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This paper aims to implement an analytical method, known as the Laplace homotopy perturbation transform technique, for the
result of fractional-order Whitham-Broer-Kaup equations. The technique is a mixture of the Laplace transformation and
homotopy perturbation technique. Fractional derivatives with Mittag-Leffler and exponential laws in sense of Caputo are
considered. Moreover, this paper aims to show the Whitham-Broer-Kaup equations with both derivatives to see their difference
in a real-world problem. The efficiency of both operators is confirmed by the outcome of the actual results of the Whith-
am-Broer-Kaup equations. Some problems have been presented to compare the solutions achieved with both fractional-
order derivatives.

1. Introduction

In engineering and applied sciences and technology, frac-
tional partial differential equations (FPDEs) containing
nonlinearities define many phenomena, ranging from
gravitation to dynamics. The nonlinear FPDEs are signifi-
cant tools analyzed to model nonlinear dynamical behaviour
in many areas such as plasma physics, mathematical biology,
fluid dynamics, and solid-state physics. The widely held
dynamical schemes can be denoted by an appropriate set of
FPDEs. Moreover, it is well identified that FPDEs solve

mathematical models, such as Poincare conjecture and
Calabi conjecture models [1-12].

It has been determined that the nonlinear development
of shallow-water waves in fluid mechanics is described by a
coupled system of Whitham-Broer-Kaup (WBK) equations
[13]. Whitham [14], Broer [15], and Kaup [16] proposed the
coupled scheme of the aforementioned equations. The
aforementioned equations define shallow-water wave
propagation with various spreading relations, as shown in
[17]. The governing equations for the respective phenomena
in classic order are provided by
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where (¢, J) and v (¢, F) show the height and horizontal
velocity that diverges from the liquid’s equilibrium position,
respectively, and pg are constant, signified in different
diffusion powers. Over the last few decades, there has been a
lot of research into solutions to such nonlinear PDEs. So,
many researchers have created a variety of mathematical
methods to investigate the analytical results of nonlinear
PDEs. The HPM was used by Biazar and Khah [18] to solve
the coupled schemes of the Burger and Brusselator prob-
lems. Amjad et al. [19] applied the solution of standard order
coupled with fractional-order ~Whitham-Broer-Kaup
equation by Laplace decomposition technique. Noor et al.
[20] used the homotopy perturbation technique to inves-
tigate the results of much classical order of PDEs. Whith-
am-Broer-Kaup equations are used by other scholars who
implemented several numerical techniques, such as residual
power series technique [4], reduced differential transfor-
mation technique [21], Adomian decomposition technique
[7], homotopy perturbation technique [22, 23], Lie sym-
metry analysis [24, 25], exp-function technique [26],
G'/G-expansion technique [27], and homotopy analysis
technique [28].

Fractional calculus (FC) is a new mathematical approach
for describing models of nonlocal behaviour. Fractional
derivatives have mathematically described many other
physical problems in recent years; these representations have
yielded excellent outcomes in the simulation of real-world
issues. Some basic definitions of fractional operators were
given by Riesz, Coimbra, Hadamard, Riemann-Liouville,
Grunwald-Letnikov, Weyl, Caputo, Fabrizio, and Atangana
Baleanu, among others [29-31]. To investigate the solutions
of nonlinear FPDEs, some well-known techniques for
finding actual results have been develop, for example, the
homotopy perturbation transform technique [32, 33], the
invariant subspace technique [34], the Hermite colocation
technique [35], the g-homotopy analysis transform method
[36], the optimal homotopy asymptotic technique [37], the
homotopy analysis Sumudu transform technique [38], the
Adomian decomposition technique [39], the Pade approx-
imation and homotopy-Pade method [39], and the Sumudu
transform series expansion technique [40]. The Laplace
homotopy perturbation transform technique is a mixture of
the homotopy perturbation technique introduced by Liao
[41] and of the Laplace transformation [42].

The rest of the paper is arranged as follows. Section 2
discusses the basic definitions from fractional calculus.
Section 3 is introduced to the fundamental methodology of
HPTM. Sections 4 and 5 are the implementations of the
techniques for the CF and AN operators. The conclusion of
the work is written in Section 6.

2. Fractional Calculus

This section provides some fundamental concepts of frac-
tional calculus.

Definition 1 (see [42]). The Liouville-Caputo operator is
given by

D5u(p,S) =

JS (S-0)""'u"
0 (2)

n—-1<f<n,

1
['(n-p)
(¢, 6)do,

where u™ (¢, 0) is the derivative of integer nth order of
u(e,0),neNandn-1<p<n If 0<p <1, then we defined
the Laplace transformation for the Caputo fractional de-
rivative as follows:

3[D‘;u(¢, S)] (s) = LLu(g. )1 (s) - & [u(p, 0)].
(3)

Definition 2 (see [42]). The Caputo-Fabrizio operator (CF)
is defined by

B _
Dsu(e, ) =

C-BMPB) (5 [ (S-0) u
2(117—,3) Jo exp( B >u (9, 0)do,

n—p
(4)

where M (3) is a normalization form and M (0) = M (1) = 1.
The exponential law is used as the nonsingular kernel in this
fractional operator.

