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ABSTRACT

This study investigates the flow structures behind an atmospheric entry capsule at Mach number 0.4 through an improved detached eddy
simulation and a modal analysis. The simulated flowfields reveal relatively low-frequency peaks of St ≈ 0.016 and St = 0.17–0.2 in the aero-
dynamic coefficient variation, where St is the nondimensional frequency. Then, the dominant fluid structures that cause the frequency peaks
are identified through dynamic mode decomposition and the compressive-sensing-based mode selection method. Many of the dominant
fluid phenomena have a frequency of St ≈ 0.2. In this frequency range, the fluid phenomena are mainly characterized with a large-scale
vortex shedding separated from the capsule’s shoulder part and with a helical fluid structure in the wake. Moreover, the variation in the
lift coefficient of the capsule is mainly attributed to the large-scale vortex shedding phenomenon. Furthermore, a fluid phenomenon at a
frequency of St = O(0.01) is found, which describes the pulsation, or periodic growth or shrinkage, of the recirculation bubble, accompa-
nied by pressure fluctuation behind the capsule that exerts a large drag fluctuation of the capsule. Additionally, this phenomenon seems
related to the dynamic instability phenomena of the capsule, as indicated by its time scale, which is close to that of the capsule’s attitude
motion.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5092166., s

I. INTRODUCTION

Atmospheric entry capsules tend to be dynamically unstable at
a wide range of subsonic and supersonic speeds.1–5 For example, the
pitching angle of the capsule oscillates at a limit-cycle state, or its
oscillation amplitude grows and finally diverges. As such properties
largely relate to the success or failure of a mission, they should be
designed to accurately predict the dynamic instability of the capsule,
a phenomenon assumingly attributed to the near-wake fluid phe-
nomenon of the bluff-body-shaped capsule. Teramoto and Fujii6,7

investigated flowfields around the capsule under forced pitching
oscillation, on a hypothetical basis that dynamic instability is a
phase lag between the attitude motion of the capsule and a pres-
sure fluctuation in the recirculation bubble behind the capsule, lead-
ing to hysteresis in pitching moment variation. Sammonds8 and
Chapman et al.9 found both experimentally and numerically that

transforming the flat aftbody of the capsule into a hemispherical
shape made it more stable.

One of the causes of amplitude divergence in general oscillation
is the resonance phenomenon, where the oscillation amplitude dra-
matically increases as the oscillator receives a periodic external force
having a close-to-natural frequency. With respect to the dynamic
instability of the atmospheric entry capsule, if the Strouhal number is
defined as St = fD/U∞ using capsule diameterD, uniform flow veloc-
ity U∞, and frequency f, then the typical oscillation frequency of the
capsule observed in the experiment is St = O(0.01).2,3 Nevertheless,
past studies on atmospheric entry capsules have not reported fluid
phenomena at a frequency on the order of St = O(0.01) although
they have generally confirmed the vortex shedding phenomena of
St = O(0.1) and separated shear layer instability of St = O(1.0).

Many studies have shown that the wake structure of a basic
bluff body shape, such as spheres and thin disks, produces similar
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fluid structures. In particular, fluid phenomena having frequencies
of the order of St = O(0.01) have been confirmed in experiments
and numerical simulations. Based on experimental observations,
Berger et al.10 proposed that low-frequency fluctuations occurring
behind a disk and a sphere correspond to the pulsation motion of
a recirculation bubble, which Yang et al.11 validated via numeri-
cal simulations. Tian et al.12 recently analyzed the variation in the
recirculation bubble size behind a disk of Reynolds number Re = 1.5
× 105 by large eddy simulation, which apparently showed a near-
wake pressure fluctuation of St = 0.01 recirculation bubble pulsa-
tion. Moreover, the low-frequency oscillations were also found in
the wake of two-dimensional cylinder bodies13,14 and axisymmet-
ric slender bodies.15,16 Based on these results, the occurrence of a
similar low-frequency phenomenon can be presumed in a capsule’s
wake.

