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Numerical investigation of the compressible flow past an 18 % thick circular-arc
aerofoil was carried out using detached-eddy simulation for a free-stream Mach
number M∞ = 0.76 and a Reynolds number Re = 1.1 × 107. Results have been
validated carefully against experimental data. Various fundamental mechanisms
dictating the intricate flow phenomena, including moving shock wave behaviours,
turbulent boundary layer characteristics, kinematics of coherent structures and
dynamical processes in flow evolution, have been studied systematically. A feedback
model is developed to predict the self-sustained shock wave motions repeated
alternately along the upper and lower surfaces of the aerofoil, which is a key
issue associated with the complex flow phenomena. Based on the moving shock
wave characteristics, three typical flow regimes are classified as attached boundary
layer, moving shock wave/turbulent boundary layer interaction and intermittent
boundary layer separation. The turbulent statistical quantities have been analysed in
detail, and different behaviours are found in the three flow regimes. Some quantities,
e.g. pressure-dilatation correlation and dilatational dissipation, have exhibited that
the compressibility effect is enhanced because of the shock wave/boundary layer
interaction. Further, the kinematics of coherent vortical structures and the dynamical
processes in flow evolution are analysed. The speed of downstream-propagating
pressure waves in the separated boundary layer is consistent with the convection speed
of the coherent vortical structures. The multi-layer structures of the separated shear
layer and the moving shock wave are reasonably captured using the instantaneous
Lamb vector divergence and curl, and the underlying dynamical processes are clarified.
In addition, the proper orthogonal decomposition analysis of the fluctuating pressure
field illustrates that the dominated modes are associated with the moving shock waves
and the separated shear layers in the trailing-edge region. The results obtained in this
study provide physical insight into the understanding of the mechanisms relevant to
this complex flow.
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1. Introduction

Owing to the obvious importance in a wide range of fundamentals and applications,
a great effort has been made in the past decades to study the compressible flow in
transonic regime past an aerofoil. Self-sustained shock wave motions on aerofoils
are associated with the phenomenon of buffeting, and the shock-induced fluctuations
are particularly severe. Comprehensive reviews on this subject have been given by
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Tijdeman & Seebass (1980) and Lee (2001). The physical mechanisms of the shock
motion are not yet fully understood, even though some work has been performed
over the last 50 years (Lee 2001). Moving shock wave/turbulent boundary layer
interaction is also responsible for important flow phenomena, e.g. unsteady boundary
layer separation and vortex shedding in the trailing-edge region, which are major
causes of broadband noise (Wang, Freund & Lele 2006). Thus, various fundamental
mechanisms dictating the complex flow characteristics, such as moving shock wave
behaviours, turbulent boundary layer characteristics, kinematics of coherent structures
and dynamical processes in flow evolution, are still completely unclear and are of
great interest for future detailed studies.

Self-sustained shock wave motions on aerofoils have been investigated
experimentally and numerically (e.g. Lee 2001 and the references therein). Tijdeman &
Seebass (1980) have classified the shock wave motions as being of three types, i.e.
type A, B and C. Previous experimental studies of transonic flow over an 18 %
thick circular-arc aerofoil at zero incidence have indicated that upstream-propagating
shock waves occur alternately on the upper and lower surfaces for a certain range
of the free-stream Mach number (McDevitt, Levy & Deiwert 1976; Levy 1978;
McDevitt 1979; Marvin, Levy & Seegmiller 1980), which belongs to type C. Moreover,
some numerical simulations have been performed using the time-dependent two-
dimensional Reynolds-averaged Navier–Stokes (RANS) equations with turbulence
models (e.g. Marvin et al. 1980; Rumsey et al. 1996; Xiao, Tsai & Liu 2003). A
zonal detached-eddy simulation (DES) method has also been used to predict the
buffet phenomenon on a supercritical aerofoil (Deck 2005). Those simulations have
analysed the shock wave motion and the evolution of shock-induced separation. In
particular, Lee (Lee 1990; Lee, Murty & Jiang 1994) has given an explanation of
the mechanism of self-sustained shock oscillation and proposed a feedback model to
estimate the frequency of oscillation for the type A shock motion. Recently, global-
stability theory has been used to predict shock-induced transonic-buffet onset on
aerofoils based on steady solutions of the two-dimensional RANS equations, and
the theoretically predicted results for the onset of flow unsteadiness agree well with
experiments and unsteady calculations (Crouch, Garbaruk & Travin 2007; Crouch
et al. 2009).

The interaction between the sustained moving shock wave and turbulent boundary
layer along the aerofoil surface is an important issue in understanding the flow
characteristics. Smits & Dussauge (1996) have classified the shock wave/turbulent
boundary layer interactions as compression corner interactions or incident shock
interactions. Numerical investigations have been performed for the compression
corner interactions (e.g. Loginov, Adams & Zheltovodov 2006; Ringuette, Wu &
Martı́n 2008) or incident shock interactions (e.g. Teramoto 2005; Pirozzoli &
Grasso 2006). Andreopoulos, Agui & Briassulis (2000) have analysed several
types of shock/turbulence interactions and concluded that in the case of wall-
bounded interactions the shock system is highly unsteady. Correspondingly, the flow
considered here involves complex interaction phenomena and turbulent boundary
layer behaviours associated with the shock wave motion and the surface curvature of
the aerofoil. The relevant study comparably is scarce.

The interaction between a shock wave and turbulence is mutual. Since the 1950s,
linear interaction analyses (LIA) on turbulence modification by the shock wave
have been performed with an emphasis on the acoustic wave generation behind
the shock wave (e.g. Ribner 1953, 1954, 1987; Lee, Lele & Moin 1997). Through
the linear analyses, it is found that turbulent fluctuations are amplified across the
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shock wave, and significant acoustic noise is also generated because of the interaction
of vortical turbulence with the shock wave. Jacquin, Cambon & Blin (1993) have
applied homogeneous rapid distortion theory (RDT) to deal with shock/turbulence
interaction and found that RDT is inappropriate for the analysis of shock/turbulence
interaction, since the shock front curvature and unsteadiness cannot be accounted for
in the analysis. Lele (1992) has formulated the exact jump relations across a shock
in turbulent mean flow and has analytically indicated that the mean propagation
speed of a shock wave that brings about a specified compression is slightly faster
than its classical value. The idealized shock waves/turbulence interactions have been
reviewed by Andreopoulos et al. (2000). Those investigations indicate that turbulence
amplification through shock wave interaction is a direct effect of the Rankine–
Hugoniot relations.

The turbulent boundary layer separation induced by the sustained moving shock
wave and the evolution of coherent vortical structures in the trailing-edge region
play an important role in overall flow behaviours. Characterizing the kinematics
of coherent structures and dynamical processes in flow evolution is still one of
the fundamental challenges in fluid mechanics. Usually, dynamical evolutions are
analysed by the proper orthogonal decomposition (POD; Lumley 1967; Berkooz,
Holmes & Lumley 1993) and stochastic estimation (Adrian & Moin 1988) methods,
and coherent vortical structures are often discussed relative to the importance of
vortices (e.g. Robinson 1991; Jeong & Hussain 1995; Chakraborty, Balachandar &
Adrian 2005). On the other hand, the Lamb vector acts as a vortex force, and its
character plays an important role in establishing the nature of the flow (Truesdell
1954; Wu, Ma & Zhou 2006). The Lamb vector divergence and curl are associated
with the momentum and vorticity transport in flow field (Wu et al. 2006) and may
construct a rigorous methodology for the study of what are generically referred to
as coherent structures or motions (Hamman, Klewicki & Kirby 2008). Recently, the
mathematical properties and physical interpretations of the Lamb vector divergence
that substantiate its kinematical and dynamical significance have been analysed by
Hamman et al. (2008).

