
J
H
E
P
0
4
(
2
0
2
0
)
0
9
6

Published for SISSA by Springer

Received: January 12, 2020

Revised: March 11, 2020

Accepted: March 31, 2020

Published: April 16, 2020

Numerical Loop-Tree Duality: contour deformation

and subtraction

Zeno Capatti, Valentin Hirschi, Dario Kermanschah, Andrea Pelloni and Ben Ruijl

ETH Zürich,
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1 Introduction

The Large Hadron Collider (LHC) is entering its high luminosity data acquisition phase and

is thus transitioning from being a discovery experiment to a precision measurement one.

For this new goal, accurate theoretical predictions are necessary in order to ensure that

theoretical uncertainties remain at or below the level of experimental ones. In particular,

this involves the computation of higher-order corrections to the cross-sections of relevant

scattering processes, which are built by considering processes with additional unresolved

partons (real-emission type of contributions) and additional loop degrees of freedom (virtual

type of contributions). These two classes of contributions are separately divergent but

combine into a finite quantity in virtue of the Kinoshita-Lee-Nauenberg theorem [1, 2].

Traditionally, the computation of these two components is performed using very differ-

ent approaches and the deep connection relating their degenerate infrared degrees of free-

dom is only realised through dimensional regularisation [3–5] at the very end of the compu-

tation. Indeed, real-emission contributions are typically computed numerically through the

introduction of subtraction counterterms [6–17] or some form of phase-space slicing [18–25],

whereas the evaluation of their virtual counterparts is mostly carried out purely analyt-

ically, thus realising the cancellation of infrared singularities at the integrated level. A

notable exception is the computation of inclusive Higgs production at N3LO accuracy [26],

which was performed through reverse-unitarity [27, 28]. Even though the same technique

was further developed to accommodate the Higgs rapidity distribution in ref. [29], it is

clear that this approach is not applicable to fully differential high-multiplicity processes.

Furthermore, despite impressive advances in the mathematical aspects of the reduction of

scattering amplitudes to master integrals [30–45], and their subsequent computation by

means of differential equations [32, 46–51], it is believed that the computation of many rel-

evant higher-order corrections to important processes (e.g. NNLO corrections to pp → tt̄H

and pp → tt̄bb̄) will remain intractable with this traditional approach, in part due to the

increase in the number of scales relevant to the problem and because of the appearance of

new mathematical structures in the form of generalised elliptic polylogarithms [52–56].

Numerical alternatives have been developed for the direct evaluation of loop integrals

through sector decomposition [57–62] of their Feynman parametrisation or semi-numerical

solutions [63–67] of the system of differential equations relating them. This lead to the

flagship computations of the NNLO corrections to the processes pp → HH [68, 69] and
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pp → tt̄ [70], where the exact dependency on all quark masses was kept. Although these

achievements demonstrate the superiority of numerical approaches in selected cases, they

still suffer from the scalability issue inherited from their reliance on the analytical reduction

of the complete amplitude to master integrals.

In light of the above overview of the research field of precise collider predictions, we

choose to pursue an alternative construction which considers a purely numerical integra-

tion of the virtual contribution in momentum space. One particular benefit from such

an approach lies in the prospect of bypassing the reduction to scalar integrals by consid-

ering the numerical integration of complete amplitudes directly (see existing results for

one-loop amplitudes in refs. [71–74] and first steps for applications to higher-loop finite

scalar integrals in ref. [75]). Working in momentum space is especially appealing when

also performing the loop energy integral(s) analytically using residue theorem. This en-

ergy integration yields the Loop-Tree Duality [76–78] (LTD) which provides an alternative

representation for the loop integral containing terms with as many on-shell constraints as

there are loops, making them effectively trees. This aligns the measure of phase-space and

LTD integrals, thus making LTD ideally suited to pursue the ambitious goal of directly

combining real-emission and virtual contributions and compute them numerically at once

by realising the local cancellation of their infrared singularities. As with reverse-unitarity,

this direct-unitarity treatment explicitly maintains the aforementioned connection between

real-emission and virtual contributions which is lost when computing them separately or

using Feynman parametrisation. Pioneering work of refs. [79–83] demonstrated the po-

tential of carrying out this numerical programme by applying it at one loop. However,

during the last decade, the NLO revolution and the successes of analytical methods for

the computation of many NNLO-accurate 2 → 2 cross-sections mostly overshadowed such

purely numerical approaches. That is until recently, when groundbreaking new results

from traditional analytical techniques arguably slowed down, thus opening the way for

more numerical alternatives.

Since such radically different purely numerical approaches have to be developed from

the ground up, they will not immediately catch up with the impressive analytical work

performed by the community over the last two decades. Instead, we proceed incremen-

tally and build progressively towards the complete numerical evaluation of higher-order

corrections while making sure at every step that our partial results are robust and make

no compromise regarding generality in terms of the perturbative order and process consid-

ered. We started this endeavour with ref. [78] where we derived a general formulation of

LTD by iteratively applying one-dimensional residue theorem. We showed how the duality

relation hence obtained can easily be constructed algorithmically for any loop count and

topology, and we tested it by applying it to many integrals without threshold singularities.

In that regime, we could perform the integration of the LTD integrand directly as it does

not require any contour deformation or counterterms.

The first part of this work concerns the natural follow-up to ref. [78]: regulating thresh-

old singularities in order to numerically integrate loop integrals evaluated with physical

kinematics. We achieve this by constructing a contour deformation in the (3n)-dimensional

complex integration space, designed in accordance with the constraints imposed by the
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causal prescription of Feynman propagators and by the matching conditions stemming

from analytic continuation. Contour deformations for numerical integration have been

considered in the past [71, 75, 84], and we present a novel variant well-suited to our multi-

loop LTD expression. In order to ensure that our construction is correct for arbitrary

(multi-)loop integrals, we apply it to more than a hundred qualitatively different exam-

ples, always finding agreement with the analytical benchmark (when available). We also

demonstrate in this way that the convergence rate of our current numerical implementa-

tion already renders it competitive. Finally, we discuss optimisation strategies to explore

in future work that can improve results further.

The second part of the paper is dedicated towards applying our numerical programme

to the computation of divergent scalar diagrams and of physical amplitudes. We consider

divergent scalar box and pentagon topologies and the one-loop correction to the ordered

production of two and three photons from a quark line. This amplitude involves soft and

collinear singularities that correspond to pinched threshold singularities where no regulating

contour deformation is allowed. This type of singularities can therefore only be regulated by

the introduction of ad-hoc counterterms or through a direct combination with real-emission

contributions. In this work, we consider the former. In the case of scalar integrals we

introduce a method to remove all IR divergences from one-loop diagrams. When considering

complete amplitudes we combine our contour deformation and LTD integrand with the

infrared and ultraviolet counterterms presented in refs. [85, 86].

The outline of this work is as follows. In sect. 2, we fix our notation by recalling our

general multi-loop LTD expression. We construct a general contour deformation in sec-

tion 3. In section 4, the subtraction procedure for one-loop scalar integrals and amplitudes

is discussed. In section 5, we discuss various optimisations for our numerical integration.

In section 6, we discuss our numerical implementation and we show our results in section 7.

Finally, we present our conclusion in section 8.

2 Loop-tree duality

In this section, we fix the notation and summarise our findings presented in ref. [78].

A general n-loop integral in four-momentum Minkowskian space can be rewritten as an

integral over the Euclidean space of the three-dimensional spatial part of the loop momenta.

The integrand in that case is the sum of residues obtained by iteratively integrating out the

energy variables one after the other by applying residue theorem. Each residue identified

in this manner corresponds to a particular spanning tree (i.e. a tree graph that connects

all vertices) of the underlying loop graph, or equivalently, to a particular loop momentum

basis (i.e. the n edges that complete a spanning tree back to the original n-loop graph)

together with a specific set of signs for the energy solutions of the on-shell conditions fixing

the residue location, which we call the cut structure.

More precisely, we start from the following n-loop integral

I =

∫ n∏

j=1

d4kj
(2π)4

N
∏

i∈eDi
, Di = q2i −m2

i + iδ, (2.1)
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where e is the set of indices labelling the edges of the connected graph identifying

the integral considered and the numerator N is a regular function of the loop mo-

menta. We assume the Feynman propagators to be pairwise distinct with on-shell energies

±Ei = ±
√

~q 2
i +m2

i − iδ. The momentum flow in a graph is uniquely determined by the

choice of (consistent) signature vectors si = (si1, . . . , sin), sij ∈ {±1, 0} for each propagator,

such that qµi =
∑n

j=1 sijk
µ
j + pµi , where pµi is a shift that depends on external momenta.

We consider the integration of the energies in a fixed arbitrary order, set by (k01, . . . , k
0
n),

each along the real line1 and closing on an arc of infinite radius in either the upper (with

winding number Γj = +1) or the lower (Γj = −1) complex half-plane. We assume the

integrand to vanish for large loop momenta, so that we can consider the integral along this

arc to be zero, thus allowing us to relate the original integral to the sum of residues at

poles located within the contour.

When carrying out this iterative integration of the loop energies and collecting residues,

one finds that some residues may lie within or outside the integration contour depending

on the spatial part of the loop momenta. This would be an unfortunate complication,

but we conjectured and verified explicitly that only the residues that unconditionally lie

within the integration contour contribute to the integral, and moreover with the same

prefactor, whereas all other conditional residues are subject to exact cancellations [78]. We

write the dual integrand corresponding to one particular residue of the original integrand

f = N/
∑

i∈eDi identified by the loop momentum basis choice b = (b1, . . . , bn), bj ∈ e

(corresponding to the list of propagators put on-shell for this residue) as

Resb[f ] =
1

∏

i∈b
2Ei

N
∏

i∈e\b

Di

∣
∣
∣
∣
∣
{q0j=σb

j Ej}j∈b

(2.2)

with σ
b = (σb

1 , . . . , σ
b
n), σ

b
j ∈ {±1}. It describes a residue that is within the contour for

all loop momentum configurations if

n∏

r=1

Θ
(
Γr Im[kσb,r]

)
= 1, ∀~kj ∈ R3, (2.3)

where

Im[kσb,r] =

det







σ1 Im[Ei1 ]

(sbj1j2)1≤j1≤r
1≤j2<r

...

σr Im[Eir ]







det
(
(sbjj)1≤j≤r

) , (2.4)

1As discussed in ref. [87], our final expression in eq. (2.5) is also correct in the case of complex-valued

external momenta, due to the fact that the right-most column of the matrix appearing in eq. (2.4) does not

include the imaginary part Im[p0i ] of the external momenta. We note however, that the correct interpretation

of the absence of this term in eq. (2.4) for complex-valued external kinematics is that the energy integrals

are no longer performed along the real line but instead along a path including only one out of the two

complex energy solutions of each propagator.

– 4 –



J
H
E
P
0
4
(
2
0
2
0
)
0
9
6

which for a choice of integration order, contour closure and momentum routing (deter-

mined by (~k1, . . . , ~kn), Γj and sij respectively), is satisfied unconditionally for exactly one

configuration of signs, the cut structure, denoted by σ
b.

Therefore, the original integral of eq. (2.1) is identically equal to the resulting LTD

expression

I = (−i)n
∫ n∏

j=1

d3~kj
(2π)3

∑

b∈B

Resb[f ], (2.5)

where B is the set of all loop momentum bases.

We stress again that the functional form of the LTD expression is implicitly dependent

on the chosen order for the integration of loop energies, the contour closure choices and

the particular momentum routing chosen for the original integral. However, we verified

explicitly that one always numerically obtains the same result for the sum of residues for

given values of the spatial part of the loop momenta (set in a particular basis). In order

to facilitate the understanding of the central result of eq. (2.5), as well as to give some

insight on its derivation, we provide an explicit two-loop example in appendix A. Finally,

we provided as ancillary material of ref. [78] a Python implementation of the automated

derivation of the cut structure for arbitrary loop topologies. Beyond its practical value,

this code also demonstrates that explicitly unfolding eq. (2.5) can be done without any

computational overhead.

The dual integrands can become singular on surfaces which may be labelled by the

residue corresponding to the particular dual integrand in which they appear (specified

through the loop basis b) and the particular propagator of that dual integrand that becomes

on-shell (specified through the propagator index i). These singular surfaces are of the form

ξb,i,αi
≡
∑

j∈b

αjEj + αiEi + p̃0,bi = 0, (2.6)

with αi ∈ {±1} for i ∈ e \ b and αj = sbijσ
b
j ∈ {0,±1} for j ∈ b, where sbij and p̃µ,bi are

implicitly defined through the change of basis qµi =
∑

j∈b s
b
ijq

µ
j + p̃µ,bi induced by the loop

momentum basis b identifying this surface. The singular surfaces ξ can be separated into

two classes: E - and H-surfaces. E-surfaces are defined by the property of having all signs

αk, k ∈ b ∪ {i} equal, unless αk is zero. We call the particular sign that all αk are equal

to (when not being zero) the surface sign. We factor out the surface sign and name the

resulting E-surface ηb,i. From this point on, we consider every E-surface to have a positive

sign for all energies:

ηb,i ≡
∑

j∈b

Ej + Ei + p0η = 0. (2.7)

E-surfaces are convex and bounded. H-surfaces are then defined by having at least one

positive and at least one negative αk and they are labelled γb,i,αi
.

