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Abstract. We present numerical calculations of the spin transfer torque resulting in current-induced domain
wall motion. Rather than the conventional micromagnetic finite difference or finite element method, we
use an atomistic/classical Heisenberg spin model approach, which is well suited to study geometrically
confined domain walls. We compute the behaviour of domain walls in a one dimensional chain when
currents are injected using adiabatic and non-adiabatic spin torque terms. Our results are compared to
analytical calculations and are found to agree very well for small current densities. At larger current
densities deviations are observed, which can be attributed to the approximations used in the analytical
calculations.

PACS. 72.25.Ba Spin polarized transport in metals – 72.25.Pn Current-driven spin pumping

1 Introduction

Domain walls and magnetisation reversal by domain wall
motion have recently become the focus of interest by al-
lowing us to address fundamental physical questions, such
as the geometry dependent spin structure [1,2], pinning
of domain walls at constrictions [3–8] and the details of
the domain wall propagation processes [9,10]. Addition-
ally, devices based on domain walls have been suggested
for data storage and logic [11,12]. Rather than using con-
ventional magnetic fields to move domain walls, recently
current-induced domain wall motion [13–24] has received
much attention, since it opens up a route for simple device
fabrication, as no field-generating strip lines are necessary.
Devices based on current-induced domain wall motion
have also been put forward, the most prominent being the
racetrack memory [22]. Apart from possible applications,
the interplay between spin currents and domain walls in
magnetic nanostructures is of fundamental interest, since
the basic physical mechanisms involved are not completely
understood. Experimentally spin torque effects on domain
walls were observed early on (see e.g. [15]), and recently
controlled current-induced motion of single domain walls
in magnetic nanostructures has been achieved. Several im-
portant aspects like domain wall velocities [16,17], crit-
ical current densities [18–20,24], thermally assisted mo-
tion [21], and the impact of currents on the domain wall
spin structure [17] have been addressed.
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One approach to studying and understanding domain
wall spin structures and current-induced domain wall mo-
tion is using computational methods. Using various nu-
merical methods, this has been very successful in recent
years in explaining experimental observations, such as do-
main structures, reversal modes and other magnetic ef-
fects [25–27]. The micromagnetic approach, where the
time integration of the standard Landau-Lifshitz (and Gil-
bert) equation [28] is carried out on a square (or cubic)
lattice has been become very popular with the advent of
the freely available OOMMF software [29] and other com-
mercial packages. While many experimental results could
be reproduced using this software, some of the most excit-
ing aspects of nanomagnetism could not be investigated,
namely the influence of temperature and the spin transfer
torque effect that leads to current-induced domain wall
motion for geometrically confined domain walls.

Micromagnetic calculations including a white noise
fluctuating field to account for the effects of temperature
encounter the following problem: due to the cell size of
usually just below the exchange length (a few nanome-
ter in many 3d metals), the thermally excited spin wave
spectrum is cut off at the wavelength that corresponds to
the cell size. An atomistic simulation allows to reproduce
thermal effects with higher accuracy and such thermal ef-
fects have been shown to be of paramount importance for
domain walls [4] and in the context of the spin transfer
torque effect [30].

What is more, geometrically confined domain walls can
contain changes in the spin structure at very short length
scales [3,4]. In the usual micromagnetic approach, the

http://www.springerlink.com/content/101159
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-53423
http://www.ub.uni-konstanz.de/kops/volltexte/2008/5342/


430

exchange energy is approximated by (∇(m))2, which is the
first order Taylor expansion of the dot product and only
valid for small angles between neighbouring cells [26,27].
In order to avoid this problem, an atomistic/classical spin
model approach can be used, where the exchange energy
is calculated as the dot product [4].

Finally, the standard Landau-Lifshitz-Gilbert equa-
tion does not account for the spin transfer torque effect,
which leads to current-induced domain wall motion and
so it has to be extended. Theoretically, the phenomenon
of current-induced domain wall motion has been long
known [13,14] but the underlying theory of interaction
between current and magnetisation is still controversial.
Different approaches have been suggested, in the ballis-
tic limit [31,32] as well as in the diffusive limit [14,32].
The assumption that the spin of the charge carriers fol-
lows the local magnetisation leads to the introduction
of an adiabatic torque into the Landau-Lifshitz-Gilbert
equation of magnetisation dynamics [32–34]. Motivated by
large discrepancies between experiment and theory, a non-
adiabatic term was introduced [35,36]. He et al. [37] pre-
dicted that the (non)-adiabaticity parameter of the spin
torque strongly influences the combinations of field and
current necessary to move a wall and so a study of do-
main wall motion as a function of current and field might
help to ascertain this parameter if simulations and exper-
imental results are available for the same geometry. Fur-
thermore, a discrepancy between room temperature mea-
surements and 0 K calculations of the domain wall velocity
exists [16,17,35,36]. To reveal possible explanations, tem-
perature dependent measurements and calculations of the
critical current density and the velocity is a key issue to
determine the temperature dependence of the spin torque
effect efficiency.