As the flow considered here has a high Reynolds number Re ∼ O(107) (McDevitt
et al. 1976; Levy 1978; Marvin et al. 1980), the methodology used is a significant issue
in numerical simulations. Recent advances in the DES have provided a powerful tool
for studying high-Reynolds-number flows and have comprehensively been surveyed by
Spalart (2009). In order to deal with high-Reynolds-number and massively separated
flows, the DES was first proposed by Spalart et al. (1997) and is convincingly more
capable presently than either the RANS simulation or large-eddy simulation (LES;
Spalart 2009 and references therein). Further, as an example, extensive work by means
of the DES and its extensions has been performed in Sagaut’s group (e.g. Mary &
Sagaut 2002; Deck 2005; Sagaut, Deck & Terracol 2006; Simon et al. 2007) and has
confirmed that the DES is a reliable way to study the high-Reynolds-number flows.

The present work investigates the compressible flow past an 18 % thick
circular-arc aerofoil for a free-stream Mach number M∞ = 0.76 and a Reynolds
number Re = 1.1 × 107, corresponding to experiments (McDevitt et al. 1976; Levy
1978; McDevitt 1979; Marvin et al. 1980). The three-dimensional Favre-averaged
compressible Navier–Stokes equations are solved numerically by means of a finite-
volume approach (Lu et al. 2005) combined with shock capture technique (Hill,
Pantano & Pullin 2006). The DES is implemented for turbulence closure. Results
have been validated against the experimental data. The motivation of this work is to
study various fundamental mechanisms dictating the complex flow phenomena.
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This paper is organized as follows. The mathematical formulation and numerical
method are briefly presented in § 2. The computational overview and validation are
described in § 3. Detailed results are then given in § 4 and the concluding remarks in
§ 5.

2. Mathematical formulation and numerical method

2.1. Governing equations and turbulence modelling

To investigate the compressible flow past an aerofoil, the three-dimensional Favre-
averaged compressible Navier–Stokes equations in generalized coordinates are
employed. The equation of state for an ideal gas is used, and the molecular viscosity
is assumed to obey Sutherland’s law. To non-dimensionalize the equations, we use
the free-stream variables including the density ρ∞, temperature T∞, speed of sound
a∞ and chord of the aerofoil c as characteristic scales. A detailed description of the
mathematical formulation can be found in our previous paper (e.g. Lu et al. 2005).

The initial and boundary conditions are presented as follows. The initial condition
is set as the free-stream quantities. The far-field boundary conditions are treated
by local one-dimensional Riemann-invariants. No-slip and adiabatic conditions are
applied on the aerofoil surface. Periodic condition is used in the spanwise direction
of the aerofoil.

The DES is implemented in the present work for turbulence closure (Spalart et al.
1997). The model is derived from the Spalart–Allmaras model (Spalart & Allmaras
1992), which is a one-equation model for the eddy viscosity ν̃ by solving a transport
equation. The reader may refer to the original paper (Spalart & Allmaras 1992) for
details on the constants and the quantities involved.

The model is provided with a destruction term for the eddy viscosity that depends
on the distance to the nearest solid wall d . This term adjusts the eddy viscosity ν̃

to scale with local deformation rate S̃ producing an eddy viscosity given by ν̃ ∼ S̃d2.
Spalart et al. (1997) proposed to replace d to the closest wall with d̃ defined by

d̃ = min(d, CDES �), (2.1)

where � represents a characteristic mesh length and is defined as the largest of the
spacings in all three directions, i.e. � = max(�x, �y, �z), and the constant CDES is
taken as 0.65 from a calibration of the model for isotropic turbulence (Shur et al.
1999). We have followed the detailed analysis of the numerical treatments indicated
by Sagaut et al. (2006) and carefully examined the present simulations.

2.2. Numerical procedure

The governing equations are numerically solved by the finite-volume method. The
temporal integration is performed using an implicit approximate-factorization method
with sub-iterations to ensure the second-order accuracy (Simon et al. 2007). Both the
convective and diffusive terms are discretized with second-order centred schemes, and
a fourth-order low artificial numerical dissipation is employed to prevent numerical
oscillations at high wavenumbers (Lu et al. 2005; Wang et al. 2007). To minimize
numerical contaminations, special attention has been paid to the numerical dissipation,
and the coefficient of the dissipation term was carefully selected as ǫ4 = 0.003, which
is small enough to ensure the physical dissipation. Similar to our previous test (Lu
et al. 2005), the spatial accuracy and the relevant numerical dissipation were assessed
by considering a benchmark problem of decaying isotropic turbulence. We have
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Figure 1. The computational mesh plotted by three-interval nodes in each direction.

identified that the numerical viscosity is smaller than the subgrid-scale viscosity term
provided by the DES.

To capture the discontinuity caused by shock wave, a second-order upwind scheme
with the Roe’s flux-difference splitting is introduced into the inviscid flux. The artificial
dissipation is also turned off in the region in which the upwind scheme works. A
binary sensor function Φi+1/2 at cell face i + 1/2 is used for the detection of shock
waves; Φi+1/2 is determined by the pressure and density curvature criteria proposed
by Hill et al. (2006),
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where αi
p and αi

ρ represent the pressure and density relative curvatures at cell centre,

respectively. When αi+1/2
p >c1 and αi+1/2

ρ > c2, Φi+1/2 is 1; but zero, otherwise. The
three-dimensional version of this detection is used in the simulations. Similar to the
treatment (Hill et al. 2006), the values of c1 and c2 that proved to give the best results
are chosen as 0.01. Based on this detection, the Roe’s second-order upwind flux only
operates at the cells in the vicinity of shock waves.

3. Computational overview and validation

3.1. Computation overview

We consider a compressible flow past an 18 % thick circular-arc aerofoil at zero
incidence with the free-stream Mach number M∞ = 0.76 and the Reynolds number
based on the chord of the aerofoil equal to 1.1 × 107. The selected parameters are
the same as those performed in experiments (e.g. McDevitt et al. 1976; Levy 1978;
Marvin et al. 1980). The relevant experimental data will thus be employed to validate
the present calculation.

