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Abstract 
This paper discusses comparisons of first and second-order slip boundary 
conditions on the range of Knudsen numbers of some typical MEMS as 
( ) ( )13 1010 −− << OKnO  by numerical simulations using the continuum model 

based on the Navier-Stokes (N-S) equations. Slip flows are solved by the 
Constrained Interpolation Profile (CIP) method. A numerical method for a simple 
but general form of a slip boundary condition on a simple planar wall is also 
introduced. Numerical solutions are in very good agreement with exact solutions of 
the N-S equations with slip boundaries in two-dimensional Poiseuille flows in the 
hard sphere (HS) model. The present numerical method is next applied to two and 
three-dimensional rid-driven cavity flows, employing slip coefficients for the 
Bhatnagar-Gross-Krook (BGK) model. The results indicate differences of slip 
effects near walls between the first and second-order slip boundary can also affect 
whole streamlines and velocity distributions in a closed region with increasing the 
Knudsen number. 
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1. Introduction 

The importance of investigations of micro-gas-flows has been increasing owing to 
developments of microdevices such as micro-electro-mechanical systems (MEMS). The 
Knudsen number defined as LKn λ≡  has to be taken into account to investigate 
properties of such flows, where λ  is the mean free path of a gas and L  is a characteristic 
length. This is because the number is one of the most important characteristic measures to 
determine degrees of rarefaction of gases. Therefore, appropriate approaches have to be 
carefully selected depending on the range of the Knudsen number. 

The Boltzmann equation for the velocity distribution function in phase space is required 
to investigate flows over the wide range of the Knudsen number, and the direct simulation 
Monte Carlo (DSMC) method has been effective to compute the collision term 
accurately(1,2). On the contrary, some kinds of numerical approaches using discrete grid 
points in phase space such as finite difference schemes(3,4) have been also proposed to the 
Boltzmann equation. In order to reduce calculations of integrals in the collision term of the 
Boltzmann equation, some kinetic-type models such as the Bhatnagar-Gross-Krook (BGK) 
equation(5) have been also used widely.   

However, the Knudsen number in some typical MEMS such as micro pumps is about 
( ) ( )13 1010 −− << OKnO (6), which is called the slip flow regime. We can employ continuum 

models based on the Navier-Stokes (N-S) equations in conjunction with slip velocity 
boundary conditions at walls for slip flows(7,8) instead of kinetic-type models. Maxwell first 
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brought forward the first-order slip boundary for tangential velocity on a simple planar 
wall(9), and higher-order boundary conditions have been also proposed as its improvement. 
One of the authors has numerically obtained some fundamental results for the Maxwell's 
first-order slip boundary using the Constrained Interpolation Profile (CIP) method(10,11,12). It 
is the robust and less diffusive solver for hyperbolic equations with accuracy of third-order 
both in time and space; a lot of successful results such as fluid-structure interactions have 
been introduced(11). It has been also indicated in the previous paper that the N-S equations 
of incompressible flows with the slip boundary are comparable with kinetic-approaches for 
the slip regime through some conventional benchmark tests(12) . 

 This paper is intended to show an extension of the numerical method in Ref. 12 from 
the Maxwell's slip boundary condition to a general form which represents first and 
second-order slip boundary conditions, and to compare slip effects of both slip conditions 
on flows in an opened and a closed area. Basic equations are briefly reviewed and a 
numerical method for a general form of slip boundary conditions is implemented in Section 
2. The present method is validated through the Poiseulle flow as a benchmark test in Section 
3.1. Next, two and three-dimensional lid-driven cavity flows are solved to compare slip and 
rarefaction effects on multi-dimensional flows between first and second-order slip 
boundaries in Sections 3.2 and 3.3, respectively. Concluding remarks are in Section 4. 

 

2. Numerical procedures for slip flow regime 

2.1 Basic equations 
In this paper, the Knudsen number is assumed to be finite but small as a slip flow. In 

particular, the flow is assumed to be incompressible and isothermal because we will deal 
with the flow of which a reference speed is much lower than a thermal velocity; the Mach 
number is much smaller than unity and the change of gas density is negligible to hardly 
have an effect on flow fields. The reference temperature of the gas is formally defined as 

0T . Dimensionless quantities are defined as follows: 
 

0ˆ hxx = , 0
ˆ ttt = , 0ˆ ρρρ = , 0ˆ Uuu = , 0ˆ ppp = , (1) 

 
where ( )wvu ,,, =uρ  and p are the density, macroscopic velocity and pressure, respectively. 
The reference length, velocity, time, density and pressure are 0h , 0U , 000 Uht = , 0ρ  and 

2
000 Up ρ= , respectively. The reference viscosity coefficient 0µ  and the reference thermal 

velocity 0C  are described as follows: 
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where R  is the gas constant and 0λ  is the mean free path. The dependence of 0µ  on 
collision models can be included in the coefficient α . For example, the hard-sphere (HS)  
and BGK models have ( )0.1165 ≅= πα (13) and 4πα = (14,15), respectively. 