Thus a possible route to simulations of current-induced
domain wall motion of highly confined walls at vari-
able temperature, which we present in this paper is
an atomistic simulation using an atomistic/classical spin
model approach [25] and including the adiabatic and the
non-adiabatic spin torque terms. We study first the sim-
plest case of a one dimensional chain at 0K, which can be
calculated analytically and compare the results of our ap-
proach with the analytical predictions and discuss possible
deviations.

2 Model, simulation

We consider a classical Heisenberg model: the magnetic
moments are located on a cubic lattice with nearest neigh-
bours ferromagnetic exchange coupling.

H = − J
∑

〈ij〉
Si · Sj − dx

∑
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− µsB ·
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Si (1)

Si = µi/µs denotes the three-dimensional magnetic mo-
ment of unit length with µs = |µi|, J with J > 0 the
ferromagnetic exchange coupling constant, dx and dy the
anisotropy constants. For dx > dy > 0 the x-axis is a mag-
netically “easy” axis and the y-axis is a magnetically “mid-
dle” axis, w = µ0µ

2
s/(4πa3) is the strength of the dipole-

dipole interaction, ri,j the distance between the magnetic
moments, i and j are in units of the lattice constant a, ei,j

the unit vector in the direction of ri,j and B the external
magnetic field.

The first term of the Hamiltonian describes the iso-
tropic exchange interaction between neighbouring mag-
netic moments. With a ferromagnetic exchange interac-
tion the magnetic moments align parallel. The second
and third term describe two anisotropy terms. The mag-
netic moments thus preferentially orient themselves in the
xy-plane. The forth term of the Hamiltonian describes the
long-ranged dipole-dipole interaction leading to shape an-
isotropy. These interactions compete and determine the
order of the magnetic moments in a system. The last term
of the Hamiltonian describes the coupling of magnetic mo-
ments to an external magnetic field B (Zeeman term).

The dynamics of the system, respectively the equation
of motion of the magnetic moments Si is governed by the
Landau-Lifshitz-Gilbert (LLG) equation [28]:

∂Si

∂t
= − γ

(1 + α2)µs
Si ×

[
Hi(t) + α(Si × Hi(t))

]
(2)

Hi = − ∂H
∂Si

are the effective fields, α is the dimensionless
Gilbert damping constant, and γ = gµB/� is the gyromag-
netic ratio. The first term of the LLG equation describes
the precession of the magnetic moment Si within the ef-
fective field Hi. The second term describes the relaxation
of the magnetic moment.

To take thermal fluctuations into account, a time de-
pendent thermal noise term ζi(t) can be added into the
effective field term Hi [38].

Hi(t) = − ∂H
∂Si

+ ζi(t) (3)

ζi(t) possesses the properties of white noise:

〈ζ(t)i〉 = 0 (4)

〈ζν
i (t)ζΘ

j (t′)〉 = 2
αµs

γ
kBTδi,jδν,Θδ(t − t′) (5)

Θ, ν are the Cartesian coordinates, kB is the Boltzmann
constant, and T is the temperature. In the simulation,
thermal fluctuations are represented by Gaussian distri-
buted random numbers.

The numerical time integration of the LLG equation
has been carried out by using a Heun-method [39,40].

To take a spin-polarised current in the x-direction into
account we follow the approach presented in [34–36,41]. In
these studies the interaction between electron spins and
magnetic moments have been treated by additional terms
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in the implicit LLG equation.

∂Si

∂t
= − γ

µs
Si × Hi(t) + αSi × ∂Si

∂t

− ux
∂Si

∂x
+ βuxSi × ∂Si

∂x
(6)

ux is given by ux = jePgµB/(2eMs) with je the current
density, P the polarisation, Ms the saturation magneti-
sation and β a constant non-adiabaticity parameter. ux

is in units of a velocity and proportional to the applied
current. The equation can be easily transformed to the
explicit LLG equation, which is used in our simulations.

