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ABSTRACT   

This work presents a numerical study of a W-type index chalcogenide fiber design for Mid-Infrared (MIR) supercontinuum 

(SC) generation beyond 10µm. Our fiber design consists of a Ge15Sb15Se70 glass core, a Ge20Se80 glass inner cladding and 

a Ge20Sb5Se75 glass outer cladding. These chalcogenide materials have the advantages to broaden the spectrum to 12µm, 

due to their low material absorption. The optical mode distribution of the chalcogenide fiber is simulated by a finite element 

method based on edge elements. With a 6 µm core diameter and a 12 µm inner cladding diameter, the proposed fiber 

design exhibits flat anomalous dispersion in the wavelength range (4.3-6.5µm), with a peak of about 7ps/(nm.km). The 

position of the second zero-dispersion wavelength (ZDW) can be easily and precisely controlled by the inner cladding size 

and should be shifted to around 7µm for a 18 µm inner cladding diameter. This design is more suitable for a pump 

wavelength at 6.3µm which is in the anomalous dispersion regime between two ZDWs and can broaden the spectrum due 

to the soliton dynamics. Our fiber design modelling shows that the nonlinear parameter at 6.3µm is 0.1225W−1 m−1, when 

using a nonlinear refractive index nNL=3.44 ×10−18 m2W−1, and the chromatic dispersion is D = 3.24ps/(nm.km). Compared 

to previously reported step-index fibers, the proposed W-type index chalcogenide structure ensures single mode 

propagation, which improves the nonlinearity, flattened dispersion profile and reduces the losses, due to a tight 

confinement of the mode within the core. 

Keywords: Nonlinear optical materials, W-type index fiber, Finite element method, Supercontinuum generation. 

 

1. INTRODUCTION  

High-power single-mode fiber-based supercontinuum (SC) sources with extremely wide wavelength coverage are a key 

enabling technology for various applications such as spectroscopy1 and metrology2 as well as defense applications3. To 

realize highly coherent Mid-Infrared (MIR) SC generation, there are two important factors4, a small absolute value of the 

chromatic dispersion in the MIR region and a small effective mode diameter to increase the nonlinearity. Step-index fibers 

(SIFs) possess the advantage of higher optical damage threshold, good mechanical robustness and stability against 

contamination from the ambient environment such as water vapor5. In addition, SIFs are easier to splice, cleave and mount 

when compared to other optical fibers such as photonic crystal fibers (PCFs).  These characteristics make the SIF a 

promising key component in fiber lasers and amplifiers as well as in SC generation sources. However, tailoring the fiber 

dispersion properties of standard SIFs is a challenging task. Furthermore, SIFs present a weaker nonlinearity compared to 

a PCF due to larger core diameters and looser confinement of the mode within the core, induced by the reduced contrast 

of the core-cladding index6. 

One approach to control the chromatic dispersion is by applying a W-type index fiber profile7,8. The main advantages of 

W-type index fibers are the tight light confinement within the fiber core and the flattened dispersion profile, offering more 

flexibility than SIFs to tailor the fiber dispersion properties, but without the complexity of photonic crystal fibers (PCFs). 

In addition, the W-type index fibers produce a good control of the locations of zero-dispersion wavelengths (ZDWs) and 

a large V-parameter value (V = 3.8) under the single-mode operation, allowing larger core diameters compared to SIFs. 

Furthermore, this fiber type is suitable for all-fiber system because it can be fusion spliced to standard SIF. 

Our proposed fiber has Ge15Sb15Se70 core glass, Ge20Se80   glass inner cladding and Ge20Sb5Se75 glass outer cladding.  These 

materials have relatively large third-order nonlinear refractive index (nNL) and relatively high laser damage threshold, as 

well as good transmittance in the 2–12 µm region9,10. Finite Element Method (FEM) based edge element analysis is applied 

to calculate the effective index and the chromatic dispersion. This approach eliminates the disadvantages of the scalar 



 

 
 

 

 

 

finite element approach of having undesired spurious modes or non-physical solutions and facilitates the implementation 

of boundary conditions at material interfaces11.  