A particularly elegant feature of LTD is that the sum of dual integrands forming

eq. (2.5) only becomes singular on E-surfaces, as the singularities from H-surfaces cancel
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pairwise thanks to a mechanism referred to as dual cancellations [76, 88]. For δ = 0, an

E-surface has a non-empty set of real solutions in ~k = (~k1, . . . , ~kn) ∈ R3n if it satisfies

(p0,bi )2 − (~pb

i )
2 ≥




∑

j∈b

αjmj + αimi





2

and p0,bi < 0. (2.8)

When both sides of this inequality are exactly zero, the E-surface has no interior since its

minor axis is zero, and the E-surface corresponds to the location on an infrared collinear

and/or soft singularities of the integral. We refer to them as pinched E-surface, with

the important property that singularities they correspond to cannot be regularised via a

contour deformation of the loop momenta integration phase-space.

For δ > 0 an E-surface η is uniquely regulated by the imaginary prescription

sgn Im[η] = −1. (2.9)

We do not find it particularly useful to work out the imaginary part of the the squared

propagators appearing in eq. (2.5) (referred to as dual propagator in ref. [76]). Instead, we

prefer to stress that the relevant imaginary part of the E-surface equations induced by the

causal prescription has a simple definite sign. As it will be made clear later, this observation

is indeed the only relevant one in regard to the construction of a contour deformation that

satisfies physical requirements and regulates threshold singularities.

3 Contour deformation

Numerical integration of Feynman diagrams and physical amplitudes in momentum space

originated with the early attempts by Davison E. Soper in [89] and [90], in which the

LTD formalism was applied to virtual diagrams at one loop in order to then integrate the

cross-section directly. Interestingly, the author also explicitly mentions and utilises the

mechanism of local real-virtual cancellations to render the integrand finite at the location

of the non-integrable soft and collinear singularities. In order to avoid so-called scattering

singularities, referred to in our work as one-loop E-surfaces, the author devised a contour

deformation capable of satisfying the relevant constraints.

Several methods have since been developed for integrating diagrams and amplitudes

directly in four-dimensional loop momentum space. A first success was the computation

of one-loop photon amplitudes in ref. [71], followed by refs. [72, 91–93] which generalised

the formalism beyond one loop and applied it to more challenging integrals. The especially

inspiring feature of these two series of publications is the focus on constructing a prov-

ably exact deformation, through the concept of anti-selection and dynamic scaling of the

deformation.

Around the same time when these techniques were developed, a different line of work

expanded on LTD and, specifically, on its aspects relevant for the (3n)-dimensional nu-

merical integration of integrals, amplitudes and cross sections [84, 94, 95]. The contour

deformation presented in these works is based on a linear combination of vectors normal to

the existing E-surfaces, weighted by adjustable parameters and dampened by exponential
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functions with unspecified width; the deformation proves to be correct for simple threshold

structures and in the limit of arbitrarily small dampening widths. Results obtained in this

way however highlighted for the first time the potential of numerical integration over the

spatial degrees of freedom resulting from the LTD identity.

In this section we will construct a reliable and exact deformation that is valid for an

arbitrary number of loops and legs. We will give specific examples in order to illustrate how

to implement the deformation constraints for complicated singular structures, especially

on intersections of multiple E-surfaces.

As long as an integral only features non-pinched threshold singularities, it is possible

to engineer a contour deformation yielding a finite result for the integral. The absorptive

part of the integral is correct provided that the contour deformation considered satisfies re-

quirements imposed by physical conditions, in particular causality. In relativistic quantum

mechanics, causality is originally realised in Feynman propagators via the iδ-prescription

or, equivalently, by the request that the theory is in the range of validity of Gell-Mann

and Low’s theorem [96]. In the LTD formalism, an imaginary prescription on propagators

remains and, although its formal expression is more complicated than iδ, it still holds that

on E-surfaces this prescription sign is fixed (i.e. it does not depend on either external nor

loop kinematics, see eq. (2.9)).

Contour integration of threshold singularities requires to analytically continue the LTD

integrand by replacing its dependence on the chosen basis of loop momenta ~k, by the com-

plex variable ~k− i~κ ∈ (C3)n, where ~k = (~k1, . . . , ~kn) ∈ (R3)n and ~κ = (~κ1, . . . , ~κn) ∈ (R3)n.

The spatial momenta associated with each propagator are a linear combination of the

vectors in the chosen loop momentum basis plus an affine term:

~qj(~k) =

n∑

i=1

sji~ki + ~pj = ~Qj(~k) + ~pj . (3.1)

Once analytically continued, these spatial momenta then also acquire an imaginary part:

~qj(~k − i~κ) = ~qj(~k)− i ~Qj(~κ). (3.2)

Each surface η has an associated energy shift p0η, defined in eq. (2.7) as a specific linear

combination of the energies of external particles.

An approximation of the imaginary part of the E-surface η can be obtained from the

first order term of its Taylor expansion in ‖~κ‖:

Im[η(~k − i~κ)] = −~∇~kη(~k) · ~κ+O(‖~κ‖2), (3.3)

The quantity ~∇~kη(~k), henceforth denoted as ~∇η, is the outward pointing normal vector to

the surface η(~k) = 0. The contour deformation is defined in the (3n)-dimensional complex

space and we parametrise it as ~k − i~κ(~k). It must satisfy constraints affecting two of its

key characteristics, the direction and magnitude of the vector field ~κ(~k):
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Direction: The deformation vector ~κ(~k) must induce a sign of the imaginary part of the E-

surface equation that matches the sign enforced by the causal prescription whenever
~k lies on a singular E-surfaces. This imposes conditions on the direction of the vector

field ~κ(~k). We derive these conditions by comparing the sign of the LTD prescription

on E-surfaces (eq. (2.9)) with the sign of the imaginary part of E-surfaces that results

from the deformation (eq. (3.3)). We obtain:

sgn[~∇η · ~κ] = +1, when η(~k) = 0. (3.4)

Magnitude: The norm of the deformation vector is limited by three constraints:

Integrand continuity: The LTD expression can be seen as a function of the on-

shell energies of the internal particles Ei =
√

~q 2
i +m2

i − iδ. These square roots

have to be evaluated on a well-defined Riemann sheet. Thus the contour must

not cross the branch cuts of any of the involved square roots.

Complex pole constraint: By extending the domain of the LTD integrand from

R3n to C3n through the replacement of its functional dependency on ~k with

(~k,~κ), we find that in addition to real-valued poles (corresponding to the existing

E-surfaces), the integrand also features complex-valued poles located at (~k,~κ),

with ~κ 6= ~0. We stress that these complex poles exist for all E-surface equations:

those (pinched or not) already having solutions for real loop momenta (~k,~0) as

well as those that do not and which are referred to as non-existing E-surfaces

(in regard to the fact that their existence condition of eq. (2.8) is not fulfilled).

According to Cauchy’s theorem, the result of the contour-deformed integral will

only be identical to that of the original defining integral over the spatial part

of the loop momenta in the real hyper-plane, if and only if the volume defined

by this real hyper-plane and the deformed contour does not contain any of such

complex poles. The magnitude of the contour deformation must therefore be

constrained to be small enough so as to exclude these complex poles.

Expansion validity: The causal constraint on the direction of the contour deforma-

tion as well as the complex pole constraint are derived from the Taylor expansion

of each energy function Ei. We must therefore impose that the norm of the con-

tour deformation vector field is such that the complex argument of each square

root defining an energy remains within the range of validity of its expansion.

The next section 3.1 presents the one-loop contour deformation direction constraints and

our approach for solving them. We will refer explicitly to illustrative examples that intro-

duce key concepts of our work. The precise and complete description of our construction

of a contour deformation valid for an arbitrary number of loops and legs is presented in

section 3.2.
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3.1 Pedagogical construction at one loop

Consider a one-loop scalar box diagram in the LTD representation after having explicitly

solved the on-shell constraint:

I = −i

∫
d3~k

(2π)3

4∑

b=1

1

2Eb

4∏

i=1
i 6=b

1

Di

∣
∣
∣
∣
q0
b
=Eb

= −i

∫
d3~k

(2π)3

4∑

b=1

1

2Eb

4∏

i=1
i 6=b

1

ηbiγbi

= −i

∫
d3~k

(2π)3

4∑

b=1

1

2Eb

4∏

i=1
i 6=b

1

(Eb + Ei − p0b + p0i )(Eb − Ei − p0b + p0i )
.

(3.5)

where we used that at one loop the dual propagator factorises into the product of an E- and

an H-surface, as Di(k)|q0
b
=Eb

= ηbi(~k)γbi(~k). At one loop, one can also simplify the loop

basis identifier b and write it as the index b ∈ e = {1, 2, 3, 4} corresponding to the single

LTD cut considered. Thanks to the mechanism of dual cancellations, the sum of all dual

integrands is only singular on E-surfaces which, at one loop, are two-dimensional rotational

ellipsoids in spatial loop momentum space. All of the potential singular E-surfaces of this

scalar box appear as zeros of the functions

ηbi(~k) ≡
√

(~k + ~pb)2 +m2
b +

√

(~k + ~pi)2 +m2
i − p0b + p0i , pi ≡

i∑

j=1

p ext
j , (3.6)

with i, b ∈ e, i 6= b, and for given four-momenta of the four external legs p ext
j , j ∈ {1, 2, 3, 4}.

The number of E-surfaces that have solutions for real loop momenta has an upper bound

based on the topology and the number of legs N . For one-loop topologies, an upper bound

on the total number of existing E-surfaces is N(N − 1)/2, since we require b 6= i and using

the fact that if ηbi exists, ηib cannot exist.

The singularity structure of the LTD expression can be studied by focusing on particu-

lar singular E-surfaces and their intersections. In order to do this, we define the boundary

and interior operators as

∂ηbi = {~k ∈ R3 | ηbi(~k) = 0}, (3.7)

∂−ηbi = {~k ∈ R3 | ηbi(~k) < 0}. (3.8)

The E-surface ηbi exists, that is ∂ηbi 6= ∅, if (p0b − p0i )
2 − (~pb − ~pi)

2 ≥ (mi + mb)
2 and

p0b − p0i ≥ 0. If two ellipsoids η, η′ exist and intersect, then ∂η ∩ ∂η′ 6= ∅. Furthermore, if

they intersect without being tangent, they also overlap: ∂−η∩∂−η′ 6= ∅. As an illustrative

example, we now set particular values for the external box kinematics, which we refer to

as Box4E,

p ext
1 = ( 14.0,− 6.6,−40.0, 0),

p ext
2 = (−43.0, 15.2, 33.0, 0),

p ext
3 = (−17.9,−50.0, 11.8, 0),

p ext
4 = −p ext

1 − p ext
2 − p ext

3

(3.9)

– 9 –



J
H
E
P
0
4
(
2
0
2
0
)
0
9
6

-20 0 20 40

-20

-10

0

10

20

30

40

50

Figure 1. A kz = 0 section of the singular structure of the example configuration Box4E. It has

four singular E-surfaces with four (partially shared) focal points coloured in red.

and list the resulting four members of the set of existing E-surfaces E = {η12,η13,η42,η43},

η12 =
√

(−6.6 + kx)2 + (−40 + ky)2 + k2z +
√

(8.6 + kx)2 + (−7 + ky)2 + k2z − 43,

η13 =
√

(−6.6 + kx)2 + (−40 + ky)2 + k2z +
√

(−41.4 + kx)2 + (4.8 + ky)2 + k2z − 60.9,

η42 =
√

k2x + k2y + k2z +
√

(8.6 + kx)2 + (−7 + ky)2 + k2z − 29,

η43 =
√

k2x + k2y + k2z +
√

(−41.4 + kx)2 + (4.8 + ky)2 + k2z − 46.9.

(3.10)

The four E-surfaces in eq. (3.10) are coloured according to the colour scheme used in

figure 1. A focal point is the loop momentum (kx, ky, kz) that sets the argument of an

energy square root to zero. Each ellipsoid has two focal points, indicated with red dots

in the figure. The energy shift p0i − p0b is the length of the major axis. The particular

external kinematic configuration chosen in eq. (3.9) has no component along the kz-axis

and therefore the particular section kz = 0 corresponds to the plane where the four E-

surfaces have a maximal extent.