To clarify the mechanism of the dynamic instability, the cou-
pled analysis including the motions of the capsule and the flowfield
around it is necessary. However, only a few studies have highlighted
the unsteady behavior of the three-dimensional fluid structure of the
wake even in the case of a stationary capsule. This study aims to clar-
ify the three-dimensional spatial structure and its temporal behavior
of the flowfield around a stationary capsule at subsonic speed. We
initially perform an unsteady fluid simulation via improved delayed
detached eddy simulation (IDDES).17 Next, we employ dynamic
mode decomposition (DMD)18,19 to the unsteady flowfield data
obtained around the capsule for extraction of the fluid phenom-
ena contained in the wake. Furthermore, using a mode selection
method based on compressive sensing,20 we identify DMD modes
representing particularly dominant fluid phenomena and clarify the
fluctuation of aerodynamic forces (the lift, drag, lateral forces, and
the pitching moment) these fluid phenomena give to the capsule.

II. FLUID SIMULATION

A. Test conditions

We used a capsule-shaped re-entry vehicle called the H-II
transfer vehicle-return (HTV-R) vehicle21 shown in Fig. 1, which
had been planned by the Japan Aerospace Exploration Agency
(JAXA), as the test model. Koga et al.5 conducted a single-degree-
of-freedom (1-DOF) free-rotation test on this model and found
remarkable dynamic instability at Mach numbers of 0.4 and 1.1. We
setMach number to 0.4 to investigate the wake structures at subsonic

FIG. 1. Overview of the test model.

speeds. The Reynolds number defined by the freestream velocity
U∞ and the capsule’s maximum diameterD was Re = 1.9 × 106. The
angle of attack was fixed to α = 20○, which is the design trim angle of
HTV-R.

B. Flow solver

We performed a simulation using FaSTAR,22 which is an
unstructured numerical fluid simulation code developed by JAXA,
governed by three-dimensional compressible Navier–Stokes equa-
tions. Inviscid flux and the gradient were evaluated using the
Harten–Lax–van Leer–Einfeldt–Wada23 scheme and the Green–
Gauss least-squares method, respectively.24 Second-order spatial
accuracy was achieved using themonotonic upwind scheme for con-
servation law method.25 We applied IDDES based on the Spalart-
Allmaras turbulence model (SA-IDDES)26 and performed time
integration via the lower-upper symmetric Gauss–Seidel (LU-SGS)
method.27 Moreover, second-order temporal accuracy was achieved
by solving the second-order backward differences using the dual-
time stepping method,28 for a time step size of ΔtCFDU∞/D = 1.40
× 10−3. Hashimoto et al.29 successfully reproduced the results of a
wind tunnel experiment of HTV-R5 through FaSTAR by following
the stated calculation methods.

Figure 2 shows the computational mesh we used in the sim-
ulation. It was generated by the HexaGrid30 software developed

FIG. 2. Computational mesh.
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by JAXA, which is capable of generating body-fitted layered meshes
on no-slip walls and Cartesian meshes in the other regions. The
minimum mesh spacing on the wall surface was y+ = 1. To accu-
rately capture the wake flow, we uniformly subdivided the wake
region (x/D < 15). The total number of grid points ncell was approxi-
mately 5.6× 107. Adiabatic and no-slip wall conditions were adopted
for the capsule’s body boundary, while a uniform flow condition
was adopted for the far-field boundaries (x/D = ±100, y/D = ±100,
z/D = ±100).

Appendix A details the validation of the present numerical
simulation results.

III. MODAL ANALYSIS

We analyzed the three-dimensional unsteady flowfield data
obtained from the fluid simulation through the modal decompo-
sition methods described below. The modal decompositions were
performed using FBasis,20,31 which is a modal analysis tool for fluid
dynamics datasets developed by JAXA.

A. Input datasets

The input dataset was a three-dimensional spatial distribu-
tion of the flowfield at each time. Each snapshot represents a
d-dimensional vector in which five variables of density (ρ), velocity
(u, v, and w), and pressure (p) on each cell used for computational
fluid dynamics are arranged as follows:

ψk ≙ ∥ρ1 u1 v1 w1 p1⋯ ρncell uncell vncell wncell pncell∥
T
, (1)

where the subscript k (=1, . . ., N) on the left-hand side of the equa-
tion corresponds to the time (tk = kΔt) of each snapshot and the
subscript on the right-hand side represents the cell number. The
time interval between the snapshots was ΔtU∞/D = 0.28. The num-
ber of snapshots was N = 3500, which includes about 10 cycles
of the low frequency phenomenon assuming that its frequency
is St = 0.01.

