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To better understand the vortex shedding mechanism and to assess the capability of our numerical methodology, we conducted
numerical investigations of vortex shedding from truncated and oblique trailing edges of a modi�ed NACA 0009 hydrofoil. 
e
hybrid particle-mesh method and the vorticity-based subgrid scale model were employed to simulate these turbulent wake 
ows.

e hybrid particle-mesh method combines the vortex-in-cell and the penalization methods. We have implemented numerical
schemes to more e�ciently use available computational resources. In this study, we numerically investigated vortex shedding from
various beveled trailing edges at a Reynolds number of 106. We then compared the numerical results with the experimental data,
which show good agreement.We also conducted numerical simulations of wakes behind the hydrofoil at rest in periodically varying

ows. Results reveal that vortex shedding is a�ected by the periodicity of a free-stream 
ow, as well as the trailing-edge shape.

1. Introduction


e vortex shedding phenomenon is encountered in many
practical engineering applications and physical sciences, and
it is an important characteristic of 
ows past a blu� body. A
vortex sheet shed from a solid body consists of alternating
vortices of strength Γ that produce their own velocity �eld,
superimposed on the free-stream velocity. 
ese shedding
vortices cause an oscillating force component perpendicular
to the direction of 
ow. 
is force can induce a vibration
in the body. Vortex shedding behind circular and square
cylinders is a benchmark problem that has been well investi-
gated and is addressed in a vast amount of literature. Several
scholarly reviews [1–4] are entirely devoted to the state of
the art of this problem. In contrast, vortex shedding from
a streamlined body such as a hydrofoil has been studied to
a much lesser extent despite its being of direct relevance to
practical engineering problems in hydraulic turbines, pumps,
and marine propellers. Propeller-singing is well known as a
critical vibration phenomenon generated by the interaction
between a Kármán vortex-shedding mechanism from the
trailing-edge of a blade and its natural frequencies [5].

Some laboratory experiments have been conducted on
vortex shedding from the trailing edge of a hydrofoil.
Bourgoyne et al. [6, 7] experimentally investigated the
dominant features of 
ows over a two-dimensional (2D)
hydrofoil with an antisinging trailing edge at Reynolds

numbers ranging from 106 to 5 × 107. 
ey concluded
that turbulent 
uctuations in the near wake are Reynolds-
number dependent because of the varying strengths of the
structured near-wake vortex shedding. Mulvany et al. [8]
numerically simulated turbulent 
ows around a modi�ed
NACA 16 hydrofoil using four turbulent models available in
the commercial computational 
uid dynamics (CFD) code
FLUENT. 
ey compared their numerical results with those
from the experimental data of Bourgoyne et al. [6]. 
e
authors mainly discussed the capabilities of the four di�erent
models and did not report any vortex shedding phenomenon.
Ausoni et al. [9] performed laboratory-scale experiments to
investigate the von Kármán vortex street generated in the
wake of a 2D hydrofoil with a truncated trailing edge. 
eir
experiments were performed at a zero angle of attack for a

Reynolds number ranging from 5.0 × 105 to 2.0 × 106, based
on the hydrofoil chord length [9, 10]. 
eir experimental
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results showed that a lock-in phenomenon occurs, where
the vortex shedding frequency is locked onto the natural
frequency of a hydrofoil. Interestingly, it has been reported
that cavitation has a minor e�ect on the wake dynamic.
Recently, Zobeiri et al. [11] investigated two NACA 0009
hydrofoils with blunt and oblique trailing edges, respectively,

for Reynolds numbers ranging from 5.0 × 105 to 2.9 × 106
and conducted high-speed visualization and 
ow-induced
vibrationmeasurements.
ey con�rmed experimentally that

ow-induced vibration was signi�cantly reduced with an
oblique trailing edge compared with a truncated edge. 
ey
also concluded that the collision between upper and lower
vortices and the resulting vorticity redistribution were the
main reasons for the obtained vibration reduction with the
oblique trailing edge.


is study numerically investigated vortex shedding from
truncated and oblique trailing edges of a hydrofoil to better
understand the vortex shedding mechanism and to assess the
capability of our numerical methodology. We employed the
hybrid particle-meshmethod and the vorticity-based subgrid
scale model to undertake a numerical 
ow simulation. 
e
hybrid particle-mesh method is a combination of the vortex-
in-cell (VIC) method (see [12–15] and references therein)
and the penalization technique [16], which has been devel-
oped in recent years (see [17–24] for a review). 
e hybrid
particle-mesh method enables the use of fast and e�cient
techniques for computing di�erential operators, thereby
enabling large scale simulations. However, techniques to
save computational memory and CPU time consumption
are still required. 
us, we have introduced the implementa-
tions of numerical schemes to more e�ciently use available
computational resources [25, 26]. With these numerical
schemes, we numerically investigate vortex shedding from
various beveled trailing edges of a NACA 0009 hydrofoil at

a Reynolds number of 106. We then compare our numerical
results with experimental data [10, 11] to assess the capability
of our numerical methodology. In addition, we investigate
the in
uence of periodically varying free-stream 
ows on
vortex shedding to better understand the vortex shedding
mechanism.


e organization of the remainder of this paper is as
follows: we present a brief description of the numerical meth-
ods used for the vortex shedding simulation in Section 2.
We describe our implementation of numerical schemes to
e�ciently use available computational resources in Section 3
and the computational procedure followed in Section 4. We
present out vortex shedding results from a variety of beveled
trailing edges and discuss the in
uence of periodic free-
stream
ows in Section 5. In Section 6, we provide a summary
of this study and some perspectives for future work.