The quantities ( )000 ,, Cλµ  are also assumed to be constant in the whole flow field 
because of the assumption of the incompressible and isothermal flow. A relationship 
between the Knudsen number Kn  and the Reynolds number Re  can be readily found 
through the Mach number Ma and Eq. (2) as follows(14,15): 
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The Reynolds number is small for a large Knudsen number with a fixed Mach number. 
However, flows for large Knudsen numbers will be different from nonslip continuum flows 
for low Reynolds numbers if there are walls, owing to the slip on walls. The ``^" sign used 
in Eq. (1) to represent dimensionless variables is dropped here for simple notation, then, the 
dimensionless N-S equations can be described on the basis of Eqs. (1) to (3) as follows: 

 
0=⋅∇ u , (4) 

 

( ) uuuu 21
∇+−∇=∇⋅+

∂
∂

Re
p

t
. (5) 

 
Equations (4) and (5) are solved by the CIP-Combined Unified Procedure (CUP) 

method with a fractional step(12,16). The left-hand side of Eq. (5) called the advection phase 
is solved by the rational function CIP method(17) in multidimensions(18,19) for monotone 
preserving in this paper. The right-hand side called the nonadvection phase is solved after 
the advection phase. The viscosity term is solved using the implicit scheme with the 
second-order finite difference, and the Poisson equation of the pressure for the condition 
Eq. (4) is solved using the Bi-CGSTAB method. Next, we discuss how to appropriately 
make a formulation of a higher-order slip boundary condition, which uses the N-S solution 
of velocity u  on a planar wall. 

2.2 Slip boundary condition for tangential velocity on a planar wall 
When we consider an interaction between a slip gas flow and a planar wall with a 

tangential velocity Wu  in the N-S equations, it is effective that velocity slip conditions are 
imposed at a point Wx  on the wall surface. In contrast to Maxwell's first-order slip 
boundary condition(9), a second-order slip model was first brought forward by 
Cercignani(20). The second-order velocity slip condition is as follows: 
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where n  is the coordinate, and n∂∂  and 22 n∂∂  are the first and second-order spatial 
derivative normal to the planar wall, respectively. slipU∆  is a tangential slip velocity of the 
gas on the wall. The coefficient 1A  is 1.0 in the original Maxwell's condition when the 
accommodation coefficient 0.1=σ . However, accurate solutions of the linearized 
Boltzmann equation (LBE) give 11.11 =A  in 0.1=σ  for the HS model(21); the coefficient 

1A  includes the Knudsen layer correction. 
Several pairs of coefficients ( )21 , AA  have been proposed depending on collision and 

mathematical models. For example, the Taylor Expansion-based model can give 
( ) ( )5.0,0.1, 21 =AA (22). In order to find the tangential gas velocity 

Wxx=u consistent with Eq. 
(6) on the wall, a profile of a tangential velocity component f  near a planar wall is 
assumed to be represented by a quadratic interpolation function as follows: 

 
( ) cbnannf ++= 2 .                                               (7) 

 
For example, let us consider the wall at 0.0=y  with a wall speed Wu  in x -direction in 
two-dimensions (see Fig. 1, then uf =  and yn =  in Eq. (7)). The coefficients ( )cba ,,  
satisfying Eq. (6) at ( ) ( )0,, ixyx =  can be obtained by the following conditions using the 
three grid points on and near the wall: 
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( ) ( ) ,21
2

212, cyybyyaui +∆+∆+∆+∆=                               (8) 
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2

11, cybyaui +∆+∆=                               (9) 
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210, aKnAbKnAucu wi ⋅−⋅+==                                  (10) 

 
where ( )2,1=∆ jy j  is the mesh size. Thus, the coefficients ( )ba,  can be easily obtained 
by putting Eq. (10) into Eqs. (8) and (9) as follows:  
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Hence, the tangential gas velocity on the wall ( )
Wxx=== ucui 0,  can be determined by Eqs. 

