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ABSTRACT

A method for solving numerically the fully time-

dependent two-dimensional Euler equations, applied to

unsteady subsonic flow through vibrating turbomachine

cascades with thin blades, is developed. The blades are

assumed to vibrate at a constant interblade phase angle

and the computed region is reduced to one blade passage,

with the implementation of the interblade phase angle as

a periodicity condition. The reliability of the method is

validated by comparing it with an analytical flat plate

theory, and the importance of radiative inlet and outlet

boundary conditions for unsteady flow calculations is

shown in an example.

The method can be used to compute the aerodynamic force

and damping coefficients acting on the blades and to

investigate the propagation of unsteady disturbances

through a cascade in flutter conditions.

NOMENCLATURE

A
	

amplitude (-)

b(z,t)
	

lower time-dependent boundary (-) (Fig. 2)

chord (m)

c(z,t)
	

upper time-dependent boundary (-) (Fig. 2)

CL(t)
	

lift coefficient (-)

CL
	

amplitude of CL for harmonic motion (-)

function

reduced frequency, k=wc/2q, (-)

L
	

grid number in Z direction (-)

1 r
	

reference length = chord (m)

M
	

grid number in Y direction (-)

Mach number (-)

pressure (N/m 2 -)

velocity (m/s, -)

gas constant, R=287 m 2/(s2k) for air

entropy (m 2/s2K)

time (5,-)

temperature (K)

dimensionless time (-)

period of a cycle (-)

velocity in y direction (m/s,-)

velocity in z direction (m/s,-)

circumference coordinate in the physical

plane (-)

circumference coordinate in computational

plane of reference (-)

axial coordinate in the physical plane (-)

axial coordinate in the computational frame

of reference (-)

blade surface pressure difference

1	p(z,t)is-p(z,t)us

coefficient =   ( )

A	13t-e0- 13-.

stagger angle (deg)

amplitude of Ac p(z,t) at harmonic motion (-)

density (kg/m 3 )

interblade phase angle (deg)

steady state pitch-to-chord ratio (-)

phase lead of lift coefficient towards

harmonic motion (deg)

phase lead of blade surface pressure

difference coefficient towards harmonic

motion (deg)

M

p

q

R

t

T

T
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(A)	 circular frequency of blade vibration (deg)

Subscripts and Superscripts

r
	

reference values

values at infinity upstream
+00
	

values at infinity downstream

derivatives in Y direction

derivatives in Z direction

velocity components tangential and normal

to the contour adapted grid

time averaged values

is
	

lower surface

us
	

upper surface

INTRODUCTION

The excitation of blade vibrations in turbomachines may

be either forced or self-sustaining. In the first type

(forced vibrations), phenomena such as:

• multiples of rotor frequencies

• inlet distortions in temperature, velocity and

flow direction

• stator-rotor interactions

can be found.

The second type (self-excited blade vibrations or blade

flutter) is produced by the interaction of a blade

movement and the time-dependent aerodynamic forces

resulting from it.

In a turbomachine, flow phenomena from both these

groups interfere with each other and create a

complicated unsteady flow pattern through the stages.

This pattern cannot be predicted by present theoretical

methods, wherefore several idealizations of the time-

dependent flow are normally made.

As regards self-excited blade vibrations, different

flutter regions related to the flow conditions in the

engine have been identified throughout the years, both in

compressors and in turbines. Because of the high demands

made on modern let engines, most of the flutter problems

reported have occurred in the fan stages of these

machines. However, flutter phenomena have recently also

become of practical interest in transonic steam and gas

turbines, especially at high back pressures. Under these

operating conditions, the flow in the blade passage is

presumably partially or fully stalled.

Some of the possible types of blade flutter are shown

schematically in Figure 1, which gives a typical modern

compressor chart.

Depending upon the flow conditions, the different flutter

types in Figure 1 may be characterized (see for example

/ 1 -3/) as:

1. Subsonic/transonic positive incidence stall flutter, in

which the compressor operates near the surge line either

at part speed or near design speed. Although the term

"stalled" is generally used, it is not established that the

flow in this flutter region is always separated over the

whole blade.