2. Governing Equations and
Numerical Methods


e vorticity-velocity formulation of the Navier-Stokes equa-
tions allows a purely kinematical problem to be decoupled
from the pressure term, which is eliminated by applying the
curl operator. Pressure which can be evaluated in an explicit

manner using the identi�ed vorticity and velocity �elds [27]
is not part of the solution algorithm. For a 2D 
ow parallel to
the ��-plane, the vorticity transport equation in terms of the
vorticity can be expressed as

���
�� + u ⋅ ∇�� = ]∇2��, (1)

where�� is the scalar plane component of the vorticity vector;
that is, � ≡ �� in two dimensions. 
e evolution of a 
ow
is considered in discrete time steps. 
e viscous splitting
algorithm can be expressed in a Lagrangian framework as

�x
�� = u (2a)

���
�� = ]∇2��, (2b)

where �/�� = �/�� + u ⋅ ∇ is the material derivative. ��
discrete Lagrangian 
uid particles with a �nite core size 
 are
linearly superposed to approximate the vorticity �eld as

�� (x, �) =
��
∑
�=1
Γ��� (x − x�) , (3)

where �� is a molli�cation of the Dirac-delta function [12].
Finite core size vortices are used instead of point vortices.
Each particle is characterized by its position x� and its
strength Γ�. For a given vortex particle, the circulation Γ�
is identical to the product of the vorticity and the area of

the vortex particle 
2 which also represents the contribution
of the vortex particle to the vorticity �eld, Γ� = ∫���� ≈
��
2. 
e vorticity-carrying 
uid particle is advanced with
the velocity u and is gradually di�used because of viscous
e�ects.

2.1. Vortex-in-Cell (VIC) Method for Convection. Since the
continuity equation and the de�nition of vorticity lead to
∇⋅u = 0 and∇×u = �, the velocity u of (2a) can be expressed
as the gradients of the stream-function�. 
e velocity vector
is expressed as

u = U∞ + u� = U∞ + ∇ × �, (4)

where U∞ is the free-stream velocity and u� is the rotational
velocity. 
e Poisson equation for the stream-function is

∇2� = −�. In two dimensions, the stream function is scalar,
��, and only the vorticity component perpendicular to the
plane is nonzero � = ����. 
e vector Poisson equation
reduces to a scalar Poisson equation:

∇2�� = −��. (5)

Rotational velocity is de�ned by �	 = ���/�� and �
 =−���/��. In the VIC method, stream functions to evaluate
velocities are computed using a uniform Cartesian mesh.
e
fast Fourier transform- (FFT-) based Poisson solver reduces
the computational cost of obtaining the velocity �eld to
O(�log�) where � is the number of grid points [12]. To
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compute the stream functions using the FFT-based Poisson
solver, the vorticity �� is interpolated onto equally spaced
Cartesian grid using

�� (x�) =
��
∑
�=1
�� (x�)�(x� − x�ℎ ) , (6)

where ℎ is the mesh spacing, using the following third order
interpolation kernel [28, 29]:

�(�) = ��4 (�)

=
{{{{{
{{{{{{

0 for |�| > 2
1
2 (2 − |�|)

2 (1 − |�|) for 1 < |�| ≤ 2
1 − 52 |�|

2 + 32 |�|
3 for |�| ≤ 1

(7)

in each coordinate direction. 
is kernel conserves the 0th,
1st, and 2nd order moments. 
e subscripts � and � denote
the grid and particle quantities, respectively. A vortex particle
contributes to the nearest 16 nodes through the��4 scheme,
and the total vorticity at each node is obtained by summing
the vorticity contributions of all the vortex particles.

Boundary conditions for the stream function are required
to solve the Poisson equation. If the computational domain
boundaries are far enough from the particles, homogeneous
Dirichlet boundary conditions (� = 0) may be used.
However, using a larger domain is ine�cient since it requires
a regular grid with too many points. To compactly place a
square FFT-domain Ω, we used nonhomogeneous Dirichlet
boundary conditions in this study. Unknown stream func-
tions at the domain boundaries (�Ω) can be directly obtained
from Green’s function solution [27], whereby

�� (x
) = − 12&
��
∑
�=1
Γ� ln ('''''x
 − x�''''') * = 1, . . . ,�, (8)

where x
 ∈ �Ω, x� ∈ Ω, and x� ̸= x�.� denotes the number
of domain boundary points and the circulation strength of

each vortex particle Γ� = ��(x�)
2. We note here that all
particle vorticity values should be considered. Fast evaluation
of the stream functions at the domain boundaries is further
discussed in Section 3.3.