(10) to (12). Even if a wall is placed at jmaxj =  which is the maximum number of grid 
points in y -direction, Eqs. (8) to (12) can also give the tangential gas velocity jmaxiu ,  by 
just replacing ( )21 , yy ∆∆  and ( )2,1, , ii uu  with ( )1, −∆∆ jmaxjmax yy  and ( )21 −− i,jmaxi,jmax ,uu , 
respectively. Note that, in 02 =A , the coefficients ( )cba ,,  result in the ones for the 
first-order slip boundary. Even in three-dimensions, z -component of the gas velocity 

Wxx=w can be straightforwardly obtained by replacing u  with w  in Eqs. (8) to (11). 
 

 
Fig. 1  Grid points for a tangential velocity component on and near a wall in xy -plane. 

Though slip boundary conditions are derived under assumptions of steady flows, they 
can be also applied to quasi-static flows, i.e, collision time 00 Cc λτ ≅  is much smaller 
than characteristic time 00 UhT ≅ , or MaKn ⋅  is much smaller than the unity. Slip 
models for time-dependent flows have been validated by Hadjiconstantinou(23). Meanwhile, 
we need to care about two following points using slip boundaries.  

First, true profiles for slip/transitional flows can be expressed as the combination of 
N-S solution part ( )NSu  with Knudsen layer part ( )Knu , KnNStrue uuu += ; Knu  becomes 
zero out of the layer(24). Three grid points used for Eq. (7) may be inside the layer in 

( )110−≅ OKn . However, Eq. (7) cannot include the structure of the Knudsen layer part Knu  
because Eq. (5) can give only NSu  even in the layer. Therefore, while fictitious slip 
boundary conditions have been suggested(8,14,25) so that flow field outside the Knudsen layer 
can be correctly captured by corrections of slip boundary coefficients even though Knu  
rapidly decreases inside the Knudsen layer, the range of Knudsen numbers for slip boundary 
conditions should be practically restricted in ( )110−≤≈OKn  as has been suggested(2). 

Second, Sone has established the general formulations of the slip boundary by the 
asymptotic theory(14,15,26,27). When the tangential gas velocity changes along a wall, Eq. (6) 
will be incorrect because, exactly, tangential shear stress has to be considered. One of 
improved solutions is the Maxwell-Burnett slip law(28). In addition, slip of the normal 
velocity component will also take place by the second-order term in a power series of Kn  
for Grad-Hilbert solution and Knudsen layer part(14,15).  
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Therefore, we set the following assumptions to use Eq. (6) for all calculations in the 
present paper. First, slip of the normal velocity on a planar wall is not taken into account, 
that is, the nonslip boundary condition is imposed for the normal velocity. The assumption 
is correct in the first-order approximation of the normal slip velocity(14,15), and the slip 
boundary for the tangential velocity in the second-order term reduces to Eq. (6) if the 
second-order term of the normal velocity slip is small for small Knudsen numbers.  

Next, effects of sharp corners in a closed area such as a cavity containing a flow are not 
considered as Ref. 12. When a wall has a curvature κ , Eq. (6) is also insufficient because 
terms including κ  have to be also added to slip boundary conditions. However, Aoki et al. 
have discussed discontinuity of the velocity distribution function caused by the sharp 
corner(29), and shown that the discontinuity is very small for small Kn  when the velocity 
distribution function becomes almost a local Maxwellian near the corner. In addition, a grid 
point at a corner is not used to solve the N-S equations and to make the interpolation 
function Eq. (7) in numerical simulations. All calculations in the present paper are devoted 
to flows on simple planar walls and no term of κ  is treated in Eq. (6). 

Next section, the present method Eqs. (7) to (12) for Eq. (6) as the velocity boundary 
condition will be briefly verified using the Poiseuille flow in the HS model. 
 

3. Numerical experiments of the slip flow regime 

3.1 Poiseuille flow 
The plane Poiseuille flow between two parallel plates has been investigated in views of 

theory and experiments very well. For example, Ohwada et al. have obtained 
comprehensive solutions of mass flows and velocity profiles for the HS model using the 
LBE; the solutions agree with experiments very well(21). In the continuum model, 
Hadjiconstantinou has suggested coefficients ( ) ( )61.0,11.1, 21 =AA  in Eq. (6) for the HS 
model(24) based on solutions of Ref. 21. Hence, the flow is a proper benchmark test to make 
sure the validity of the present method. 