2. Negative incidence transonic choke flutter, at part

speed. This type of flutter may appear when the flow in

a compressor accelerates through sonic transition. This

flutter region is probably associated with local blade

separations and unsteady shock waves.

3. Supersonic positive incidence stall flutter. The flow is

supersonic at the outer region of the blade and the stage

operates near the surge limit. The flow probably has

strong in-passage shocks.

4 Unstalled supersonic flutter, at full speed and with

attached flow. This can occur at design point and at

higher or lower pressure ratios and may limit high speed

operations.

5. Supersonic flutter (type "A100"). This type of blade

flutter has been found to appear suddenly above a certain

pressure ratio, below which there is no flutter. Increased

loading may shift this critical pressure ratio.

All the above-mentioned flutter limits are of wide

practical interest and several investigations, both

experimental and theoretical, have been done on each

region.

Theoretical models exist presently for the prediction of

unstalled self-excited blade vibrations (regions 6, 7 and

8 in Fig. 1), but most prediction methods for partially or

fully stalled flow are closely linked to extensive

experimental data to produce semi-empirical models.

Mass Flow

Fields 6,7 and 8: Fields of application of present fully

theoretical subsonic (6), transonic (7) and supersonic (8)

prediction models.

Fig. I. Different flutter types in axial compressors (See

for example /1/).
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ap

— + div(p4) = 0

at
Y(z,t) =

y - b (z,t)

c(z,t) - b(z, t)

at	1

— — -jrad(p)= 0	(1)
Dt	p

Ds

T = t

where the boundaries b and c (representing the pitch) are

allowed to move in time. Equation system (2) thus

becomes:

Several of the existing theoretical prediction models for

unstalled flow agree well with the measured aeroelastic

forces acting on vibrating blades (see for example /4-

10/). However, as industry's main interest is to compute

the unsteady blade forces as quickly and cheaply as

possible in order to avoid blade failures, only a very

limited number of methods also take into consideration

the non-linear unsteady flow in the blade passage /8,9/

although an understanding of how disturbances are

propagated from one blade to another is essential to the

fundamental comprehension of aeroelastic phenomena in

blade rows.

It is the aim of the present study to present a fully

unsteady numerical method for predicting both the

aeroelastic blade forces and the unsteady flow through

vibrating cascades, and thus contribute to the

comprehension of unsteady physical flow phenomena in

turbomachines.

In its present form the analysis developed is restricted

to inviscid subsonic flow through two-dimensional thin

compressor cascades (region 6 in Fig. 1), but as the

method presented has proved useful it can be extended to

thick, cambered turbine blades with transonic flow and

oscillating shock waves (region 7 in Fig. 1).

GOVERNING EQUATIONS AND NUMERICAL METHOD OF

SOLUTION.

We consider the full Euler equations for describing two

dimensional unsteady, inviscid, compressible flow

through a cascade , written in the non-conservative form

and expressing the physical principles of continuity of

mass, equilibrium of forces and conservation of energy

/1 I /:

Is considered to be constant for all the cases dealt with

In this article.

This non-linear system of partial differential equations

can be solved by a numerical method based on a finite

difference approximation. For the model used in the

present study, Eq. (1) is written in a non-dimensionalized

form as (see /12/ for details):

D(In p)

Continuity eq.:   + p div( -q) = 0

Dt

(2)

Dq p

Momentum eq.:	— + - grad(ln p) = 0

Dt	p

where the physical variables are normalized with the

reference values: pressure p r , length I r , time tr = 1,/qr ,
temperature T r , and velocity qr= "U r .

The method used for this work is equivalent to steady-

state time-dependent Euler solvers as long as the

boundary conditions (blade positions, flow variables at

inlet and outlet reference planes) are maintained

constant in time. If a blade movement is introduced, the

solution to the unsteady flow through the vibrating

cascade will be found.

Before applying the finite difference approximation to

equations (2) these are mapped from the physical plane

into a rectangular computational plane of reference (Fig.