If 0<fB<1, then we define the Caputo-Fabrizio of
Laplace transformation for the fractional derivative is given
as

7| Dhu(9. 9] (5) - (59[“(% 3)1(s) - ulp, 0)) -

s+B(1-5s)

Definition 3 (see [42]). The fractional generalized Mittag-
Leffler law with the sense of Atangana-Baleanu operator is
defined as follows:

3 B
B _B® ¥ (S-0"] w
Dsu((P, S) = q 0 Eﬂ —ﬁﬁ u (¢, 9)(19,
(6)
where B(f) is a normalization function with
B(0) = B(1) = 1. The Mittag-Leffler law is used as a non-
singular and nonlocal kernel in this fractional operator.
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If 0 < B <1, then we express the Laplace transformation
for the Atangana-Baleanu operator fractional derivative as

sZ [u(9,3)](s) —u(g,0) )
; .
sSS(1-B)+p

7| Dhu9. 9] (s) - (

3. Implementation of the LHPTM for the
Solution of Fractional Partial
Differential Equation

The LHPTM is general methodology and can be written as
follows.

The main procedure of this technique is defined as
follows:

Step 1: let us consider the following equation:

o
—F(9.3) = AF(p,3) +E(F(9TI))
03

(8)
+u(p, ), p=123,...,
under the initial condition
~i F(go, 0) = Z; ((P)>
03
9

-1

——F(¢,0)=0, i=0,1,2,3,...,-2,
os™!

where u (¢, ) is a known function, f is the order of
the derivative, A represents a linear differential op-
erator, and E is the general nonlinear differential
operator.

Step 2: using both sides Laplace transformation op-
erator of (8), we obtain

Z1f (98] = LLIAF (9, 9] +LL[E(E (9, )]
+Zu(p, )N,
(10)
Laplace transformation is applied to Caputo-Fabrizio

(5) and Atangana-Baleanu (7) operators.

Step 3: on both sides, using the inverse Laplace
transformation of equation (10), we obtain

F(p,¥) =H(g, Q)+ 2 [LZL[AF (9, 9))]

11)
+" Z[E(F (9, ).

Step 4: applying the homotopy producer, the result of
the above equations in a series form is defined by

F(p,S,k) = ) K'F, (¢, 9),
n=0 (12)

F(9,S) = klinl F(9, S, k),

and the nonlinear terms can be expressed as
(e8]
EF (9, 9) = ) K'h, (f (9, 9)), (13)
n=1

where k€ (0,1] is an embedding parameter and
h, (F (x,)) are He’s polynomials that can be provided by

1 ai’l n .
By (Fos- o Fy) = o {5(2 K'F (g, 3’))} neN.

=0
(14)

Finally, the LHPTM is achieved by coupling the de-
composition technique which is defined by

\ n <) — o 1 N  _ \m-1
,Zok F(p.®)=T(9.9) 4k NGRS

: I:u((p, 3)+ A<§ K'F, (9, 5)> + i K", (F (g, s»]m,

n=0 n=0
(15)

where T (¢, 3) = H (¢, 3).

The terms, comparing with the same powers of k,
produce results of many orders. The initial estimated of the
approximation is T' (¢, J), which is actually the Taylor series
for the exact result of order .

Using the aforementioned technique, we solved the
fractional-order Whitham-Broer-Kaup equations in the
Atangana-Baleanu and Caputo-Fabrizio senses using the
LHPM.

4. Implementation of
Caputo—Fabrizio Operator

Example 1. Let us consider the coupled system of fractional-
order WBKE:s in the CFC sense:
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aﬂ((/’» 3), w9 (9

= 0’
d¢ o9
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o~ 3 o~ 2 o~
Dy (9, 9) + (9, S) (q;;‘s) v(<p,5)a“%¢"’)+3a“;"’;“)—aV:"z"’)zo, 0<ps1,-1<F<1,-10<p< 10,
9 9

(16)

Using the Laplace transformation to equation (16), we
obtain

under the initial conditions,

u(e,0) = 1 8tanh (-2¢),
2 (17)

7(¢,0) = 16 — 16tanh” (-2¢).

>

sL[u (9. )] (s) - p(9,0) _ —Z[Wp 5 W@ ulp9) 0v(p3)

s+pB(1-s) 09 d¢ J¢
\ , (18)
Z[v(9,3)1(s) - (9, 0) (9, ) (9, 3)  ,0u(p,3) 0v(e, )
=-Z ) ——— S 3 - .
s+p-5s) #(9.3) 09 +v(p3) 0 i o9’ 0’
Simplify the above equation and use the initial condi-
tions (17), and we obtain
,0 +B(1-s ou(e, ) ou(e,I) 0v(e,
Llu(p )] = M(q) ) s+ [ (. ) #(<p ), W3 (eI]
o o
\ ) (19)
(9,0 +B(1- o (e, ou(e, 3 0 ) 0 (9, 3
Zv(p, )] = (9.0) s+ 5 [ (9, 8)—— (9. 5) +7(¢p, J) G )+3 M(¢3 = (¢2 ) :
s s 99 J¢ J¢ o9
The inverse Laplace transformation is implemented to
(19), and we obtain
o ol s+B(1-5s) 5 ay(q),\s) ay(<p,o) av(<p,d)
(20)

293 oW @) Tk I
L) ’ o '