2.2. Brinkman PenalizationMethod for Di�usion. 
epenal-
ization method was initially designed to take into account
solid obstacles in 
uid 
ows [16]. 
e main point of the
penalty term is to replace the usual vorticity creation algo-
rithm for enforcing the no-slip condition for a solid body.
By adding the penalization term to (1), the vorticity transport
equation becomes

���
�� = ]∇2�� + ∇ × [78 (u� − u)] , (9)

where u� is the velocity of the solid body and 8 denotes a
mask function that yields 0 in a 
uid and 1 in a solid [16, 18].

7 indicates the penalization parameter with the dimension
[;−1]. To avoid too small time step, the penalization term is
evaluated by the implicit expression [16, 18, 30]:

Δ��
Δ� = ∇ × [78 (u

�
� − ũ�+1)] , (10)

where

ũ
�+1 = u

� + 7Δ�8u��
1 + 7Δ�8 . (11)


is scheme is unconditionally stable [19]. Equation (9) is
rewritten by replacing its terms with those in (10) and (11) as
follows:

��+1� − ���
Δ� = ]∇2��� + ∇ × [ 78

1 + 7Δ�8 (u
�
� − u�)] . (12)


e penalization and di�usion terms of (12) are consecutively
evaluated on a temporary grid. To reduce any error due to
the penalization term, we used a mask function with second-
order accuracy, for which the boundary is located at the
midpoint of the grid, where the mask function jumps from
0 to 1 [18, 31].

2.3. Smagorinsky Turbulence Model. 
e �ltered vorticity
transport equation for a Lagrangian, vorticity-based large-
eddy simulation (LES) in two-dimensions can be expressed
as [32]

���
�� = ]∇2�� + ∇ ⋅ Φ, (13)

where the bar denotes spatial �ltering at length scale 
. 
e
subgrid-scale vorticity stress term Φ, which accounts for the
e�ect of unresolved velocity and vorticity 
uctuations, can be
de�ned as Φ = ]�∇��. Smagorinsky eddy-viscosity model is
one of most commonly used subgrid-scale (SGS) turbulence
models. In spite of its simplicity, the Smagorinsky model is
still extensively used in practice and has served as a basic tool
for the developments of LES modeling [33]. In this model,
eddy viscosity is de�ned by

]� = (F�Δ)2 '''''�''''' , (14)

where F� is a nondimensional Smagorinsky constant and Δ
is a subgrid characteristic length scale. ��� = (���/��� +
���/���)/2 is the resolved strain-rate tensor and |�| =
(2������)1/2 is its magnitude. Here |�|2 = |��|2 in incom-
pressible 
ows (∇ ⋅ u = 0), using the Caswell formula [34].
Finally, the vorticity transport equation for the LES in two
dimensions is rewritten as

���
�� = (] + (F�Δ)

2 ''''��'''') ∇2��. (15)

In 2D LES models, the �ltering process is applied in only two

directions, so Δ = (ℎ	ℎ
)1/2 is de�ned by the grid spacing.

e Smagorinsky constant F� may vary with the type of

ow and the Reynolds number. Values ranging from 0.1 to
0.24 have been suggested in the literatures [33, 35, 36]. 
e
constant F� is prescribed and its standard value is typically
0.15 [37, 38].
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3. Efficient Implementation of
Numerical Methods

3.1. Particle-BasedDomainDecomposition. Parallelmachines
and algorithms enable signi�cant reduction in computing
time and greater amount of available memory. For high-
performance computing, we used the Message Passing Inter-
face (MPI) for our distributed systems, in which each proces-
sor has its own localmemory.
e appropriate decomposition
of particles and/or grids should be employed. In domain
or spatial decomposition, a given domain Ω is geometri-
cally decomposed by splitting it into several subdomains.
Typically, the subdomains are uniform and particles are not
evenly distributed among the subdomains. Di�erences in
the number of particles assigned to each processor cause
computational load imbalances. As some processors will
sit idly while waiting for others, poor performance can
result.

We introduce a simple idea to achieve a better load
balance during the domain decomposition. In vortex particle
methods, 
uid particles must periodically be redistributed
since their accumulation leads to inaccuracies in numerical
solutions. 
is process is called particle remeshing or redis-
tribution. 
e remeshing step creates a new set of particles
on a uniform Cartesian grid, and then the randomly spaced
old particles are removed. All the new particles are reindexed
by G = 1, 2, . . . , �� from upstream to downstream; that
is, higher-indexed particles are located further downstream.
Due to the position-dependent index of the particles, the
entire spatial domain can be easily split to ensure an equal
amount of particles in each subdomain (each processor).
As a result, the horizontal extent of the domain is unequal,
but the particles are evenly distributed in subdomains of
di�erent sizes. In every remeshing step, the entire domain
is dynamically partitioned. In this way, each subdomain
contains an equal number of particles and better load balance
ismaintained during simulation.
is approach is very simple
and e�ective. No additional algorithms are required to evenly
distribute the particles or to identify the position of the
particles. As shown in Figure 1, we obtained an approxi-
mately 30% reduction in computation time simply by load
balancing during parallel computation. 
is technique is
also valuable for the e�cient use of available computational
memory.