According to eq. (2.9) we require the imaginary part on any E-surface η to always

be negative: sgn(Im[η]) = −1. By replacing ~k → ~k − i~κ(~k) and expanding the E-surface

equations to first order in ||~κ||, we find that the prescription reads

~κ · ~∇ηbi = ~κ ·
(
~k + ~pb
Eb

+
~k + ~pi
Ei

)

> 0, ∀~k ∈ ∂ηbi, ∀ηbi ∈ E , (3.11)

– 10 –
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Figure 2. A correct deformation for two E-surfaces represented in the kz = 0 plane constructed

by summing the normal vector fields of each of the two E-surfaces.

which imposes that on any point on the E-surface, ~κ(~k) should point outwards of the E-

surface. On the intersection of many E-surfaces, the combined prescriptions impose that

~κ(~k) must simultaneously point outwards of all of the intersecting E-surfaces.

One choice that always satisfies the condition of eq. (3.11) for one single E-surface as

well as for two intersecting E-surfaces is the sum of their respective normal vector fields, as

shown in figure 2. A similar deformation was proposed in ref. [84], where the deformation

field ~κ(~k) is written as a linear combination of the normal fields weighted by an exponential

dampening factor that ensures that each normal field vanishes away from its defining E-

surface. This particular choice of deformation vector is unsatisfactory when more than two

E-surfaces exist, since

• there could be triple intersections where the sum of the normal vectors is not guaran-

teed to be correct, unless the coefficients of the decomposition on normal vector fields

is fine-tuned (and made dynamical functions of the real part of the loop momenta)

so as to induce a vector with a valid direction and

• contributions from various E-surfaces may spoil the validity of the deformation di-

rection on another surface. Again this must be avoided by fine-tuning the strength

of the dampening factors affecting each normal field.

In figure 3 we give an example with three E-surfaces, where a naive unweighted sum of

normal vectors does not yield a valid deformation. By using fine-tuned dampening of the

normal vector fields from each E-surface, such cases may be avoided but this does require

an ad-hoc treatment and can lead to poor numerical convergence.
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Figure 3. An example of an incorrect deformation vector field constructed by adding the normal

vector fields of three E-surfaces. The picture on the right is an enlargement of the problematic

center region in the left image. This particular case requires fine-tuning of the normalisation of

each of the three fields added in order to obtain a valid deformation.

The next subsection introduces the concept of deformation sources which we will use to

build a deformation that avoids the shortcomings discussed in this section when considering

normal fields.

3.1.1 Deformation sources

Since E-surfaces are convex surfaces, given a point ~s within the interior of an E-surface ∂−η,

the radial field ~v~s(~k) ≡ ~k−~s, centered at ~s, satisfies the causal prescription Im[η]|~k−i~v~s
< 0

on any point on the surface, where η(~k) = 0. We note that the interior of the intersection

of a set F ⊆ E of E-surfaces again defines a convex volume and therefore we analogously

have that, for any given point ~s in this volume, that is ~s ∈ ⋂η∈F ∂−η, the corresponding

radial field ~v~s simultaneously satisfies the causal prescription of all of the E-surfaces in F

and, especially, on their intersections. We call such a point ~s a deformation source for the

overlapping set F . For a case in which there exists a single point ~s simultaneously in the

interior of all of the existing E-surfaces, then the radial deformation field ~κ(~k) ∝ (~k − ~s)

satisfies the causal prescription on all the threshold singularities (see figure 4).

When there is no single point simultaneously in the interior of all E-surfaces, one can

construct a deformation vector written as the sum of radial fields centered at different

locations, and adequately multiplied by an anti-selector function disabling the effect of the

radial field on all the E-surfaces in which the point is not contained. The anti-selection

is constructed such that the individual terms building the deformation vector fields are

always “additive” in their ability to satisfy the causality requirements. Indeed, a crucial

aspect of our design of the deformation is the adoption of a model in which contributions

that may spoil the direction on a particular threshold singularity are excluded (i.e. “anti-
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Figure 4. A correct deformation using the radial field ~k−~s generated by a single source ~s contained

in the interior of all four E-surfaces.

selected”), as opposed to a model that enables (i.e. “selects”) the correct contributions on

the particular thresholds they are designed for.

We illustrate more specifically how an anti-selection model is preferable to a selection

one by highlighting the shortcomings of the latter when applied to the previously introduced

Box4E configuration whose four E-surfaces are shown in figure 5 in the kz = 0 plane. The

“selection” model would in this case amount to combine all four radial fields as follows (the

discussion of the analogous construction of ref. [84] that involves normal fields would be

similar):

~κselection model = ~v~s124
(
T̄ (η12) + T̄ (η42)

)

+~v~s213
(
T̄ (η12) + T̄ (η13)

)

+~v~s134
(
T̄ (η13) + T̄ (η43)

)

+~v~s342
(
T̄ (η43) + T̄ (η42)

)
, (3.12)

where the subscripts on the source indicate the focal points of the involved ellipsoids and

the selection function2 simply is one minus the anti-selection function T (ηbi) defined as

follows:

T̄ (ηbi) = 1− T (ηbi) (3.13)

T (ηbi) =
ηbi(~k)

2

ηbi(~k)2 +M2
(
p0i − p0b

)2 , (3.14)

whereM is an adjustable free parameter, and p0i−p0b is the length of the major axis of the E-

surfaces ηbi, which provides a measure for the size of the E-surfaces. Another possible choice

2The selection function chosen in ref. [84] is an exponential Gaussian of adjustable width Abi:

exp
(

−
(ηbi(~k)γbi(~k))

2

Abi

)

.
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Figure 5. A correct deformation direction with functional form described by eq. (3.16) for Box4E

using four sources which are excluded on those E-surfaces whose interior does not contain the source.

The right plot is a zoom-in on the central region.

is to substitute the normalisation −p0b + p0i with
√

(p0i − p0b)
2 − (~pi − ~pb)2 − (mi +mb)2,

which is the minor axis length of the E-surface. The choice of M provides an estimate of

how rapidly T (η) saturates to one when ~k is further away from the surface ηbi.

The deformation of eq. (3.12) stemming from the selection model is problematic for

mainly two reasons:

• On the threshold E-surface η12, the deformation receives contributions mostly from

~v~s124 and ~v~s213 (which do satisfy the causal prescription) but also from ~v~s134 and

~v~s342 (which may not satisfy the causal prescription) since the suppression factor

induced by their respective selection function is small on this surface, but not zero.

This implies the necessity of fine-tuning the suppression parameters which may be a

difficult task when E-surfaces with very different causal constraints lie close to each

other.

• On the intersection of two E-surfaces, for example ∂η12 ∩ ∂η13, three of the four

radial deformation fields ~v~s124 ,~v~s213 and ~v~s134 are active without any suppression, even

though only ~v~s213 is guaranteed to be correct on this particular intersection.

One may think of alleviating the intersection problem by simply removing such intersections

from the selector function applied to the deformation sources that are invalid:

~κselection model improved = ~v~s124
(
T̄ (η12)T (η13) + T̄ (η42)T (η43)

)

+~v~s213
(
T̄ (η12)T (η42) + T̄ (η13)T (η43)

)

+~v~s134
(
T̄ (η13)T (η12) + T̄ (η43)T (η42)

)

+~v~s342
(
T̄ (η43)T (η13) + T̄ (η42)T (η12)

)
. (3.15)
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However, this solution is again not exact since even though T̄ (η42)T (η43) and T̄ (η43)T (η42)

are small quantities on ∂η12∩∂η13, they are not identically zero. In fact, it is impossible to

build a continuous selection function that identically vanishes on a particular intersection

of E-surfaces while at the same time being identically unity when evaluated anywhere on

one of the intersecting E-surfaces but outside of the intersection.

The above shows that if the the contour deformation is required to be correct (i.e.

independently of its parameters), the radial deformation fields must be combined using an

anti -selection paradigm that also avoids referring directly to intersections of E-surfaces,

since one cannot continuously (anti-)select them. In the example of Box4E, we achieve this

by constructing the final deformation vector ~κ as follows:

~κ = ~v~s124T (η13)T (η43)

+~v~s213T (η42)T (η43)

+~v~s134T (η42)T (η12)

+~v~s342T (η12)T (η13) (3.16)

which exactly satisfies the causal requirements for ~k on ∂η12 and ∂η12 ∩ ∂η13:

~κ(~k)|~k∈∂η12
!
= ~v~s124T (η13)T (η43) + ~v~s213T (η42)T (η43)

~κ(~k)|~k∈∂η12∩∂η13
!
= ~v~s213T (η42)T (η43). (3.17)

In general, the minimal set of sources required for constructing a valid deformation

with this anti-selection model is obtained by determining the maximal overlap structure of

the E-surfaces, which we will formally define in section 3.2. For Box4E, this structure is

{{η01, η13}, {η13, η43}, {η42, η43}, {η12, η42}}. After the maximal overlap structure has been

determined, one has to construct source points in the interior of each overlap listed in the

maximal overlap structure. Details about our strategy for choosing these particular points

are given in section 6.1.

Now that we have introduced and illustrated the key concepts underlying our con-

struction of a valid deformation direction, we formalise it for an arbitrary number of loops

and legs.

3.2 General solution to constraints on direction

In the absence of UV and IR non-integrable divergent behaviours, E-surfaces are the only

singularities in the space of loop momenta that need to be regulated by a contour defor-

mation. In section 3.1, we have shown that we have to construct a vector field pointing

outwards on every E-surface. In this section we study this constraint in more detail. We

remind the reader of the simplified notation identifying (~k1, . . . , ~kn) with ~k that combines

all coordinates of the n-loop integration space.

E-surfaces are the boundary of convex, bounded volumes. We write the E-surface

manifold as ∂η and its convex interior as ∂−η, that is:

∂η ≡ {~k = (~k1, . . . , ~kn) | η(~k) = 0}, (3.18)

∂−η ≡ {~k = (~k1, . . . , ~kn) | η(~k) < 0}. (3.19)
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The radial field ~k − ~s centred at point ~s has a strictly positive projection on any normal

to the surface if and only if it is inside the surface itself:

(~k − ~s) · ∇η(~k) > 0 ∀~k ∈ ∂η iff ~s ∈ ∂−η. (3.20)

In general, given a set of E-surfaces F and a point in their interior:

~sF ∈
⋂

η∈F

∂−(η) , (3.21)

then ~k−~sF will have positive projection on all normal vectors of E-surfaces in F and thus

satisfies the causal prescription for all E-surfaces in F . We call ~sF the source of the set F .

The aforementioned construction of the deformation field ~k−~sF provides a systematic

solution to the hard problem of constructing a deformation vector on the intersection of

all E-surfaces in F , where many causal constraints need to be satisfied simultaneously.

In order to extend the applicability of the construction, we need to generalise it to

more than one set of overlapping E-surfaces. Given the set of all existing E-surfaces E , we
define the overlap structure

O =
{

F ⊆ E |
⋂

η∈F

∂−η 6= ∅
}

. (3.22)

Thus O contains all possible sets of overlapping E-surfaces. One can immediately conclude

that, if a set F is in O, then any subset F ′ ⊆ F is in O.

Since a deformation vector ~k − ~sF is not guaranteed to satisfy the causal prescription

on any point on an E-surface in E \ F , one has to identify the sets of overlaps F1, . . . , FN

such that, among the radial fields ~k − ~sF1 , . . . ,
~k − ~sFN

generated by such overlaps, there

is at least one satisfying the correct causal direction on any point on an E-surface and,

especially, on any intersection of them. Such a set with the least amount of elements

is referred to as the maximal overlap structure O(max) and does not contain any set of

E-surfaces that is a subset of another set in O:

O(max) = {F ∈ O | ∄F ′ ∈ O with F ⊂ F ′} . (3.23)

The set O(max) is the minimal set that ensures that one can build the final deformation

without requiring special treatment for the intersections of E-surfaces (i.e. (anti-)selection

thereof). Determining the maximal overlap structure is a challenging problem and is dis-

cussed in section 6.1.

In order to construct the deformation field for E , each element F ∈ O(max) is associated

to a source ~sF whose corresponding radial deformation field ~k − ~sF is imposed to vanish

on any E-surface not contained in F . This task is performed by a positive, bounded and

smooth anti-selector function gF satisfying the following constraints

gF (~k) =







0 if ~k ∈ ∂η, ∀η ∈ E \ F
a(~k) > 0 if ~k ∈

( ⋃

η∈F

∂η
)

\
( ⋃

η′∈E\F

∂η′
)

. (3.24)
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The set which is subtracted contains all points on E-surfaces which are not in F , including

those which intersect with E-surfaces in F itself. It is introduced to stress that the anti-

selector function should be non-zero on any point which is on an E-surface in F and not

on an E-surface in E \ F .