A channel width H  is taken as the reference length ( )Hh =0 , thus the Knudsen 
number is defined as HKn λ≡ . A parameter ( )Knk 2π≡  is introduced to directly 
compare numerical solutions to Ref. 21. A gas confined between two parallel stationary 
plates is driven by pressure gradient along the two plates. The inlet and outlet pressures are 
fixed to 0.1=inp  and 5100.10.1 −×−=outp  in this test, respectively.  

The number of grid points are ( ) ( )50,50, =yx NN  and the computational regions are 

( )20 ≤≤ x , ( )2121 ≤≤− y . The x  and y  spaces are divided into uniform section with 

04.0=∆x  and nonuniform sections with the minimum width 3
min 10175.6 −×=∆y  near the 

walls and the maximum width 2
max 10568.4 −×=∆y  around 0=y , respectively. 

Exact solutions of the mass flow rate MQ  and velocity profile ( )yu  for the HS 
model in Eq. (3), the accommodation coefficient 0.1=σ and the slip velocity boundary Eq. 
(6), can be described as follows: 
 

( ) ( )[ ]21212
5

4 2
21* +++−+= yyKnAAKn

Knu
u

π
,                       (13) 

( )2
21* 1261

15
2 KnAKnA

KnHu
QM ++=

πρ
,                                (14) 

 
where dxdpCu 0

* −=  and ( ) 2Hppdxdp inout −= ; both solutions reduce to those of 
the first-order boundary for 02 =A (13).   
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Fig. 2 Velocity profiles of the first and second-order slip boundaries. Present : Numerical 

solution, Exact : Eq. (13). (a) 1.0=k  (b) 2.0=k  (c) 4.0=k  (d) 6.0=k . 
 

   
Fig. 3 Mass flow rate for the Poiseuille flow of the first and second-order boundary conditions. 

Present : Numerical solution, Exact : Eq. (14) with 2
~A , LBE : Ohwada et al.(1989) (21) 

 
It has already been confirmed in Ref. 12 that the numerical solutions for the Maxwell's 

first-order slip condition ( ) ( )0.0,0.1, 21 =AA  are in agreement with the LBE solution up to 
1.0≅k . In the present paper, numerical solutions by the present method for the pairs of the 

first-order ( ) ( )0.0,11.1, 21 =AA  and second-order ( ) ( )61.0,11.1, 21 =AA  slip velocity boundary 
conditions are compared again to the N-S exact solutions Eqs. (13) and (14) and Ohwada's 
LBE solutions. 

Meanwhile, the contribution of the Knudsen layer to the mass flow rate MQ  has to be 
taken into consideration in second-order slip models, and the correct mean flow velocity has 
to be also modified as follows: 
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where 296.0=ξ  for the HS model(24). Hence, the exact mass flow rate Eq. (14) has to be 
also obtained by replacing 2A  with the effective coefficient ( )314.0~

22 =−= ξAA . In 
obtaining the mass flow rate from the N-S numerical solutions, the trapezoidal rule and a 
second-order one-sided difference are used for the integral and the first-order spatial 
derivative on the walls at 5.0±=y  in the right-hand side of Eq. (15), respectively. 

Figure 2 shows velocity profiles of the present method, the N-S exact solution Eq. (13) 
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for the first and second-order slip boundaries and the LBE. Numerical solutions by the 
present method are in very good agreement with Eq. (13) in any Knudsen numbers and the 
method can accurately give the "N-S" velocity solutions that are consistent with the slip 
boundary Eq. (6). It is found in Fig. 2 that the difference of solutions between the first-order 
and the second-order slip boundaries increases with increasing the Knudsen number owing 
to the second-order term in Eq. (6). However, the effectiveness of the second-order slip 
boundary condition can be found in all results of Fig. 2 as the discussion given by 
Hadjiconstantinou, who has suggested the effective thickness of Knudsen layer λδ 5.1≅ (23). 
For example, the thickness is estimated kHkH 7.13 ≅≅ πδ  in this problem. It can be seen 
in Fig. 2(a) and (b) that the second-order boundary is in better agreement with the LBE 
solution than the first-order boundary out of the Knudsen layer in 3.0≈≤y  and 15.0≈≤y  
for 1.0=k  and 2.0=k , respectively; we can see second-order slip boundary conditions 
are effective to give true solutions out of the Knudsen layer as have been discussed in 
previous papers. However, the Knudsen layer covers a large part of the closed domain when 
k  is larger than about 3.0 , then, solutions by the N-S equation with the second-order slip 
boundary condition deviate from LBE solutions on the whole as shown in Fig. 2(c) and (d).  