3.2. Multidomain Approach. To avoid an excessive domain
size, we consideredmultiple domains. In this study, the entire
domainΩ is de�ned as the union of all the domains, covering
all the 
uid particles; that is, x� ∈ Ω where Ω = Ω1 ∪Ω2 ∪ ⋅ ⋅ ⋅ ∪ Ω�� . 
e domain number�� is not constant and
is dependent on a spatially evolving 
ow. When the domain
size exceeds a certain limit, a new domain is created, situated
downstream from the domain. As a result, the �rst domain
Ω1 includes a solid body and the others are sequentially
located downstream from the body. For the total circulation
conservation, the grid spacing of the Gth domain can be
de�ned as ℎ� = 
 (single-resolution) or ℎ� = 2ℎ�−1 (multi-
resolution) where ℎ1 = 
. Here 
 denotes the particle size. To
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Figure 1: Computation times for equal- and unequal-sized subdo-
mains.

interpolate the vorticity values of the particles into the nodes
on a grid with di�erent grid spacing, (6) is rewritten as

�� (x�) = 

2

ℎ2�
�
∑
�=1
�� (x�)�(x� − x�ℎ� ) , (16)

where x� ∈ Ω� and x� ∈ Ω�.
e nodes are declared to be a 2D
array so that the position of each node can be found straight-
forwardly from its index. 
e velocity and vorticity of each
domain are sequentially and independently evaluated.Hence,
relatively small amounts of working memory are required.

is multidomain approach also allows more freedom in
the choice of variable arrangements in the domains. 
e
versatility of this approach was demonstrated in our previous
study [26]. It can be achieved at the expense of a signi�cant
increase in computation time. 
is issue is further discussed
in the next section.

3.3. Approximation of Far-Field Conditions. A substantial
part of the overall computation time is spent on the calcu-
lation of the boundary stream functions to solve Poisson’s
equation for the stream function. 
is requires the order of
O(���/I) operations to obtain boundary values of domain
Ω�. Here, � denotes the number of nodes at the sides of
domainΩ� and��/I is the number of particles per processor.
To achieve a nearly perfect load balance, particles are evenly
distributed among the processors as discussed in Section 3.1
and each processor has all the boundary nodes �. It must
also be very useful to avoid all unnecessary communications.
��/I is reduced by increasing the number of processors
involved in the computation whereas � is not. 
is is why
the number of boundary nodes � is the most critical for
determining the computation time.

In this study, we attempted to reduce the number of
boundary nodes � using the cubic spline approximation.

is is made possible by the smooth variation of the stream
functions along the boundary. Only one-fourth of the bound-
ary nodes were chosen as equidistant points for the direct
calculations. 
at is, the stream functions at the selected
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boundary nodes were directly computed using (8), and the
values at boundary nodes not selected were evaluated by
interpolation, using cubic splines [39]. In this study, the
error between the interpolated value and the true value
is typically less than 0.01%. We have observed that the
reduction in computational time is inversely proportional
to the number of nodes selected for direct computation.
We believe that this approach can be implemented with
much lower computational e�ort because a complex data
structure such as a quad-tree used in the fast multipole
method [40] is not required. A rigorous comparison of the
accuracy and computational costs is planned in the near
future.

4. Computational Procedure

First, the entire simulation domain Ω, covering all the
particles, is divided into small domains Ω� (G = 1, . . . , ��)
as discussed in Section 3.2. Each domain Ω� is consecutively
computed according to the following numerical procedure.

(1) Particle-based domain decomposition: as discussed
in Section 3.1, domain Ω� is decomposed into sub-
domains to ensure that the particles are evenly dis-
tributed among the processors. If redistribution has
not been done prior to the time step, particles that
have been removed from a subdomain are assigned
to an adjacent processor without performing domain
decomposition.

(2) Particle-to-grid interpolation: each processor inter-
polates the vorticity �� of its own particles into the
grid nodes through the��4 interpolation kernel.

(3) Calculation of the boundary condition: each proces-
sor computes the boundary stream functions by direct
calculation and interpolation using cubic splines, as
discussed in Section 3.3.

(4) Evaluation of the velocity �eld: the stream function
on the grid is computed with the FFT-based Poisson
solver, from an open-source library called FFTW
(fastest Fourier transform in the west) [41, 42].
ere-
a�er, the rotational velocities on the grid nodes are
computed from the de�nitions �	 = ��/�� and
�
 = −��/�� using the fourth order central �nite
di�erence scheme.

(5) Evaluation of the vorticity �eld: each processor eval-
uates the evolution of the vorticity �eld in time as
follows:

(a) 
e penalization term, that is, the second term
on the right hand side of (12), is computed
with the velocities on the grid. 
e spatial
derivatives of the curl operators are evaluated
using a centered di�erence approximation with
a fourth-order error.

(b) 
e di�usion term, that is, the �rst term on
the right hand side of (12), is evaluated on the
grid using a classical 9-point �nite di�erence
method.

(c) 
e turbulent viscosity (F�Δ)2|��| in (15) is
approximated by the vorticity strength of the

grid. Finally, the vorticity �eld ��+1� is updated.

(6) Grid-to-particle interpolation: each processor inter-
polates the velocity and vorticity on the grid back to its
own particle positions through the��4 interpolation
kernel.