In practice, we build gF (~k) from the same E-surface anti-selector building block T (ηbi),

already introduced in eq. (3.14):

T (η) =
η(~k)2

η(~k)2 +M2p0η
2
, (3.25)

which can be combined as follows to build gF (~k):

gF (~k) =
∏

η∈E\F

T (η). (3.26)

Equipped with this anti-selection, we can now define a deformation field ~κF valid for all

E-surfaces in F (and their intersections) which does not contribute (i.e. it is exactly zero)

to the deformation applied on any E-surface in E \ F :

~κF = αF (~k)(~k − ~sF )gF (~k), αF (~k) ∈ [0,∞), (3.27)

where the overlap function αF (~k) is, for now, any positive function which is non-zero on any

E-surface contained in F . The construction of the final deformation can now be completed

by adding together all vectors ~κF where F ranges through at least all the elements of

the maximal overlap set. We are now ready to write down a complete deformation field

which satisfies the causal constraints stemming from all E-surface, independently of any

deformation hyperparameter:3

~κ∅(~k) =
∑

F∈O(m)

αF (~k)(~k − ~sF )gF (~k), αF (~k) ∈ [0,∞). (3.28)

The above minimal deformation field is what we used at one loop throughout this paper,

including for producing the results presented in section 7. As we shall see in section 3.3.1,

beyond one-loop it becomes necessary to consider additional deformation fields to accom-

modate particular continuity constraints of the integrand.

We stress that supplementing the minimal deformation with additional causal fields

can be performed without spoiling the causal properties of the individual terms because

of the nature of the anti-selector functions. In fact, the sum ~κF + ~κF ′ of two individually

valid deformation vector fields ~κF and ~κF ′ is also causally correct. More precisely, thanks

to the anti-selection functions contained in ~κF and ~κF ′ , we have that their sum is:

• correct for ~k lying on an E-surface η in F or an E-surface η′ in F ′, but not on any

intersection of η and η′, that is on all points

~k ∈
( ⋃

η∈F∪F ′

∂η
)

\
( ⋃

η∈F
η′∈F ′

∂η ∩ ∂η′
)

\
( ⋃

η∈E\(F∪F ′)

∂η
)

(3.29)

3In the context of our paper, a hyperparameter is understood as being any parameter whose value is

arbitrary in the sense that it would yield formally correct results for all loop integrals. In practice however,

one optimises the value of the hyperparameters to improve on the numerical efficiency.
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• exactly zero on the above-mentioned intersections as well as on any surface η not in

F nor in F ′, that is on any point

~k ∈
( ⋃

η∈E\(F∪F ′)

∂η
)

∪
( ⋃

η∈F
η∈F ′

∂η ∩ ∂η′
)

, (3.30)

thus ensuring that ~κF +~κF ′ also satisfies all causal prescriptions if the deformation fields ~κF
and ~κF ′ already do. Another example of a deformation field that can be added is the sum

of all appropriately anti-selected normal vectors of each E-surface. Thanks to this additive

property of anti-selected deformation fields, one particular generalisation of eq. (3.28) is

obtained by adding additional support sources from a set O of overlaps taken from the set O:

~κO(~k) =
∑

F∈O(max)∪O

αF (~k)(~k − ~sF )gF (~k), O ⊆ O, αF (~k) ∈ (0,∞). (3.31)

The dependence of ~κO(~k) on O underlines the aforementioned fact that adding to the

minimal deformation vector — that is, the one constructed from O(max) — any deformation

vector constructed from an extra overlap F ∈ O cannot spoil the causal constraints already

satisfied by ~κ∅. More generally, it is also possible to add multiple radial fields generated

by several sources from the same overlap F , although this is equivalent to adding a

single radial field stemming from a different source in the same overlap. Adding support

sources may improve numerical convergence and we intend to explore this possibility more

systematically in future work.

The particular strategy for selecting a near-optimal source point ~sF within a given

overlap F is an implementation detail that we will discuss in section 6. The next sec-

tion turns to the problem of assigning the correct normalisation to the deformation field

constructed in this section. In particular, we will derive a necessary expression for the

prefactors αF (~k).

3.3 General solution to constraints on magnitude

Once a procedure is established for constructing the correct deformation direction for a

generic multi-loop integral, it remains to investigate conditions on the magnitude of this

deformation. When writing the deformation vector field as λ~κ(~k), determining the normal-

isation of the deformation amounts to setting the value of λ. Constraints on the magnitude

can be formulated locally for every ~k and can thus be satisfied by scaling parameters that

are a continuous function of loop momenta λ = λ(~k). For numerical stability it is typically

advantageous to set the scaling parameter and the overlap function as large as possible

while still satisfying the constraints.

The magnitude of the deformation is bounded by three conditions in the LTD frame-

work:

• the continuity constraint (section 3.3.1),

• the expansion validity constraint (section 3.3.3),

• the complex pole constraint (section 3.3.2).
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Scaling parameters satisfying each of these constraints individually are denoted by

λcc(~k), λe(~k) and λp(~k) respectively. An overall scaling function λ(~k) satisfying all three

constraints can then be constructed as

λ(~k) = min{λcc(~k), λe(~k), λp(~k), λmax}, (3.32)

where λmax ∈ (0,∞) is the maximum allowed value of the magnitude of the deformation.

Although λmax is effectively a hyperparameter and thus subject to optimisation, the cor-

rectness of the deformation is independent of it. All the results presented in this work have

been obtained by setting λmax = 10.

We will see that the continuity constraint also imposes conditions on the overlap func-

tion αF (~k) and the choice of overlap set O for eq. (3.31), thus arriving at the final expression

for ~κ(~k) that we will give in eq. (3.47). Our final expression of the contour deformation

is then:
~k → ~k − iλ(~k)~κ(~k) (3.33)

3.3.1 Continuity constraint

The request that the integrand is continuous on the contour adds constraints to the defor-

mation vectors that have to be satisfied for all values of ~k, and specifically require that the

argument of any square root appearing as energies of any on-shell particle never crosses the

negative real axis, consistently with the choice of the principal square root branch. The

energy can be written as a function of ~k − i~κ:

Ej(~k − i~κ) =
√

~qj(~k)2 +m2
j − 2i~qj(~k) · ~Qj(~κ)− ~Qj(~κ)2. (3.34)

and thus the requirement of integrand continuity imposes that for any value of ~k and ~κ:

~qj(~k) · ~Qj(~κ) 6= 0 if ~qj(~k)
2 +m2

j − ~Qj(~κ)
2 < 0 . (3.35)

Consider now a small ball centred at ~k∗ with ~qj(~k
∗) = 0: then ~κ(~k) has a constant

direction throughout the infinitesimal volume of the ball (unless ~κ(~k) ∝ ~k − ~k∗). Since

~qj(~k) spans all possible directions in this neighbourhood, it implies that there is always a

continuous set of points containing ~k∗ and such that ~qj(~k) · ~Qj(~κ) = 0. If ~qj(~k)
2 + m2

j is

smaller than ~Qj(~κ)
2 on such points, then eq. (3.35) is violated. One concludes that on all

the points where ~qj(~k) · ~Qj(~κ) = 0, including at ~k∗, one must have ~Qj(~κ)
2 ≤ ~qj(k)

2 +m2
j .

Instead of imposing this constraint on this continuous set of points only, we instead impose

it everywhere, resulting in the following stronger (and simpler) version:

~qj(~k)
2 +m2

j − ~Qj(~κ)
2 ≥ 0 ∀j ∈ e , (3.36)

which restricts the argument of the square root to lie in either the first or fourth complex

quadrant. At one loop, given that ~qj(~k) = ~k + ~pj , this constraint can be satisfied by just

using for the deformation from eq. (3.28) a scaling which imposes the deformation to always

be lower in magnitude than Ej(~k), ∀j, that is

λcc(~k) = minj∈e

{

ǫccEj(~k)

‖~κ∅(~k)‖

}

, (3.37)

where ǫcc is a parameter that we set to 0.95.
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The only problematic points are when a focal point of a massless internal propagator j,

i.e. a solution of the equation ~qj(~k
∗) = 0, j ∈ e, coincides with a point on another E-surface.

According to eq. (3.37) this implies that Ej(~k
∗) = 0 and thus λcc(~k

∗) = 0, although the

point is also located on an E-surface and thus requires a non-zero deformation. However,

these points can be shown to be specific to the frame of reference initially chosen for the

calculation and can be easily removed with a Lorentz boost (see section 5.1).

For multi-loop integrals satisfying the continuity constraint is not straightforward;

indeed, consider an existing two loop surface equation for a massless diagram

‖ ~k1 + ~p1‖+ ‖ ~k1 + ~k2 + ~p2‖+ ‖ ~k2 + ~p3‖ − p01 − p03 + p02 = 0. (3.38)

It admits as a solution the point ( ~k1, ~k2) = (−~p1, ~k2
∗
), where ~k2

∗
is a solution of the lower

dimensional E-surface equation ‖ ~k2+ ~p2− ~p1‖+‖ ~k2+ ~p3‖−p01−p03+p02 = 0. Since ~k1+ ~p1 = 0,

a continuity constraint as in eq. (3.37) scales the deformation to zero, although the point

itself is on a singular surface, and thus requires deformation.

Strictly speaking, this dilemma is absent for diagrams with only massive internal prop-

agators, as the masses act as regulators (i.e., Re[E2
j ] > m2 − ~Qj(~κ)

2) and forbid the defor-

mation to be scaled to zero. However, in such cases a small mass imposes an unnecessarily

strict constraint on the deformation in the neighbourhood of the corresponding focal point.

In order to remedy this problem, we observe that, given any proper subset of c ⊂ b

of a loop momentum basis b, there is a proper subspace of the space of loop variables

such that ~Qj(~κ) = 0 ∀j ∈ c, since the system is not full rank. This can be used to

construct deformation vectors satisfying all causal constraints and branch cut constraints

simultaneously on the portion of E-surfaces which lie on the subspaces ~qj(~k) = 0 ∀j ∈ c.

Indeed, let ~κ = ~k − ~s, then

~Qj(~k − ~s)
∣
∣
~qj(~k)=0

= −~qj(~s) = 0 ∀j ∈ c (3.39)

imposes conditions on ~s which make the radial field ~k−~s automatically satisfy the continuity

constraints in the neighbourhood of the subspace. The source determined this way is now

partially constrained by the request that it satisfies the continuity condition without the

use of a function directly suppressing the radial field on the subspace ~qj(~k) = 0, ∀j ∈ c.

One can now try to construct a deformation vector from sources satisfying eq. (3.39), by

additionally imposing it has a causal direction on any E-surface when restricted to the

subspace itself. More specifically, given the restriction of the E-surface to the subspace

identified by c,

ηc(~k) = η(~k)|{~qj(~k)=0}j∈c

, (3.40)

the overlap structure is restricted to this subspace as well and can be defined as

Oc =
{

F ⊆ E |
⋂

η∈F

∂−ηc 6= ∅
}

, (3.41)

which is contained in the original overlap structure, that is Oc ⊆ O. Given any element

F ∈ Oc, one can thus obtain a source ~s c

F that satisfies the following convex constraints:

~s c

F ∈
⋂

η∈F

∂−ηc, ~qj(~s
c

F ) = 0 ∀j ∈ c, F ∈ Oc . (3.42)
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Therefore, one can define a radial field ~k−~s c

F which will be non-zero on the subspace iden-

tified by c while still satisfying the continuity constraint and providing a causal direction

on the portion of the E-surfaces in F and their intersections contained in the subspace

identified by c. In order to not spoil causality outside the subset overlapping E-surfaces as

contained in the subspace we will use a properly anti-selected deformation vector

~κ c

F = (~k − ~s c

F )gF (
~k) . (3.43)

As before, ~κ c

F will not violate causality constraints outside of the subspace, since the

anti-selector function gF will take care of setting the deformation to zero on E-surfaces

corresponding to different overlaps in the subspaces characterised by c and all the E-

surfaces not appearing in the subspace. Analogously to section 3.2, one can define the

maximal overlap set in the subspace c

O(max)
c =

{

F ⊆ Oc | ∄F ′ ∈ Oc with F ⊂ F ′
}

, (3.44)

and thus construct a causal deformation vector when restricting integration to the sub-

space c,

~κ c

∅ (
~k) = λc(~k)

∑

F∈O
(max)
c

(~k − ~s c

F )gF (
~k) . (3.45)

~κ c

∅ (
~k) is exactly the deformation constructed in eq. (3.31) from the overlap structure ob-

tained in the subspace identified by c, with all the overlap functions αc

F (
~k) chosen equal

to a single function λc(~k), which ensures that ~κ c

∅ (
~k) satisfies the continuity constraint on

any subspace different than c. That is:

λc(~k) = minj∈E\c

{

ǫccEj(~k)

‖ ~Qj(~κ c

∅ (
~k))‖

, 1

}

. (3.46)

In order to construct the final multi-loop deformation vector field, it is necessary to asso-

ciate a deformation vector to each strict subspace c ∈ P =
⋃

b∈B

(
P(b)\{b}

)
, where P(b)

is the power set of the loop momentum basis b. We finally obtain

~κ(~k) =
1

|P|
∑

c∈P

λc(~k)

|O(max)
c |

∑

F∈O
(max)
c

(~k − ~s c

F )gF (
~k), (3.47)

where gF (~k) is the previously defined anti-selector function. Observe that eq. (3.47) is equal

to eq. (3.28) at one loop since P = {∅}. Furthermore, since eq. (3.47) can be constructed

from eq. (3.31) by setting

O =
⋃

c∈P

O(max)
c , αF (~k) =

λc(~k)

|P||Omax
c | , sF = scF ∀F ∈ O(max)

c , (3.48)

it immediately follow that ~κ(~k) is a causal deformation vector. One can observe that in the

limit ~qj(~k) → 0 the deformation satisfies the continuity constraint ~Qj(~κ)
2 < ~qj(~k)

2 without

necessarily being identically zero. We stress that, although the continuity constraint is

– 21 –



J
H
E
P
0
4
(
2
0
2
0
)
0
9
6

satisfied on all subspaces and neighbouring points, there is no insurance that it is still the

case away from it. Thus, as already mentioned, the final deformation vector must be given

an overall scaling factor:

λcc(~k) = minj∈e

{

ǫccEj(~k)

‖ ~Qj(~κ(~k))‖

}

, (3.49)

which is now not suppressing the deformation to zero on subspaces.