- ~1|s+p(1-5) ~
(0, 3) =v(9,0) - & 1[5/3%3{!1(%0) og° Ry

The LHPTM is used in (20), and we obtain

0 - 1- 0 ) 0 X ) 20 & ; -
Zunw,mwmm—py1[7”‘“ D dY pa,+ LY s +-2 Y p', (9, S) }
S =0 aq)n:o agDn:O

n=0
(21)
o) - 1- 0 " (o] . a3 o] " aZ o) Y
Y 9, (9.9) = v(9,0) - pZ l[mff{Zp B,+ ) p'Cit3—5 ) P99 -—5 ) p vn(somH.
n=0 S n=0 n=0 a‘P n=0 a(P n=0
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The nonlinear can be found with the help of He’s Comparing the coeflicient of p, we have
polynomial and can be defined as
0
Ay = .”oaiq?’
O,  Op
A = lfloa_gol + .”16_(:’
0,
B, = ‘L‘oa_l;)
(22)
o, 07,
B, = Higp + g
0
Co = voai(;,
0 )
C = voai(; + vlai(:.

1
P 1y (9. 9) = (9,0) = 5= 8 tanh (~29),

po: v (9, 3) =v(9,0) =16 - 16tanh? (—29),

B 1- d d
Pl (pt) == 1[%5/{% +W¢O(<p, 3) +%v0(¢, S)H = -8 sec h* (-29)[BS + (1 - B)],

3 2
P13 v (9, ) = _pg‘l[wg{go +Cy + 38_3#0 (¢, 3) —a—z”o (¢, 3)}]
s d¢ d¢
= 32 sec h* (—2¢)tanh (—2¢) [ + (1 - B)],
. 1- ) 0
Py (0,9) = - 1[%3{& +%‘u1 (9, 3) +%v1 (¢, 5)}] (23)

ﬂZSZ

= —16 sec b’ (~2¢)(4 sec h* (2¢) - 8 tanh’ (~2¢) + 3 tanh (-2¢)) [ 1-p+28(1-P)F + — |

[s+B(- o’ o
P, (9, 9) = -pZ [Lsz{B O3 (90.9) o, (“”S)H
¢ d¢

= -32 sec h* (—2g0){40 sec I’ (—2¢)tanh (-2¢) + 96 tanh (-2¢) -2 tanh? (—2¢)

22
-32 tanh’ (-2¢) — 25 sec hz(—2<p)}[(1 -B)’+2B(1-B)S +ﬂ ; ]’

We can calculate few terms of (16) which can be written
as
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w(9,3) = py (9, I) + pay (9, ) + 1y (9, F) + -+,

(9, 3) = 7 (¢, 3) + v, (9, F) + v, (9, F) + -+,

1 (9, ) = = — 8 tanh (—2¢) — 8 sec h* (-29)[BS + (1 - P)] - 16 sec h* (—2¢)

22
x(4 sec i’ (~2¢9) — 8 tanh® (2¢) + 3 tanh (-2¢)) [ A-p+28(1-P)F + ﬁT“ +oee, (24)
v(9, ) =16 - 16tanh? (—2¢) — 8 sec W (—29) [BSS + (1 — B)] — 32 sec W (—2<p){40 sec h* (—2¢)tanh (—2¢)
+96 tanh (—2¢) — 2 tanh? (—2¢)-32 tanh® (—2¢) — 25 sec W (—Zgo)}
22
x[(l—ﬁ)2+2ﬁ(1—ﬁ)$’+ﬁ; ] T

The exact solution of (16) is approximate solutions of v(¢, J) at § = 1. Figures 3 and 4
3 show that the first graph has a different fractional order with
u(p,3)==-38 tanh«l <(p - _) } respect to ¢ and the second graph has a different fractional
2 order with respect to § of Example 1. Tables 1 and 2 show
- (25) the different fractional-order f of u(¢,J) and v(¢,J).
v(9, ) = 16 - 16tanh? 1 —2<(p _ ;) } Tables 3 and 4 show the comparisons with different methods.

Figure 1 shows the actual and approximate solutions of ~ Example 2. Let us consider the coupled system of fractional-
4(p,3) at =1, and Figure 2 shows the actual and  order WBKEs in the CFC sense:

oD 1465 269

Jﬂ(fp,d) +u(e, )

"2 09 o9 ’
, (26)
o3 1 o
Dy (0, %) + g, H) LD L 5y W2 D) 10 V(q’z’") =0, 0<f<1,0<S<1,-100<¢< 100,
9 op 2 09
under the initial conditions, Using the Laplace transformation to equation (26), we
u(p,0) = & — & coth[x (¢ + B)], o obtain
v(9,0) = —x*cosech? k(¢ +0)].
Zp(g:9N6) —u(90) e C.)a//l(qo,d)Jrlaﬂ(¢,d)+av(¢,d) )
s+p(1—5s) 2 0¢ d¢
(28)
sZ[v (g, )] (s) —v(p,0) ~ 61/(%«5) ~ (9, ) 1 o’ V(rp,o)
s+p(1-5) =L o9 V(9. 9) dp 2

Simplify the above equation and use the initial condi-
tions (27), and we obtain
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FIGURE 1: The exact and analytical solution with respect to the Caputo-Fabrizio operator of u (¢, ) at f =1 of Example 1.

)

3
V(e J)

v (e

FIGURE 2: The exact and analytical solution with respect to the Caputo-Fabrizio operator of v(¢p, ) at f =1 of Example 1.
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(a) (b)

FIGURE 3: The different fractional-order solution with respect to the Caputo-Fabrizio operator of u (¢, ) at  of Example 1.