Vortex particles are advanced in time using a midpoint
predictor-corrector method as follows: particle positions are
predicted by their velocities, x∗ = x

� + Δ�u(x�, ���), then the
particle positions are corrected by using combinations of the

predicted and previous positions and velocity values, x�+1 =
x
� + 0.5Δ�[u(x�, ��

z
) + u(x∗, ��+1� )]. Particle redistribution is

conducted every three time steps to ensure particle overlap.
If a new particle has a small vorticity magnitude, that is,
|Γ�| < 0.0001|Γ|max, it is deleted to avoid having too many
particles. Loss of circulation is equally distributed among the
remaining particles to ensure the conservation of the total
vorticity.

5. Numerical Results and Discussions

5.1. Model Description. We selected a NACA 0009 hydrofoil
with a truncated trailing edge for the numerical simulations.

is hydrofoil has the same cross-section as the experimental
model used by Ausoni et al. [9], Ausoni [10], and Zobeiri
et al. [11]. Ten percent of the original chord J� was removed
from the trailing-edge region of the NACA 0009 hydrofoil.

e hydrofoil thickness distribution is written as

0.0 ≤ �J� ≤ 0.5

�
J� = 0.1737 (

�
J�)
1/2
− 0.2422 ( �J�) + 0.3046 (

�
J�)
2

− 0.2657 ( �J�)
3

0.5 < �J� ≤ 1.0
�
J� = 0.0004 + 0.1737 (1 −

�
J�) − 0.1898 (1 −

�
J�)
2

+ 0.0387 (1 − �J�)
3
.

(17)


e hydrofoil geometry is further detailed in Ausoni [10].
e
maximum thickness, as normalized by the chord length J, is
�max/J = 0.1 and the thickness at the trailing edge �TE/J is0.0322. 
e bevel angle O is de�ned in Figure 2. 
e trailing
edge with O = 0∘ denotes that the trailing edge is truncated in
the vertical direction.

5.2. Numerical Setup. Numerical parameters can be deter-
mined using the stability condition Δ� = 
2/4] [18]. 
e
grid convergence was achieved for 
 = 0.00030, and
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Figure 2: Trailing-edge shape. Note that the points A, B, and C indicate the knuckles of the chamfer and trailing-edge wedge, and the bevel
angle is de�ned as O.

Δ� = 0.00015 was chosen in order to guarantee numerical

accuracy for a Reynolds number of 106. 
e grid spacing

of the Gth domain Ω� is de�ned as ℎ� = 
2�−1 to reduce
computation time.
e penalization parameter 7 in (12) is set
to be 108. 
e hydrofoil at a zero angle of attack is immersed
in a Cartesian grid (the �rst domain) that does not conform
to the surface of the body.
e �rst domain, with 4096× 1024
lattice nodes, is �xed and the other domains are dynamically
determined depending on the spatially evolving 
ow. In this
study, numerical simulations were conducted until P = 10.
A new domain is created downstream of a body once the
number of horizontal grid points exceeds 2048. Although
there is no limit on the number of vertical grid points, it was
typically less than or equal to 1024. During simulation, less
than 0.8 million particles and four computational domains
were created. 
e entire computation in each case, including
start-up and printing times, took approximately 170 hours
on 16 Intel Xeon64 3.3 GHz CPUs with 6GB memory per
processor.

5.3. Truncated Trailing-Edge. For an impulsively started 
ow

past a hydrofoil at a chord-based Reynolds number of 106,
the wake pattern can be classi�ed into three regimes, based
on the time evolutions shown in Figure 3. In the very early
stages, the wake remained very symmetrical and consisted
primarily of two large vortices in the near wake as shown in
Figure 3(a). At that time, the drag force gradually decreased.
As time went on, the wake became asymmetrical, as shown in
Figure 3(b), and then shed a vortex, as shown in Figure 3(c).
A�er a number of shedding periods, vortices were shed
regularly from the symmetric trailing edge in the form of two
trains of oppositezsign but equal-strength vortices as shown
in Figure 3(d). Such regular vortex shedding induces periodic
loading on the structure as shown in Figure 4. It is well
known that drag-force oscillation during vortex shedding is
much smaller than the li� force. Numerical results show that
oscillations in the drag force occurred at twice the vortex-
shedding frequency, due to the fact that two vortices were
shed from alternate sides during one full period of wake
oscillation.

From our simulation, the Strouhal number based on the
trailing-edge thickness, St� = Q��TE/R∞, is about 0.22 for

Re = 106. Ausoni [10] (also refer to Zobeiri et al. [11])
had a similar �nding and experimentally gave St� = 0.25,
which may be approximately read from their �gure. 
ey
used a hydrofoil with a 100mm chord length and 150mm
span length. 
e aspect ratio, de�ned as the ratio of the span
length to the chord length, was 1.5. A lower aspect ratio
leads to a three-dimensional (3D) e�ect, even though the
hydrofoil is 2D. Ausoni [10] also observed experimentally
that the shedding process was not induced in phase along
the span. It was therefore speculated in [25] that the slight
underestimation of the Strouhal number is due to 3D e�ects
which were absent in our simulation.

