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This paper studies the free vibration characteristics of rectangular plates with partially clamped edges around 

the corners using the finite element method. ANSYS Parametric Design Language (APDL) was utilized to 

produce the finite element (FE) models and to run the analysis. The FE models were used to obtain the plate first 

natural frequency and mode shape. A comprehensive investigation of the effect of the plate geometric parameters 

and different boundary condition properties on the natural frequency and mode shapes is presented. The results 

showed that the vibration characteristics of the structure are greatly dependent on the plate size and the constraint 

properties. 
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1. Introduction 

 
 Rectangular elastic plates [1, 2] are widely used in engineering applications, e.g., printed circuit 

boards and solar collecting panels. The exact solutions of free vibration of elastic plates are possible only for 

few cases, i.e., for plate structures with well-defined boundary conditions. However, real-life vibration 

problems may pose some difficulties in satisfying discontinuous boundary conditions, e.g. plate with 

partially clamped edges. In these cases, only approximate solutions, e.g. Rayleigh methods, are available [3]. 

Gorman et al. [4-10] used his superposition method (or Gorman’s method) and experimental techniques to 

discuss the free vibration of several geometric and materials configurations of rectangular plates with 

discontinuous boundary conditions, i.e. plates with point supports and with partially constrained edges. 

Gajendar [11] studied the bending of squared plates with two opposite simply-supported edges and two 

partially fixed edges using the superposition method proposed by Kurata and Hatano [12]. Abrahams et al. 

[13, 14] discussed the static and dynamic deflection of a thin elastic strip (or infinite) plates with two 

partially clamped edges using the matrix Wiener-Hopf equation. Norita [15] employed a series-type solution 

to investigate the free vibration of rectangular plates with various shapes and boundary conditions, such as 

plates with partially-clamped edges. Wei et al. [16] explored the natural frequencies of partially-supported 
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plates using the discrete singular convolution method. Zhou et al. [17, 18] analyzed the natural frequency of 

moderately thick rectangular plates using the Chebyshev polynomial as the admissible function in the Ritz 

method. Recently, Gharaibeh et al. [19, 20] used a combination between series solutions and the Ritz method 

to solve for the first natural frequency and mode shape of a squared elastic plate. 

 In the open literature, there is a lack of quantitative analysis concerning the effect of plate sizes and 

boundary condition properties on the plate with partially clamped edges natural frequencies as well as mode 

shapes. In addition, there is barely any information on the bending behavior of the vibrating plate. Therefore, 

the current work aims to thoroughly investigate the free vibration characteristics, i.e., natural frequencies and 

mode shapes of a thin elastic rectangular isotropic plate with partially clamped edges around the corners 

using the finite element method. In this paper, we first start by introducing the partially fixed plate problem 

and the resultant boundary conditions properties. Subsequently, the finite element modeling details are 

presented. Finally, a comprehensive discussion about the effect of plate geometric parameters and the 

constraint properties on the plate free vibration, i.e., first natural frequency and mode shape, is presented in 

detail. The terms a “partially fixed” and a “partially clamped” plate will be used interchangeably throughout 

the text. 

 

2. Description of the problem 
 

 The problem of a rectangular thin elastic plate with partially clamped edges around the corners is 

presented in Fig.1. The elastic plate width is a , length is b  and the thickness is h . The plate material system 

is isotropic with an elastic modulus  E , mass density   and Poisson’s ratio  .  

 

 
 

Fig.1. Two rigid support schemes (A) Case 1: Four supports symmetrically distributed along the plate 

diagonals, (B) Case2: Four supports symmetrically distributed about the plate central axis. 

 

 The elastic plate under consideration is partially fixed around its four corners. As seen in Fig.1, U  is 

the ratio between the edge fixed length in the y -direction to the plate length (b ). In addition, V  is the 

normalized fixed edge length in the x -direction to the plate width ( a ). Both fixed lengths prevent the plate 

translational and rotational motions and the remaining portions of the plate edges are completely free. It is 

very important to emphasize that U  and V  are dimensionless quantities. 
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 In the present paper, an extensive three-dimensional finite element analysis is performed to examine 

the first natural frequency of a partially clamped thin elastic isotropic rectangular plate at different geometric 

parameters and boundary condition properties (U  and V ). The first natural frequency ( 1 ) of the elastic 

plate under consideration, in rad/sec, can be generally expressed as [21] 
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flexural rigidity. A point to remember is that the first natural frequency ( 1f ) in Hz is /1 1f 2  . 