This concludes the construction of a general contour deformation which works both in

the case of massive or massless propagators, satisfying all causal constraints.

3.3.2 Complex pole constraint

The analytically continued LTD integrand is singular at complex locations other than the

real location of thresholds. These complex poles must not be included in the region of space

between the deformed contour and the real hyperplane for the final result to be correct.

This is consistent with the request that the integral on the contour matches the original

one defined on R3n.

The approximate complex pole location can easily be found when the square roots of

E-surfaces are expanded up to second order in ‖~κ‖ and the truncated expressions for the

real part and imaginary part are set to zero:

η(~k)−
∑

i

√
ai
aici − b2i

2a2i
= 0 and

∑

i

bi√
ai

= 0, (3.50)

where the sum runs over all square roots expressing the energies appearing in the surface

η (see eq. (2.7)), with the following coefficients

ai = ~qi(~k)
2 +m2

i ,

bi = ~qi(~k) · ~Qi(~κ),

ci = ~Qi(~κ)
2 .

(3.51)

Eq. (3.50) can be solved in the variable ~κ ∈ R3n, for given ~k, which provides a parametrisa-

tion of the singular surface for the analytically continued integrand. Any point satisfying

η(~k) < 0 will admit no solution since the triangle inequality ensures that aici − b2i > 0,

whereas points satisfying η(~k) = 0 will have ~κ = 0 as a unique solution: the latter poles

are the original E-surface boundary around which there is initially an intent to deform.

Writing ~κ = ‖~κ‖n̂~κ, we find that for η(~k) > 0 there is a (3n−2)-dimensional set of solutions

which entirely lies on the hyperplane n̂~κ · ~∇η = 0 and which is radially symmetric with

respect to the origin. This is illustrated for a two-dimensional example in figure 6.

Whether a pole is included within the contour can be established according to the

following guiding principle: given a parametrised deformation vector ~κ(~k), the deforma-

tion contour will flatten out to become the original real space as the magnitude of the

deformation ‖~κ(~k)‖ is sent to zero. Thus, if a pole is contained in the region between the

contour and the real hyperplane for a given ~κ(~k), ~κ can be scaled down such that the pole

is exactly on the surface.
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Figure 6. On the top left, an E-surface with its own normal field in (~kx, ~ky) space. Three points,

one in the interior of the E-surface (purple), one on the E-surface surface (blue) and one on the

exterior of the E-surface (orange) are highlighted. In the other three pictures, one can find, for each

of the highlighted points, the (~κx, ~κy) space showing the forbidden line stemming from eq. (3.52) as

well as the region allowed by the scaling of eq. (3.56) which guarantees that the deformation does

not cross complex poles.

The request that the contour does not include any pole thus translates into a set of

allowed values of κ for the deformation contour: ~κ is an allowed value if rescaling it so that

~κ → λ~κ, there exists no value of λ ∈ (0, 1] such that a solution of eq. (3.50) is exactly on

the contour. This immediately allows to state that, for given ~k, any value of ~κ satisfying

η(~k)−
∑

i

√
ai
aici − b2i

a2i
≤ 0 and

∑

i

bi√
ai

= 0 and η(~k) > 0 (3.52)
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is not allowed. Once the contour is explicitly parametrised as ~k−λi~κ(~k), the constraint on

the allowed values of the deformation can be dynamically satisfied by using the treatment

of ref. [71], which can be applied to any quadratic equation in the scaling parameter

characterising the location of complex poles. Specifically, this treatment allows λ to take a

large value whenever the imaginary part of the complex-valued surface is reasonably high in

absolute value, as in these cases the deformation ~κ is far from the hypersurface orthogonal

to the normal, which contains all the poles and forbidden areas. When ~κ approaches the

surface orthogonal to the normal field, its value is constrained to yield a positive value

for the real part of the surface η(~k). In this way, the forbidden region eq. (3.50) is never

reached. More specifically, given

η(~k − i~κ) = A+ 2iλB − λ2C +O(‖~κ‖2), (3.53)

with

A = η(~k), B =
1

2

∑

i

bi√
ai
, C =

∑

i

√
ai
aici − b2i

a2i
, (3.54)

one has that there is no value of ~κ such that eq. (3.52) is satisfied if

λ2
η =







A

4C
if 2

B2

C2
<

A

C
B2

C2
− A

4C
if 0 <

A

C
< 2

B2

C2

B2

C2
− A

2C
if

A

C
< 0 .

(3.55)

Finally, one can calculate and collect a scaling parameter λη for each existing or non-

existing, pinched or non-pinched E-surface, and write

λp = minη{λη}. (3.56)

It is important to include non-existing E-surfaces, as they may still have complex solutions.

It is particularly illuminating, in order to understand the relevance and location of

the complex poles, to observe how the zeros of the original E-surface equation morph into

the zeros of the real part of the complex valued E-surface equation. The location of the

“displaced” threshold is implicitly determined through the equation

0 = Re
[∑

i

√

ai + 2iλbi − λ2ci+p0η
]
=
∑

i

√
ai+p0η −

∑

i

λ2√ai
ciai − b2i

2a2i
+O(λ3). (3.57)

This implicit equation defines a surface which is in general very different from the

original E-surface, although it is clear that in the limit λ → 0, the two surface equations

will be the same (see section 3.3.4 for visualisations). In the second order truncation in

λ, it is also clear that the interior region of the displaced surface will necessarily contain

the interior region of the original E-surface, since ciai − b2i > 0, ∀~k. A rough bound on

the volume of its interior region can be obtained by truncating the expansion of the square
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root to the next-to-leading order in the real part and requiring the correction to be smaller

than ǫth (see section 3.3.3):

0 = Re

[
∑

i

√

ai + 2iλbi − λ2ci + p0η

]

≥
∑

i

√
ai(1− ǫ2th) + p0η, λ ≪ 1. (3.58)

This equation can thus be used to provide an upper bound for the volume of the dis-

placed threshold, in the form of another E-surface with the same focal points and larger

constant term.

It is interesting to note that the real part of the complex-valued E-surface equation is

negative in the interior region of the displaced threshold, and positive outside. It means that

no forbidden values of the deformation can be crossed in the region outside the displaced

threshold. However, inside the original E-surface, no pole is allowed. Thus, the region of

loop momentum integration space which may lead to forbidden values of the deformation

(when there is no appropriate dynamic scaling) is all contained between the original E-

surface and the displaced threshold. An example of this behaviour is shown in figure 9.

3.3.3 Expansion validity

The causal constraint on the direction and the complex pole constraint are formulated in

the limit of a small deformation vector norm ‖~κ‖. In this limit, the imaginary part of

η takes an especially simple form, as it prescribes that the projection of the deformation

vector on the normal of η must always be positive. Likewise, the complex pole constraint

admits an especially simple and elegant solution when η is expanded up to second order.

This constraint also concerns the magnitude of the vector. Consider the energy

Ej(~k − i~κ) =
√

aj + 2iλjbj − λ2
jcj , (3.59)

where aj , bj , cj are defined as in eq. (3.51). Observe that the chosen stronger version of the

continuity constraint eq. (3.36) already imposes that bj < aj and cj < aj . Thus a way to

ensure the feasibility of the expansion is through the same mechanism which ensures that

no branch cut is crossed. A more systematic approach to the constraints on the expansion,

however, is to ensure that the argument of the square root is small in norm
∣
∣
∣
∣
∣
2iλj

bj
aj

− λ2
j

cj
aj

∣
∣
∣
∣
∣
< ǫth , (3.60)

which leads to the condition

λ2
j ≤ −2

b2j
c2j

+

√

4
b4j
c4j

+ ǫ2th
a2j
c2j

. (3.61)

This is effectively equivalent to requiring that the square root is expanded when its argu-

ment is contained within a disc of radius ǫth. The overall expansion validity constraint can

be satisfied by setting λe equal to the minimal λj for all energies Ej :

λ2
e = minj∈e

{

− 2
b2j
c2j

+

√

4
b4j
c4j

+ ǫ2th
a2j
c2j

}

(3.62)
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Another approach is to directly compare higher-order corrections to the leading order

terms in the expansion. The odd orders are imaginary, whereas the even ones are real. The

expansion to third order reads

√

1 + 2iλ
bj
aj

− λ2
cj
aj

= 1 + iλ
bj
aj

− λ2

2

(

cj
aj

−
b2j
a2j

)

+
iλ3

2

(

bjcj
a2j

−
b3j
a3j

)

+O(λ4) , (3.63)

which, when compared with the expression

√

1 + 2iλ
bj
aj

− λ2
cj
aj

= z0 + iλz1 − λ2z2 + iλ3z3 +O(λ4) , (3.64)

yields the relation
z2
z0

=
z3
z1

, (3.65)

whose significance relies on the fact that suppressing the importance of the next-to-leading

order with respect to the leading order of the expansion of the imaginary part also achieves

the same for the real part. Suppression of this ratio can be obtained by imposing

λ2 z2
z0

=
λ2

2

ajcj − b2j
a2j

< ǫth, ǫth ∈ (0, 1), ∀j ∈ E . (3.66)

This shows that the choice λ2 < ǫ
aj
2bj

makes the next to leading order contribution to the

imaginary part dominate over the leading order when bj is small with respect to ǫaj . As

a consequence, the choice of the scaling of the deformation is constrained by the condi-

tion that

λ2
e = ǫ2th minj∈e

{

2a2j
ajcj − b2j

}

, ǫth ∈ (0, 1). (3.67)

The practical advantage of eq. (3.60) is that it is true to any order in the expansion,

while its downside resides in a non-obvious interpretation of the expansion parameter ǫ. On

the other hand, while eq. (3.66) only considers terms up to third order and does not account

for the relevance of higher orders, it constrains the corrections to the imaginary and real

parts simultaneously and consistently with only one expansion parameter. This parameter

signifies the relative size of the higher-order correction with respect to the leading one.

The most conservative approach is to impose both constraints, but in practice we found

good results by imposing eq. (3.67) only, which is what we used for producing the results

presented in this work.

3.3.4 Visualisation of the contour deformation and its effects

In section 3.1 we constructed and visualised the deformation vector field for a one-loop

configuration with four pairwise overlapping E-surfaces, called Box4E. In this section we

will study the interplay between the contour deformation and the integrand in more detail.

First, we investigate the properties of the contour deformation ~k− i~κ. Various aspects

of the direction of the deformation vector ~κ were already discussed in section 3.1. In this

section, we highlight details about the deformation magnitude ‖~κ‖, specifically, the impact
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x10

(a) (b) (c) (d)

Figure 7. The magnitude of the deformation vector ‖~κ‖ along a line segment in loop momentum

space (see figure 11) is subject to constraints in section 3.3. From left to right: a) no magnitude

constraints, b) only continuity constraint enabled, which forces ‖~κ‖ to 0 on focal points c) continuity

and expansion constraint enabled, d) all constraints enabled, i.e. continuity, expansion and complex

pole constraint. The scale of a) is ten times larger than the scale of the other plots, since we use a

non-restrictive λmax = 10. The image is scaled down for comparison.

of the three conditions it is subject to, as laid out in section 3.3. The magnitude ‖~κ‖ can be

studied at various stages in the construction of a deformation that will eventually satisfy

all physical constraints. In figure 7 we break down the construction of ~κ into four stages:

(a) The deformation vector is subject to none of the constraints described in section 3.3

and the deformation magnitude is therefore determined alone by the superposition

of all radial source fields.

(b) We impose the continuity constraint, introduced in section 3.3.1. It guarantees con-

tinuity of the integrand, since branch cuts of the square roots involved cannot be

crossed thanks to this constraint.