5.4. Oblique Trailing-Edges. We conducted numerical simu-
lations to observe vortex shedding from trailing edges with
six di�erent bevel angles of O = 0, 10, 20, 40, 60, and 70
degrees. Figure 5 shows the instantaneous vorticity distribu-

tions at P = 10 for Re = 106. At O = 0∘, the vortex shedding
is regular and periodic. As the bevel angle O increases,
vortex shedding becomes increasingly disorganized. Such
irregular shedding of vortices demonstrates the periodicity of
oscillatory forces. Figure 6 shows the power spectral density
function (PSD) of the drag and li� coe�cients for di�erent
bevel angles. Compared with O = 0∘, the amplitude of the li�
force oscillation for asymmetric trailing edges is signi�cantly
reduced, compared with the symmetric trailing edge at O =
0∘. 
e li� force amplitude is gradually decreased as the bevel
angle increases, while the drag force amplitude increases and
then decreases to between O = 10∘ and 60∘.
e periodicity of
both forces is almost lost at O = 60∘, and there is no de�nite
periodicity of the induced force components at O = 70∘.

At a bevel angle of 10∘ as shown in Figure 6(b), it is inter-
esting that the dominant peak of the drag force is identical to
that of the li� force. From a vibration standpoint, the forcing
frequency is important for the prevention of resonance. 
e
distance between the two vortices in Figure 5(b) does not stay
the same, but the di�erence between the shedding vortices
between O = 0∘ and 10∘ (Figures 5(a) and 5(b)) is not
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Figure 3: Wake patterns of the NACA 0009 hydrofoil with a truncated trailing-edge (O = 0∘) for Re = 106.
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impulsively started NACA 0009 hydrofoil with a truncated trailing
edge (O = 0∘) at Re = 106. Regime I denotes the developing regime
of a symmetric wake, II a symmetry-breaking transition, and III
periodic vortex shedding.

statistically signi�cant. A possible reason for this is the phase
di�erence between the vortices shed from the upper and
lower sides. In the wake formation region, the two vortices
shed from the symmetric trailing edge at O = 0∘ are almost
exactly out of phase (180 degrees), whereas at O = 10∘
there is a phase di�erence of approximately 30 degrees. 
is
means that before one vortex is fully shed from the body
another vortex is created. At higher bevel angles, O > 20∘, the
negative vortices from the upper side of the hydrofoil become
stronger than the positive ones from the lower side. 
e
oscillation force is induced mostly by the vortices shed from
the acute (upper) side. As a result, the dominant frequency

of the drag force oscillation appears to be the same as the
vortex shedding frequency. We numerically observed that
di�erences in strength and/or phase between two adjacent
vortices cause nonperiodic and irregular vortex shedding.

Figure 7 shows the shedding frequency of vortices from
di�erent beveled trailing edges, compared with experimental
results by Zobeiri et al. [11]. 
e numerically simulated
shedding frequencies were approximately 6.8 and 6.4 for
O = 0∘ and 60∘, respectively. Numerical results show
good qualitative agreements with the experimental results,
but the numerical simulations underestimated the vortex-
shedding frequency by about 10%. Figure 8 shows the mean
value and standard deviation of the velocity components. We
compared our numerical results with the experimental results
measured by Zobeiri et al. [11]. 
e truncated and oblique
trailing edges in Figure 8 indicate bevel angles of O = 0∘
and 60∘, respectively. For the truncated trailing edge, the
mean velocity pro�les are more symmetric than those in the
experimental data. 
e results from numerical simulation
are in good agreement with the experimental results. We
conclude that the vortex shedding phenomenon from the
trailing edge of a 2D hydrofoil can be reasonably simulated
using 2D LES which considerably reduces the computational
cost.

5.5. E�ect of a Periodically Varying Flow on Vortex Shedding.

e propeller is generally located behind the ship’s hull and
is subjected to a nonaxisymmetric wake �eld. Considering
a 2D 
ow, the propeller section e�ectively experiences peri-
odic variation in 
ow incidence. We conducted numerical
simulations to investigate vortex shedding with respect to
the sinusoidal motions of the free-stream 
ow. 
e hydrofoil
was at rest and the 
ow became the oscillator under these
conditions. In the current study, the angle of attack varied
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Figure 5: Instantaneous vorticity distributions at P = 10 for Re = 106.

sinusoidally with time �; S = S�sin(2&Q∞�) where Q∞
was the frequency of the free-stream 
ow oscillation and
its oscillation amplitude was restricted at S� = 2∘. 
e
magnitude of the free-stream velocity was kept constant. 
e
tested model is the NACA 0009 hydrofoil with a beveled
trailing edge of O = 60∘.

Figure 9 shows the instantaneous vorticity distributions
atP = 10 and the PSD of the drag coe�cients at four di�erent
frequencies of the free-stream 
ow, that is, Q∞ = 15, 20,
25, and 30. 
ere are two peaks in the PSD functions; the
�rst peak appears around Q∗ ≈ 6 and the second one is
identical to the frequency of the free-stream 
ow oscillation.

e obvious feature recognized in all the PSD functions, as
shown in Figure 9, is that the �rst peak frequency is nearly
identical to the vortex-shedding frequency from the hydrofoil
in the uniform free-stream 
ow. Vortex formation in the near
wake is thought to be less a�ected by small in
ow oscillations.
Most interestingly, at Q∞ = 20 vortices are regularly shed
from the trailing edge, as shown in Figure 9(c). In the PSD
functions, drag oscillation induced by vortex shedding is
clearly observed. 
is means that a particular oscillation
frequency in the free-stream velocity can cause regular and
periodic vortex shedding. 
is is signi�cant with respect to
changing a marine propeller’s angle of attack over time.