304 ——
20
10 -
-2 -1 0 1 2
¢ 3
(@) (b)

FIGURE 4: The different fractional-order solution with respect to the Caputo-Fabrizio operator of (¢, J) at 8 of Example 1.
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TaBLE 1: HPTM for the approximate solution of Example 1.

(9, ) (e, 3) at f=0.5 u(e,J) at f=0.75 ule,J)atf=1 Exact solution
(0.1, 0.1) —-0.500817 —-0.500795 -0.500782 —-0.500782
(0.1, 0.3) —-0.500853 —-0.500829 —-0.50081 -0.50081
(0.1, 0.5) —-0.500878 —-0.500857 —-0.500837 —-0.500837
(0.2, 0.1) —-0.49812 —-0.498098 —0.498085 —0.498085
(0.2, 0.3) —0.498154 —0.498131 —-0.498112 —-0.498112
(0.2, 0.5) —-0.498178 —0.498158 —-0.498139 —-0.498139
(0.3, 0.1) —0.495491 —0.49547 —0.495458 —-0.495458
(0.3, 0.3) —0.495525 —-0.495502 —0.495484 —0.495484
(0.3, 0.5) —0.495548 —-0.495529 —-0.49551 —-0.49551
(0.4, 0.1) —-0.49293 —-0.492909 —0.492897 —-0.492897
(0.4, 0.3) —-0.492963 —-0.49294 —-0.492922 —-0.492922
(0.4, 0.5) —0.492985 —-0.492966 —0.492948 —-0.492948
(0.5, 0.1) —-0.490433 —-0.490413 —-0.490401 —-0.490401
(0.5, 0.3) —-0.490465 —-0.490443 —-0.490426 —-0.490426
(0.5, 0.5) —0.490487 —-0.490469 —-0.490451 —0.490451

TaBLE 2: HPTM for the approximate solution of Example 1.

(9, 3) v(9,J) at f=10.5 v(p,J) at f=0.75 v(p,J) at f=1 Exact solution
(0.1, 0.1) —-0.0939215 —0.0939015 —0.09389 —0.09389
(0.1, 0.3) —-0.0939536 —0.0939319 —-0.0939146 —0.0939146
(0.1, 0.5) —-0.0939757 —0.0939571 —0.0939391 —0.0939391
(0.2, 0.1) —-0.0915064 —0.091487 —0.0914759 —0.0914759
(0.2, 0.3) —0.0915375 —0.0915165 —0.0914997 —0.0914997
(0.2, 0.5) —0.0915589 —0.0915409 —0.0915235 —0.0915235
(0.3, 0.1) —-0.0891657 —0.0891469 —-0.0891361 —-0.0891361
(0.3, 0.3) —0.0891958 —0.0891754 —0.0891592 —0.0891592
(0.3, 0.5) —0.0892166 —0.0891992 —0.0891822 —0.0891822
(0.4, 0.1) —0.0868965 —0.0868782 —0.0868678 —0.0868678
(0.4, 0.3) —0.0869257 —0.0869059 —0.0868901 —0.08688901
(0.4, 0.5) —0.0869458 —0.0869289 —0.0869125 —0.0869125
(0.5, 0.1) —0.0846961 —0.0846784 —0.0846683 —0.0846683
(0.5, 0.3) —-0.0847244 —0.0847052 —-0.0846899 —-0.0846899
(0.5, 0.5) —0.0847439 —0.0847275 —-0.0847116 —-0.0847116

g[y((p’s)] :#(i’o)_s-l—ﬁ(sl _S)g[y((p,ﬁ)a‘u(%\q)+l aM((P’S) +av(‘/’>5):|)

0¢ 2 0d¢ o0¢
, (29)
(9,0) s+p(1-5s) 07(9,3) ou(p,J) 107v(p, )
(% ) <) — _ (% , [ A Sl , ~ - .
[v(9, )] S . (9, 3) 99 +7(¢, ) o0 2 o
The inverse Laplace transformation is implemented to
(29), and we obtain
_ 1-5) ou(e,I) 10u(e,I) 0v(e, )
) 3) = 5 0 - g ! ¢g p) %) - b
u(9, ) = u(9,0) [ . (9, 3) 50 T2 0p T oy
(30)

v (e, J)
d¢

0
+ (g, )

o3 2 ~
V(g ) = v(%o)_g—l[wg{y(w) .3 19 v(q),\s)H'

a(p 2 aq)z

The LHPTM is used in (30), and we obtain
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TaBLE 3: HPTM for the approximate solution of Example 1.

Complexity

(9, 3)

Absolute error of ADM

Absolute error of VIM

Absolute error of OHAM

Absolute error HPTM

(0.1, 0.1)
(0.1, 0.3)
(0.1, 0.5)
(0.2, 0.1)
(0.2, 0.3)
(0.2, 0.5)
(0.3, 0.1)
(0.3, 0.3)
(0.3, 0.5)
(0.4, 0.1)
(0.4, 0.3)
(0.4, 0.5)
(0.5, 0.1)
(0.5, 0.3)
(0.5, 0.5)

1.04892x10™*
9.64474x107°
8.88312x107°
425408 x107*
3.91098 x107*
3.60161 x 107*
9.71922x107*
8.93309x107*
8.22452x107*
1.75596 X 10>
1.61430x 1072
1.48578 X 107>
2.79519x 1072
2.56714 %1073
2.36184 %1073