Figure 3 shows the comparison of numerical solutions of the flow rate for the first and 
second-order slip boundaries to Eq. (14). Note that the solution of the first-order boundary 
( ) ( )0.0,11.1, 121 =AA  is almost identical with the first-order solution of the asymptotic theory 
for small Knudsen numbers 1<<k (15). The LBE solutions in Ref. 21 are also displayed to 
be compared with the N-S solutions. Each numerical solution of the first and second-order 
slip boundary conditions is in good agreement with each exact N-S solution. In addition, it 
is confirmed that the solution of ( ) ( )61.0,11.1, 21 =AA  agrees with the LBE up to 

( )4.03.0 ≅≅ Knk  as shown in Refs. 23 and 24. Cercignani has suggested the new effective 
coefficient 2

~A  to make mass flow rate be consistent with the LBE solution; mass flow rate 
can be in good agreement with the LBE up to 8.0≅Kn (30). However, it is not looked up in 
the present paper because this section is just devoted to validation of the present method for 
the N-S solution. Next, the present method is applied to two and three-dimensional cavity 
flows employing slip coefficients for the BGK model on the range of 1.0≤Kn .  

3.2 Two-dimensional lid-driven cavity flow with slip velocity boundaries 
Ghia et al. have given fundamental numerical solutions for a two-dimensional 

continuum cavity flow driven by the motion of a top wall using the incompressible N-S 
equations(31); the solutions have been widely used to validate numerical schemes.  

Naris and Valougeorgis have given the two-dimensional flow in the slip regime using 
the LBE(32), and Tang et al. have investigated them using the Lattice Boltzmann Method 
(LBM) for the discrete-velocity Boltzmann kinetic equation(33). Mizzi et al. have obtained 
the solution of the Navier-Stokes-Fourier equations in conjunction with slip boundaries(34), 
and Darbandi et al. have done using a finite-volume-based finite-element method for the 
N-S equations(35). One of the authors has also shown the two/three dimensional cavity flows 
in the slip regime ( )1.0≤Kn  using the Maxwell's first-order slip boundary condition 
( ) ( )0.0,0.1, 21 =AA . However, the flow of 1.0=Kn  was a little bit in disagreement with the 
result in Ref. 33. We revisit the flow with the second-order as well as the first-order 
boundaries. 

 The top wall speed Wu  and the length (= the width) H  of the cavity are taken as 
the reference speed 0U  and the reference length 0h , respectively. The top wall moves 
with a (nondimensional) constant speed 1=Wu  while the other three walls are stationary. 
The Reynolds number Re  is fixed to 0.3 in this section, that is, MaKn  is also fixed by 
Eq. (3). Therefore, a mach number Ma  also changes depending on a Knudsen number. 
For example, the real top wall speed for 1.0=Kn  is ten times higher than for 01.0=Kn  
in the constant temperature 0T . However, the mach number is set to be very small as 
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( )310−O  even in 1.0=Kn  so that the assumption of incompressible flows can be satisfied. 
The initial macroscopic velocity of the gas is ( ) ( )0,0, =vu . 

The number of grid points are ( ) ( )50,50, =yx NN  and the computational regions are 
( )0.1,0 ≤≤ yx . Both x and y spaces are divided into nonuniform sections with the 

minimum width 3
minmin 10175.6 −×=∆=∆ yx  near the four walls and the maximum width 

2
maxmax 10568.4 −×=∆=∆ yx  around the center of the cavity. These numerical conditions 

such as grid sizes are the same as what have been employed in the previous paper(12). 

 
Fig. 4 Streamlines of the two-dimensional cavity flow in the slip regime. Top line (a)-(c) : 

( ) ( )0.0,0.1, 21 =AA , Bottom line (d)-(f): ( ) ( )9756.0,1466.1, 21 =AA . (a)(d) 01.0=Kn , (b)(e) 
05.0=Kn , (c)(f) 1.0=Kn . 

 
Fig. 5 Vorticity contours for both slip boundaries. Top line (a)-(c) : ( ) ( )0.0,0.1, 21 =AA , 

Bottom line (d)-(f) : ( ) ( )9756.0,1466.1, 21 =AA . (a)(d) 01.0=Kn , (b)(e) 05.0=Kn ,(c)(f) 
1.0=Kn .The contour lines go from -32 to 10, 60 contours. 