2) with the normalized transformation (z,y,t)-(Z,Y,T): 1

Z - Z 1

Z (z) =

Z2 - Zi

(3)

Continuity eq.:

Momentum eq.:

Energy eq.	-= 0

Dt

where p, p, q, s denote the pressure, density, velocity

vector and entropy, respectively. Time is denoted by t and

Df	of

— = — + q grad(f)

Dt	at

where f is an arbitrary function. In what follows, the

entropy equation will be omitted,as the upstream entropy

(ln p)T =	+ f4

wT	C2 + f5
	

(4)

vT = f3 + f6

1 This transformation is a of general nature. However, it

is not suitable for blades with thick leading edges as the

change in grid direction is not continuous in the leading

edge plane for these "H-grids".
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(L+1,M+1)

(L+1,M-1)

4	•
D	 E

MEW

where andand ■/' are velocity components, along a constant

Y, and normal to it, respectively. The functions f l - f3

depend on the spatial derivatives of the primitive

variables ln(p), w ,v and the functions f4-f6 depend on

transformation (3) and contain geometrical derivatives

only. (The detailed development of eq. system (4) can be

found in /12/).

The second stage of the solution procedure involves

discretizing the partial differential equation system (4),

which is written in the computational frame of

reference, according to a finite difference approximation.

For the present application it was decided to use the

standard explicit second order (in time and space)

predictor-corrector MacCormack scheme /13/, to

approximate the spatial differences f y and f7 in eq. (4)

and to Integrate numerically the three primitive variables

In(p), W and .\-,/ in time.

Finally, the appropriate boundary conditions should be

imposed according to the physical requirements of the

unsteady flow. The method used in the present work is

0
	

z

b. Computational plane of reference

Fig. 2. Physical and computational planes of reference.

Moretti and de Neff's post correction technique/14/.

In	this	technique	the	numerical	treatment	of

computational points located on boundaries is in two

steps. First, the computation is done using, for the

approximation of derivatives at the boundaries, values

from interior points only. In this preliminary computation

the boundary condition is not yet imposed. Therefore, the

flow variables calculated are not correct. However,

considering the hyperbolic or wave-like nature of the

Euler equations, the Rieman variables (a specific

combination of pressure and velocity component) carried

on characteristics impinging upon the boundary are

expected to be correct /14/.The values of the primitive

flow variables computed so far thus have to be changed

by imposing the required boundary condition, while

maintaining the value of the Rieman variable just

computed.

This updating is performed as the final logic at every

time step.

The following boundary conditions have been used:

At the inflow boundary two boundary conditions have to

be provided. In the present work these boundary

conditions were applied in two different ways. The first

is that used in most Euler solvers, i.e. the specification

of stagnation temperature (or stagnation pressure) and

flow direction at the inlet surface. This method of

treating the boundary introduces reflections of the

unsteady disturbances impinging upon the boundary from

inside the flow field. These reflections may distort the

results from the calculation with vibrating blades (and

may also make the convergence for reaching a steady

state solution somewhat slower). A second way to treat

the flow at the boundary could be to simulate the so-

called "radiative" boundary condition. The basic idea

behind this boundary condition is that in a cascade, in

contrast to an isolated airfoil where disturbances

propagated away from the airfoil diminish in strength

with the radial distance from the profile, the flow is

bounded up- and downstream. The disturbances will thus

not decrease in strength. However, if the flow upstream

of the cascade is undisturbed from the left, the

disturbances running to the left will be simple wave

fronts. lf, after a certain distance, these wave fronts are

straight, it is expected that the reflections from an

upstream computational boundary can be reduced. In

contrast to the first technique, the boundary conditions

are not imposed at the inlet, but it is considered instead

that a right running characteristic (coming from

upstream infinity) carries information in an isentropic

way from upstream infinity to the inlet, and into the

flow field. The boundary condition imposed at the inlet is

therefore the right running Rieman variable (which
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Fig.	4. Pressure fluctuations in time with an
intermediate blade.