The calculation of V-parameter for W-type index fiber shows that 6 µm is the optimum core diameter to keep the fiber in 

the single mode boundary at a large range (4.5-12µm). Our fiber design shifts the zero-chromatic dispersion to longer 

wavelengths with a smaller core diameter size than in the case of SIF and therefore it enhances the fiber nonlinearity due 

to a smaller effective area. The proposed chalcogenide fiber design has the potential to realize the highly coherent MIR 

SC generation beyond 10µm.  

 

2.  FEM FORMULATION 

FEM based edge elements is employed to compute the effective index of the proposed W-type fiber. Contrary to other 

FEMs, the edge elements considered here lead to spurious-free solutions and a natural imposition of the boundary 

conditions at material interfaces. We use the vector FEM approach that provide immunity from having spurious modes. 

The propagation of electromagnetic waves is governed by Maxwell’s equations. We start our consideration from the curl 

Maxwell’s equations12  

                                                 j  E H                                                                  (1) 

                                                 j  H E                                                                  (2) 

Where  j     , and  are the conductivity and the permittivity of dielectric materials. The vector FEM 

formulation can be shown by using either the magnetic field H or electric field E (The letters in bold are referred to vector 

quantities). In our investigation, we take the case of E field as that it is nearly the same for H field11. Taking the curl of 

Eq. (2) and substituting it in Eq. (1), leads the vector Helmholtz equation:   
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Where r=/0, and k0 is the free-space wave number which is written as 
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We assume the dependence of field components on the z coordinate on the form  exp z , the complex propagation (γ) 

is written as γ=α+jβ. The electric field is split into two parts, longitudinal (Ez) and transverse (Et) components, yielding:            
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Now, we decouple the vector Helmholtz of Eq. (3) into transverse and longitudinal components: 
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The problem is solved on a two-dimensional domain that results of enclosing the structure of interest by an electric wall. 

The edge element finite element formulation is next derived. First, we multiply Eq. (6) and Eq. (7) by the testing functions 

Tt  and Tz, respectively and then integrate over the structure Γ which yields to13  
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The weak form of the above equation can be written by using the vector identities 
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We consider the following boundary conditions at the electric wall Γ1 and the magnetic wall Γ2
11  
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Then rearranging Eqs (10) and (11) and multiplying Eq. (11) with γ, leads to 
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We use nodal-based elements, as shown in Figure 1(a), and the vector-based tangential edge elements, as shown in Figure 

1(b), to approximate the longitudinal component and the transverse fields of the Helmholtz equation Eq. (6) and Eq. (7), 

respectively11. 

For a single triangular element, we can express the transverse electric field as a superposition of edge elements. The edge 

elements allow a nonzero tangential component of the basis function along one edge and zero tangential component along 

the other. We can compute the complete transverse electric field of each triangular element as11 
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Where the indication m is the m-th edge of the triangle and Wtm refers to the vectorial edge element for the edge m which 

is described by  

 tm tm i t j j t iL       W                                                           (16)  

 

Where Ltm indicates the length of the edge m which is connecting the nodes i and j, and αi is referred to the nodal shape 

function written by 
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Where A is the triangle element area, ai, bi, and ci are written by11  
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Here i, j, and k are cyclical, and therefore we can write the longitudinal component as   
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Figure 1. Configuration of (a) node elements and (b) tangential edge elements 

 

We choose the testing function Tt and Tz corresponding to the vectorial and nodal shape functions, respectively (Tt=Wtm 

and Tz=αi), we substitute Eq. (15) and Eq. (19) into Eq. (13) and Eq. (14), integrates over a single element and interchange 

the integration and summation yields to11 
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Where n and j =1, 2, 3. We can write Eq. (20) and Eq. (21) as a matrix formation as: 
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The matrix elements are as follows: 
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The final generalized eigenvalue problem can be obtained by assembling the above element matrices over all the triangular 

elements in the structure.  
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Solving the previous equations yields the propagation constants  or the eigenvalues. The effective refractive index neff is 

obtained by using the relation14:   
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3. NONLINEAR AND DISPERSION CHARACTERIZATION 