 
Coefficients ( ) ( )9756.0,1466.1, 21 =AA  are employed for the BGK model(20,34,35) to be 
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compared with the ones for the Maxwell's first order boundary ( ) ( )0.0,0.1, 21 =AA (12) and 
Ref. 33. The coefficient 4πα =  is used for the Reynolds number in Eq. (3). 

Figures 4 and 5 display the comparison of the streamlines and the vorticity component 
zq  at steady states for 05.0,01.0=Kn  and 1.0 . The top and bottom lines of Figs. 4 and 

5(a)-(c) and (d)-(e) are the solutions for the first and second-order boundary conditions, 
respectively. The streamlines are symmetry about 5.0=x  because of the low Reynolds 
number. Kawaguchi has shown solutions of vorticities and streamlines for continuum flows 
at low Reynolds numbers(36), and the present solutions are also similar to the solutions.  

Although the first-order boundary hardly differs from the second-order one in 
01.0=Kn , differences appear in 1.0=Kn . For example, the streamlines of the second-order 

boundary become rounder around the top corners and the vortex center, and vorticity 
becomes weaken more than of the first-order owing to the effect of slip velocity on the flow. 
Such slip effects can be also recognized in Fig. 6, which shows the velocity profiles passing 
through the geometric center of the cavity. Numerical solutions of nonslip boundary and 
Ref. 33 are also depicted as references. The reference data is directly extracted from the 
figures in Ref. 33 with our careful checks. 

 

 
Fig. 6 Velocity profiles for various Knudsen numbers compared with Tang(2005) (33) . Left 

column: velocity v  at 5.0=y , Right column: velocity u  at 5.0=x . 
 
The profiles in x  and y -directions of both slip boundaries are almost the same as 

those of the nonslip flow in 01.0=Kn . On the contrary, while the first slip velocity 
deviates a little bit from Ref. 33, the whole profiles for the second-order slip boundary 
become in good agreement even in 1.0=Kn .  

While a cavity flow is converged to a steady state in a low Reynolds number, tangential 
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gradients of velocity exist on all walls and the cavity has four corners unlike the Poiseuille 
flow. However, it is found that the general form of second-order boundary in the N-S 
equations is effective to a flow even in such a closed area on the adequate range of the 
Knudsen number as the previous section.  

We have also tested the cubic-interpolation using four points instead of Eq. (7), for 
example, the condition of 3,iu  is added to Eqs. (8)-(10). However, no difference between 
Eq. (7) and the interpolation could be found in all results of Figs. 4 to 6. It goes to show that 
a coefficient of the third-order term in the interpolation is almost zero. The property is 
considered to be appropriate in general because boundary layer (not Knudsen layer) in N-S 
solution part NSu  is thick such as laminar flows in finite Knudsen numbers and small 
Mach numbers, that is, small Reynolds numbers, and slip effect most likely suppresses steep 
variation of tangential velocity profile near a wall in NSu  as shown in Figs. 2 and 6.  

3.3 Three-dimensional lid-driven cavity flow with slip velocity boundaries 
The last application is the three-dimensional lid-driven cavity flow. A lot of calculations 

for three-dimensional incompressible continuum flows in a cubic-cavity such as Ref. 37 
have been examined, and Tang et al. have studied three-dimensional flows in a microduct 
using the Lattice Boltzmann model well lately(38). However, there have been still few 
reports of three-dimensional slip flows. One of the authors has calculated the 
three-dimensional cavity flow using the Maxwell's first-order slip boundary. The present 
chapter compares both the first and second-order slip boundary conditions based on the 
BGK model as the previous section, and discusses differences of slip effects by end walls 
on whole flow fields between in two and three-dimensions.  