corresponds to specifying total and static pressure as
well as flow direction at upstream infinity). This way of
treating the boundary has been useful for the cases
considered in the present work (rather thin profiles with
small camber).
In subsonic flow one boundary condition has to be
provided at the outlet boundary. As in the case of the
inlet boundary, two different techniques were used. The
first specifies the outlet static pressure as a constant
value.
The second uses a similar technique as at the inlet while
imposing the left running Rieman variable as a boundary
condition.
At the solid walls (blades) a flow tangency condition is
used,
The upstream periodic boundary conditions are satisfied
by treating points on them as interior points and using
values of flow properties outside the computed region.
These are taken to be equal to those of one blade pitch
and the defined interblade phase angle within the region.
This means that, for calculation of the flow variables on
for example the upper upstream periodicity line (AH in
Fig. 2), the value of the flow variables at any point above

blade "+1" at time t 1 are made to correspond to the value
at the point above blade "0" at time t 2 . Thus:

fmcp,Lt=ti f3,0=t2, where t2=ti+a/w=t1+0 .1-0/2r1 (5)

This periodicity condition is updated during every

vibration cycle.
Since, in unsteady flow, vorticities leave the trailing

edge and are convected downstream, the downstream
slipstream has to be treated as a discontinuity /15/. On
each side of this vorticity sheet the tangential velocity
component (CV) may be different, whereas the normal
velocity component (v) and the static pressure are the
same on both sides (Fig. 2a). To simulate this physical
phenomenon of vorticity convection, a flexible slipstream
is introduced and allowed to move in time and space as
part of the calculation. No explicit boundary conditions
are imposed, but the physical conditions of no pressure
jump and normal velocity are implicitly introduced using
the post correction technique /15/. This way of treating
the slipstream explicitly has proved to be accurate in
relating the amount of vorticity shed by the blading and
the Instantaneous lift on it /15/. This feature seems to
be extremely important in describing the unsteady flow
around blades in cascades.
As for the upstream periodicity line, care must be taken
to use values of the flow variables which take the pre-
defined interblade phase angle into account.

EXAMPLES OF APPLICATIONS

Steady State Rumpflow: As an example of a steady state

solution the flow through a channel with a 10% thick
bump on the lower wall is given. Agreement between the
present results and the ones presented by Ni /16/ is good
(Fig. 3).

Validation of Periodic Boundary Conditions: In the case of
a 180 0 interblade phase angle in the movement between
adjacent blades, a straightforward verification of the
periodicity assumption as presented above can be
performed in a fairly simple manner.

Between two blades vibrating in normal to chord bending
and in phase with each other (Fig. 4, blades "0" and "+2"),
one intermediate fixed blade is introduced (blade "+1").
This movement of the cascade corresponds to a case of a
180° interblade phase angle as far as the phase angle of
the responding flow variables is concerned. Obviously, no
conclusion about the amplitude of the result can be drawn
from this Investigation.
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At all the boundaries AOBCDERGHIA the boundary

conditions given earlier for zero interblade phase angle

are used. At the intermediate blade no boundary

conditions are imposed upstream or downstream of the

blade (lines OP and OR respectively). Instead, the values

of the flow variables on these lines are the results of

calculations of interior points only.

When blades "0" and "+2" move upwards, the relative

movement of blade "+1" towards blade "0" is downwards,

i.e. both blades create an overpressure in the blade

passage between them (OBCDEROP0); it is therefore

expected that the response of the flow variables on lines

M=MCIM and M=3 will be identical in relation to the phase

angle. Similarly, the phase angle on lines M=MCIP and

M=MCM should also be identical.

In Fig. 4a comparison of the fluctuating pressures on

lines M=3, M=MCIM, M=MCIP and M=MCM is given for an

upstream point (L=L1). It should be noted that:

• The pressure responses on lines M=3 and M=MCM

nave the same amplitude and are 180° out of phase in

relation to each other. This is the expected result as

blades "0" and "+2" move in phase.

• The pressures on lines M=MCIM and M=MCIP also

show the same amplitude and are 180° out of phase. This

is correct as the relative motion of blade "+1" towards

blades "0" and "+2" creates an overpressure on one side
and an underpressure on the other side of the blade.
• The pressures on lines M=3 and M=MCIM are in

phase as, in relation to each other, the blades "0" and

"+1" have an identical motion. However, the amplitude of

the pressures on line M=MCIM is lower than that of the

ones on line M=3 as blade "+1" is fixed in the absolute

frame of reference, while blade "0" is moving.

• Similarly, the pressures on lines M=MCIP and

11=MCM are in phase.