6. Concluding Remarks

We simulated impulsively started 
ows past a modi�ed

NACA 0009 hydrofoil at a Reynolds number of 106, using
the hybrid particle-mesh method in conjunction with the
vorticity-based subgrid scale model. We have achieved sig-
ni�cant savings in both memory usage and computation
time by making improvements in the numerical schemes:
the particle-based domain decomposition, the use ofmultiple
domains, and the approximation of domain boundary con-
ditions. 
ese techniques are simple and easy to implement
but also e�ective in reducing the computational costs. 
e
particle-based domain decomposition scheme is suitable for
a distributed system in which each processor has its own
private memory (distributed memory).

In this study, the numerical simulation results nearly
match the experimental results.
is demonstrates that vortex
shedding from the trailing edge of a 2D hydrofoil can be
reasonably simulated with a 2D LES. It is due to the fact that
the 
ow is characterized by quasi-two dimensionality with
vortex shedding from the trailing edge of the hydrofoil. We
have considered that 2D vortex shedding simulations should
not be dismissed so easily. With two-dimensionality, it is
possible to solve the problem much less expensively, since
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Figure 6: Power spectral density (PSD) of the li� and drag coe�cients. Q∗ denotes the frequency normalized by the chord length and the
undisturbed 
ow velocity.

3D problems require signi�cant computational resources.
However, the LES should be 3D since turbulence is inherently
3D. While we accept that more realistic 3D simulation is
required physically, a 2D LES can be used as a basis for
comparison prior to 3D implementation. Once the capability

of a numerical algorithm is evaluated in two dimensions,
it can be easily extended into three dimensions. 
is paper
is intended as a guide for researchers and designers who
are working on a similar problem: vortex shedding from a
hydrofoil at high Reynolds numbers.
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Figure 9: E�ect of the incoming 
ow frequency on vortex shedding from a beveled trailing edge of O = 60∘ at Q∞ = 15, 20, 25, and 30.

e contour indicates the instantaneous vorticity distribution at P = 10, and the power spectral density (PSD) is calculated from the drag
coe�cients in the range P = [3, 10].
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We found in this study that the vortex formation char-
acteristic in periodically varying in
ows remains unchanged.
A certain frequency of free-stream 
ow oscillation tends to
make vortex shedding more regular again. 
is means that
the periodicity of 
ow incidence can stimulate an inherent
frequency of vortex shedding from a hydrofoil. However,
the e�ect of in
ow oscillation on vortex shedding is not
yet fully understood. Future work will include experimental
investigations, as well as a 3D 
ow simulation, to better
understand the relationship between in
ow oscillation and
vortex shedding.
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edge hydrofoil [Ph.D. thesis], École Polytechnique Fédérale de
Lausanne, Lausanne, Switzerland, 2009.

[11] A. Zobeiri, P. Ausoni, F. Avellan, and M. Farhat, “How oblique
trailing edge of a hydrofoil reduces the vortex-induced vibra-
tion,” Journal of Fluids and Structures, vol. 32, pp. 78–89, 2012.

[12] G.-H. Cottet and P. D. Koumoutsakos, Vortex Methods: �eory
and Practice, Cambridge University Press, 2000.

[13] G. Cottet and P. Poncet, “Particle methods for direct numerical
simulations of three-dimensional wakes,” Journal of Turbulence,
vol. 3, article N38, 2002.

[14] P. Chatelain, A. Curioni, M. Bergdorf, D. Rossinelli, W.
Andreoni, and P. Koumoutsakos, “Billion vortex particle direct
numerical simulations of aircra� wakes,” Computer Methods in
AppliedMechanics and Engineering, vol. 197, no. 13–16, pp. 1296–
1304, 2008.

[15] Y.-C. Kim, J.-C. Suh, and K.-J. Lee, “Vortex-in-cell method
combined with a boundary element method for incompressible
viscous 
ow analysis,” International Journal forNumericalMeth-
ods in Fluids, vol. 69, no. 10, pp. 1567–1583, 2012.

[16] P. Angot, C.-H. Bruneau, and P. Fabrie, “A penalization method
to take into account obstacles in incompressible viscous 
ows,”
Numerische Mathematik, vol. 81, no. 4, pp. 497–520, 1999.

[17] M. El Ossmani and P. Poncet, “E�ciency of multiscale hybrid
grid-particle vortex methods,” Multiscale Modeling & Simula-
tion, vol. 8, no. 5, pp. 1671–1690, 2010.

[18] J. T. Rasmussen, G.-H. Cottet, and J. H.Walther, “Amultiresolu-
tion remeshed vortex-in-cell algorithm using patches,” Journal
of Computational Physics, vol. 230, no. 17, pp. 6742–6755, 2011.

[19] M. Coquerelle and G.-H. Cottet, “A vortex level set method for
the two-way coupling of an incompressible 
uid with colliding
rigid bodies,” Journal of Computational Physics, vol. 227, no. 21,
pp. 9121–9137, 2008.