The top wall speed Wu  and the length (=the width and the depth) H of the cubic 
cavity are taken again as the reference speed 0U  and the reference length 0h , 
respectively. The computational regions of the cubic cavity are ( )0.1,,0 ≤≤ zyx  and the 
number of grid points are ( ) ( )50,50,50,, =zyx NNN . The same way to locate grid points as 
the two-dimensional case is employed; all three directions are divided into nonuniform 
sections with the minimum width 3

minminmin 10175.6 −×=∆=∆=∆ zyx  near the six walls and 

the maximum width 2
maxmaxmax 10568.4 −×=∆=∆=∆ zyx  around the center of the cubic 

cavity. The top wall at 1=z  moves in x -direction with a constant speed 1=Wu , and the 
other five walls are stationary. The Reynolds number Re  is fixed to 0.3 again, and each 
mach number Ma  for each Knudsen number Kn  is also the same as that in the 
two-dimensional cavity flow. Slip coefficients ( ) ( )0.0,0.1, 21 =AA  and ( ) ( )9756.0,1466.1, 21 =AA  
are taken for the first and second-order slip boundary conditions, respectively. 

Figure 7(a)-(d) shows streamlines, in which five and three cross sections are depicted 
from 0=y  to 1=y  at steady states for the second-order slip ( ) ( )9756.0,1466.1, 21 =AA  
and nonslip flows, respectively. The streamlines are also shown on two end walls 0=y  
and 1=y  for the slip flows. All streamlines are symmetric about the plane 5.0=x  as 
two-dimensions. While the difference between Figs. 7(a) and 7(b) can be hardly seen inside 
the cavity as a result of the small slip effects on the flow of 01.0=Kn , streamlines on all 
cross sections become round with increasing the Knudsen number in Fig. 7(c) and (d) as 
discussed in the two-dimensional cases.  

Figure 8(a)-(f) shows the comparison of vertical velocity component to the bottom 
wall ( )w  at the plane of symmetry 5.0=y  to the component in two-dimensions ( )v  for 
the nonslip and 1.0=Kn  for the first and second-order boundaries. Although differences of 
physical quantities such as streamlines have been discussed between the first and 
second-order boundaries in the two-dimensions, differences can be hardly found between 
two-dimensions and the plane of symmetry in three-dimensions for both slip boundaries 
even in rather large 1.0=Kn . The results have indicated that, even if end walls also exist in 
slip flows, the velocity profile at the mid-plane are hardly changed like Stokes flows in low 
Reynolds numbers; the discussion of 400,100=Re  and 02.0  for continuum flows with 
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the nonslip boundary have been given in Ref. 39. 
 

 
Fig. 7 Streamlines for the second-order slip and nonslip boundary conditions. (a) Nonslip 

(b) 01.0=Kn  (c) 05.0=Kn  (d) 1.0=Kn . 

 
Fig. 8 Vertical velocity component to the bottom wall for 2-D (Top line) and the plane of 

symmetry in 3-D (Bottom line). (a)(d) Nonslip, (b)(e) 1.0=Kn for ( ) ( )0.0,0.1, 21 =AA , 
(c)(f) 1.0=Kn for ( ) ( )9756.0,1466.1, 21 =AA . The contour lines go from -0.38 to 
0.38, 39 contours. 

 
However, slip effects on walls can be clearly seen in Figs. 9 and 10 (a)-(d) which show 

contour slices of x  and z -components of velocity ( )wu,  at 5.0,0.0=y and 0.1 , 
respectively. The maximum value of y -component ( )v  is over one order of magnitude 
lower than the other two components. The contours on the end plates 0=y  and 1=y  
become clear with increasing the Knudsen number while there are no or only a few contour 
lines in nonslip or the small Knudsen number flows. In particular, the contours on the end 
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plates become similar to the one on the plane of symmetry for 1.0=Kn  because of the 
large slip effect on the walls. The effect can be also compared in Fig. 11(a) and (b) which 
depict the profiles of velocity u  at the center of xy -plane ( )5.0== yx  and xz -plane 
( )5.0== zx , respectively in the second-order boundary of ( )21 , AA ; the line 5.0== zx  is 
below the center of the primary vortex. Figure 4 can be also referred by the following 
discussion.  

 
Fig. 9 Contour slices of x -component of velocity ( )u  for the second-order slip and 

nonslip boundary conditions. (a) Nonslip, (b) 01.0=Kn , (c) 05.0=Kn , (d) 1.0=Kn . 
The contour lines go from -0.2 to 1.0, 60 contour lines. 