• The pressures on lines M=3 and M=MCIP are 180° out

of phase. This phase shift corresponds exactly to the

phase angle in the relative blade movement of blades "0"

and "+1". Therefore it can be seen that, if the values on

line M=3 are used as a boundary condition for line

M=MCIP, a phase shift of half a cycle has to be

introduced, i.e.:

t2=t1+1-0/24 +aT0/2Tr as a=ir (=180 0 )

which is in agreement with eq. (5).

The proposed assumption for periodicity conditions at

non-zero interblade phase angles is thus validated for

0=180 ° .

Comparison with an Analytical Linearized Theory for 

Different. Interblade Phase Angles: Further to the

validation of the assumed boundary conditions as

discussed in the previous chapter, comparisons have been

made with the linearized subsonic analytical flat plate

theory by Smith and Whitehead /4/.

The validation is done here by comparing the unsteady

pressure difference coefficient along the blade (Acp(z),

(DA p(z)) according to the flat plate theory with the

calculations of the present model on a 4% thick Double

Circular Arc profile, at a moderate inlet Mach number

= 0.4) and at different stagger angles, reduced

frequencies and interblade phase angles. The trend of the

aerodynamic lift coefficient (cL, (DO is also given in

some cases.

In Fig. 5 the aerodynamic lift coefficient is compared for

a 90° stagger angle and a high pitch-to-chord ratio (T =

5.0), at a high reduced frequency (based on half chord) of

k = 1.4. This case can be considered as close to an

isolated blade case. It is thus expected that both the
amplitude and phase angle of the lift coefficient remain

almost constant at different interblade phase angles.

This is concluded to be the case for both methods,

although the analytical theory shows a big change at a 0°

interblade phase angle. This is due to the closeness to

the acoustic resonance (/5/), which for the case

calculated is situated at a 10° interblade phase angle.

Apart from this resonance, the results obtained from the

two methods agree well.

In Fig. 6 the blade surface pressure difference

coefficient and aerodynamic lift coefficient are given for

a case with a pitch-to-chord ratio T = 1 .0 .

Fig. 6b shows good agreement for the pressure difference

coefficient between the two methods for o = 0 ° .

Oscillations close to the leading edge for the present

method appear because the blades have sharp leading

edges and because no artificial damping terms are used in

the calculation to smooth out these over- and under-

Fig. 5. Aerodynamic lift coefficient.
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Fig.	7. Blade surface pressure

aerodynamic lift coefficients.
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shoots. In addition, in the results presented, only 12 grid

points were used on the blade surfaces. 2

Agreement between the two methods is however not so

good at interblade phase angles of 90° and 180° (Fig. 6b).

This is because the analytical theory predicts a constant

lift coefficient for all interblade phase angles between

the acoustic resonances at a = 70° and 0 = 290° (i.e. in

the region of subresonant blade motion according to the

linear theory, see /5/) for this high reduced frequency

(Fig. 6a). The present method predicts instead an increase

in lift coefficient between 0= 0" and 0= 180°, which

agrees well with the lift distribution at a lower reduced

frequency k= 0.35 (Fig. 7a). At this lower reduced

frequency, the unsteady blade surface pressure difference

distribution compares well in both methods for all

interblade phase angles (Fig. 7b). Oscillations, both in

amplitude and phase, at the leading edge region are again

noticeable.

In Fig. 8 results are once more presented for k= 1.4, but

now at a stagger angle of /= 60°. Again, a certain

difference between the two methods is noted in the

Fig.	6. Blade surface pressure difference	and

aerodynamic lift coefficients.

2 The inaccuracy in overall values (for example cL) due to

these numerical oscillations may be reduced (but not

completely eliminated) by introducing an artificial

damping, and increasing the number of points in the

leading edge region. However this has not been done since

the main objective is to investigate the propagation of

disturbances in the blade passage with a reasonable

computer time, and not to use artificial damping devices

to give smoothed results. The only way to get rid of these

oscillations completely is to use a body-fitted coordinate

system (0- or C-grid, and not an H-grid as in the present

study) which gives good resolution around rounded leading

edges.
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Fig.	8.	Blade surface pressure difference	and

aerodynamic lift coefficients.