Herein, the inner product between the data is defined as32

⟨ψi,ψj⟩ ≙ ∫
V
(ρiρj + uiuj + vivj +wiwj + pipj)dV , (2)

where V and dV are the computational domain and volume ele-
ments for which the data are defined. By defining the inner product
in the form of the volume integral, we could reduce the dependence
of the inner product calculation on the computational mesh.

B. Low dimensionalization

The dataset obtained by the present three-dimensional
unsteady fluid simulation contained considerable data; thus, due to
computational memory size limit, conventional modal decomposi-
tion methods were hardly applicable to the dataset. We solved the
difficulty by low dimensionalization of the input dataset through
the incremental proper orthogonal decomposition (incremental
POD).20,33

Here, POD bases were calculated as orthogonal bases Pr ∈ Rd×r

that minimize the following equation:

minimize J1(Pr) ≙ ∥Ψ − PrPT
r Ψ∥

2

F , (3)

where ∥⋅∥F andΨ ≙ ∥ψ1⋯ψN∥ ∈ Rd×N represent the Frobenius norm
and the input dataset, respectively.

To solve Eq. (3), conventional POD algorithms34 need to
simultaneously store the entire input dataset Ψ in computational
memory, whereas the incremental POD only sequentially pro-
cesses them one-by-one, thereby preventing the stacking of data
in the computational memory, given a large amount of input.
Incremental POD has been widely explained by Arora et al.33

and Ohmichi.20

Thus, we low-dimensionalized the input dataset Ψ using the
POD bases Pr given by the incremental POD algorithm as

Ψ̃ ≙ PT
r Ψ, (4)

to obtain dataset Ψ̃ ≙ ∥ψ̃1⋯ψ̃N∥ ∈ Rr×N . In this study, we set r = 81.
The contribution rate of POD modes is discussed in Appendix B.

C. Dynamic mode decomposition

DMD is a modal decomposition method developed by
Schmid18 that considers a linear operator A satisfying the relation

Ψ1 ≈ AΨ0, (5)

whereΨ0 = [ψ1. . .ψN−1] andΨ1 = [ψ2. . .ψN] denote partial matrices
of the input datasetsΨ. TheDMDmode is obtained as the eigenvalue
λ and eigenvector ϕ of the eigenvalue problem

Aϕ ≙ λϕ. (6)

In other words, DMD approximates the time evolution of input
variables with a linear system and expresses those data through the
superposition of system solutions. Many methods have been pro-
posed for the DMD algorithm; this study employed the total least
squares DMD (TDMD) method19 to obtain matrix A that satis-
fies Eq. (5) as it has better input dataset reproducibility perfor-
mance compared to the conventional DMD algorithm employing
the ordinary least squares method. This algorithm is detailed by
Hemati et al.19

To handle the large dataset described above, we used low
dimensional dataset Ψ̃ as the input dataset of DMD instead of Ψ.
The DMDmode (λ, ϕ) of the original dataset Ψ was calculated from

the DMDmode (λ̃, ϕ̃) of Ψ̃ through

λ ≙ λ̃ and ϕ ≙ Prϕ̃. (7)

The growth rate σ and oscillation frequency St of each correspond-
ing DMDmode can be calculated from λ as follows:

σ ≙ log(∣λ∣)
Δt

and St ≙ Arg(λ)
2πΔt

. (8)

D. Identification of dominant modes

One drawback of DMD is identifying which among the
obtained modes is physically important. This is solved by the com-
pressive sensing approach introduced by Jovanović et al.35 using
the least absolute shrinkage and selection operator (LASSO).36 With
this technique, all input datasets are expressed in as few modes as
possible while maintaining a small reconstruction error. Recently,
a greedy compressive sensing method for DMD was proposed by
Ohmichi,20,31 as described next.
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Referring to Alenius,37 we defined the reconstruction formula
for a criterion of mode selection as

Ψ̃ ≈ Φ̃C, (9)

≙ [ϕ̃1 ⋯ ϕ̃r]
⎡
⎢
⎢
⎢
⎢
⎢
⎣

c11 ⋯ c1N

⋮ ⋱ ⋮

cr1 ⋯ crN

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (10)