The grid generation is an important issue in the DES, since the grid extension is
related to the resolved wavelengths and the eddy viscosity level (Spalart 2001, 2009;
Deck 2005). As plotted in figure 1, the grids are of C type with a far-field boundary
at 40c away from the aerofoil in the (x, z) plane, and grid stretching is employed to
increase the grid resolutions near the surface and in the wake region. As the spanwise
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Grid Nxz Ny �zmin/c �z+ a∞�t/c St

Grid 1 262 × 128 32 5 × 10−6 ∼2 0.005 0.125
0.002 0.139
0.001 0.146

Grid 2 392 × 160 42 3 × 10−6 ∼1 0.005 0.132
0.002 0.145
0.001 0.147

Grid 3 522 × 192 42 2 × 10−6 <1 0.005 0.135
0.002 0.146
0.001 0.148

Grid 4 392 × 160 62 3 × 10−6 ∼1 0.002 0.148
0.001 0.148

Grid 5 522 × 192 62 2 × 10−6 <1 0.002 0.148
0.001 0.148

Grid 6 522 × 192 82 2 × 10−6 <1 0.002 0.148
0.001 0.148

Table 1. Validation of grid resolution and time step.

domain is usually set as at least twice the thickness of the aerofoil (Sagaut et al. 2002;
Deck 2005), the spanwise length is thus chosen as 0.4c and divided uniformly.

To assess the effects of grid resolution and time step on the calculated results,
six typical grids denoted by grids 1–6 and three time steps with main characteristics
are listed in table 1. Detailed comparisons of the calculated results using different
computational conditions will be given in the following subsection. Our a posteriori
verifications show that there are at least 40 nodes in the vorticity thickness over the
surface in the attached boundary layer region. Moreover, following the suggestion of
Spalart (2001), the grid cells are close to cubic in the LES region.

The present code is equipped with a multi-block domain decomposition feature
to facilitate parallel processing in a distributed computing environment (Lu et al.
2005). The present computational domain is divided into 32 sub-domains for parallel
processing. The computed time elapses to about 400c/a∞ to obtain statistically
meaningful turbulence properties in the temporal average operation.

Based on the time-dependent resolved density ρ̄, pressure p̄, temperature T̃ and
velocity ũi , where a tilde denotes the Favre filter, several averaging operations will
be needed. To clearly present the post-process, some symbols used in this paper are
introduced as follows: 〈 〉 means the average in time (after careful elimination of the
transient part of their time-dependent variations) and in the spanwise direction, and
{φ} = 〈ρ̄φ〉/〈ρ̄〉 with a variable φ. Then, their fluctuations are obtained as (Garnier,
Sagaut & Deville 2002) ρ ′ = ρ̄ − 〈ρ̄〉, p′ = p̄ − 〈p̄〉, T ′′ = T̃ − {T̃ } and u′′

i = ũi − {ũi},
respectively.

3.2. Validation

To validate the present simulation, we compare numerical results and experimental
data (McDevitt et al. 1976; McDevitt 1979; Marvin et al. 1980) in terms of the
frequency of shock motion, averaged pressure coefficient, mean velocity and turbulent
shear stress, as well as some quantities related to the shock wave motion, which will
be shown in the following section.
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Figure 2. Distribution of time-averaged pressure coefficient. The lines using grids 1–6
represent computational result, and the symbol represents experimental data (McDevitt et al.
1976). The parameters of grids 1–6 are listed in table 1.

Assessments of the effect of time step are performed on the calculated solutions.
The frequency values (St) of shock wave motion for various runs are exhibited in
table 1. The smaller the time step, the more accurately the frequency value can be
determined. Detailed discussion on the frequency will be given in § 4.1.2. Based on
our careful examinations, the time step 0.001c/a∞ can provide reliable results and
will be used in the present simulation.

Figure 2 shows the profile of average pressure 〈Cp〉 coefficient. The pressure
distribution is somewhat affected by the grid resolution in the separation region,
and it is exhibited that the results with grids 4–6 compare favourably with the
experimental data (McDevitt et al. 1976). Figure 3 shows the transverse distributions
of the averaged streamwise velocity and shear stress at the measurement locations
from x/c = 0.8 to x/c =1.05, where z∗ is the relative transverse coordinate defined as
z∗ = z − zs with zs being the transverse location of the aerofoil surface. Reasonable
agreement is obtained with the experimental measurements of Marvin et al. (1980)
using grids 4–6 and time step �t = 0.001c/a∞. To make the prediction accurate, the
results given below were calculated by the finest grid, grid 6.

Moreover, figure 4 shows the profiles of the ensemble-averaged velocity, turbulent
kinetic energy and shear stress from conditionally sampled data with the averaging
interval of 0.01c/a∞, similar to the treatment used by Marvin et al. (1980). These
results are calculated using grid 6 and �t = 0.001c/a∞. It is seen that the variations
during one cycle compare reasonably with the experimental data (Marvin et al. 1980).

On the other hand, the resolved energy spectrum obtained by grid 6 and
�t = 0.001c/a∞ is shown in figure 5. The resolved scales seem to reach an inertial
sub-range, reasonably close to St−5/3 scaling (Kawai & Fujii 2005). The spatial
spectrum can be approximately obtained using Taylor’s hypothesis which is limited to
homogeneous turbulence with small turbulence intensity (Pope 2000). The illustrated
slope indicates that the present calculation may reliably simulate the energy cascade
behaviour (e.g. Kawai & Fujii 2005; Wang et al. 2007). Based on the grid sensitivity
study and the resolved energy spectrum analysis, it is ensured that grid 6 has an
adequate mesh resolution to simulate essential features of the flow.

Further, the present numerical strategy has already been applied with success to
a wide range of turbulent flows such as the compressible turbulent swirling flows
injected into a co-axial dump chamber (Lu et al. 2005) and compressible flows over
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Figure 3. Transverse distributions of mean streamwise velocity and shear stress obtained
numerically and experimentally, where the lines using grids 1–6 represent computational
results with the same legends as those in figure 2, and the symbol denotes experimental data
(Marvin et al. 1980). Here, z∗ is the relative transverse coordinate defined as z∗ = z − zs with
zs being the transverse location of the aerofoil surface.

a circular cylinder (Xu, Chen & Lu 2009). We have carefully examined the physical
model and numerical approach used in this study and have verified that the calculated
results are reliable. Thus, the present simulation will now be used to obtain a better
insight into the physical mechanisms underlying the flow considered.

4. Results and discussion

4.1. Flow structures and moving shock wave behaviours

4.1.1. Flow structures

The present flow field involves an array of intricate phenomena, e.g. self-sustained
shock wave motion, shock wave and turbulent boundary layer interaction and
boundary layer separation induced by the shock wave (Tijdeman & Seebass 1980; Lee
2001). To assess the existence of coherent structures in the flow field, figure 6 shows
an instantaneous snapshot of flow field depicted by isosurface of the Q criterion
(Jeong & Hussain 1995),

Q = −
1

2
(‖S‖2 − ‖Ω‖2), (4.1)
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Figure 6. Isosurface of the Q criterion (Q =10(U∞/c)2). The surface of shock wave is
exhibited by the isosurface of ‖∇ρ̄‖ = 10(ρ∞/c).

where S and Ω denote the strain and the rotation tensor, respectively. A positive
value of Q presents the regions in which the rotation exceeds the strain. The shock
wave shape is reasonably visualized in figure 6 by the isosurface of density gradient.
It is identified that the deformation of shock wave shape along the spanwise direction
is negligibly small even near the turbulent boundary layer. Moreover, the boundary
layer separation induced by the moving shock wave occurs. The separated free shear
layer rolls up and becomes the three-dimensional complex structures because of the
vortical instability as the shear layer evolves downstream. The streamwise vortical
structures become strengthened in the near wake.