Fig.	9.	Blade	surface pressure difference	and

aerodynamic lift coefficients
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Computational domain

Discharge nozzles

Infinitely long tube
with undisturbed right-
running characteristics

Characteristics

from infinity

Discharge nozzles 

Infinitely large
capacity

Constant (in time)

stagnation pressure

imposed. 

Computational domain 

aerodynamic lift coefficient between the acoustic

resonances d= 85° and o = 305° (i.e. in the subresonant

region of blade motion, Fig. 8a).

As in the case of a 90° stagger angle, the results at a 0°

interblade phase angle agree well (Fig. 8b), but there are

some differences in the blade surface pressure difference

coefficient in the region between the acoustic

resonances.

Also for the cascade with a 60° stagger angle the results

of the two methods correspond better when the plateau in

the aerodynamic lift coefficient is not predicted by the

analytical theory. This is shown in Fig. 9, where results

for = 60 ° and k = 0.35 are given. The trend of the

aerodynamic lift coefficient is similar for both programs

(Fig. 9a), and the detailed blade surface pressure

difference coefficients agree well for all interblade

phase angles (Fig.9b) 3 .

From these verifications it can be concluded that the

proposed method of treating the periodicity conditions at

non-zero interblade phase angles is reliable for the

present method.

Reflective and Radiative Boundary Conditions: 

As it is known from linearized theories, the inlet and

outlet boundary conditions may significantly influence

the unsteady flow through a vibrating cascade. It is thus

of importance to, for this new application with a

numerical solver, establish the eventual influence of

these boundaries.

Such investigations are important for two main reasons:

• If the time-dependent technique aims at a steady

solution it is normally of interest to obtain this result

as fast as possible. However, care must be taken to

simulate the same physical phenomenon. In most cases of

stationary flow, the same solution for radiative and

reflective boundary conditions will be obtained.

• This is however not always the case during an

unsteady flow calculation. Here different boundary

conditions simulate separate physical phenomena, and it

is not expected that the resulting unsteady flow should

be the same for radiative and reflective boundary

conditions.

In what follows, two conditions for treating the inlet

boundary are presented. The first technique is the one

which is usually used for Euler solvers. Here, the

incoming flow is considered as coming from an infinitely

3 In this context it is of interest to note that one of the

conclusions of the project "Aeroelasticity in

Turbomachine-Cascades" /10/ was that at high reduced

frequencies (k=1.0 in that investigation), fairly large

discrepancies between different theories may appear.

large capacity with prescribed stagnation pressure. The

discharge from the capacity into the physical region of

interest is obtained by imaging an infinite number of

small nozzles which direct the flow in the desired

direction (Fig. 10). As stipulated earlier, the two

boundary conditions to be specified at the inlet are

stagnation pressure and flow direction.

In the second technique, the inlet and outlet boundaries

are instead simulated so as to reduce the reflection. This

is done by imaging an infinitely long distance with

undisturbed right running characteristics upstream of the

inlet (Fig. 10). The left running disturbances are thus

simple waves, which are washed out through the boundary

with a smaller reflection than in the first technique.

An example of a steady state calculation shows that the

convergence time is significantly reduced if the second

technique is used (Fig. 11). Convergence is reached after

approximately 1/3 of the iterations for the first

technique 4 .

Fig.	10. Physical interpretation of radiative and

capacity boundary conditions.

4 If a radiative condition is imposed at the outlet also,

the convergence is even faster.
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change significantly in relation to these lengths, and so

there are only small changes in the aerodynamic lift and

damping coefficients.

In the case of the "radiative" boundary condition the

reflections at the inlet and outlet surfaces are

considerably reduced; only a minor reflection occurs

because the simple waves are not yet perfectly straight

10 
Evolution ofof pressure
along this line    

2 .012=11:510.

6
	

16
	

21

1	 6	L	12	1	 6	L	12

	a. Capacity inlet condition	c. Radiative inlet condition

1	 6	L	12

b. Capacity inlet condition

1
	

6	L	12

d. Radiative inlet condition

in

The reason for this change in convergence rate is found

at the boundaries. In the first case (stagnation pressure

and flow angle prescribed at the inlet, static pressure

kept constant at the outlet) the pressure perturbations

created in the flow field during the transient are, to a

very large extent, reflected back into the cascade at the

inlet and outlet boundaries. This can be concluded from

Fig. 12a, where the behaviour of the pressure in the inlet

region is represented at different time steps.