(c) The conditions on the direction of ~κ, described in section 3.2, as well as the complex

pole constraint in section 3.3.2, rely on expansions in ‖~κ‖. We limit the magnitude

‖~κ‖ with the expansion constraint given in section 3.3.3 in order to remain in the

range of validity of said expansion.

(d) The volume enclosed between the real hyper-plane and the contour deformation must

not include any of the pole located at complex-values of the loop momenta. In order

to guarantee this, we impose the complex pole constraint discussed in section 3.3.2.

It again limits the magnitude of ~κ.

After these four steps, the deformation vector field ~κ is such that the integral is well-

defined and yields the physically correct result. In fact, an E-surface η that has real

solutions ~k ∈ (R3)n of the equation η = 0 when the deformation is inactive (~κ = ~0), has no

more real solutions when the deformation is active. We therefore visualise the effect of the

deformation on the E-surfaces. The deformed E-surface η defines two regions of interest:

the zeros of its real part Re η, and the zeros of its imaginary part Im η. In figure 8 we

display the two regions of interest one-by-one for each of the four E-surfaces. With respect

to the smooth elliptic surface described by η = 0, when the deformation is switched off,

the regions Re η(~k − i~κ) = 0 and Im η(~k − i~κ) = 0 can be seen as a displacement of η

into complex space. It is crucial here that these two regions do not intersect. If they
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Figure 8. Surface structure in integration momentum space before and after deformation: for each

existing E-surface η of the Box4E, we show the solutions to η = 0 without contour deformation, i.e.

~κ = ~0, as ellipses with shaded interiors. With a contour deformation enabled, the zeros of the real

part of the complex E-surface Re η = 0 are shown as solid lines, where the zeros of the imaginary

part Im η = 0 are dashed. Note that on the integration contour, each E-surface develops one surface

where Re η = 0 and two separated surfaces where Im η = 0. Additionally, on each focal point (red)

it holds that Im η = 0, which is not apparent in this plot.

Figure 9. A deformation that satisfies the complex pole constraint, described in section 3.3.2,

prevents that an E-surface η has zeros in the integration space. Left: a deformation rescaled by

the complex pole constraint. Right: a deformation that violates the complex pole constraint. The

integrand has poles where the dashes line meets the solid line.

did, i.e. the real and imaginary part of the E-surface equations were simultaneously zero,

there exists a solution to the deformed E-surface equation η = 0, which cannot be allowed

by our contour deformation, since ‖~~κ‖ satisfies the complex pole constraint. To showcase

this exact scenario, we refer to the side-by-side comparison in figure 9, where we used two

deformation vector fields ~κ, a correct one and one that is not subject to the complex pole

constraint. Its effect is subtle in this case, as it moves the real and imaginary solutions

only marginally but essentially, as it renders the integral divergent without it. We take a

more detailed look at the region between the four E-surfaces of the Box4E, as displayed in

figure 10. It contains the full deformation vector field ~κ and the regions of vanishing real

or imaginary part of the deformed E-surface.
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Figure 10. A zoom-in on the centre region between the E-surfaces η (shaded) of Box4E: the

deformation vector field ~κ (blue arrows) as well as the solutions to Re η = 0 (solid) and Im η = 0

(dashed) show the complicated interplay between direction, magnitude and displacement of the

surfaces in complex space. The deformation vector ~κ vanishes on the focal point (red).

As a third aspect, we discuss how the deformation magnitude ‖~κ‖ affects the integrand.

The connection between magnitude and integrand becomes apparent when studying these

quantities on a line segment in integration space. This line segment is displayed in figure 11.

We annotated 12 features, where one of them is a focal point and the remaining ones are

zeros of either Im η = 0 or Re η = 0 of the deformed E-surface η. In figure 12 we report the

deformation magnitude ‖~κ‖ along this line. We see that on the focal point the continuity

constraint sets the deformation to zero (feature 1). At the other features the magnitude

constraints lead to a non-smooth behaviour in the deformation vector field. In figure 13

we study the integrand along the same line. We observe that on the focal point (feature

1) the integrand is singular. This is an integrable singularity and can be removed by using

multi-channelling in the cut energies (see section 5.2).

Finally, in figure 14 we show a density plot of the real and imaginary parts of the

integrand, as well as the regions, where the real or imaginary parts of the deformed E-

surfaces vanish. The enhancements in the real or imaginary part of the integrand are

directly related to the zeros of the imaginary part of the deformed E-surfaces. These

enhancements are expected when the deformation vanishes close to an E-surface.
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Figure 11. A line segment in integration momentum space: at annotated point 1, the line crosses

a focal point. Features 2 to 12 are crossings with the line and the points, where either the real

(solid) or the imaginary part (dashed) of the deformed E-surface equations vanishes. See figure 12

and figure 13 for more details on the deformation magnitude and the integrand along this line.
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1 2 3 4 5 6 7 8 9 10 11 12

Figure 12. The magnitude of the deformation vector ~κ along a line segment (see figure 11): at

annotated point 1, the line crosses a focal point, which forces the deformation to zero. Features 2

to 12 are crossings with the line and the points, where either the real or the imaginary part of the

deformed E-surface equations vanishes. These intersections cause a non-smooth behaviour of the

deformation vector field ~κ due to the constraints on the magnitude.

Re

Im

1 2 3 4 5 6 7 8 9 10 11 12

-1.×10
-6

1.×10
-6

0.1

1

Figure 13. The real (blue) and imaginary part (yellow) of the integrand multiplied by the Jacobian

of the contour deformation along a line segment (see figure 11) on a symmetric log y-axis: at

annotated point 1, the line crosses a focal point. There, the integrand has an integrable singularity.

Features 2 to 12 are crossings with the line and the points, where either the real or the imaginary

part of the deformed E-surface vanishes. On these intersections the deformation vector field ~κ is

non-smooth (see figure 12), which induces discontinuities in the Jacobian of the contour deformation.
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Figure 14. A density plot of the real (left) and imaginary (right) values of the integrand overlaying the undeformed E-surfaces η (ellipses) and their

solutions to Re η = 0 (solid) and Im η = 0 (dashed) with deformation. The real and imaginary part of the integrand has pronounced enhancements

(white), where the imaginary parts of multiple E-surface equations are zero. The features for vanishing real and imaginary part of the integrand

(blue), have no special significance.
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4 Subtraction

In the discussion so far, we considered integrals that do not have singularities for loop

momenta of large magnitude (ultraviolet (UV) singularities) or soft and/or collinear to

external legs (infrared (IR) singularities). For practical applications, such as computing

amplitudes of physical processes, this will not be the case, as individual diagrams can

contain both UV and IR divergences.

After transforming the integrand using LTD, non-integrable singularities manifest

themselves as pinched (squeezed) E-surfaces. For the case of Feynman diagrams with

massless internal propagators, this will happen when one or more of the massless external

legs become on-shell. It is however still possible to numerically integrate such integrals, pro-

vided that the non-integrable singularities are regulated first. In general this is achieved by

subtracting from the integrand an expression that contains the same pinched E-surface(s)

and that approximates the original integral in the limit where the singular surface is ap-

proached. If these subtraction terms (also known as counterterms) are significantly simpler

than the original integral, one can integrate them analytically in dimensional regularisa-

tion and add them back to the final expression in order to recover the original integral,

including all its poles in the dimensional regulator. In this section we start by presenting

a novel method to regulate divergent scalar integrals at one-loop without the introduction

of propagators linear in the loop momentum featured in ref. [85]. We then discuss the in-

troduction of counterterms for physical amplitudes [86] where only one term is introduced

to remove all IR divergences. This regulated expression can then be integrated using LTD

and the contour deformation discussed in section 3.

Note that in this section we refer to the external momenta as pi for ease of reading.

4.1 Divergent scalar integrals

We start by investigating scalar integrals subject to IR divergences at one-loop. In general,

it is convenient to express counterterms in terms of the same building blocks as the original

integrand, namely quadratic propagators. This allows to use the LTD formalism that has

been introduced for the case of finite scalar integrals. At one-loop, we will show that

we can always achieve such subtraction using a linear combination of triangles built by a

subset of the original propagators and with coefficients expressed in terms of the kinematic

invariants sij . Since the counterterms involve only propagators already present in the

original diagram, they do not introduce any new E-surfaces.

4.1.1 General one-loop massless scalar integral

Let us consider an n-point function with all the internal propagators massless and with

external momenta pj with p2j = m2
j . We first consider the case where only one leg i is

massless (mi = 0). As a consequence, the corresponding scalar integrand will develop a

collinear singularity when the loop four-momentum k becomes collinear to the correspond-

– 33 –



J
H
E
P
0
4
(
2
0
2
0
)
0
9
6

ing momentum pi:

qi+1

qi

qi−1

pi+2

pi+1

pi

pi−1

pi−2

.

.

.

qi=x pi−−−−→







 pi

qi









×

















pi+2

pi+1 + x pi

pi−1 + x̄ pi

pi−2

.

.

.

















︸ ︷︷ ︸

=: ci(x)

.

(4.1)

In the expression above (where we consider the loop momentum to flow clockwise) we can

see how the integrand factorises in the collinear limit. The integration of this counterterm

can be performed as shown in ref. [85]. The variable x is a function of the loop momentum

and is defined as follows:

qi = xpi + yv + qi,⊥, where
v2 = 0,

v · pi 6= 0.
(4.2)

The expression on the l.h.s. of eq. (4.1) can be written in an integral form as follows:

In :=

∫

d4k In(k, {pi}), where







In(k, {pi}) =
1

∏n
i (qi)

2
,

qi = k +
∑i

j=1 pi,

, (4.3)

In qi=x pi−−−−→
∫

d4k
ci(x)

(qi−1)2(qi)2
. (4.4)

The coefficient ci(x) that multiplies the bubble propagators corresponds to the remaining

hard propagators with the loop momentum evaluated in the collinear limit:

ci(x) =
1

∏n+i−2
j=i+1 (x pi + qji)2

, qji := qj − qi. (4.5)

The limit shown on the right-hand side of eq. (4.4) could be used to build an IR finite

expression by subtracting it from In, however such a counterterm introduces propagators

that are linear in the loop momentum. Linear propagators yield singular surfaces that are

not akin to E-surfaces, implying that the general construction of the contour deformation

presented in section 3 cannot directly control the properties of the imaginary part of the

loop momentum on them. We leave the investigation of solutions for accommodating linear

propagators to future work and for now aim at casting the subtraction terms ci(x) in terms

of propagators already present in the original divergent one-loop integral.

We start by considering all possible triangles that factorise the same divergent bubble

in the collinear limit. This condition fixes two of the three propagators of the triangle to

be the ones that become singular in a specific collinear limit, whereas the third propagator
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can be chosen to be any of the other ones appearing in the original n-point integral. All

such triangles are:

T (i, j) :=

qi

qi−1

qj , j ∈ Ji := {i+ 1, i+ 2, . . . , i+ n− 2}. (4.6)

with periodic conditions on the loop momenta labels. In the collinear limit, each element

T (i, j) factorises one hard propagator tij whose expression reads:

tij(x) =
1

(xpi + qji)2
.

Note that each squared momentum in the denominator of our coefficient functions is linear

in x because pi is on-shell, resulting in only one simple pole in the variables x.

In order to cancel the divergences of the n-point function we need to find a linear combi-

nation of T (i, j) with coefficients aij(x) that satisfies:

∑

j∈Ji

tij(x)aij(x) = ci(x).

We can multiply both sides of this expression by the denominator of ci(x) which is equal

to the product of all the possible tij with i 6= j. We then obtain a polynomial of degree

(n− 3) in x:

∑

j∈Ji







∏

r∈Ji
r 6=j

t−1
ir (x)







aij(x) = 1 .

Since we have (n − 2) degrees of freedom and we insist that coefficients aij(x) are free

of poles in x, one needs to involve all terms T (i, j) in order to solve the equation above

(assuming all the poles tij(x) are distinct). In particular, an explicit solution can be found

by using the roots of the inverse coefficients t−1
ij :

aij =
∏

r∈Ji
r 6=j

tir

(

− (qji)
2

2pi · qji

)

, (4.7)

resulting in coefficients that depend only on the external kinematics.

This procedure does not work in the case of degenerate (raised) propagators. This

can be resolved by considering a subset J̄i ⊂ Ji which contains only one member of each

degenerate subset of propagators with multiplicity νj for j ∈ J̄i. Moreover, we need to

generalise eq. (4.7) in order to support the degeneracy of the involved propagators. In the

collinear limit, the linear combination of the elements of this set gives the same singularities
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as the original integral, provided that:

∑

j∈J̄i







∏

r∈J̄i
r 6=j

t−νr
ir (x)







aij(x) = 1.

In this case we have |J̄i| parameters aij to constrain a polynomial of degree n with (|J̄i|−1)

distinct roots. It is then clear that the coefficients aij take the same values as those given

in equation (4.7). From this point onward, we will only consider one-loop scalar integrals

with non-degenerate propagators.