1.23033x107*
3.69597 x 107*
6.16873 x10™*
1.19869 x10™*
3.60098 x 107*
6.01006 X 10™*
1.16789x107*
3.50866 x 107*
5.85610 x 10™*
1.13829x107*
3.41948 x107*
5.70710 x 10~
1.10936 x107*
3.33274x107*
5.56235x107*

1.07078 x10™*
3.04565x 1074
4.81303x 1074
1.04388 x107*
2.97260x107*
470138 x107*
1.01776 x10™*
2.90150 x 10™*
4.59590 x10~*
9.92418 x107°
2.83229x107*
449118 %1074
9.67808 x10~*
2.76492 x107*
4.38895x107*

1.67111 x 1072
451196 x 107"
2.08888 x107*°
1.57879 x 102
426227 x1071
1.97328 x1071°
1.49181 x 10712
4.02799 x 107!
1.86481 x107*°
1.41043 x107'2
3.80803 x 107!
1.76298 x 107*°
1.33388 x 1072
3.60145x 107!
1.66734x1071°

TaBLE 4: Comparison of different methods for the approximate solution of Example 1.

(¢, T)

Absolute error of ADM

Absolute error of VIM

Absolute error of OHAM

Absolute error HPTM

(0.1, 0.1)
(0.1, 0.3)
(0.1, 0.5)
(0.2, 0.1)
(0.2, 0.3)
(0.2, 0.5)
(0.3, 0.1)
(0.3, 0.3)
(0.3, 0.5)
(0.4, 0.1)
(0.4, 0.3)
(0.4, 0.5)
(0.5, 0.1)
(0.5, 0.3)
(0.5, 0.5)

6.41419%x107°
5.99783x 107>
5.61507 x 107>
1.33181x 1072
1.24441 x 1072
1.16416 X 1072
2.07641 x 1072
1.93852x 1072
1.81209 x 1072
2.88100x 1072
2.68724 %1072
2.50985 x 1072
3.75193 x 1072
3.49617 x 1072
3.26239 %1072

1.10430 x107*
3.31865x107*
5.54071 x 10~
1.07016 x10™*
3.21601 x 107*
536927 x107*
1.03737x107*
3.11737x107*
5.20447 x107*
1.00579 x10™*
3.02245%x107*
5.04593 x10™*
9.75385x107°
2.93107x107*
4.89335x10°*

5.86860 x 10>
3.04565x107*
3.08812x107*
5.56884 x107°
2.97260x107*
2.92626x107*
5.28609 x 107>
2.90150x107*
2.77382x107*
5.01929 107>
2.83229x107*
2.63019%x107*
4.76741x107°
2.76492 x107*
2.49480 x107*

3.28081 x 10712
8.85812x 107!
4.10099 x1071°
3.07768 x 10712
8.30963 x 107!
3.84706 x 10710
2.88849 x 10712
7.79908 x 10!
3.6107 x1071°
2.71246 x 10712
7.32356 x 107!
3.39055x1071°
2.54828 x 1072
6.88039 x 107!
3.18537x1071°

D (9, B) = (9, 0) = pz~!

;vn(q),%) = V(sv,O)—pi”_l[le_s)g{z

(&)

n=0

The nonlinear can be found with the help of He’s

polynomial and can be defined as

[ee]

n n 1 aZ < n
me+zan__ (PZ van(go’s)}]
n=0 =

za—n—O

- % 0 0 X

|:s +ﬁil S)Q{ZPnAn*'%% zpnyn(¢’5)+% szn(go,S)}],
n=0 n=0 n=0

(31)
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_ Oy Comparing the coeflicient of p, we have
0 = Ho ago
5 0
Al = AuO a‘;l + 1 a‘l:;
07,
B, = #0%) o)
32
avl %
=Ho5, aﬁ H aﬁ
0
Co= vOBL(;,
C, = voaa‘ul + vlaai(:.

P’ o (9, F) = (9, 0) = & — x coth [k (¢ + O)],

pO: Y0 (9, 3) =v(p,0) = —chosechz[x(q) +6)],
Pomo =2 [T g 0.9 s S]]
= —&k*cosech’ [k (¢ + O)] [BS + (1 - )],

s+B(1-5s) 19 -
— ff{BO+CO—Ea—(P2VQ(¢,\5)}:|

v (9, 9) = —pg"l[
= —&icosech® [k (¢ + 0)]coth [k (¢ + )] [BS + (1 - P)],

2, 1SR -9) 10 .0 <
Py (9,8)=-%Z [ . 5f<lA1+2a¢y1(¢,d)+a¢vl(go,.s)H

22
= —&x* cosech? [x (9 + 0)] (3 coth? ([ (g + )] — 1) [(1— ) +2p(1- )J+ﬁ;:| (33)
B

s 3p (/3 -1S°
6

+ 2% cosech? [x(p+ 0)]( ﬁ( 2B+ 1+p ) + 3[32 -38+1 —/33),

2
p2: v, (0, F) = —pZ ! [Mg{Bl +C, 1 a—2V1 (o, 3’)H
S 2 a(P
= 2k cosech? [k(p+ 9)]{€Kc0sech2(3 coth?( [k(p+0)] - 1)) + 2&kcosech’coth? ( [x(p+ 9)])}

x(3/3(-2/3+ 1+p4)S +ﬁS653 —Sﬁz(ﬁz" 1)52+3/32—3/3+ 1 —/33)