∂Si

∂t
= − γ

(1 + α2)µs
Si ×

[
Hi(t) + α(Si × H i(t))

]

+
1 + βα

(1 + α2)
uxSi ×

[
Si × ∂Si

∂x

]

− α − β

(1 + α2)
uxSi × ∂Si

∂x
. (7)

The extended LLG equation consists now of four terms.
The last two terms include the effect of a spin-polarised
current on the dynamics of the magnetic moments.

3 Numerical results

In the following we present results from a system with
a spin chain (d = 1) along the x-direction, which is the
simplest model, which also allows comparison to analyt-
ical calculations. The system size was chosen to be 513
or 1025 lattice sites. The simulations were all first per-
formed at 0 K with ferromagnetic exchange coupling and
anisotropy constants dx/J = 0.01 and dy/J = 0.005,
Gilbert damping constant α = 0.02, and w = 0. The exter-
nal magnetic field was set to zero. For comparison of wire
geometries [41,34] with analytical 1D predictions, the ef-
fects of the exchange interaction and the shape anisotropy
due to the dipolar interaction were included in a so-called
effective anisotropy term in the 1D model. This effective
anisotropy term has the same form as our anisotropy terms
have.

In the simulations a planar domain wall separating
two head to head domains along the chain direction
(x-direction) was considered.

S(x) = − tanh
( x

W

)
ex +

cos(φ)
cosh( x

W )
ey +

sin(φ)
cosh( x

W )
ez (8)

here W is the domain wall width and φ is the out-of-plane
angle. The initial magnetisation configuration is a stable
planar domain wall in the xy-plane (φ = 0 and W =
W0). The magnetic moments at the ends of the wire were
fixed along the x respectively along the −x direction. To
determine the position, the width and the out-of-plane
angle of the planar domain wall the Sx and Sy components
of the chain were fitted using equation 8.

The following simulation results of adiabatic and
non-adiabatic spin torque effects are obtained by using

a Heisenberg model, equation (1). We compare to related
recent results from the literature, where micromagnetic fi-
nite difference approaches and analytical calculations had
been chosen.

In reference [41] a current along the x-direction is ap-
plied to a wire with a standard in-plane transverse do-
main wall separating two head to head domains along the
wire direction (x-direction). Analytical and numerical re-
sults [41] for the velocity, reversible displacement xdw, the
out-of-plane angle and the deformation of the domain wall
have been obtained for the case of a low current ux below
the so called Walker breakdown [42] and β = 0. For do-
main walls driven by an external magnetic field the Walker
breakdown is a well known phenomenon [10,42,43]. Above
a critical external magnetic field along a wire precession
of the domain wall around the external field occurs and
the domain wall velocity decreases. A similar phenomenon
occurs in current-driven domain wall motion [35,36]. For
current densities below the Walker breakdown, the domain
wall only moves a distance xdw ∝ ux and is tilted out of
the xy-plane by an angle φ ∝ ux until it stops. Addition-
ally the original domain wall was distorted according to
W/W0 ≈ 1−C ·u2

x. In our simulations we observe for low
current ux and β = 0 that the domain wall moves along
the wire to a maximum displacement and then stops. Si-
multaneously the magnetic moments of the wall tilt out
of the easy plane until a maximum out-of-plane angle is
reached. This behaviour can be explained by looking at the
four terms of the extended LLG equation. The spin torque
is balanced by an ”internal” torque due to the anisotropy
contribution to the effective field. The displacement in the
x-direction given by the third term of the LLG equation
is balanced by the precessional term which acts in the op-
posite direction. The forth term which tilts the magnetic
moments out of the easy plane is balanced by the relax-
ation term. In Figures 1–3 we show results of our simula-
tions for the displacement, the out-of-plane angle and the
distortion of the domain wall as a function of ux. Good
agreement with the low current predictions is found, for
larger currents we find deviations. The analytical calcula-
tions assume that the domain wall shape remains in the
standard transverse domain wall which is only valid for
small currents. So deviations from the analytical predic-
tions for lager currents are expected.

