affect the structural

integrity of the tube.

As a final remark, note that all discussion and sensi-

tivity analysis herein performed is based on idealized

monochromatic waves, which are simple and concise,

carrying univocal frequency and amplitude informa-

tion. However, real waves are random realization of

a stochastic process, so the likelihood and severity of

parametric resonance, although correlated to regular

wave conditions, is potentially changing. Therefore,

consideration regarding relative advantages of differ-

ent design solutions is to be read as preliminary and

further investigation and testing is required to corrob-

orate such conclusions.
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6 Conclusions

Although parametric instability is a common nonlin-

ear phenomenon for spar-like floating structures, it is

not often included in the design process. In fact, math-

ematical models, essential to inform the design stage,

usually are either oversimplifying the system, or are

computationally too slow. On the one hand, the vast

majority of analytical models used to study paramet-

ric resonance are developed in two degrees of free-

dom, idealize the geometry and neglect the interaction

with other phenomena or ancillary systems (such as

nonlinear excitation, power take-off and mooring sys-

tems). Furthermore, while all assess well the likelihood

of parametric instability, further assumptions are usu-

ally needed to predict the severity of the parametric

response. On the other hand, conventional nonlinear

time-domain models, although more representative of

the full complexity of the system, are usually too time-

consuming to be used for extensive sensitivity analysis.

The model proposed in this paper purports to bridge

such a gap. A computationally efficient model for float-

ing spars is presented, considering a realistic wave

energy converter as a case study, including nonlin-

ear kinematics, an analytical formulation of nonlinear

Froude–Krylov forces, viscous drag forces, PTO and a

realistic mooring system. Such a model is able to quan-

titatively articulate parametric resonance, showing its

detrimental effects on power extraction efficiency. The

model is also used to reconstruct the stability diagram

of the system, based on numerical simulations, which

is compared with predictions from the simplified Math-

ieu equation. The numerical model is then used to study

the sensitivity to the control force and to the ballast

configuration, determining the best option that limits

parametric roll while optimizing power extraction.
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