That is, the coefficient ck ≙ ∥c1k⋯ crk∥
T is determined for each time

step k = 1, . . ., N. The optimal coefficient is obtained by Copt ≙ Φ̃+
Ψ̃

through Φ̃+, which is the pseudoinverse matrix of Φ̃. From these for-
mulas, we found important modes that are a combination of modes
minimizing the reconstruction error as

minimize J2(S) ≙ ∥Ψ̃ − Φ̃SΦ̃
+
SΨ̃∥

2

F , (11)

where S ≙ { j∣ j ∈ {1, . . . , r}, ϕ̃j ≠ 0} is a subscript set, Φ̃S is a
matrix obtained by replacing the DMD mode corresponding to the
subscript not included in the subscript set S by 0 for the matrix
Φ̃ ≙ [ϕ̃1⋯ϕ̃r]; that is, S represents a combination of selected DMD
modes.

Moreover, we used a compressive sensing algorithm based on
the greedy method20,31 to find the optimal set S that minimizes
Eq. (11). In general, finding the exact solution of combinatorial
optimization problems is a difficult task due to the very large compu-
tational complexity. The greedy algorithm is one of the most funda-
mental algorithms for obtaining approximate solutions of combina-
torial optimization problems. Furthermore, it is known to provide a
good approximate solution for several practical problems38 at a low
computational cost.

The greedy algorithm repeatedly selects a single mode for min-
imizing J2(S) in succession. In the initial iteration step, we obtain a
mode that minimizes J2(S) for a single DMD mode by calculating
the minimum reconstruction error J2(S) for each mode. In the next
iteration step, we obtain a mode for a minimum J2(S) after combin-
ing it with the mode found from the initial step and then adding it to
the set S as the second selection mode. In the subsequent iteration
steps, the modes are selected in the same manner of succession. Iter-
ation terminates after the number of selectedmodes reachesK (spec-
ified by the user). Through this pattern, the number of computa-
tions of the reconstruction error J2(S) becomes dramatically smaller
than that yielded when all combinations are considered; thus, an
approximate solution is obtained considering the practical computa-
tional cost. This algorithm is summarized in Algorithm 1. With the

ALGORITHM 1. Greedy mode selection algorithm.

Input: Φ̃, Ψ̃, and sparsity level K.

Initialize: iteration counter i = 0, estimated support S0 ≙ 0/.
while i < K do

j0 ≙ argminjJ2(S
i
∪ j), j ∉ Si,

S
i+1 ≙ Si

∪ j0,
i = i + 1.

end

selected DMDmode, the reconstructed (approximate) dataset ΨR of
the original input dataset Ψ can be calculated as

ΨR ≙ PrΦ̃SΦ
+
SΨ̃. (12)

IV. RESULTS AND DISCUSSION

A. Fluid simulation results

Figure 3 shows the instantaneous flowfield obtained by IDDES.
The vortex structure of the capsule’s wake is visualized by the
isosurface of the Q-value.39 Flow separation at the capsule shoul-
der part is rapidly destabilized, with many generated small vor-
tex structures. Moreover, a regular waviness structure appears in
the wake on both x–y and x–z planes, as depicted in Fig. 3, sug-
gesting the existence of a large-scale periodic vortex shedding phe-
nomenon. Figure 4 shows the streamline of the time-averaged flow-
field, which displays flow separation on the shoulder portion of
the capsule as a result of its relatively sharp edge. As observed,
a large recirculation region is generated behind the capsule,
0 < x/D < 2.

Figure 5 shows a frequency distribution calculated from time-
series data of lift, drag, and pitching moment coefficients. Power
spectrum densities (PSDs) were calculated using Welch’s method,40

dividing the time-series data into five segments (with 50% over-
lap), resulting in frequency resolution ΔSt = 2.7 × 10−3. In the lift
coefficient, a frequency peak of St = 0.17–0.2 is observed, which
is due to the periodic vortex shedding mentioned above, and is
coincident with the characteristic frequencies of wake instability of
a sphere.41,42 In the drag coefficient, St ≈ 0.016 is dominant and
the variation due to a vortex shedding of St = 0.17–0.2 is small,
a similar tendency presumed to be observed in flowfields around
a sphere.43 Interestingly, this low frequency matches that of the
dynamic instability phenomenon of the capsule observed in the
experiment.5 In the rest of this section, DMD and mode selection
analysis are used to identify structures corresponding to these fluid
phenomena.