To illustrate the unsteady features of the flow, figure 7 shows the time development
of flow structures using the isocontours of ‖∇ρ̄‖, for clarity, in the mid-span (x,
z) plane. The numerical schlieren-like visualizations agree well with experimental
shadowgraphs showing the unsteady flow field (McDevitt et al. 1976; Marvin et al.
1980). Here, we pay attention on flow evolution over the upper surface. A series of
compression waves develop in the region near the trailing edge and move upstream to
coalesce into a strong shock wave at x/c = 0.83 approximately. This shock wave moves
upstream while increasing its strength and induces the boundary layer separation.
Then, the shock wave weakens again to be weak shock wave or compression
wave around the mid-chord. Further, the compression wave continues its upstream
motion, leaves the aerofoil from the leading edge and propagates upstream into the
oncoming flow. Meanwhile, the compression wave diffraction at the top of shock
wave reasonably occurs. As a symmetrical aerofoil is considered, this phenomenon is
repeated alternately between the upper and lower surfaces.

4.1.2. Shock wave motion

From the preceding description of the shock wave evolution, it is reasonably
identified that the shock wave motion belongs to type C classified by Tijdeman &
Seebass (1980), which is also confirmed by the previous experiments (McDevitt et al.
1976; Levy 1978; McDevitt 1979; Marvin et al. 1980). To determine the frequency
of shock wave motion, figure 8 shows the power spectrum of the time-dependent lift
force exerted on the aerofoil. The primary frequency corresponding to the highest
peak is St = 0.148 approximately, or the reduced frequency, which is usually used in
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(a) (b)

(c) (d)

Figure 7. Numerical schlieren-like visualization by contours of ‖∇ρ̄‖ in the mid-span (x, z)
plane during half-period with the same time increment from (a) to (d ).
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Figure 8. Power spectral density (PSD) of the time-dependent lift coefficient.

this problem (Tijdeman & Seebass 1980; Lee 2001), k = πSt ≈ 0.465, consistent with
the previous experimental data, namely 0.44–0.49 (e.g. McDevitt et al. 1976; Levy
1978; Marvin et al. 1980). Since the frequency is greatly sensitive to the grid resolution
and time step (Rumsey et al. 1996), the agreement between the numerical result and
the previous experimental data also verifies the reliability of the present simulation
as described above.

The location of shock wave motion along the surface is shown in figure 9(a), where
t∗ represents the fractional cyclic time during one period, and t∗ = 0 is taken as the
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Region I denotes attached boundary layer, region II denotes moving shock wave/turbulent
boundary layer interaction; and region III denotes intermittent boundary layer separation. (b)
Mach number ahead of shock wave, where the solid line and the symbol respectively represent
computational result and experimental data (Marvin et al. 1980).

time when the shock wave is at the mid-chord of the aerofoil (McDevitt et al. 1976).
Reasonable agreement is obtained with the experimental measurements (McDevitt
1979). As the shock wave moves upstream as shown in figure 7, the shock wave
weakens and even becomes a compression wave, represented by the dashed line in
figure 9(a). When the compression wave propagates upstream further and leaves the
aerofoil from the leading edge, it is difficult to identify the compression wave position,
which is not seen for x/c < 0.2 in figure 9(a). In addition, figure 9(b) shows the Mach
number ahead of shock wave in a reference of shock-fixed frame. The values of Ms

reach as high as 1.4, compared with the experimental data (Marvin et al. 1980).

4.1.3. Feedback model of shock wave motion

To understand the mechanism associated with the shock wave motion described
above, we further discuss the feedback model for predicting the period of shock wave
motion. A possible mechanism of self-sustained shock oscillation for type A during
transonic buffeting with separated flow was first proposed by Lee (Lee 1990; Lee
et al. 1994). The classification of the type A shock motion by Tijdeman & Seebass
(1980) states that the shock moves almost sinusoidally and exists during the complete
cycle of oscillation even though its strength varies. We will try to extend this feedback
model to the present type C shock wave motion.
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In the type A motion, a shock wave is oscillating on the upper surface of a
supercritical aerofoil (Tijdeman & Seebass 1980). Lee proposed that the formed
pressure waves propagate downstream in the separated flow region over the aerofoil
at speed Vd , and the disturbances generate upstream-moving waves at speed Vu as the
waves reach the trailing edge (Lee 1990; Lee et al. 1994). Further, Lee assumed that
the period of shock oscillation is comparable with the time it takes for a disturbance
to propagate from the shock to the trailing edge plus the duration for an upstream-
propagating wave to reach the shock from the trailing edge in the outside region of
the separated flow.

After careful examination of the flow evolution and comparison with previous
results (e.g. Lee 1990; Xiao, Tsai & Liu 2006), we notice that there exist two typical
differences between the present type C and the type A shock wave motion. As a
symmetrical aerofoil is considered, unlike only an oscillating shock wave on the
upper surface of a supercritical aerofoil (Lee 1990; Xiao et al. 2006), the upstream-
propagating shock waves occur alternately between the upper and lower surfaces. The
period of shock wave motion in this problem is referred to as the complete process
of both the shock waves propagating upstream and leaving the aerofoil, as shown in
figure 7. Thus, the period is twice that for the shock wave motion on one side surface.
On the other hand, the feedback model proposed by Lee (Lee 1990; Lee et al. 1994)
assumes that the flow behind the shock wave is fully separated and that the pressure
waves induced by the shock wave propagate downstream in the separated flow region
over the aerofoil. As shown in figures 7(c) and 7(d ), the upstream-propagating shock
wave does induce the boundary layer separation on the upper surface, while the
flow remains attached to the lower surface, which results in the non-existence of
downstream-propagating waves. In a mean sense, we thus assume that the mean
speed over a complete period is taken as a half-speed of downstream-propagating
pressure waves in the separated flow region over the aerofoil.

Based on the above analysis, we may reasonably give a feedback model for the
type C shock wave motion through the idea of Lee (1990) to describe one complete
period of shock wave motion as

T = 2[(c − x̄s)/Vd + (c − x̄s)/Vu], (4.2)

where x̄s denotes the mean location of the shock wave on the surface; Vu is the speed
of upstream-propagating disturbances in the outside region of boundary layer; and
Vd is the mean speed of downstream-propagating pressure waves.

The mean location of shock wave can be obtained more precisely with a statistical
analysis in terms of the skewness factor of pressure fluctuation (Deck 2005), which is
defined as Sp = 〈p′3〉/〈p′2〉3/2. The distribution of the skewness is shown in figure 10.
The profile exhibits the positive and negative peaks with their locations x/c = 0.47
and x/c = 0.83, respectively. From the analysis (Deck 2005) and the flow evolution
shown in figure 7, the shock wave motion along the aerofoil is characterized in the
region of approximately 0.47 <x/c < 0.83. Similar to the treatment for determining
the mean location x̄s (Girard 1999; Deck 2005), one can obtain that x̄s corresponds to
the abscissa between the positive and negative peaks where Sp = 0 or approximately
x̄s/c = 0.66.