The chromatic dispersion  D   is calculated from the effective index neff values versus the wavelength λ by the following 

expression15. 
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Where c is the speed of light in vacuum and Re(neff) is the real part of the fundamental mode effective index. The fiber 

dispersion effects are mathematically realized by using a Taylor series expansion for the propagation constant with respect 

to the centre frequency 0 of the pulse as:  
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Here β1 =1/vg indicates that the pulse envelope moves at group velocity vg, while β2 is the group velocity dispersion GVD 

which is important for broadening the pulse. β3 represents the third order dispersion. The group velocity dispersion is 

written as the dispersion parameter16: 
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The sign of the GVD parameter governs the behaviours of nonlinear effects in optical fibers. If the sign of GVD is positive 

(D < 0), a normal dispersion regime is occurred where the blue components of the pulse travel slower than the red 

components, i.e. positive chirp. In contrast, if the sign of GVD is negative (D > 0), an abnormal dispersion regime is 

occurred where the blue components of the pulse travel faster than the red components, i.e. negative chirp. The last case 

is the zero-dispersion wavelength (ZDW) when D = 0, where the pulse keeps its original shape and the pulse frequency 

components travel at the same speed. 

Another important parameter is the effective mode area which represents the effective area of the propagating mode in the 

W-type index fiber. The effective mode area equation is given by16:  
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Here E(x,y) is the optical field distribution across the fiber cross-section which is evaluated from the FEM solution of Eqs. 

(6) and (7.) Then, the effective mode area can be numerically evaluated from Eq. (34). The nonlinear parameter can be 

expressed as: 
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From Eq. (35), the nonlinearity coefficient γ can be controlled via two factors: nonlinear refractive index (nNL) and Aeff. 

 

3. DESIGN OF THE W-TYPE INDEX CHALCOGENIDE FIBER 

A W-type fiber consists of three different refractive index materials. The core has the largest refractive index of the three, 

and the inner cladding index is the lowest. Our proposed fiber is composed of core Ge15Sb15Se70 (n1), inner cladding 

Ge20Se80 (n2) and outer cladding Ge20Sb5Se75 (n3) as shown in Figure 2, r1 and r2 are the core and inner cladding radius, 

respectively. The wavelength-dependent linear refractive indices of chalcogenide Ge15Sb15Se70, Ge20Se80 and Ge20Sb5Se75 

are obtained from17,18 and shown in Figure 3. 

 
Figure 2.  Refractive index profile of a W-type index chalcogenide fiber. 

 
 

The V-parameter for the W-type index chalcogenide fiber can be written as7 
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Where  is the wavelength, and n1 and n3 denote the refractive index of the core and outer cladding, respectively. The W-

type index has a larger core area for a single-mode operation due to its higher V-parameter (V = 3.8) compared to the 



 

 
 

 

 

 

conventional SIF. The advantage of a larger core diameter is the reduction of the coupling losses while still operating under 

the single-mode condition. However, a smaller effective refractive index of the core and inner cladding may lead to a 

leakage of the mode power into the outer cladding and therefore result in a catastrophic loss for the mode. This effect can 

occur when the mode field radius and the operating wavelength become too large. Hence, an effective cut-off wavelength 

λf exists and it occurs at a V-parameter of around 1.47. From the two conditions described above, the operating wavelength 

must be between λf and the single-mode cutoff wavelength (λc), that is, λc < λ < λf. In our chalcogenide fiber, we optimize 

the core diameter to achieve the two above conditions in the range of operating wavelengths between 4.8 and 12µm. The 

calculation of V-parameter using Eq (36) is shown in Figure 4. The results show that a core diameter of 6 µm is suitable 

to keep the fiber under the single-mode boundary in the chosen range. 

 

 
Figure 3. The refractive index for the core, inner and outer cladding versus wavelength for synthesized Ge15Sb15Se70, Ge20Se80 and 

Ge20Sb5Se75 glasses. 

 
Figure 4. Calculated V-parameter for the W-type index chalcogenide fiber at core radiuses of 2.5µm, 3µm and 3.5µm with single-mode 

cutoff-wavelengths at λc, and cutoff-wavelengths due to leakage losses at λf. The single-mode boundary at V = 3.8 and the leakage 

boundary at V = 1.4 are marked with black dotted lines.                                  