FIG. 3. Instantaneous flowfield obtained by IDDES. Vortex structures in the wake
are illustrated with isosurfaces of Q-value.
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FIG. 4. Streamlines of the time-averaged flowfield at (a) y/D = 0 and (b) z/D = 0.

B. Eigenvalues and identified dominant modes

Figure 6 shows the eigenvalue distribution of each DMDmode,
as well as the 11 modes specified as the dominant modes by the
mode selection method described in Sec. II. (Here, because the
oscillatory mode always appears as a pair of complex conjugate

FIG. 5. Frequency distribution of lift, drag, and pitching moment coefficients.

FIG. 6. Distributions of DMD eigenvalues and dominant modes identified by the
mode selection algorithm. Note that negative frequency modes (St < 0) are
complex conjugate modes of positive frequency modes.

modes, we count two modes of a pair as one mode.) First, the
algorithm selects a mode where both growth rate and Strouhal
number are 0, or a mode representing the mean flowfield. As for
the other modes, those with frequencies near St ≈ 0.2 are chosen
mainly as the dominant modes. Furthermore, we confirm that the
modes of St = 0.0136 and St = 0.0159, with frequencies smaller than
these modes by one order of magnitude, are also dominant. Addi-
tionally, these frequencies are close to the frequency peak of the
drag coefficient (Fig. 5) and coincident with the dynamic instabil-
ity frequency observed in previous studies3,5 and thus are expected
to be related to the phenomenon. The characteristics of these
dominant DMD modes are examined in detail in the subsequent
texts.

C. Spatial structures of dominant modes

After examining the dominant modes specified by the mode
selection algorithm, we reveal the existence of their characteristic
spatial structures, as illustrated in Figs. 7–12. Figure 7 (Multime-
dia view) shows the DMD mode with St = 0.189. The isosurface of
the freestream direction velocity component [Fig. 7(a), (Multime-
dia view)] shows large-scale vortex structures regularly shed from
the top and bottom shoulder parts (namely, +z and −z sides) of the
capsule. Figure 9 (Multimedia view) shows the mode of St = 0.200,
whose spatial structure is similar to that of the mode of St = 0.189,
but whose vortices are emitted from the left and right shoulder parts
(namely, +y and −y sides) of the capsule, as also apparently observed
from the distribution on the z/D = 0 plane [Fig. 9(c)]. Such staggered
distribution appears in the modal analysis of Karman vortex streets,
which expresses an advection phenomenon of regularly generated
vortices from the left and right parts of the capsule. Presumably,
the limited symmetry due to an angle of attack (nonaxisymmet-
ric but symmetric with respect to the plane y/D = 0) caused the
directional (top/bottom and left/right) vortex shedding phenomena,
which is a difference between wakes of axisymmetric bodies (e.g., a
sphere and a circular disk) and the capsule with an angle of attack.
Marquet and Larsson44 reported similar top/bottom and left/right
vortex shedding instabilities behind rectangular plates by global
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FIG. 7. Spatial structures of St =
0.189 mode. Velocity fluctuation com-
ponent in the x-direction. (a) Isosur-
faces (Multimedia view). Yellow and light
blue indicate opposite signs. Distribu-
tions of the planes of (b) y/D = 0 and
(c) z/D = 0. Multimedia view of (a):
https://doi.org/10.1063/1.5092166.1

FIG. 8. Vortex cores of St = 0.189 mode
indicated by blue plots.

stability analysis. Figures 8 and 10 show the vortex cores of the large-
scale vortices. The vortex cores were identified by a method based
on critical point theory.45 The figures suggest that shapes of the
vortices are hairpinlike vortex loops. Figure 11 (Multimedia view)
gives the mode of St = 0.176, depicting a helical spatial structure
generated from the capsule’s shoulder part presumed to be caused

by the rotation of a fluctuation phase in the capsule shoulder part in
the circumferential direction. Similar helical structures are observed
in the wake of a sphere and a disk by an experiment10 and a numer-
ical simulation.42,46 Constantinescu and Squires42 reported that the
helical structures appear behind a sphere at low Reynolds numbers
but disappear at high Reynolds numbers (Re = 1.14 × 106 in their

FIG. 9. Spatial structures of St =
0.200 mode. Velocity fluctuation com-
ponent in the x-direction. (a) Isosur-
faces (Multimedia view). Yellow and light
blue indicate opposite signs. Distribu-
tions of the planes of (b) y/D = 0 and
(c) z/D = 0. Multimedia view of (a):
https://doi.org/10.1063/1.5092166.2

Phys. Fluids 31, 074105 (2019); doi: 10.1063/1.5092166 31, 074105-6

© Author(s) 2019

https://scitation.org/journal/phf
https://doi.org/10.1063/1.5092166.1
https://doi.org/10.1063/1.5092166.2


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 10. Vortex cores of St = 0.200 mode
indicated by blue plots.