The speed of upstream-propagating disturbances is described as (Tijdeman 1977;
Lee 1990)

Vu = (1 − Mloc)aloc, Mloc = R[Ms − M∞] + M∞, (4.3)
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where aloc is the local speed of sound; Ms is the Mach number at the surface; and
R is a relaxation factor and was experimentally determined as 0.7 (Tijdeman 1977).
This equation can be reasonably simplified as (Deck 2005)

Vu = (1 − M∞)aloc. (4.4)

Using the data predicted here, we can obtain that Vu = 0.24U∞ approximately. The
speed of downstream-propagating pressure waves can be obtained from the cross-
correlation analysis on pressure signals in the separated boundary layer and is
calculated as 0.34U∞, which will be determined in detail in § 4.3.1. Following the
analysis described above, we can reasonably have Vd = 0.17U∞.

Finally, we apply (4.2) to obtain T = 6.83c/U∞ approximately or the non-
dimensional frequency of the feedback loop St ≈ 0.146, which agrees well with the
frequency value 0.148 issued from the spectral analysis shown in figure 8. It means that
the feedback model (4.2) may reliably predict the shock motion. Moreover, Crouch
et al. (2007, 2009) advocated that transonic buffet results from the global instability,
where the unsteadiness is characterized by phase-locked oscillations of the shock and
the separated shear layer. In this situation, both the upper and lower surfaces of the
aerofoil are responsible for the instability, consistent with the present model.

In addition, the expended feedback model (4.2) with reliable prediction also supports
Lee’s analysis (Lee 1990; Lee et al. 1994) and is helpful in understanding the physical
mechanisms on the self-sustained shock wave motion. As shown in figure 7, the
upstream-propagating pressure waves are generated by the impingement of large-
scale structures on the surface of the aerofoil, interact with the shock wave and
impart energy to maintain its motion on the surface. Moreover, this kind of feedback
(Ho & Nosseir 1981) is typical of flows with self-sustained motions, such as flows
over cavities (e.g. Heller & Delfs 1996; Larchevêque et al. 2003).

4.2. Turbulent boundary layer characteristics

4.2.1. Division of flow regions

The moving shock wave over the aerofoil surface exhibits substantial unsteadiness
and deformation as a result of the interaction, whereas the turbulent quantities change
considerably (Andreopoulos et al. 2000). Thus, another objective of this study is to
investigate turbulent boundary layer characteristics.

In the shock wave/turbulent boundary layer interactions, e.g. compression corner
interactions or incident shock interactions, the location of shock wave varies in a
relatively small region, while the shock wave motion considered here occurs in a
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Figure 11. Distributions of mean streamwise velocity at various streamwise locations.

wide region along the surface. Based on our careful examination of the results, the
shock wave motion is characterized in the region of approximately 0.47 <x/c < 0.83.
Moreover, as shown in figures 7(c) and 7(d ), the upstream-propagating shock wave
induces the boundary layer separation on the upper surface, while the flow remains
attachment on the lower surface. This phenomenon is repeated alternately between
the upper and lower surfaces. Thus, the flow over the aerofoil near the trailing edge
is featured as intermittent boundary layer separation.

To clearly present the physical mechanisms involved in this flow, we may classify
three typical flow regions, namely attached boundary layer (expressed as region I),
moving shock wave/turbulent boundary layer interaction (region II) and intermittent
boundary layer separation (region III). The regions along the aerofoil surface
are shown schematically in figure 9(a). The attached and intermittently separated
boundary layer regions lie from the leading edge to x/c = 0.47 and from x/c = 0.83
to the trailing edge, respectively.

In this section, we will discuss and compare the turbulent boundary layer
characteristics in those three regions in terms of mean velocity, turbulence intensities,
turbulent kinetic energy, pressure power spectra and the relevant turbulent quantities.
Moreover, some topics related to compressibility effects on turbulence (Lele 1994),
such as the turbulence Mach number, pressure dilatation correlation and dilatational
dissipation, are also analysed.

4.2.2. Mean velocity profiles

The comparison of the mean streamwise velocity predicted numerically with
experimental data (Marvin et al. 1980) has been shown in figure 3, and reasonable
agreement is found. To deal with the mean velocity profiles in different regions,
figure 11 shows the transverse distributions of the mean streamwise velocity. In
region I, i.e. x/c = 0.2 and 0.4, we identify that the van-Driest-transformed mean
velocity profiles, obtained as defined by Bradshaw (1977) and scaled by the wall-
friction velocity, agree well with the linear and logarithmic law of the wall. In region
II, i.e. x/c = 0.6 and 0.7, owing to the shock wave/boundary layer interaction, the
velocity profiles exhibit a linear behaviour approximately in the viscous sublayer
and no longer obey the logarithmic law. As the boundary layer separation occurs
intermittently in region III, the mean streamwise velocity exhibits a small value in
the near region of the surface. The flow characteristics associated with the boundary
layer separation will be discussed in detail in § 4.3.
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4.2.3. Turbulence intensities

Figure 12 shows the transverse distributions of the normalized turbulence intensity
components. The streamwise component shown in figure 12(a) dominates the
turbulence intensity as expected, compared with the other two components in figures
12(b) and 12(c). This character is consistent with measurements (Marvin et al. 1980).
Here, we mainly pay attention to the behaviours in the three flow regimes.

As shown in figures 12(a)–12(c), the turbulence intensities in region II, such as
at x/c = 0.6 and 0.7, are significantly enhanced compared with those at x/c = 0.2
and 0.4, consistent with the experimental measurements (Marvin et al. 1980) and
theoretical predictions by LIA (Ribner 1953, 1954, 1987; Lee et al. 1997). Here, we
introduce the turbulence Mach number defined as Mt = {u′′

i u
′′
i }1/2/aloc (Lele 1992) and

have identified that Mt reaches as high as approximately 0.5 in region II. Thus, the
effect of the moving shock wave on turbulence intensities must be considered. As
the turbulent normal stress is increased across a shock, the propagation speed of the
shock wave becomes slightly faster to bring about a specified compression based on
the shock-jump relations in a turbulent flow (Lele 1992). This specified compression
is an additional mechanism that enhances the turbulence intensities in region II,
compared with the compression corner shock interactions (Loginov et al. 2006) and
incident shock interactions (Pirozzoli & Grasso 2006).

We further discuss the turbulence intensities in region III, as shown in figures 12(a)–
12(c) at x/c = 0.9 and 0.95. Compared with region II, the streamwise turbulence
intensity component near the surface reduces as shown in figure 12(a), and the
spanwise component is somewhat enhanced as shown in figure 12(b). This behaviour
is associated with the development of vortical structures over the surface. As shown in
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figure 6, the separated shear layer induced by shock wave rolls up. Then, the spanwise
vortical structures become unstable and the streamwise vortices strengthen gradually,
resulting in the enhancement of the spanwise velocity fluctuation.

The distributions of the normalized pressure and density fluctuations along the
surface are also shown in figure 12(d ). The fluctuations are significantly enhanced
in region II, consistent with the turbulence intensities. The profiles exhibit a sharp
change at approximately x/c =0.83, corresponding to the initial shock wave location
coalesced by a series of upstream-propagating compression waves from the trailing-
edge region shown in figure 7.