It should be noted that as the time increases the

pressure amplitude peak approaches the inlet boundary.

However, close to the inlet (L<3) the amplitude of the

pressure waves propagating towards the inlet decreases.

This behaviour is typical when a disturbance wave is

reflected at the boundary, see Fig, 12b, Here the lines of

constant pressure along "L" are represented in time. As

the time increases, the isobars first move towards the

inlet, but are then turned (reflected) back into the flow

field.

In contrast to this reflection, the same diagrams are

represented in the case where the "radiative" boundary

condition is employed at the inlet. Note (Fig. 12c-d) that

the pressure waves created at the blades during the

transient are now to a large extent "washed" out of the

computational domain instead of being reflected back. It

is therefore expected that a computation with the

"radiative" boundary conditions will eliminate the initial

transient disturbances, and achieve a steady state

solution faster than with other boundary conditions.

During a calculation with vibrating blades, a similar kind

of reflection will be present at the boundaries with the

first technique. This reflection may be significant, and

the unsteady pressure amplitudes (everywhere in the flow

field) may vary widely, depending upon the upstream and

downstream computational lengths. It has however been

concluded from the computed results that the blade

surface pressure difference coefficient (Ac p ) does not

Stagnation pressure

	

1.01•	

Radiative condition

II
	

— — — — Capacity condition

I	1 I	A

I	I I	I	1

1.00
	1 i	̂
	--	% 1 s	I , 

	

i %	i \/'', 7 % %,...,	-....... _17
i	1 t # 	—.

\ ..% g

%V

I	I

I I

.99 a	'

Time

Fig. 11. Convergence rate for radiative and capacity

boundary conditions.

Fig. 12. Pressure distribution in the inlet region for the

radiative and capacity inlet conditions.
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and a small gradient still exists in the circumferential

direction (the reflection will completely disappear in the

case of perfectly straight waves, i.e. no gradients and
actual 1-D flow). Fig. 13a refers to the pressure contour

in the inlet region and shows no reflection at all and only

minor reflections are shown in Fig. 13b, which refers to

the velocity component

It can thus be concluded that for correct prediction of

the local pressures in a given unsteady flow phenomenon,

corresponding boundary conditions must be employed and

that the use of the radiative simulation as a boundary

condition introduces the smallest reflections back into

the flow field. If, on the other hand, only unsteady blade

surface pressure difference coefficients or integrated

values, such as aerodynamic lift or damping are of

interest, both boundary conditions have been experienced

to give similar, although not identical, results.

CONCLUSIONS

A numerical method for solving the fully unsteady two-

dimensional compressible inviscid flow (based on the

Euler equations) through an oscillating subsonic cascade

has been put forward. it has been shown that:

• the method gives stationary results which agree

well with other numerical methods (/16,17/) for channel

flow and moderately thick cascaded airfoils.

• the unsteady results obtained with the present

method agree well with an analytical flat plate theory

/4/, apart from certain cases in the region of

Hg. 13. Reflection at inlet for radiative boundary

condition.

subresonant blade vibration at high reduced frequencies.

the assumed periodicity conditions for non-zero

interblade phase angles have been validated.

• even if different physical inlet and outlet boundary

conditions give identical stationary results, the unsteady

behaviour of the flow may be quite different. The use of

a "radiative" boundary condition introduces the smallest

reflection from the boundary into the flow field.

• if there is a reflection at the inlet surface, the

unsteady response in the cascade itself varies with the

upstream computational length. For correct simulation of

an actual physical phenomenon the choice of the boundary

conditions, as is already known from linearized theories,

is essential in unsteady flow investigations.

It can be concluded that the present numerical

methodology can be used as a tool for computing and

predicting wave propagation phenomena in unsteady flow

through vibrating cascades. It also gives a good

indication of the aerodynamic lift and damping

coefficients on the vibrating blades.
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