 Therefore, the plate non-dimensional free-vibration eigenvalue can be written as 
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 To keep the present analysis general, the effect of the plate aspect ratio /b a  and the normalized 

fixed length U  as well as V , for both support cases, on the plate non-dimensional free-vibration eigenvalue 
2
1  is investigated. In this way, the effect of the plate isotropic material properties is eliminated. Hence, it 

can be generalized for any other isotropic plate material system. 

 

3. Finite element modeling and verification 
 

3.1. Finite element model 

 

 ANSYS release 17.0 was used to build the FE model of the present plate problem. ANSYS 

Parametric Design Language (APDL) was implemented to write the FE code. This well-written code was 

used to define the plate geometric details, material system and boundary condition properties as well as to 

run the analysis type required in the present paper. Only three-dimensional hexahedron elements, identified 

as SOLID185 in ANSYS, were selected to generate the FE mesh through the engineered choice of the 

isoparametric mapping concept. This FE model is shown in Fig.2. 

 As mentioned earlier, the plate material system is considered to be isotropic. In the present analysis, 

the material properties of aluminum T6061 alloy of   .  E 68 9GPa  and .0 33   were plugged into the FEA 

program. In addition, and to simulate the boundary condition results from the partial clamping of the edges, 

the FE model was constrained at the required clamping locations in all directions, i.e., all degrees of 

freedom, translational and rotational, are set to zero. 

 The FE modal analysis, available in ANSYS, was thoroughly used to calculate the structure first 

natural frequency ( 1f ) and mode shape for different geometric and constraint parameters. Then Eq.(2.2) was 

employed to obtain the plate non-dimensional free-vibration eigenvalue for each configuration. 
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Fig.2.  The FE model mesh showing plate in-plane dimensions (left) and a zoomed view of the plate 

thickness (right). 

 

3.2. Mesh density study 

 

 A mesh density study was conducted to ensure best numerical solution accuracy results with a 

minimum solution time. For this study, the plate configuration of /b a 3 , .U 0 2  and .V 0 2  along with 

the Aluminum T6061 alloy material system (   . , .a 0 01m h 0 002m  ) was considered. Seven mesh levels with 

different mesh sizes were tested as listed in Tab.1. For each mesh level, the first natural frequency was 

computed from FEA and compared with the next finer mesh level value. The results of this study are 

depicted in Fig.3.  

 

Table 1. The mesh size specifications of the seven FE models of the mesh density study. 

 

Model # 
Number of 

elements 

Number of 

nodes 

Width-to-element 

size ratio ( / )a e  
First Natural 

Frequency [Hz] 

1 108 196 6 432.92 

2 432 676 12 265.14 

3 972 1444 18 253.08 

4 1728 2500 24 250.82 

5 2700 3844 30 250.13 

6 3888 5476 36 249.97 

7 5292 7396 42 249.91 
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Fig.3. Mesh density study results. 

 

 Apparently, at mesh level 5 with the plate width-to-element size ratio ( /a e 30 ) the first natural 

frequency of the simply supported plate under consideration reaches a converged value with a relative 

approximate error to the next finer mesh level of less than 1%. Consequently, this mesh level 5 was adopted 

throughout the present analysis. 

 

3.3. FE model verification analysis 

 

 The verification analysis of the present FE model was performed by producing the FE model by 

means of the previously described modeling procedure for specific cases available in the literature and by 

reproducing their results. Here, the FE model non-dimensional eigenvalue  2
1  results of a fully clamped 

plate  .U V 0 5   were compared to those reported in Leissa [1] for different plate aspect ratio values, as 

listed in Tab.2. A shown in this table, the FE results of  2
1  at different plate sizes ( /b a  values) are in an 

excellent agreement with the values of reference [1] with a relative error less than 1%. Therefore, this FE 

model was adopted throughout the current study with confidence. 