4.2.4. Turbulent kinetic energy

The distributions of the specific turbulent kinetic energy, i.e. k = {u′′
i u

′′
i }/2, are

shown in figure 13. As noticed in the incident shock wave/boundary layer interaction
(Pirozzoli & Grasso 2006), a spatially evolving turbulent compressible boundary
layer exhibits similarities with the incompressible case. The turbulent kinetic energy
for incompressible boundary layers obeys the near-wall asymptotic behaviour (Patel,
Rodi & Scheuerer 1985; Speziale, Abid & Anderson 1992),

k ≃ Akz
∗2, (4.5)

where Ak is a constant. We thus examine the near-wall asymptotic behaviour shown
in figure 13 and find that the profiles satisfy (4.5) well in the viscous sublayer. The
turbulent flow in the three regions exhibits similar asymptotic behaviour with different
values of the constant Ak; a large value of Ak occurs in region II. Downstream of
the interaction region, turbulence satisfies the asymptotic consistency with different
values of the constant Ak and experiences a relaxation towards an equilibrium state.

Figure 14 shows the isocontour lines of the specific turbulent kinetic energy and
turbulent shear stress τxz = −{u′′w′′}. The specific turbulent kinetic energy has its
maximum value around 0.25 inside the boundary layer in region II, which is associated
with the mean velocity gradient, as discussed below, based on the budget terms in the
turbulent kinetic energy transport equation. Correspondingly, the specific turbulent
shear stress also reaches its maximum value around 0.1. To examine the shear effect
and compressible effect on the turbulent characteristics, detailed discussion on the
turbulent dissipation rate will be given below.
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We further discuss the structure parameter, defined as the ratio of the shear stress
to the trace of the stress tensor τxz/2k, which may be used for Reynolds stress
closure (Herrin & Dutton 1997). Based on our careful examination of the structure
parameters, we can understand that the turbulent shear and normal stresses undergo
a different amplification mechanism over the aerofoil. In region II, the structure
parameter varies approximately from 0.04 at x/c = 0.47 to 0.2 at x/c = 0.83 inside the
boundary layer, while it exhibits a maximum value of about 0.4 outside the boundary
layer, which may mainly be associated with the shock wave motion. In region III and
in the near wake, the structure parameter along the shear layer changes from 0.2 at
approximately x/c = 0.83 to 0.15 in the near wake, which agrees well with the values
of structure parameter for the compressible shear layers (Harsha & Lee 1970; Simon
et al. 2007).

4.2.5. Budget terms in the turbulent kinetic energy transport equation

The budget terms in the turbulent kinetic energy transport equation, which
have been normalized by the free-stream velocity and given in detail by Shyy &
Krishnamurty (1997), are discussed. Figure 15(a) shows the transverse distributions
of the turbulent kinetic energy production term P = −〈ρ̄u′′

i u
′′
j 〉{ũi},j . The production
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Figure 15. Transverse distributions of turbulent kinetic energy budget terms at various
streamwise locations: (a) turbulent kinetic energy production, (b) turbulent dissipation rate,
(c) pressure dilatation, (d ) turbulent viscous diffusion, (e) turbulent diffusion because of triple
velocity correlation and (f ) turbulent diffusion because of the pressure-velocity correlation.

is very small in region I at for example x/c = 0.2 and 0.4, corresponding to the weak
turbulent kinetic energy as shown in figure 13. In region II, as the moving shock wave,
the production significantly strengthens because of mean velocity gradient. Then, the
production in region III gradually decreases, and its peak location corresponds to the
strongest shear layer, as seen from the profiles at x/c = 0.9 and 0.95.

The profiles of the turbulent dissipation term ǫ = 〈τ ′′
iju

′′
i,j 〉 are shown in figure 15(b).

The strong dissipation occurs in region II. Similar to the analysis for the near-wall
asymptotic behaviour (4.5), turbulent dissipation also obeys the near-wall relation
(Patel et al. 1985; Speziale et al. 1992), i.e. ǫ ≃ 2Ak + Bǫz

∗ with Bǫ being a constant
and nearly zero (Pirozzoli & Grasso 2006). It is observed that the profiles follow this
relation well in the viscous sublayer shown in figure 15(b).

Figure 15(c) shows the pressure-dilatation correlation term T = 〈p′u′′
j,j 〉, which is

the net rate of work done by the pressure fluctuations because of the simultaneous
fluctuations in dilatation (Sarkar 1992; Lele 1994). This correlation is weak in regions
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Figure 16. Distributions of the turbulent dissipation rate decomposition: (a) dilatational
part ǫd and (b) solenoidal part ǫs .

I and III, while its distributions around −0.15 appear at x/c = 0.6 and 0.7, which
are reasonably associated with the shock wave motion and result in turbulence decay
because of the compressibility effect.

The turbulent diffusion contains three parts, including the diffusion because of
viscous effect D1 = 〈τ ′′

iju
′′
i 〉,j , the triple velocity correlation D2 = −〈ρ̄u′′

i u
′′
i u

′′
j/2〉,j and

the pressure-velocity correlation D3 = −〈p′u′′
j 〉,j , respectively. Their distributions are

shown in figures 15(d )–15(f ). The diffusion because of viscous effect plays a dominant
role in the viscous sublayer as expected, especially in region II at x/c =0.6 and 0.7
as shown in figure 15(d ). The turbulent flow undergoes a decay process because of
the other two diffusion terms in figures 15(e) and 15(f ). In region III, the turbulent
diffusion estimated by the sum of the three parts is mainly responsible for slow decay
of turbulence.

We further examine the effect of moving shock wave on the turbulent dissipation
rate ǫ, which can be separated into a solenoidal part ǫs and a dilatational part ǫd

(Zeman 1990; Sarkar et al. 1991; Lele 1994),

ǫ = ǫs + ǫd = 〈τ ′′
iju

′′
i,j 〉

=

〈

μ̃

Re
ω′′

i ω
′′
i + 2

μ̃

Re

(

u′′
i,ju

′′
j,i −

(

u′′
i,i

)2)
〉

+
4

3

〈

μ̃

Re

(

u′′
i,i

)2
〉

, (4.6)

where ω′′
i denotes the fluctuating vorticity vector. The isocontour lines of both the

parts are shown in figure 16. The dilatational part ǫd is a pure compressibility effect
and obviously occurs in region II in figure 16(a), especially around the region in
which a series of compression waves coalesce to form a strong shock wave. The
solenoidal part ǫs is largely independent of the compressibility (Lele 1994) and exists
in the near-wall region and in the wake as shown in figure 16(b). The dilatational
dissipation is enhanced by the moving shock wave at the current Mach number and
flow regime, but it remains smaller compared with the total turbulent dissipation rate,
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Figure 17. Profiles of pressure PSD at various probes: (a) probe 1, (b) probe 2,
(c) probe 6 and (d ) locations of the probes.

consistent with the results of the confined three-dimensional turbulent mixing layer
with shocks (Vreman, Kuerten & Geurts 1995).