We are now equipped with a method that removes single collinear singularities from

integrals with one off-shell external momentum by writing a linear combination of the

triangular elements T (i, j). When more than one external leg has a vanishing mass, we can

apply the same procedure for each of them. In this case, we have to be careful when one

of the triangles appears in more than one regularisation. For example, when two adjacent

momenta are on-shell at the same time, one has T (i, i + 1) = T (i + 1, i − 1). In this

kinematic configuration the corresponding coefficients will be same:

ai,i+1 = ai+1,i−1, when p2i = p2j = 0 .

Thus, one has to be careful when summing the regulator corresponding to each of the

massless external legs in order to avoid double-counting.

We can write one general subtraction term, referred to as CTn, that can be used for

any combination of on/off-shell external momenta of a scalar one-loop n-point integral:

In|subtracted = In − CTn,

CTn =
n∑

i=1



βiT (i, i+ 1) +

n+(i−3)
∑

j=i+2

aijT (i, j)



 , (4.8)

where we introduced the coefficients βi used to avoid double counting. Their expression is

βi =

{

ai,i+1 : p2i = 0

ai+1,i−1 : otherwise
, (4.9)

where we make explicit use of the fact that whenever pi and pi+1 are on-shell at the same

time the two coefficients aij coincide.

Because the constructed collinear counterterms do not depend on the parameter x, they

completely remove the singularities from pinched E-surfaces, implying that they regulate

both collinear and soft divergences. As a consequence, we have that the integral In −CTn

is finite for all loop momentum configurations. The original expression In can be recovered

by adding back the integrated counterterms. The integrated counterterm consists of n(n−
3) distinct one-loop scalar triangles that are straightforward to compute analytically for

general external kinematics using dimensional regularisation. We leave to future work the

investigation of the possible multi-loop generalisation of this construction of counterterms

that do not involve any propagators that are linear in the loop momenta.
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4.1.2 Explicit example of subtraction for a divergent one-loop scalar box

For the four-point box topology with massless propagators, there are four counterterms

since the sum in eq. (4.8) over the coefficients aij is empty. Only the βi are present and

take the following expression:

βi =







si,i+1 − p2i+1

si,i+1si−1,i − p2i+1p
2
i−1

: p2i = 0

si,i+1 − p2i
si,i+1si+1,i+2 − p2i p

2
i+2

: otherwise

, (4.10)

where sij = (pi+ pj)
2. In the particular case where all external momenta are massless and

on-shell (i.e. p2i = 0), the final expression of the counterterms reads:

CTn =
4∑

i=1

βiT (i, i+ 1)

=
T (1, 2)

s23
+

T (2, 3)

s12
+

T (3, 4)

s23
+

T (4, 1)

s12
,

(4.11)

which coincides with the results presented in ref. [85], in which this same expression corre-

sponds to the counterterm built for the subtraction of soft singularities (and the authors

also concluded that the counterterm cancels all IR divergences in that particular case).

In other cases however, and especially beyond one-loop, the counterterms from ref. [85]

introduce linear propagators of the form of eq. (4.1).

4.2 One-loop amplitudes

Loop-Tree Duality has already been applied directly to the computation of amplitudes

in cases where no contour deformation was needed, for example in refs. [97, 98]. In this

section, we consider an amplitude that has both IR and UV divergences as well as threshold

singularities: the production of photons from the scattering of a quark and an anti-quark.

For simplicity, the order of the photons is kept fixed during this discussion, as performing

the integration over all permutations of the final states does not add any complications.

The tree-level contribution for qq̄ → (N − 2)V is defined as

iA0 =

p1

p2

pN

p4

p3

T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0

.

.

.

= C0

(
N−1∏

i=3

1

(
∑i

j=2 pj)
2

)

v̄2T0u1 , (4.12)

where all the fermions are assumed to be massless and the coefficients C0, T0 depend on

the vector boson considered as a final state. If only photons are considered as final states

such coefficients are given by:

T0 = /ε3(−/p23)/ε4 · · · (/p15)/εN , C0 = g3q3 . (4.13)
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These formulas can easily be extended to the electroweak bosons W± and Z by substituting

the photon polarisation vectors with generic ones /εi → /̂ε which also encode the information

about the axial and vectorial part of the corresponding boson:

/̂εi := /εiPi, Pi = cV − cAγ5, (4.14)

with projectors defined as

PL :=
1− γ5

2
, PZ :=

cdV − cdAγ
5

2
. (4.15)

In order to obtain a more general expression we will use this new definition for the

polarisation vectors. In the case of photons, all the Pis are proportional to the identity

matrix.

In order to compute the one-loop QCD correction to eq. (4.12) one needs to consider

all possible insertions of a gluon along the fermionic line. The IR structure of the relevant

diagrams features one or two pinched collinear singularities if the gluon is attached to one

or both the external fermion lines, respectively. In the latter case, the diagram also features

a soft singularity.

4.2.1 Counterterms

If the photons are physically polarised, the only pinched divergences contributing to the

IR sector involve a gluon connecting one of the propagators of the tree-level diagram with

the external quarks. There are no singularities originating from two internal quarks and an

external photon meeting at a vertex and becoming collinear, since the numerator vanishes:

[. . . ](/k − /pi)/̂εi/k[. . . ]
k=x pi−−−−→ x̄x[. . . ] /pi/̂εi/pi[. . . ] = 0 . (4.16)

Since the pinched singularities originate uniquely from insertions of gluons connecting an

external fermion to an internal fermion, the Ward identity can be used to regulate all the

collinear and soft divergences with a general counterterm. However, it is necessary to fix a

consistent choice of routing for the loop momentum in order for cancelling divergences to

be localised in the same region in momentum space, even though they belong to different

diagrams. The general counterterm IIR reads:

p1

p2

pN

p4

p3

T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0

.

.

.

=
C1 µ

2ǫ(4π)2
∏N−1

i=3 (
∑i

j=2 pj)
2

∫
ddk

(2π)d
v̄2γ

µ(/k − /p2)T0(/k + /p1)γµu1

k2(k + p1)2(k − p2)2
, (4.17)

where

C1 = −iC0
CFαs

4π
. (4.18)

This integration can be performed analytically using Feynman parametrisation, and we

obtain:

IIR = i
C1

∏N−1
i=3 (

∑i
j=2 pj)

2

(
4πµ

−s12

)ǫ CΓ

2− 2ǫ

(

−2M0
2− 2ǫ+ ǫ2

ǫ2
+

M1

2ǫ
+

M2

−s

)

, (4.19)
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where

M0 = [v̄2T0u1] ,

M1 = [v̄2γ
µγνT0γνγµu1] ,

M2 =
[

v̄2γ
µ
/p1T0/p2γµu1

]

,

CΓ =
Γ(1− ǫ)2Γ(1 + ǫ)

Γ(2− 2ǫ)
.

(4.20)

Although subtracting eq. (4.17) from the original integrand allows to completely reg-

ulate IR singularities, the subtracted integrand is still divergent in the UV sector. This

divergence can manifest itself locally, in spite of the integral itself being finite, either due

to symmetries of the integrated expression or because the IR and UV poles cancel for in-

tegrals that are scaleless in dimensional regularisation. The behaviour for large momenta

is inferred by the scaling of the integrand in these regions, and as a result all log-divergent

triangles (one gluon, two fermions) and linearly divergent bubbles (one gluon, one fermion)

that appear in the amplitude have to be regulated. The construction of the counterterm

is done by taking the UV limit of each diagram by replacing

/k + /p

(k + p)2
→ /k

k2 − µ2
UV

, (4.21)

where the only relevant momentum is now the loop momentum carried by the exchanged

gluon. The bubble diagram has a leading UV divergence that is linear in the loop momen-

tum. In the context of an analytic integration such contribution integrates to zero because

of radial symmetry, although the integrand is locally divergent. It is therefore necessary

to also regulate this leading UV divergence together with the sub-leading one obtained by

computing the second order in the Taylor expansion around the UV approximation given

by eq. (4.21). An explicit example of this subtraction can be found in appendix B, where

eq. (B.11) represents the UV counterterm of a triangle and eq. (B.10) represents the coun-

terterm of a bubble. The IR counterterm that we introduced is UV divergent and requires

regulation as well. Its divergence can be expressed as as a triangle integral and can be

subtracted by means of eq. (4.21).

The combination of counterterms can be used to build a finite amplitude expression

that can be integrated using LTD:

Afinite = A− ICT , where ICT =
∑

UV
div.

IUV + IIR − IUVIR
. (4.22)

The counterterm can be integrated analytically with the use of dimensional regularisa-

tion. In the UV contribution to the integrated counterterm we notice that the bubble and

the triangle lead to the same value in norm and opposite in sign if constructed according

to the substitution rule (4.21). Thus, the only remaining contribution is

∑

UV
div.

IUV = −i
C1

∏N−1
i=3 (

∑i
j=2 pj)

2

(
4π µ2

µ2
UV

)ǫ

Γ(1 + ǫ)
(1− ǫ)2

ǫ
M0 . (4.23)
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Finally, regulate the IR counterterm with the same technique. The corresponding

analytically integrated counterpart reads:

IUVIR
= −i

C1
∏N−1

i=3 (
∑i

j=2 pj)
2

(
4π µ2

µ2
UV

)ǫ

Γ(1 + ǫ)
1

4ǫ
M1 . (4.24)

The complete expression ICT can then be expanded in ǫ up to finite terms and be used

to recover the original amplitude once combined with the value coming from numerical

integration. The integrated counterterm for qq̄ to photons at one loop takes the simple form:

ICT = −i
C1

∏N−1
i=3 (

∑i
j=2 pj)

2
M0

(4π)ǫ

Γ(1−ǫ)

[
1

ǫ2
+

1

ǫ

(
1

2
+ lnµ

)

+

(

4+
1

2
(3 + lnµ) lnµ

)]

+O(ǫ) ,

(4.25)

where lnµ = log
(

µ2

−s12

)

. Any dependence on µUV has dropped from this final expression.

As a consequence, the integration of the finite amplitude will also not depend on the choice

of µUV. This condition can be used as a further check for the proper cancellation of the

divergences.

4.2.2 Ultraviolet behaviour

When integrating the LTD expression, one has to take into account that the superficial

degree of UV divergence of each dual integrand is higher than that of the sum of its cuts.

This is because once the LTD on-shell cuts of the residues are applied, every quadratic

propagator scales as 1/|~k| in the UV instead of 1/k2. As a consequence, contrary to

the Minkowskian case, the addition of more fermion propagators to the diagram is not

suppressing the scaling of the deformation in the UV sector:

∫

d4k δ+(q
2
j )

1

k2

N∏

i

/qi
q2i

∼ k2 ∀N , (4.26)

compared to the original scaling of the 4D integrand being

∫

d4k
1

k2

N∏

i

/qi
q2i

∼ k2−N . (4.27)

Summing over all the different cuts will however recover the original scaling of k2−N .

If the dual integrand scales faster than 1/|~k| in the UV, the numerical cancellation

of large numbers becomes prone to numerical instabilities. One way avoid such numerical

instabilities in the UV region is to approximate the integrand with a better behaved function

in the corresponding sector, obtained by taking a UV approximation of the integrand. The

most convenient choice is to replace all the propagators with a common UV one:

q2 → (k + pUV)
2 . (4.28)

This ensures that the approximating function only features a single dual integrand, which

directly scales as the 4-dimensional integrand. The numerator can be left unchanged for

this approximation. In section 4.2.3 we discuss the effects of this UV approximation.
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k

(D1) (D2) (D3) (D4)

(D5) (D6) (D7) (D8)

Figure 15. Diagrams contributing to one-loop QCD correction to qq̄ → 3 γ amplitude.

The UV counterterms can be constructed as shown in section 4.2.1 for most integrals,

but in the case of a bubble integral, the subleading logarithmic divergence must also be

regulated. The relevant part of the approximation is shown below:

γµ/qγµ

q2
≈ γµ/qγµ

(k + pUV)2
− 2k · (q − k − pUV)

γµ/qγµ

(k + pUV)3

=
γµ/qγµ

(k + pUV)2
−

γµ{/k, (/q − /k − /pUV
)}/qγµ

(k + pUV)3
.

(4.29)

Since the UV counterterms have higher-order poles, the LTD formula shown in section 2

cannot be applied directly. We discuss how to apply LTD to integrals featuring raised

propagators in appendix C.

4.2.3 One-loop amplitude for qq̄ → γ1γ2γ3

We now study the specific case of the one-loop dd̄ → γ1γ2γ3 amplitude. The tree-level

diagram of this amplitude is

iA0 =

p1

p2

p5

p4

p3

= C0
M0

∏4
i=3(

∑i
j=2 pj)

2
,

where the coefficients are given by

M0 = v̄2/ε1(−/p23)/ε2(/p15)/ε3u1, C0 = g3q3. (4.30)

Figure 15 shows all the diagrams involved in the one-loop QCD correction.
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Figure 16. Behaviour of the qq̄ → 3γ in the different regulated limits. When the various limits

are approached linearly in δ the plots (a–b) show a scaling as δ
1

2 whereas (c) goes like δ1 and (d)

as δ−1.