ﬁZ 32
2 >

-2¢ coth(3cosech2 ([xk(p+0)] - l)) (1-B)+2B(1-P)T +
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We can calculate few terms of (26) which can be written

as

w(9,3) =y (9, ) + py (9, F) + py (9, ) + - -+,

(9, F) =7 (¢, 3) + v (9, ) +v,(9, ) +- -+,

1(9,3) = & -« coth[x (¢ + )] — Ek*cosech? [k (¢ + O)] [BS + (1 - B)]

2 ~2
— &x*cosech’ [k (¢ + 0)](3 coth® ([k(¢ + 6)] - 1))| (1= p)* +2B(1 - P)S +/32" ]

2 5 2 2\~ /3333 3ﬂ2 (B~ 1S’ 2 3
+2&71” cosech [K(¢+9)](3ﬁ(—2ﬁ+l+ﬁ)d+ ¢ 3 +3B°=3+1-F" )+, (3
(¢, 3) = —cosech’ [k (¢ + 0)] — Ek*cosech’ [k (¢ + B)]coth [k (¢ + O)] [BS + (1 - )]
+ 2&x° cos ech® k(¢ +0)] [{fxcosech2(3 coth?( k(¢ +0)] - 1)) + 2&xcosech’coth? ( [k(p+ 9)])}
3 3 20 1y
x (3/3(—2/3+1+52)3+/56“ _3P (’32 DS 38 - 3B+ 1 —/33)
B
-2¢ coth(3cosech’ ([k(¢ + 6)] - 1))| (1-B)* +2B(1 - B)S + 5 ” T
The exact solution of (26) is 5. Implementation of
(9, ) =& -« coth[k (¢ + 0 - £S)], 5) Atangana-Baleanu Operator
v(9, ) = —«’cosech’ [k (g + 6~ EF)]. Example 3. Let us consider the coupled system of fractional-

order WBKEs in the ABC sense:

O)

ou(e, ) ou(p,I) ov(ep,
Dl (9. 9) + (9, 3) ”(a(p ) @ 8) 00T

d¢ d¢

ABDE (0. 5) + (D)

Jo3 o3 3 o3 2 o3
%;‘S)+v(go,3)a”g”"’)+3a”(‘P"’)—a Y99 6 0<Bel-1<S<1,-10<g<10,

a(p3 a(p2
(36)

under the initial conditions,
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14(9,0) = %_  tanh (-2¢), Using the Laplace transformation to (36), we obtain

(37)
v(p,0) =16 — 16tanh2(—2q)).
B(B) s<L[u(p, () =& 'u(p,0) (9, 3)  ou(p, ) 0v(g, )
1-8 s+ (BI1-p) - 3[”((”"’) 3 | o9 ' o9 |
(38)
B(B) sZ (g, D] (s) =" 'v(p,0) _ 0 07(9, ) (@, S) Pulp, ) (e, 9)
1= s+(B1-P) g[”“”"’) o TP Ty op" |
Simplify the above equation and use the initial condi-
tions (37), and we obtain
w0 (1-p+p, [ au(m) Lu(@3) (p3)
4 , 3 ,
[ (9, )] =— BB (9, 3) 2 3
(39)
oy V(90 (1-p)s’+B v((p,‘") (9 S) . Pulp,S) (e, 9)
Z(p )] =— BB 3[ ( 39 +7(9,J) 99 +3 29’ o |
The inverse Laplace transformation implement to (39),
we obtain
- L [a-p)s +B, { o) (9, 3) (9. T) av(q),\s)H
,S) = ul(p,0) -2 ,
u(9,3) = u(e,0) [ B (9, 3) 29 3 99
(40)
A[a-pLap, { (9, 9) (9. S) _Fulp.S) azv(go,fs')}
)c' — 0) - 1 A A ford .S _ )
(9, ) =v(¢,0) [ B (9, 8)— — 99 +7(9, ) 99 +3 29" 3¢°

The LHPTM is used in (40), and we obtain

0 2 & \ - 0 X® . -
{; %V;p Aun((/)"s)*'%r;)p vn((P"S)}]’

& (1-
n( )5): ( 70)_ g_l[
;# 9. 9) = u(p,0) - p B(ﬁ)s

> 7,(9,8) =v(9,0) - p&~ {ﬂ {ZpB +ch +3 Zp‘un(q),\s) k va((pd)}]
n=0

B(p)s =
(41)

The nonlinear can be found with the help of He’s
polynomial and can be defined as
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Complexity

0wy Comparing the coefficient of p, we have
0 = Ho 0 >
0 0
A= lfloaigol + 18%5’
v
B, P‘oa—l;)
(42)
o, 07,
B, //‘0% + #1%)
0
C, = voai(;,
C, = VO% + vlaaﬂ.
¢ ¢

1
P o (9. 9) = (,0) = 5~ 8 tanh (~29),

po: Y0 (9, 3) =v(9,0) =16 — 16tanh2(—2g0),

Ja 0
p“ﬂﬁ@5)=<9‘F—Egiiﬁ {A —ﬂ%Wmﬂ+—WM%d%]
8 sec it (29— | % (1 p)
—8 sec _(PB(ﬁ (/5+1)+ -B |
. - B ﬁ)s +[5 o’ o O -
p v (9, 5) :—pSf B(ﬁ)s {B0+CO+3a—¢3y0(go,\s)—a—q)2v0(go,«s)]»
1 BS*
= -32 sec b’ (- 2¢)tanh (- Zq))B(ﬁ) TG+ +(1-p1,
) 1[0 B)s B, 3 (43)
: ,(" :_ A S > 5 ’C"
P iy (9, 3) [ BB { *3 m(fp )+a¢v1(<p J)H