[20] F. Morency, H. Beaugendre, F. Gallizio, and S. Laurens, “Com-
putation of ice shedding trajectories using cartesian grids,
penalization, and level sets,” Modelling and Simulation in Engi-
neering, vol. 2011, Article ID 274947, 15 pages, 2011.

[21] M. M. Hejlesen, P. Koumoutsakos, A. Leonard, and J. H.
Walther, “Iterative Brinkman penalization for remeshed vortex
methods,” Journal of Computational Physics, vol. 280, pp. 547–
562, 2015.

[22] M. Gazzola, P. Chatelain, W. M. van Rees, and P. Koumout-
sakos, “Simulations of single and multiple swimmers with non-
divergence free deforming geometries,” Journal of Computa-
tional Physics, vol. 230, no. 19, pp. 7093–7114, 2011.

[23] R. Chatelin and P. Poncet, “A hybrid grid-particle method for
moving bodies in 3D stokes 
ow with variable viscosity,” SIAM
Journal on Scienti�c Computing, vol. 35, no. 4, pp. B925–B949,
2013.

[24] R. Chatelin and P. Poncet, “Hybrid grid-particle methods
and penalization: a Sherman-Morrison-Woodbury approach to
compute 3D viscous 
ows using FFT,” Journal of Computational
Physics, vol. 269, pp. 314–328, 2014.

[25] S. J. Lee, J. H. Lee, and J. C. Suh, “Vortex shedding frequency
for a 2D hydrofoil with a truncated trailing edge,” Journal of the
Society of Naval Architects of Korea, vol. 51, no. 6, pp. 480–488,
2014 (Korean).

[26] S.-J. Lee and J. C. Suh, “A multi-domain approach for a
hybrid particle-mesh method,” Journal of Computational Fluids
Engineering, vol. 19, no. 2, pp. 72–78, 2014.

[27] S.-J. Lee, J.-H. Lee, and J.-C. Suh, “Computation of pressure
�elds around a two-dimensional circular cylinder using the
vortex-in-cell and penalization methods,” Modelling and Sim-
ulation in Engineering, vol. 2014, Article ID 708372, 13 pages,
2014.

[28] J. J. Monaghan, “Extrapolating T-splines for interpolation,”
Journal of Computational Physics, vol. 60, no. 2, pp. 253–262,
1985.

[29] J. J. Monaghan, “Particle methods for hydrodynamics,” Com-
puter Physics Reports, vol. 3, no. 2, pp. 71–124, 1985.



Modelling and Simulation in Engineering 13

[30] O. V. Vasilyev and N. K.-R. Kevlahan, “Hybrid wavelet
collocation-brinkman penalization method for complex geom-
etry 
ows,” International Journal for Numerical Methods in
Fluids, vol. 40, no. 3-4, pp. 531–538, 2002.

[31] W. Iwakami, Y. Yatagai, N. Hatakeyama, and Y. Hattori, “A
new approach for error reduction in the volume penalization
method,”Communications in Computational Physics, vol. 16, no.
5, pp. 1181–1200, 2014.

[32] J. R. Mans�eld, O. M. Knio, and C. Meneveau, “Towards
lagrangian large vortex simulation,” ESAIM Proceedings, vol. 1,
pp. 49–64, 1996.

[33] G.-H. Cottet and P. Poncet, “Advances in direct numerical sim-
ulations of 3D wall-bounded 
ows by vortex-in-cell methods,”
Journal of Computational Physics, vol. 193, no. 1, pp. 136–158,
2004.

[34] B. Caswell, “Kinematics and stress on a surface of rest,” Archive
for Rational Mechanics and Analysis, vol. 26, no. 5, pp. 385–399,
1967.

[35] R. S. Rogallo and P. Moin, “Numerical simulation of turbulent

ows,” Annual Review of Fluid Mechanics, vol. 16, pp. 99–137,
1984.

[36] J. Meyers and P. Sagaut, “On the model coe�cients for the
standard and the variational multi-scale Smagorinsky model,”
Journal of Fluid Mechanics, vol. 569, pp. 287–319, 2006.

[37] J. R. Mans�eld, O. M. Knio, and C. Meneveau, “A dynamic LES
scheme for the vorticity transport equation: formulation and a
priori tests,” Journal of Computational Physics, vol. 145, no. 2, pp.
693–730, 1998.

[38] S. B. Pope, Turbulent Flows, Cambridge University Press, 2000.

[39] W.H. Press, S. A. Teukolsky,W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C++: �e Art of Scienti�c Computing,
Cambridge University Press, 2nd edition, 2002.

[40] L. Greengard and W. D. Gropp, “A parallel verison of the fast
multipoe method,” Computers & Mathematics with Applica-
tions, vol. 20, no. 7, pp. 63–71, 1990.

[41] M. Frigo and S. G. Johnson, “FFTW: an adaptive so�ware archi-
tecture for the FFT,” in Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP
’98), pp. 1381–1384, May 1998.

[42] M. Frigo and S. G. Johnson, “
e design and implementation
of FFTW3,” Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231,
2005.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation 

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