4.2.6. Pressure power spectral analysis in turbulent boundary layer

The pressure power spectral analysis in a turbulent boundary layer is of help
in understanding the structure of turbulence (McGrath & Simpson 1987; Simpson,
Ghodbane & McGrath 1987; Na & Moin 1998). In addition to the influence of
moving shock wave on turbulent boundary layer, the surface curvature related to the
pressure gradient is discussed. Figures 17(a)–17(c) show the profiles of the pressure
power spectral density (PSD) at three typical probes 1, 2 and 6 marked in figure
17(d ), corresponding to regions I, II and III. The profiles of PSD contain a series of
peaks including the highest one at St = 0.148, associated with the frequency of shock
wave motion shown in figure 8, and its harmonics.

The flow in region I is dominated by attached flow with favourable pressure gradient
(FPG). It is seen from the profile of PSD in figure 17(a) that a nearly flat spectrum
with St0.4 scaling in lower-frequency regime occurs because of the outer-region velocity
and turbulence structure (Panton & Linebarger 1974), while an intermediate frequency
range with St−1 appears due to the contribution of eddies in the logarithmic region
to the wall pressure (Blake 1986). The spectrum collapses at St = 3 approximately
and varies like St−5.5 at higher frequencies caused by the ‘active’ inner-layer motion
(Bradshaw 1967), which is consistent with the measurement performed by McGrath &
Simpson (1987) for incompressible attached turbulent boundary layer with FPG.

In region II, the adverse pressure gradient (APG) is strengthened by the upstream-
propagating shock and compressible waves from the trailing-edge region. The profile
shown in figure 17(b) illustrates a flat range with St0.4 scaling in the lower-frequency
range, has a shorter intermediate region and decays with St−3 at higher frequencies,
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in agreement with the findings in the strong-APG region of turbulent boundary layer
(Simpson et al. 1987; Na & Moin 1998).

For the separated turbulent boundary layer, Simpson et al. (1987) argued that the
pressure spectrum varies as St1 to St1.4 at lower frequencies and decays with St−3

scaling at higher frequencies. Similarly, as shown in figure 17(c), the spectrum has St1

scaling in the low-frequency range and varies approximately like St−3 in the higher-
frequency range. It should be mentioned that the scaling law at higher frequencies in
separated turbulent boundary layer is partly affected by the numerical issue (Na &
Moin 1998), and the spectrum normalized by the inner variables may give better
collapse (Simpson et al. 1987; Na & Moin 1998).

4.3. Coherent structures and dynamical processes

4.3.1. Kinematics of the coherent vortical structures

The coherent vortical structures educed using the isosurface of the Q criterion
(4.1) are shown in figure 6. To clearly exhibit the evolution of the coherent vortical
structures, the data are reduced by the spanwise average. Figure 18 shows the
isocontour lines of 〈Q〉s , where 〈 〉s denotes the spanwise average. The coherent vortical
structures marked by a sequence of Si (i =1–6) are exhibited. When the structures
evolve downstream, their sizes become larger because of the viscous diffusion effect,
and the coalescence of the structures also occurs, such as that of S1 and S2 in
figure 18(b).

The convection speed of the coherent vortical structures is furthermore studied. To
identify as rigorously as possible the location of the structures, an approach proposed
by Lyn et al. (1995) is used, and the location of a structure is determined as

(xs)i =

∫ ∫

Ω
xi(x)Qc(x)dΩ

∫ ∫

Ω
Qc(x)dΩ

, (4.7)

where Ω is a local integral region containing the vortical structure, as an example
for S1 shown schematically in figure 18(a), and Qc = 〈Q〉s × H(〈Q〉s − Cr ) with H
being the Heaviside distribution. The cutoff value Cr means a threshold of 〈Q〉s

(Larchevêque et al. 2003) and here is chosen as (U∞/c)2. Then, the trajectories of the
structures Si (i = 1–4) are given in figure 18(c). Based on the time-dependent location
data, the mean convection speed of the coherent vortical structures in the region of
x/c � 1.2 can be obtained as approximately 0.35U∞. For comparison, the convection
speed of the coherent vortical structures is predicted to be 0.2U∞ for impinging shock
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Figure 19. Cross-correlation of the downstream-propagating pressure wave.

wave/turbulent boundary layer interaction (Pirozzoli & Grasso 2006) and 0.57U∞ for
cavity flow (Heller & Delfs 1996).

Further, we deal with the speed of downstream-propagating pressure waves, which
is used in the feedback model of shock wave motion (4.2). Two-point cross-correlation
of the unsteady pressure is used to quantitatively determine the propagation speed
of the pressure fluctuations along a given path. A covariance coefficient Cij for two
pressure signals pi(t) and pj (t) with time delay τ can be defined as

Cij (τ ) =
〈(pi(t) − 〈pi〉t )(pj (t − τ ) − 〈pj 〉t )〉t

〈(pi(t) − 〈pi〉t )2(pj (t) − 〈pj 〉t )2〉t

, (4.8)

where 〈 〉t denotes time average. Within the separation region, the cross-correlation
analysis is conducted for probes 3–6 shown in figure 17(d ), and the results are
exhibited in figure 19. The positive time delays are obtained, indicating that
the pressure disturbances within the separated region behind the shock wave
propagate downstream towards the aerofoil trailing edge. The local propagation
speed of the pressure disturbances can be calculated by dividing the spatial distances
between the neighbouring probes by the time delays between the peaks of the
corresponding cross-correlations (Xiao et al. 2006). Then, the speed is determined as
approximately 0.34U∞, consistent with the convection speed of the coherent vortical
structures, 0.35U∞, given above.

4.3.2. Dynamical processes in flow evolution

To reveal the dynamical processes, the Lamb vector divergence and curl, which are
associated with the momentum and vorticity transport in flow field (Wu et al. 2006;
Hamman et al. 2008), are discussed. To simplify the post-process and clearly present
the flow structures, the Lamb vector divergence and curl are calculated using the
spanwise-averaged velocity and shown in figure 20.

As shown in figures 20(a) and 20(b) for the distributions of the Lamb vector
divergence, two-layer structures with signs opposite of that of the Lamb vector
divergence, corresponding to the separated shear layer induced by shock wave, are
observed on the upper surface. Based on the analysis of the Lamb vector divergence
(Hamman et al. 2008), both the negative and positive values represent vorticity-bearing
motions and straining motions, respectively. As a result, the dynamical processes in
the two layers include that the interaction between the strong strain rate region and
strong vorticity region may exchange the momentum. The Lamb vector divergence
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reasonably captures the temporal evolution of high- and low-momentum fluid flow,
which is closely associated with the mechanisms that drive turbulent shear layer
evolution separated from the aerofoil surface.

The distributions of the Lamb vector divergence apparently exhibit large magnitude
in turbulent shear layer region and relatively small magnitude in shock wave region
in figures 20(a) and 20(b). Moreover, the Lamb vector divergence appears as an
acoustic source term in Lighthill’s wave equation (Lighthill 1952; Howe 1975). Thus,
the acoustic character is mainly handled by turbulent shear layer evolution near
the trailing edge of the aerofoil, consistent with the previous flow-noise prediction
on turbulent boundary layers (Wang & Moin 2000; Wang et al. 2006). Based on
the theoretical prediction of LIA on the acoustic wave generation behind the shock
wave (Ribner 1953, 1954), the moving shock wave strengthens turbulent shear layers
and then affects the acoustic character from the distributions of the Lamb vector
divergence in figures 20(a) and 20(b).