= —16 sec h* (—2g0)(4 sec h’ (—2¢)-8 tanh? (—2¢) +3 tanh(—2q)))

_pp 280 -PSF ﬁ“m]
B(m[( B Gy T D)

o’ o
Pz: 1, (9, J) = —p< |i BZ;;S +ﬁ {31 +C, + 3a¢3y1 (9, 3) —?vl (go,\s)H

= -32 sec h’ (—2go){40 sec h* (—2¢)tanh (-2¢) + 96 tanh (-2¢) — 2 tanh® (—2¢)

p0-pS* ST ]

3 2 :
—32 tanh’ (—2¢) — 25 sec h (—2(/))}[(1 B+ T(f+1) rp+1)
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We can calculate few terms of (36) which can be written
as

w(9,3) = py (9, I) + py (9, ) + py (9, F) + - -+,

(9, 3) =7 (9, F) + v, (¢, F) + v, (¢, F) + - -+,

&P
u(e,J) =~ — 8 tanh(-2¢) — 8 sec W (—2<p)|:r(/j:L D +(1 —[3)] — 16 sec hz(—2<p)

p01-p3° ST ]
r(B+1) r(2f+1) ’ (44)

(4 sec W (—2¢9) -8 tanh® (—2¢) +3 tanh(—ZgD)) 21

_2
B()[u B+

B
&Y 16 2, B 2, B3 _ B 2,
v(9, ) = 16 — 16tanh” (-2¢) — 8 sec h™ ( 2(p)[r(ﬁ+1)+(l ,8)] 32 sec h™ (—2¢)

X {40 sec h (—2¢)tanh (—2¢) + 96 tanh (—2¢) — 2 tanh? (—2¢) - 32 tanh’ (—2¢) — 25 sec W (—2q))}

) 280-pSF g
X[(l"ﬁ) T+ T

The exact solution of (36) is approximate solutions of v (¢, ) at § = 1. Figures 7 and 8
1 3 show that the first graph has a different fractional order with
ulp,3)=--8 tanh{—z(q) - —>} respect to ¢ and the second graph has a different fractional
2 2 (45) order with respect to I of Example 3.
2 3
(¢, 3) = 16 — 16tanh {_2<‘P - E) ]’ Example 4. Let us consider the coupled system of fractional-

order WBKE:s in the ABC sense:
Figure 5 shows the actual and approximate solutions of
u(e,J) at =1, and Figure 6 shows the actual and

ABC B ~ #(<p,«5) 1 0u(e,3) av(q),«S)
D (9, 3) + u(e, ) 29 t5 29 2 =0,
5 (46)
ABCDE 3 (0, B) + g, )av(a(,;;m (9, S a”g’;") —% 9 v;;’z"’) =0, 0<f<1,-1<F<1,-10<g<10,
under the initial conditions, Using the Laplace transformation to (46), we obtain
#(9,0) = & -« coth[x (¢ + 0)],
. @)
v(9,0) = —x"cosech” [k (¢ + 0)].
B(B) sZu(p, )1 (s) — " (9, 0) o Ou (o, J) 1 ou(e,3) aV(q), 3)
_‘g ( ) >
1-8 s+(B/(1-P5) ¢ 2 ¢ 09
(48)

B(B) sZ[v(9, )1 (s) - & (9,0) _3[ (o, (<p,\s) V(g cv)ay((,o,\s) lav(<p,d)]
1-8 s+ (B/(1-p) o9 o¢ 2 0¢’
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u (9, 3)
u(e3)

(a) (b)

FIGURE 5: The exact and analytical solution with respect to the Atangana-Baleanu operator of u (¢, ) at f =1 of Example 3.

V(e 3J)
v (g, J)

(a) (b)

FIGURE 6: The exact and analytical solution with respect to the Atangana-Baleanu operator of v(¢, ) at § = 1 of Example 3.

Simplifying the above equation and using the initial
conditions (47), we obtain

oy H(@0) (1-ps+p (9. D) 10u(9, ) (9, D)
Llp(p )] =— 5 S[y((p,d) 50 "2 99 T b9 ]
(49)
oy (@0 (=B’ +pB 07 (9, ) () 199, 9)
3[1/(90, \5)] = B - B(ﬁ)sﬁ 3[{,{(@, J)T+ 1)(90,\5) a(P _E a(PZ .

The inverse Laplace transformation is implemented to
(49), and we obtain
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(=]
u (e, 3)

-
[

(a) (b)

FIGURE 7: The different fractional-order solution with respect to the Atangana-Baleanu operator of u (¢, J) at § of Example 3.

30

20

10 +

-
&

(@ (®)

FiGgure 8: The different fractional-order solution with respect to the Atangana-Baleanu operator of v (¢, ) at  of Example 3.