 

Table 2.  Comparison between present FE results Ref. [22] non-dimensional eigenvalue data for several plate 

aspect ratios.  

 

 /b a  2
1  – Ref. [22] 2

1  – Present FEA  
FEA-Ref. [22]

%Error %
Ref. [22]

100   

1.0 35.99 35.93 0.17 

1.5 27.00 26.99 0.04 

2.0 24.56 24.67 0.05 

2.5 23.76 23.64 0.51 

3.0 23.19 23.20 0.04 
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4. Results and discussions 
 

 The present FE model was used to generate the first natural frequency and first mode shape data of 

the current problem for several plate aspect ratios and boundary condition properties. 

 Figure 4 shows the non-dimensional eigenvalue  2
1  as a function of the normalized constrained (or 

clamped) length in the y -direction (U ) at different normalized fixed lengths in the x -direction (V ). Each 

subfigure is plotted at certain plate aspect ratio ( /b a ). From this figure, it appears that 2
1  (therefore the 

first natural frequency) exponentially increases as U  increases, generally.  

 

 

Fig.4.  Effect of non-dimensionalized fixed length (U) on the plate eigenvalue  2
1  at different V values for 

(a) /b a 1  (b) /b a 2  (c) /b a 3  (d) /b a 4 . 

 

 This could be easily explained as U  becomes larger, the plate is more constrained, as shown in 

Fig.5, which results in higher overall stiffness of the structure and therefore, higher natural frequency is 

expected. In addition, this figure, shows that V  effect on the eigenvalue  2
1  diminished as the plate turns 

into rectangular shape ( /b a 1 ). This effect will be discussed later in detail. 
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Fig.5.  Plate first mode shape showing (U) effect on the edge bending behavior  /b a 4 , .V 0 2  (a) 

.U 0 1  (b) .U 0 2  (c) .U 0 3  (d)  .U 0 4 . 

 

 

 Figure 6 depicts the effect of normalized length (U ) on the plate eigenvalue  2
1  at several /b a  

ratios and each subplot is at certain V  value. As explained,  2
1  increases as U  increases exponentially 

for /  b a 1  (rectangular plate) and linearly for /b a 1  (squared plate). Additionally, the figure proves 

that the plate size (or aspect ratio) has an inversely proportional effect on the structure first eigenvalue, as 

expected.  
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Fig.6.  Effect of non-dimensionalized fixed length (U) on the plate eigenvalue  2
1  at different 

b

a
 values 

for (a) .V 0 1  (b) .V 0 2  (c) .V 0 3  (d) .V 0 4 . 

 

 

 The effect of the edge-clamping in the x -direction (V ) on the plate natural frequency is presented in 

Fig.7 and Fig.8. Figure 7 demonstrates the effect of V  on eigenvalue  2
1  at several U  values while Fig.8 

shows the same effect at several plate aspect ratios ( /b a ). For a squared plate ( /b a 1 ), as shown in 

Fig.7a and Figs 8 a-d it appears that V  has a considerable effect on the plate eigen frequency. Interestingly, 

this effect starts to diminish as the plate becomes rectangular ( /b a 1 ), as depicted in Figs 7b-d and Figs 

8a-d.  

 To explain this interesting behavior, the first mode shapes of a squared and non-squared plate 

having different clamping properties were plotted in Fig.9 and Fig.10, respectively. For a squared plate 

(Fig.9), it can be clearly seen that as V  increases the bending of the plate edge associated with V  

becomes harder and therefore the plate gets stiffer which further results in higher natural frequency of 

the plate system. However, for the rectangular plate ( /b a 3 ) depicted in Fig.10, the bending behavior 

of the plate edge associated with V  does not change for different fixed lengths ( )V  configurations. 
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Also, for the same plate, the dominant bending happens to be on the plate other pair of edges (associated 

with U ). This discussion explains the plate shortest length clamping effect diminishing for a rectangular 

plate structure. 

 

 

  

 

  

 

Fig.7.  Effect of non-dimensionalized fixed length (V) on the plate eigenvalue  2
1  at different U values for 

(a) /b a 1  (b) /b a 2  (c) /b a 3  (d) /b a 4 . 
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Fig.8.  Effect of non-dimensionalized fixed length (V) on the plate eigenvalue  2
1  at different 

b

a
 values 

for (a) .U 0 1  (b) .U 0 2  (c) .U 0 3  (d) .U 0 4 . 