FIG. 11. Spatial structures of St =
0.176 mode. Velocity fluctuation com-
ponent in the x-direction. (a) Isosur-
faces (Multimedia view). Yellow and light
blue indicate opposite signs. Distribu-
tions of the planes of (b) y/D = 0 and
(c) z/D = 0. Multimedia view of (a):
https://doi.org/10.1063/1.5092166.3

case). Berger et al.10 reported that the wake structure of a circular
disk is almost Reynolds-number-independent, whereas that of the
sphere is not. It can be inferred that wake structures of an atmo-
spheric entry capsule are similar to that of a circular disk since
the capsule’s shoulder portion has a relatively sharp edge. In sum-
mary, the fluid phenomenon having a frequency of St ≈ 0.2 can

be described mainly by three types of dominant fluid structures,
namely, large-scale vortex shedding separated from the top and bot-
tom parts of the capsule’s shoulder and from the left and right parts,
and a helical fluid structure.

Figure 12 (Multimedia view) shows the mode of St = 0.0159.
The spatial structure of this mode is significantly different from that

FIG. 12. Spatial structures of St = 0.0159 mode. Velocity fluctuation component in the x-direction. Same color scheme as in Fig. 7. (a) Isosurfaces (Multimedia view).
(b) Distributions on the planes of x/D = 7.5 and 15, and vortex cores (indicated by blue lines). (c) Velocity vector field on the plane of x/D = 7.5. Multimedia view of (a):
https://doi.org/10.1063/1.5092166.4
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of the mode with St ≈ 0.2 frequency. From Figs. 12(b) and 12(c),
this mode shows longitudinal vortex structures downstream of the
recirculation bubble behind the capsule. An animation of the fig-
ure (Multimedia view) confirms the slow motion of the vortices in
the circumferential direction. Additionally, a pulsation motion of
the velocity is observed at the near-wake of the capsule. A detailed
motion of this phenomenon is provided in Sec. IV E.

D. Aerodynamic forces caused by each DMD mode

We clarify the influence of the fluid phenomenon caught as
the dominant DMD mode on the aerodynamic coefficients. The
contribution of each mode on the aerodynamic force is quanti-
tatively evaluated via the rms amplitudes of the variation in the
aerodynamic coefficient caused by each mode, as shown in
Fig. 13. As expected from the frequency characteristics shown in
Fig. 5, the low-frequency modes of St = 0.0136 and St = 0.0159
cause a large variation in the drag coefficient, while the modes of
St ≈ 0.2 cause a large variation in the lift and pitchingmoment coeffi-
cients. The aerodynamic force exerted by modes with relatively high
frequencies (St = 0.253, 0.284, 0.347) is small.

After an in-depth observation, we understand the correspon-
dence between the spatial structure of each mode and the aero-
dynamic force each exerts on the capsule. As such, the mode of
St = 0.189, which represents vortex shedding from the capsule’s top
and bottom shoulders, as shown in Fig. 7 (Multimedia view), has
the most significant influence on the lift and pitching moment vari-
ations. Similarly, the mode of St = 0.200, which represents vortex
shedding from the capsule’s right and left shoulders, has a large con-
tribution to the lateral force variation. Furthermore, the mode of
St = 0.176, representing the helical structure in the wake, has an
almost comparable contribution as the lift and lateral force varia-
tions. Interestingly, the mode of St = 0.0136 and St = 0.0159 dom-
inates the contribution to the drag force variation and has a con-
tribution to lift, lateral, and pitching moment variations, thereby
indicating its significant influence on the unsteady aerodynamic
characteristics of the capsule.