In [34] an approximate analytical prediction for the
long term domain wall velocity 〈v〉 as a function of ux has
been derived: 〈v〉 =

√
u2

x − u2
c/(1 + α2) for values of ux

exceeding a critical effective velocity uc respectively ex-
ceeding a critical current. Simulations [34] of a wire with
a transverse domain wall showed a periodic antivortex nu-
cleation and annihilation for ux > uc. As described above
we observe for low current ux in long term simulations
no continuous domain wall motion. For larger currents ux

the spin torque cannot be any longer balanced by the “in-
ternal” torque due to anisotropy effects. The domain wall
motion occurs additionally to a precession of the mag-
netic moment around the x-direction. As shown in Fig-
ure 4 for the case β = 0 we also observe a critical value
for uc. The analytical predictions of 〈v〉 have been very
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Fig. 1. Simulation results (symbols) for the final
x-displacement xdw of the domain wall as a function of
ux. The line shows a linear fit for small ux. Parameters:
α = 0.02, β = 0.
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Fig. 2. Simulation results (symbols) for the final out-of-plane
angle φ as a function of ux. The line shows a linear fit for small
ux. Parameters: α = 0.02, β = 0.

well reproduced by our simulations. As we are consider-
ing in our simulation a spin chain, the equivalent of the
wall transformation discussed above is the rotation of the
domain wall around the x-axis, which we indeed observe.

The effects of non-adiabatic spin torque contribu-
tions (β �= 0) have been investigated as well. For com-
parison with analytical predictions of [36] we assumed
the non-adiabaticity parameter β to be a constant value
throughout the system. In [44] non-local contributions to
β, which are strongly correlated to the domain wall width,
are predicted. Including this will be reserved for future
studies. In Figure 4 we present results for the long term
domain wall velocity as a function of ux for different values
of β. For the case β = α, the last term off the LLG equa-
tion vanishes. The magnetic moments are not tilted out
of the easy plane. That means that no torque acts on the
magnetic moments due to the precessional and relaxation
part of the LLG equation. The magnetic moments are only
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Fig. 3. Simulation results (symbols) of the reduction of the
width of the domain wall as a function of ux. The line shows
the fitting function W/W0 = 1−C ·u2

x for small ux. Parameters:
α = 0.02, β = 0, C = 54.84.
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Fig. 4. Simulation results (symbols) for the long term domain
wall velocity 〈v〉 as function of ux for different values of β. The
dashed lines show fits to analytical predictions [34,36]. Open
symbols denote that the domain wall rotates around the x-axis.
Parameters: α = 0.02.

influenced by the third term of the LLG which shift the
domain wall along the wire and no transformations (rota-
tion around the x-axis) occur. For the case of β �= α for all
values of ux continuous domain wall motion is observed.
Two regimes can be distinguished. For ux < uWalker the
velocity is given by 〈v〉 = βux/α [36] as in the case of
β = α. For the case of β = 0.1 the maximum Walker
velocity vWalker is given by vWalker = 5 ·ux. The ratio be-
tween uc and vWalker is 0.0416/0.048 (0.867), which is in
agreement to [36] where it is 600 m/s divided by 700m/s
(0.857) in the micromagnetic case and 1/1.25 (0.800) for
the analytical calculation. Above uWalker continuous rota-
tion of the magnetic moments around the x-axis is found
which initially leads to a lower domain wall velocity. Only
at higher ux the velocity starts to increase again. Good
agreement with the results of [36,45] is obtained.
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4 Conclusions

In conclusion we have shown that using an
atomistic/classical spin model we can calculate the
effects of the spin transfer torque. We compute the
behaviour of domain walls in a one dimensional chain
when currents are injected by the time integration of
the Landau-Lifshitz and Gilbert equation including
adiabatic and non-adiabatic spin torque terms. Very
different behaviour is observed depending on the value
of the non-adiabatic term. Our results are compared to
analytical calculations and are found to agree very well
for small current densities. At larger current densities
deviations are observed, which can be attributed to the
approximations used in the analytical calculations.

The general method outlined here contains tempera-
ture effects and the magnetic moments can be described
on a more microscopic level using an atomistic lattice
compared to standard micromagnetic finite difference ap-
proaches. Thus it is applicable to a broad range of inter-
esting experimentally studied systems for geometries with
extensions below the applicability of micromagnetic ap-
proaches. Our code is particularly well suited for highly
confined domain walls with large magnetisation gradients
and using an atomistic approach it allows to also include
thermal effects. Thus we plan to apply it to the problem of
current-induced motion of confined domain walls with the
same geometries, which are studied experimentally. Due
to the large computational cost, efforts are under way to
perform these calculations using High Performance Com-
puting facilities.

The authors thank R. Wieser for helpful discussions. The
work has been supported by the Landesstiftung Baden-
Württemberg and we thank the SSC, NIC and the HLRS for
computer time.
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17. M. Kläui et al., Phys. Rev. Lett. 95, 26601 (2005); M.
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