 

 

 

 

 

 

 

 

 

 

 

 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

5

10

15

20

25

V [-]

 12
 [

-]

1
2 vs. V (U = 0.1)

 

 

b/a = 1.0

b/a = 2.0

b/a = 3.0

b/a = 4.0

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

5

10

15

20

25

30

V [-]
 12

 [
-]

1
2 vs. V (U = 0.2)

 

 

b/a = 1.0

b/a = 2.0

b/a = 3.0

b/a = 4.0

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
5

10

15

20

25

30

35

V [-]

 12
 [

-]

1
2 vs. V (U = 0.3)

 

 

b/a = 1.0

b/a = 2.0

b/a = 3.0

b/a = 4.0

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
14

16

18

20

22

24

26

28

30

32

34

V [-]

 12
 [

-]

1
2 vs. V (U = 0.4)

 

 

b/a = 1.0

b/a = 2.0

b/a = 3.0

b/a = 4.0

(b) (a) 

(c) (d) 



Numerical Investigation o the free vibration of partially … 395 

 

  

  

 

Fig.9.  A squared plate first mode shape showing (V) effect on the edge bending behavior /b a 1 , .U 0 2  

(a) .V 0 1  (b) .V 0 2  (c) .V 0 3  (d)  .V 0 4 . 
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Fig.10.  A non-squared plate first mode shape showing (V) effect on the edge bending behavior  /b a 3 ,

.U 0 2  (a) .V 0 1  (b) .V 0 2  (c) .V 0 3  (d)  .V 0 4 . 

 

 

 For examining the effect of the plate size, i.e., the aspect ratio, on the system first non-dimensional 

eigenvalue, Fig.11 and Fig.12 are plotted. Figure 11 and Fig.12 illustrate the effect of /b a  on eigenvalue 

 2
1  at different V  and U  values, respectively. As seen from both figures, the plate non-dimensional 

eigenvalue  2
1  is inversely proportional to the plate aspect ratio. This trend could be explained as 

follows; when the elastic plate gets larger it becomes more complaint and therefore, this would result in a 

lower  2
1 . This behavior is well-known in the literature for the elastic rectangular plate structure free 

vibration problem.  
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Fig.11.  Effect of the plate aspect ratio ( /b a ) on the plate eigenvalue  2
1  at different V values for (a) 

.U 0 1  (b) .U 0 2  (c) .U 0 3  (d) .U 0 4 . 
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Fig.12.  Effect of the plate aspect ratio ( b / a ) on the plate eigenvalue  2
1  at different U values for (a) 

.V 0 1  (b) .V 0 2  (c) .V 0 3  (d) .V 0 4 . 

 

 It can be stated that the plate non-dimensional eigenvalue  2
1  generally increases as the fixed 

lengths increase and decrease for larger plate sizes. 

 

Conclusions 
 

 The free vibration characteristics of an elastic rectangular plate with partially clamped edges around 

the corners were numerically investigated using the finite element method. ANSYS software package was 

employed to build the FE model of the problem and run all the required analyses for several plate geometries 

as well as constraint properties. The effect of the plate size, i.e., the aspect ratio, and the clamped lengths 

properties on the plate first non-dimensional eigenvalue, hence the first natural frequency, was discussed in 

detail. A thorough explanation of the effect of such parameters on the natural frequency of structure 

throughout the first mode shape data was presented. Finally, the results showed that the clamping properties 

generally affect the natural frequency of the system proportionally, while the plate aspect ratio has an 

inversely proportional effect on this natural frequency. 
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Nomenclature 

 
 , a b   plate dimensions 

 /b a   plate aspect ratio 

 D  plate flexural modulus 
 

3

2

Eh
D

12 1


 
 

 , E   and    plate materials’ modulus of elasticity, density and Poisson’s ratio 

 h  plate thickness 

 , U V   normalized clamped-edge lengths 

 2
1   plate free-vibration eigenvalue /2 2

1 1a h D     

 1   plate first circular natural frequency 
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