E. Near-wake structure of St = O (0.01) modes

The DMD modes of St = 0.0136 and St = 0.0159 had a time
scale comparable to that of the low-frequency fluid phenomenon10,12

confirmed in the near-wakes of a circular disk and a sphere.
Figure 14 (Multimedia view) shows the streamline and pressure fluc-
tuation distributions of St = 0.0159 mode. Notably, the pressure
fluctuation around the capsule is important from the viewpoint of an
unsteady aerodynamic force on the capsule. In the figure, the flow-
field is the superposition of the mean flowfield x̄ and the mode ϕ of
St = 0.0159 obtained by the equation

x(θ) ≙ x̄ + C0(ϕR cos θ − ϕI sin θ), (13)

where ϕR and ϕI are the real and imaginary parts of the present
DMD mode ϕ, respectively; θ represents the phase; and C0 is the
amplitude set herein as the moment at which the drag fluctuation
due to this mode is maximum.

As observed, the length of the recirculation bubble behind the
capsule periodically changes (this fact can bemore easily understood
through the animation), a pulsation motion similar to that observed
in the flowfield behind a circular disk by Berger et al.10 and Tian
et al.12 Moreover, this pulsation motion is apparently accompanied
by periodic pressure fluctuations in the recirculation bubble: bub-
ble size varies in the presence of pressure gradient. The drag force
acting on the capsule correspondingly decreases with bubble growth
and increases with bubble shrinkage. The peaks of pressure fluctua-
tion occur near separation lines as indicated in the figure, which is
consistent with the observations by Berger et al.10 The fluid struc-
ture of St = 0.0136 mode (not shown here) is similar to that of the
St = 0.0159 mode, with the presence of a little asymmetry in the
former, which results in a lateral force (Fig. 13).

As mentioned above, the time scale of the pulsation motion
is close to the typical time scale of the capsule attitude motion
[St = O(0.01), which is determined by the dynamic pressure of uni-
form flow and moment of inertia of the capsule]. In addition, the
pulsation motion is accompanied by a pitching moment oscillation,
as shown in Fig. 13. The facts suggest the mechanism by which this
pulsation phenomenon acts on the attitude motion of the capsule
and causes excitation of the oscillation of the capsule due to the
resonance phenomenon although further investigations are needed
to prove this hypothesis. Moreover, it suggests paying attention to
the influence of support-sting on unsteadiness of the recirculation
bubble as the dynamic instability of a bluff body-shaped capsule is
examined via a wind tunnel test.

FIG. 13. Root-mean-square (rms) amplitude of the aerody-
namic coefficient fluctuation that each DMD mode exerts on
the capsule.
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FIG. 14. Temporal change in the recirculation bubble in St = 0.0159 mode. Streamline and amplitude distributions of pressure fluctuation at y/D = 0 at phases (a) θ = π/2 and (b)
θ = 3π/2 (Multimedia view). (c) Maximum and minimum bubble size. (d) Drag coefficient as a function of phase θ. Multimedia view of (b): https://doi.org/10.1063/1.5092166.5

V. CONCLUSION

This study employs IDDES and modal analysis to investigate
coherent structures in the wake of an atmospheric entry capsule at
subsonic speed. The results of IDDES revealed two peak frequen-
cies at St = 0.17–0.2 and St = 0.016 in the fluctuations of lift and
drag coefficients, respectively. For the modal analysis, DMD and
mode selection algorithms for large datasets were used. The flow-
field data obtained by IDDES were decomposed into DMD modes,
the dominant of which were identified by the selection method.
This modal analysis enabled us to clarify the three-dimensional spa-
tial structures of the dominant fluid phenomena, their unsteady
behaviors, and aerodynamic forces these phenomena give to the
capsule.

Modal analysis results showed the three-dimensional spatial
structures of the dominant fluid phenomena of St ≈ 0.2 and
St = O(0.01). The DMD modes of St ≈ 0.2 represented large-scale
vortex shedding phenomena and a helical fluid structure, while the
low-frequency DMDmode of St =O(0.01) represented the pulsation
phenomenon of a recirculation bubble (characterized by periodic
changes in bubble size) and longitudinal vortices behind it.