 

 
Fig. 10 Contour slices of z -component of velocity ( )w  for the second-order slip and 

nonslip boundary conditions. (a) Nonslip, (b) 01.0=Kn , (c) 05.0=Kn , (d) 
1.0=Kn . The contour lines go from -0.38 to 0.38, 39 contour lines. 
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The three-dimensional results in Fig. 11(a) are compared with the two-dimensional 
ones. It can be found in Fig. 11(a) that the profiles of three-dimensions at the plane of 
symmetry 5.0=y  is almost the same as those of two-dimensions in 05.0=Kn  and 

1.0=Kn  as mentioned in Fig. 8, though small difference can be seen at 5.0≅z  in 
01.0=Kn  which rather corresponds to a continuum flow. In addition, while each profile in 

Fig. 11(b) is symmetry about 5.0=y , the flow speed around 5.0=y  becomes low but 
the one on both walls 0=y  and 1=y  becomes high owing to the slip as the Knudsen 
number increases. Thus, the large slip effect on end walls makes the velocity profile 
gradually approach flat. Figure 11(b) has indicated that the slip effect caused by the walls 
spreads in the cavity, then, the flow gradually becomes two-dimensional on the whole as 
Figs. 9, 10 and 11(a) with increasing the Knudsen number. 

 

 
Fig. 11 Velocity profiles of u  by the second-order boundary condition for various 

Knudsen numbers. (a) 5.0== yx  (b) 5.0== zx . 
 

4. Concluding remarks 

We have presented a numerical scheme using the CIP method for slip flows solved with 
the incompressible Navier-Stokes equations in conjunction with a general form of slip 
boundaries. The approach can be applied to the HS and BGK models by changing slip 
coefficients ( )21 , AA  as well as the definitions of viscosity or the Reynolds number. 
Numerical experiments have indicated that the present method for both first and 
second-order boundary conditions can give reasonable numerical solutions on the range of 
Knudsen numbers ( )110−≤OKn . While the tangential velocity on the wall is determined by 
only two grid points above the wall, the whole profile can be obtained without any 
discrepancy. Differences of velocity slip effects by first and second-order slip boundaries 
appear in not only the Poiseuille flow in an open area but also the lid-driven cavity flow in a 
closed area. In particular, in three-dimensional cavity flows, end walls with large slip effects 
make flow structure changed like two-dimensions in the large Knudsen number.  

Though the approximation Eq. (7) is not on the basis of physics, not less than a 
quadratic polynomial of coordinate n  is needed to represent a non-zero second-order 
derivative in Eq. (6); a linear interpolation can deal with only a first-order slip boundary. 
For example, Eq. (7) is proved to be valid in the plane Poiseulle flow; Eq. (7) can give its 
exact solution in the N-S equations. On the contrary, higher-order interpolations than Eq. (7) 
might be also needed in general, such as a cubic interpolation used well for laminar 
boundary layer on a simple plane. However, we have found Eq. (7) is sufficient while 
higher-order interpolation functions can be formally made using more than three grid 
points. Velocity of the N-S part NSu  of a slip flow varies smoothly compared to a 
continuum flow in laminar boundary layer as shown in the present paper. Hence, 
higher-order terms are much smaller than the second-order term because coefficients of 
higher-order terms are not very large as discussed in Section 3.2, and Eq. (7) is applied in a 
short range of coordinate 1<<n  when fine mesh is set near a wall; the range is much 
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smaller than the reference length. Therefore, even if the third-order term such as 
( )

W
nuKnA xx=∂∂ 333

3 could be added to Eq. (6), the term would be also negligible in slip regime 
( )110−≈OKn  because the third-order derivative becomes small on a wall; higher-order terms 

than the second-order term are clearly negligible in very small Knudsen numbers.  
When thickness of the Knudsen layer increases, not only the quadratic as Eq. (7) but 

also higher-order interpolation functions are still insufficient to determine the true velocity 
profile in the layer as mentioned in Section 3.2. Lockerby et al. have discussed wall 
functions to approximate the flow profile of the Knudsen layer part Knu (25); it makes true 
velocity profiles trueu  largely deviated from NSu  with increasing the Knudsen number. 
Such approach is similar to what is used in turbulent boundary-layer modeling, and the 
approach can be probably one of solutions to be included in slip boundary conditions.  

The present scheme also warrants extensions to the other type of slip boundaries, 
general surface geometries with curvature κ , and moving bodies for wide applications to 
microdevices such as micro pumps(40). While the CIP method can be applied to curvilinear 
coordinates(41), tangential shear stress for arbitrary body shapes has to be exactly included in 
slip boundaries. However, the present formulation for the slip boundary can be applied to 
the cylindrical and spherical coordinates because the tangential shear stress can be exactly 
expressed. The extension to curved surfaces and three-dimensional practical applications 
will be reported as our next future works. 
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