) —u(o.0)_ o [L=PL B 5H @) 13 3
#(@3) =ulp.0 =& [ B(B)s" 3{”((’)"” 0p "2 39 oy H
(50)

o Ca[a-pep - (9, 9) (9, ) 10™(p, )
(9, 3) =v(p,0) - & [Wg{#(‘P’J)T*"/(%J) 3 3 2 H

The LHPTM is used in (50), and we obtain
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o ) @ 0
> 1, (9:9) = (.0 - p2”" [ﬂ {ZO Y. un(q),sn@ZPvn(w,«nH,

B(p)s"
0 0 (51)
0 ~ (1_[;)5 +ﬂ [e) ; 00 N 182 00 ;
v, (9, 8) = v(9,0) - pZ 1[752) P'By+ Y p'Cr==— Y P, (0,9 ¢ |
% O PP A I TP
The nonlinear can be found with the help of He’s Comparing the coeflicient of p, we have
polynomial and can be defined as
0
Ay = o aﬂo
Oy o
=Uo aq) + 151 a(P >
07,
B Y] aﬁ
(52)
o, 07,
B, ‘“0@ + .“1@)
0
Cy = Voai(::
0 %)

2% 1o (9,5) = u(9,0) = & — k coth[x (¢ + )],

% (9, 3) = v(¢,0) = —k*cosech’ [k (¢ + )],

o 1 10 0
P (998) =~ 1{( Bf;::ﬁ {A uo(<p,«s)+—¢vo(<p,«s)”
c'ﬁ
= —&xcosech? [K((p+9)] 10) [1"([; (l—ﬁ)],
[ =B +B 1 9
ps’
= —&x*cosech? [K((p+0)]coth[1c(go+9)] B [F(ﬁ (1—[3)],
- 10 0
P25.“2(§0)5):— _1{%);”; {Al 53 !‘1(%‘5)"'_1’1(?)\’)}]

_p\xP 2526
= —&x*cosech’ [k (¢ + 0)](3 cothz([K(q)+9)]—1)) [(1—/3) Zﬁr((lﬁfl))“ +rf2ﬁ+1)]

_p2aB 2B 3 3P
PP 1Pt P ]

2.5 2 1 3
+ 287 cosech ["(‘P”)]E[“‘ﬁ) T2B+ reB+1) TGP+
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Sfa 1 0
P () - 1[( szj o { L+, ——a—gvzvl(so,s»H
= 2§k’ cosech’ [x(p+ 0)]{5Kcosech2(3 coth?( k(¢ +0)] - 1)) + 2&xcosech’coth? ( [k(p+ 6)])}
1 2, 3p0 -pst 3 a-ps* g’ 53
Xﬁ[(l_ﬁ) T@+1) | T@B+1) TG+ (53)
2801-P)FF A5
-2¢ coth(3cosech2([K(<p+6)]—1)) [(1—[3) TG+ D) +I‘(2ﬁ+l) ,
We can calculate few terms of (46) which can be written as
(9, 3) = po (9, 3) + 4y (9, 3) + 1y (9, F) + -+
(0, F) =95 (0, 3) + 7, (¢, F) + v, (¢, F) + -+,
_ _ 2 1| B _
(9, 3) =& —x« coth[k (¢ + 0)] &x*cosech [k (¢ + 6)] B(ﬂ) [F(ﬁ+ D +( ﬁ)]
— &*cosech’ [k (¢ + 0)](3 coth® ([x (¢ + 0)] - 1))i (1-p2+ P4 P’ _psT
4 14 B T(B+1) T(p+1)
25 LR PR 3ﬁ(1—ﬁ)zsﬁ pa-ps¥  pSP )
+ 2E°K” cosech [1<(go+6)]B3 (1-B) + T+ 1) + TR+ D) F(3ﬂ+1) +eee, (54)
(9, S) = —chosechz[x((p+ 0)] - &x COSCChZ[K((p+0)]C0th[K((p+9) ! [ ﬁSﬂ +(1 —ﬁ)]
’ BB |T(B+1)

+ 2&x° cosech? [k(p+ 9)]{{Kcosech2(3 coth® ( k(¢ +0)] - 1)) + 2&xcosech’coth? ( [k(p+ 9)])}

Jis; 338

1 3
XE[“_B) T(28+1) T(2f+1)

201-ps*  pSY

rp+1)

xé[(l—ﬁ)2+

The exact solution of (46) is

(9, ) = &« coth[x(p + 0 -EF)],

(55)

(9, 3) = -k ?cosech? [k(p+0-EF)].

6. Conclusions

In this paper, the LHPTM was considered to achieve an
analytical result for the fractional-order Whitham-
Broer-Kaup equations considering the Caputo-Fabrizio and

_p2B 2B
38(1-B)'S +3/3 (1-pS .

+r(2/3+1)]+"'

FGR+ )] -2& coth(3cosech2 ([k(p+0)] - 1))

Atangana-Baleanu operators. Analytical results were ob-
tained for different fractional order 8. Both suggested oper-
ators have shown to be critical mathematical tools for
scientists working in numerous fields of applied sciences. The
polynomial expansion well-thought-out in the LHPTM
permits to achieve an infinite series result for the Whith-
am-Broer-Kaup equations. This technique established a
general system to achieve fractional-order models’ analytical
results, and the results are obtained in the series form, which
converges quickly; the LHPTM is used for investigating other
nonlinear fractional systems of partial differential equations.
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Abbrevation

HPTM: Homotopy perturbation transform method
IT: Laplace transform

FPDEs: Fractional partial differential equations
FC: Fractional calculus

WBKEs: Whitham-Broer-Kaup equations
ADM:  Adomian decomposition method.
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