4. RESULTS AND DISCUSSION 

The guiding properties of the designed W-type index fiber are analyzed by calculating the guided modes using our FEM 

software tool.  Several meshes with different polynomial approximations are tested to ensure that the error induced by the 

spatial discretisation does not have a sizeable influence on the computed modes. 

Figure 5 illustrates the chromatic dispersion characteristic of our reported fiber structure with a core diameter of 6µm and 

different inner cladding diameters. As shown in Figure 5, there are two zero-dispersion wavelengths (ZDWs) per curve. 

The first ZDWs remains nearly fixed, at around 4.3µm, for different inner cladding diameters. The second ZDWs 

increases with the inner cladding diameter. For an inner cladding diameter of 9µm, 12µm and 18µm the second ZDWs 



 

 
 

 

 

 

are located at 6µm, 6.5µm and 7µm respectively. Between these two ZDWs the fiber exhibits a low and flat anomalous 

dispersion. Moreover, the proposed fiber structure shifts ZDWs to longer wavelengths with a smaller core diameter size 

than in the case of SIF. Higher order dispersion values (β2 - β10) of the W-type index chalcogenide for the pump 

wavelength at 6.3 m are listed in Table 1.  

  

 

Figure 5. Calculated dispersion profiles versus wavelength for the W-type index chalcogenide fiber. 
 

Table 1. Higher order dispersion values of the W-type index chalcogenide for the pump wavelength at 6.3 m.  

βn Value 

β2(ps2/m) -2.6 

β3(ps3/m) 
31.3 10  

β4(ps4/m) 
73.55 10  

β5(ps5/m) -91.51 10  

β6(ps6/m) 111.79 10  

β7(ps7/m) 
120.063 10   

β8(ps8/m) 140.00138 10   

β9(ps9/m) 209.7 10  

β10(ps10/m) 231.2 10   

The calculated spectral variation of the effective mode area is shown in Figure 6. It is clearly observed that the effective 

mode area increases with the inner cladding. From the above simulation, we select the inner cladding diameter of 12 µm 

(r2/r1=2), and a pump wavelength of 6.3µm, which is near the second ZDWs in the anomalous dispersion regime. At this 

pump wavelength, the dispersion is D =3.24ps/(nm·km) and the effective area equals 32 µm2. Typically, the Ge15Sb15Se70 

glass offers a high nonlinear refractive index (nNL) of about 10.34 m2W−1 at the wavelength of 1.55 µm19.  

 



 

 
 

 

 

 

An efficient way to achieve wide Mid-IR SC generation is to pump the nonlinear fiber in its anomalous dispersion regime. 

At this regime, the pulse spectrum is broadened through soliton effects. The numerically calculated value of nonlinear 

parameter is about 0.1225 W-1 m-1 at the pump wavelength of 6.3 µm which is twice time higher than previously reported 

step-index fiber20. As a result, the proposed W-type index chalcogenide structure ensures single-mode propagation, which 

improves the nonlinearity, a flattened dispersion profile and low losses due to a tight confinement of the mode within the 

core. 
 

 
Figure 6. Effective area versus wavelength (µm) for the W-type index chalcogenide fiber at different inner cladding diameters. 

 

5. CONCLUSION 

In summary, this paper presents a design of a robust W-type index chalcogenide fiber for Mid-IR SC beyond 10µm. Our 

fiber design consists of Ge15Sb15Se70 glass core, Ge20Se80 glass inner cladding and Ge20Sb5Se75 glass outer cladding. The 

optical mode distribution of the chalcogenide fiber is simulated by a finite element method based on edge elements. With 

6-µm core diameter and 12-µm inner cladding diameter, the proposed fiber design exhibits flat anomalous dispersion in 

the wavelength range (4.3-6.5µm) with a peak of about 7ps/(nm·km). The position of the second ZDW can be easily and 

precisely controlled by the inner cladding size. The larger the inner cladding diameter, the longer will be the zero-dispersion 

wavelength. However, the increase of the inner cladding diameter leads also to an increase of the effective mode area and 

therefore a smaller fiber nonlinear coefficient. The proposed design is more suitable for a pump wavelength at 6.3µm 

which is located between two ZDWs. 
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