Furthermore, the contribution of these fluid phenomena on the
aerodynamic coefficient fluctuations of the capsule was clarified. The
results confirmed that the lift and drag coefficient fluctuations were
dominated by large-scale vortex shedding phenomena (of St ≈ 0.2)
and pulsation of the recirculation bubble [of St = O(0.01)], respec-
tively. The latter phenomenon of St = O(0.01) has not been reported
yet in the literature of atmospheric entry capsules research but seems
to be a similar phenomenon described in previous studies on the
wake of a circular disk and a sphere;10 moreover, its frequency is

close to the typical oscillation frequency of the dynamic instabil-
ity of capsules. Therefore, its coupling with the attitude motion of
the capsule may cause excitation of the capsule’s oscillation ampli-
tude due to the resonance phenomenon. To clarify the excitation
mechanism, the coupled analysis of the attitude motion and flow
around the capsule is necessary and will be conducted in future
works.
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APPENDIX A: VALIDATION OF SIMULATION RESULTS

To validate the present simulation results, we conducted
fluid simulations with three different meshes and time step sizes

TABLE I. Number of cells and time step sizes for three simulations of grid
dependency.

Label Number of cells Time step size (ΔtCFDU∞/D)

Coarse 9.6× 106 6.8× 10−3

Baseline 2.4× 107 3.4× 10−3

Fine 5.6× 107 1.4× 10−3
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FIG. 15. Frequency distributions of (a) lift and (b) drag coefficients obtained with three simulations of grid dependency.

TABLE II. Dominant DMD modes for three simulations.

Label Strouhal number of dominant DMDmodes

Coarse 0, ±0.00436, ±0.0129, ±0.0496, ±0.153, ±0.176, ±0.186, ±0.205, ±0.212, ±0.263, ±0.300
Baseline 0, ±0.0196, ±0.0352, ±0.159, ±0.180, ±0.189, ±0.209, ±0.227, ±0.243, ±0.291, ±0.337
Fine 0, ±0.0136, ±0.0159, ±0.160, ±0.176, ±0.189, ±0.200, ±0.218, ±0.253, ±0.284, ±0.347

summarized in Table I for investigating the grid dependency of the
flow characteristics obtained by the present numerical simulation
and compared the simulated results with experimental results.

Figure 15 shows the frequency distribution of lift and drag
coefficients obtained with the three meshes, and Table II shows
the list of 11 dominant DMD modes obtained by DMD and mode
selection method detailed in Sec. III. Note that we cannot expect
the exact matches between the mode frequencies of different sim-
ulations because the fluid phenomena are not completely peri-
odic and the input signal has a finite length. Nevertheless, both
the figure and table qualitatively validated similar frequency char-
acteristics for the three results, that is, the presence of dominant
fluid phenomena of St = O(0.01) and St ≈ 0.2, corresponding to
an unsteady recirculation region and large-scale vortex sheddings,
respectively.

TABLE III. Mean drag and lift coefficients of numerical simulations and wind tunnel

experiments. The experimental results are taken from the work of Mitsuo et al.47

Label CD CL

Present simulation
Coarse mesh 0.680 0.241
Baseline mesh 0.668 0.246
Fine mesh 0.690 0.262
Experiment (M = 0.4)

Re = 1.65 × 106 0.68 0.27

Re = 1.98 × 106 with dots 0.57 0.34

Table III lists the time averaged values of the drag and lift
coefficients of the present numerical and previous experimen-
tal results.47 The table shows that the numerical results obtained
with the fine mesh approximately reproduced the experimental
results of Re = 1.65 × 106. Note that, in the experiment of Re
= 1.98 × 106, surface roughnesses (dots) were applied on the
capsule surface and it led to large difference from other cases.
Although flowfields are not shown in Mitsuo et al.,47 it is pre-
sumed that this difference was due to the change in separation
locations. In the present simulation, the flow largely separates at
the capsule’s shoulder (shown in Fig. 4), and the flowfield around
the capsule without the surface roughness is reproduced as a
result.

The numerical result obtained with the fine mesh was analyzed
in this study.

APPENDIX B: CONTRIBUTION RATE OF POD MODES

Figure 16 plots the contribution rate of each POD mode
obtained by incremental POD with r = 81. The contribution rate is
the eigenvalue of POD so that the sum of eigenvalues of all modes
excluding the mean mode is unity and represents the percentage
of variance for each POD mode. This figure shows that a relatively
small number of modes account for a large proportion of the flow-
field variation. The first 14 modes account for about 50% of the
flowfield variation, and the 28th and subsequent modes have only
1% or less of the variation. This result enhances confidence in the
validity of reducing the dimensionality of the input datasets using
the POD modes.
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FIG. 16. Contribution rate of POD modes. Note that the mean mode (zeroth mode)
is omitted.
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