The distributions of the Lamb vector curl are correspondingly shown in figures
20(c) and 20(d ). Three-layer structures along curving shock wave are illustrated in the
shock wave region, while the shock wave structure is hardly identified by the Lamb
vector divergence as shown in figures 20(a) and 20(b). On the upper surface, the
bead-like structures with negative values of the Lamb vector curl along the separated
shear layer in figure 20(c) correspond reasonably with the coherent vortical structures
in figure 18(a). The Lamb vector curl is directly related to the vorticity transport (Wu
et al. 2006). Based on the analysis of the terms in the vorticity transport equation
(not shown here), we have identified that the captured three-layer structures along the
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curving shock wave are mainly associated with the convection process with additional
contribution of the dilatation effect to the mid-layer.

4.3.3. Proper orthogonal decomposition analysis of the pressure field

The pressure field can be quantitatively analysed using the POD method to extract
energetic coherent structures from the simulation data. For a given pressure field
p(x, t), the POD analysis can determine a set of orthogonal functions φj (x), j =
1, 2, . . . , so that projection of p on to the first n functions,

p̂(x, t) = p̄(x, t) +

n
∑

j=1

aj (t)φj (x), (4.9)

has the smallest error, defined as 〈‖p − p̂‖2〉t , where 〈 〉t and ‖ ·‖ denote the time
average and a norm in the L2 space, respectively. Here, aj (t) represents the temporal
variation of the j th mode. A more complete discussion of this subject can be found
in Berkooz et al. (1993).

The analysis has been conducted using Nt = 500 snapshots of the spanwise-averaged
pressure fields spanning a time period of 102.39c/U∞, and the temporal resolution is
0.21c/U∞, corresponding to a cutoff Strouhal number about 2.44. The energy of the
j th mode, Ej , is defined as

Ej = 〈‖aj (t)φj (x)‖2〉t . (4.10)

The normalized energy of the mth mode is then defined as Em/
∑Nt

j = 1 Ej , and the

energy sum from mode 1 through to mode m is solved as
∑m

j =1 Ej/
∑Nt

j =1 Ej .
Using the time-varying coefficient aj (t) in (4.9), one can obtain the frequency

spectrum of the j th mode and the phase difference from the adjacent modes (Wang,
Hsieh & Yang 2005). The shape distributions and corresponding frequency spectra
of the first six modes are shown in figure 21.

The first two modes account for more than 81 % of the total energy of the
fluctuating pressure fields and exhibit asymmetric shapes in figure 21(a). The dominant
frequency of the first two modes is St1,2 = 0.148, shown in their spectra as expected,
and the phase difference between them is π/2. These two modes are associated with
the moving shock waves and their induced separated shear layers, consistent with the
fact that the flow structures are dominated by the alternately moving shock waves
along the upper and lower sides of the aerofoil (Bourguet, Braza & Dervieux 2007).

The shapes of the third and fourth modes appear symmetric in figure 21(b). These
two modes occupy about 10 % of the total energy with π/2 phase difference, and the
dominant frequency is St3,4 = 0.296 with its harmonic frequency 0.592 exhibited in
the spectrum. The shapes in the wake are similar to the ones of the flow structures
behind a circular cylinder (Deane et al. 1991). It is reasonably identified that these
modes may be related to the wake flow behind the aerofoil. Further, it is examined
that both the fifth and the sixth mode only contain about 3 % of the total energy
with the shapes shown in figure 21(c). Spectral peaks occur in linear combinations of
the frequencies in the former modes, i.e. St1,2 + St3,4 = 0.444 and St1,2 + 2St3,4 = 0.740,
because of the interaction of the former modes.

Based on the POD analysis, we can reasonably identify that the first two modes
play a dominant role in the evolution of pressure field and associate with the moving
shock waves and the separated shear layers in the trailing-edge region, consistent with
the distributions of the Lamb vector divergence in figures 20(a) and 20(b). The results
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obtained are of help in understanding the physical mechanisms of the flow-generated
sound involved in this flow.

5. Concluding remarks

Numerical investigation on the compressible flow past an aerofoil was carried
out by means of a DES technique. Various fundamental mechanisms dictating the
complex flow behaviours, including moving shock wave evolution, turbulent boundary
layer characteristics and coherent structures and dynamical processes, were examined
systematically and are summarized briefly as follows.

Self-sustained shock wave motions repeated alternately along the upper and lower
surfaces of the aerofoil are reasonably identified, which belong to type C as classified
by Tijdeman & Seebass (1980) and agree with the previous experimental findings
(McDevitt et al. 1976; Levy 1978; McDevitt 1979; Marvin et al. 1980). In particular,
based on the feedback mechanism of self-sustained shock oscillation proposed by
Lee (1990), a feedback model is developed to extendedly describe the present
type C shock motion, and the frequency of the feedback loop predicted by this



Numerical investigation of the compressible flow past an aerofoil 123

model agrees well with those obtained by the previous experiments and the present
calculation.

As the substantial unsteadiness of moving shock wave on the aerofoil, we may
classify three typical flow regimes, namely attached boundary layer, moving shock
wave/turbulent boundary layer interaction and intermittent boundary layer separation
region. Turbulent boundary layer characteristics in terms of mean velocity, turbulence
intensities, turbulent kinetic energy, pressure power spectra and the relevant turbulent
quantities have been analysed in detail in the three flow regions. The turbulence
intensities are significantly enhanced with a strengthened turbulent kinetic energy
production induced by the moving shock wave. The pressure-dilatation correlation
term related to the compressibility effect is relatively important in the shock
wave/boundary layer interaction region and reasonably makes turbulence decay.
Moreover, as the turbulent dissipation rate can be separated into solenoidal and
dilatational parts, it is identified that the dilatational dissipation is enhanced by the
moving shock wave but remains smaller, and the solenoidal dissipation exists mainly
in the near-wall region and in the wake. In addition, the pressure power spectral
analysis exhibits that there exist different spectral scalings with the frequency in the
three flow regions.

The kinematics of the coherent vortical structures are analysed using the Q criterion
and two-point cross-correlation approach. The speed of downstream-propagating
pressure waves in the separated boundary layer is obtained and is found to be
consistent with the convection speed of the coherent vortical structures. Moreover,
the dynamical processes in flow evolution are discussed based on the instantaneous
Lamb vector divergence and curl. The Lamb vector divergence reasonably captures the
temporal evolution of high- and low-momentum fluid flow with two-layer structures
in the separated shear layer, closely related to the mechanisms that drive turbulent
shear layer evolution separated from the aerofoil surface. The Lamb vector curl
clearly identifies three-layer structures along the curving shock wave, which are
mainly associated with the convection process with additional contribution of the
dilatation effect to the mid-layer. Further, the POD analysis of the pressure field
is also performed to extract energetic coherent structures. The dominated modes
are associated with the moving shock waves and the separated shear layers in the
trailing-edge region, consistent with the distribution of the Lamb vector divergence
which appears as an acoustic source term in Lighthill’s wave equation.

This work was supported by the National Natural Science Foundation of China
(grant nos 90405007 and 10832010) and the Innovative Foundation of the Chinese
Academy of Sciences (grant nos KJCX2-YW-L05 and CXJJ-237).
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