Diagrams D1–D3 and D7–D8 are IR divergent: D1 and D7 are divergent when k is

collinear to p1 and D2 and D8 are divergent k is collinear to p2, whereas the diagram D3

is divergent in both cases and also has a soft divergence.

Despite the fact that the integrated amplitude is UV finite, the local behaviour of

the integrand in the UV region needs to be regulated. This can be done by writing the

corresponding counterterms for all UV divergent integrals, specifically D4–D8.

In order to ensure that the cancellation occurring across diagrams at the integrated

level are also reflected at the local integrand level for the whole amplitude, one must

carefully choose the the loop momentum routing of each diagram so as to localise cancelling

divergences in the same region of momentum space. The case at hand is quite easy in that

regard, as one can choose the gluon line to have momentum k with momentum flow against

the fermionic line for all the diagrams.

Figure 16 shows the different behaviours when approaching the soft, collinear, and UV

limits. The different limits are approached by rescaling the loop momentum k by a factor δ

for the soft and UV limit, while for the collinear limit we use the Sudakov parametrisation

of eq. (4.2) with y and k⊥ rescaled by δ and
√
δ respectively. The different asymptotic

scaling δ1, δ
1
2 and δ−1, prove that the divergences are properly subtracted.
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Figure 17. Behaviour of numerical instability in the UV due to imprecise cancellations between

large numbers from each each dual integrand. The loop momentum k is rescaled by a factor δ

and the real and imaginary part of the amplitude are presented with different precision (double

and quadruple) and by expanding the expression around the UV limit as an approximation (see

section 4.2.2).

Despite the use of quadruple precision (f128) to rescue some unstable evaluation of the

UV region, we see that the cancellations between dual integrands are broken around δ > 108

due to numerical instabilities. In figure 17 we show how these instabilities spoil the final

result in the case of double precision (f64) with and without the use of the approximating

function discussed in section 4.2.2. In the latter case it is possible to push the instability

in the far UV and reproduce the behaviour of the quadruple precision evaluation. Where

the transition between the approximated function and the all-order amplitude expression

occurs, one has has to ensure that the deformation goes to zero, since this region is not

analytic. In both figure 16 and figure 17 the rescaled loop momentum is taken to be real

and of the same order as s12.

5 Optimisation

In this section we present various optimisations that we have developed to improve the

convergence of our numerical framework.

5.1 Lorentz invariance

The following two subsections are aimed at showcasing the wide range of simplifications

made possible by leveraging Lorentz symmetry. Specifically, Lorentz symmetry can be

used to both drastically simplify the E-surface overlap structure and eliminate fictitious

accidental pinched configurations that may appear for specific external kinematics as a

result of competing constraints on the deformation.

Contrary to symmetry under the (spatial) SO(3) subgroup of the Lorentz group, in-

variance under boosts is not manifest in the LTD framework. Indeed, Lorentz boosts cause
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significant changes in the singular structure of the integrand and result in E-surfaces being

rescaled and shifted relative to each other: the major axis length of an E-surface, being a

linear combination of the energies of the external particles, is not a Lorentz invariant, nor

is the distance between any pair of focal points, being a linear combination of the three

momenta of the external particles. Conversely, some quantities are Lorentz invariant in

the LTD framework: the number of E-surfaces, their existence condition, and some specific

features of the overlap structure including, for example, the property of two E-surfaces

sharing a focal point.

5.1.1 Simplified deformation contour for 2-point multi-loop integrals

A first use-case of the implict realisation of Lorentz invariance in LTD is found in the con-

struction of a surprisingly simple integration contour applicable to any two-point function.

Since the original integral is Lorentz invariant, the single independent external momentum

of a two point function can always be boosted in its rest frame. It follows that the spatial

momentum shifts in all propagator momenta read

~pj = (0, 0, 0), ∀j ∈ e , (5.1)

where we recall that e identifies the list of edges of the loop graph. Equivalently, we can

write ~qi(~k) = ~Qi(~k). A Lorentz boost thus allows to decouple components of ~k from the

spatial part of the external momentum.

This feature allows for a simpler deformation, characterised by the parameter λ ∈
(0, 1), as

~kj → ~kj(1− iλ). (5.2)

This deformation casts squared energies in a particularly simple form,

~qi(~k − iλ~k)2 +m2
i = ~qi(~k)

2(1− iλ)2 +m2
i (5.3)

from which follows that because λ < 1, the stronger continuity constraint eq. (3.36) is

always satisfied, since the real part of eq. (5.3) is positive and that all focal points coincide

with the origin thanks to eq. (5.1). And because λ > 0, the imaginary part of eq. (5.3)

is positive as well. It follows that the causal constraints, imposed by LTD, are satisfied

everywhere (except at the origin where the deformation scales to zero), and the deformation

is guaranteed to never reach the forbidden areas presented in eq. (3.52). Therefore, the

simple deformation vector field ~κ = iλ~k with λ ∈ (0, 1), is correct for any two-point

function, independently of the number of loops and internal masses.

We tested this deformation on a six-loop two-point ladder integral with two sets of

kinematic configurations given by p2 = 1 and masses m2
j = 0, ∀j ∈ e, called K, and

p2 = 1, m2
j = 0.1 ∀j ∈ e called K⋆. We compared the m2 = 0 numerical result against its

analytical counterpart and verified that the procedure is correct. The results are reported

in the following table, together with information about the number of dual integrands

NC, the number of existing E-surfaces NE and number of VEGAS Monte-Carlo samples

considered Np:
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Topology Kin. NC NE Np [109] Phase Exp. Reference Numerical LTD

6L2P

K 1560 36 0.1
Re

-11
-5.9616733

[99]
-5.945 +/- 0.029

Im 0 -0.009 +/- 0.031

K⋆ 1560 16 0.1
Re

-10
n/a -2.9924 +/- 0.0011

Im n/a 3.9424 +/- 0.0011

The same technique of adding a small imaginary part to the components of the loop

momenta corresponding to zero components of all the external momenta can also be con-

sidered for the three-(four-)point function. However, in these cases there are only two(one)

component(s) that can be set to zero through a boost. The possibility of integrating easily

along loop momentum dimensions by adding a small imaginary part to a subset of the

components of the loop momenta is the manifestation of a property of two, three and

four-point functions already noted in ref. [100].

5.1.2 Example of overlap structure simplification for a 3-point 2-loop integral

In general, Lorentz boosts can be used to greatly simplify the overlap structure. For

example, we find that the 1 → 2 kinematics of a two-loop ladder diagram with massless

propagators (considered here for simplicity), can be written in the following form when

boosted in the rest frame of the p2 + p3 system:

p1 =
(
m2

1, 0, 0, 0
)
,

p2 =

(√

ω2 +m2
+, 0, 0, ω

)

,

p3 =

(√

ω2 +m2
−, 0, 0,−ω

)

,

(5.4)

with momentum conservation conditions yet to be applied to the energy components. Since

in this case any E-surface features at most one focal point with a non-vanishing affine term

~pj , the origin ~ki = ~0 lies within all E-surfaces. Indeed, all E-surfaces of this particular loop

integral considered are

η1(~k) = 2‖~k1‖ −m2
1

η2(~k) = ‖~k1‖+ ‖~k1 + ~k2‖+ ‖~k2‖ −m2
1

η±3 (
~k) = ‖~k1‖+ ‖~k1 + ~k2‖+ ‖~k2 + ωêz‖ −

√

ω2 +m2
±

η±4 (
~k) = ‖~k2‖+ ‖~k2 + ωêz‖ −

√

ω2 +m2
±

η5(~k) = 2‖~k2‖ −m2
1 ,

(5.5)

which are all negative when evaluated at ~ki = ~0, indicating that the origin is indeed in the

interior of all existing E-surfaces. Similar arguments can be used to show that in a physical

2 → 2 process featuring n existing E-surfaces, at least n− 1 of them must allow for a point

in the interior of all of them.

The boost parameters can themselves be viewed as hyperparameters subject to opti-

misation and although it is beneficial to boost 2 → N kinematics in the rest frame of the

collision, a systematic procedure that maximally optimises the choice of Lorentz frame is

still missing.
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5.1.3 Pseudo-pinches

Pseudo-pinches are singular surfaces at which competing causal or continuity constraints

impose the deformation to be zero, although these configurations are non-existent in an-

other frame of reference. They can be classified as follows:

1. Singular subspaces

~qj(~k) = 0, ∀j ∈ c, c ⊆ b (5.6)

with |c| fixed loop variables and n− |c| unconstrained loop variables. When all loop

momenta configurations ~k(c) satisfying the subspace constraints of eq. (5.6) happen

to also lie on one particular E-surface η (so η(~k(c)) = 0), then no deformation will

be allowed on that surface because of the continuity constraint of eq. (3.3.1). This

situation is accidental as it only happens for particular kinematic configurations and,

more importantly, for a particular choice of Lorentz frame. At one loop, this situation

corresponds to a focal point being located exactly on an E-surface.

2. Intersections of two or more E-surfaces η1, . . . , ηn at a point ~k such that ∃ηi with
~∇ηi = −∑j 6=i αj

~∇ηj and αj ≥ 0. This typically happens when two E-surfaces are

tangent. We stress here again that, in general, the normal ~∇ηi to an E-surface ηi is

a (3n)-dimensional vector.

We now illustrate these two different types of accidental pseudo-pinches at one loop.

Case 1. Let a focus be located exactly on an E-surface. Imposing that the contour does

not cross branch cuts of on-shell energies of massless internal particles (using our stronger

version of the continuity constraint),

~qi(~k)
2 − ~κ2 ≥ 0, (5.7)

at the point ~qi(~k
∗) = ~k∗ + ~pj = 0 implies that ~κ∗ = 0. However, since the point is

located on a singular E-surface, ~k∗ ∈ ∂η, a non-zero deformation is required. In this

case, the continuity constraint conflicts with the causal constraint. It can be argued that

our continuity constraint is stronger than what is minimally required, but even weaker

implementations must impose that ~κ∗ = 0 in some region containing the focal point.

Case 2. Now let two E-surfaces be tangent. Then, two causal constraints conflict at

a point: the normal vectors to the two E-surfaces at the tangent points are opposite in

direction, and thus no vector exists having strictly positive projection on both of them.

Both cases are problematic from a conceptual point of view, because they can cor-

respond to kinematic configurations where the deformation breaks down. However, as

mentioned earlier, the existence of these cases is accidental and specific to the chosen ref-

erence frame for the external kinematics. In both cases, there is an infinite number of

infinitesimal Lorentz boosts such that in the boosted kinematics no focal point coincides

with any E-surface and no two E-surface are tangent.

This is especially clear in the case of causally connected focal points. In order to

understand this notion, one can turn to the one-loop example of an E-surface η on which
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lies a focal point f (necessarily, the focal point f cannot coincide with one of the focal

points of η). Now let ~qi(~kf ) = ~kf + ~pi = 0 be the equation defining the focal point and

let f ′ be a focal point of the E-surface satisfying the equation ~qj(~kf ′) = ~kf ′ + ~pj = 0.

Now consider a boost sending the four-momentum pi − pj in its rest frame so that its only

non-zero component is the time component. Obviously, this can only be done if pi − pj
is timelike in which case the two focal points correspond to four-dimensional spacetime

coordinates that are causally connected. In this frame of reference, the focal points f and

f ′ overlap and thus f can no longer be located on the surface of the ellipsoid, thereby

avoiding the accidental pseudo pinch situation.

Similarly, consider two tangent E-surfaces, and choose one focal point for each E-

surface, denoted by f and f ′, such that their distance in four-dimensional spacetime is

timelike. It is now always possible to choose a frame of reference in which the distance

between the focal points is zero. In this frame the two E-surfaces share a focal point and

thus cannot be tangent.

5.2 Multi-channelling

Improving the numerical efficiency of the numerical integration amounts to finding tech-

niques for reducing the variance of the integrand. Sharp local enhancements of the inte-

grand, and especially integrable singularities, induce a large variance and can significantly

deteriorate the numerical integration. At best, such peaks make the Monte Carlo (MC)

integration converge slowly and at worst they yield an unstable central value, as well as an

unreliable estimate of the MC error.

In general, adaptive importance sampling can adjust well to integrands with large

variances, provided that their enhancement structure aligns with the integration variables.

However, when the Monte Carlo integrator underestimates the variance of the integrand

in some regions of the integration space during the first iterations, it can incorrectly ne-

glect these regions in further iterations. In such cases, the estimate of the integral will be

unreliable, even though the error suggests otherwise. Even though increasing the number

of sampling points in the first iterations can help mitigate this problem, it slows down the

integration and reduces the predictive power of the numerical integration. It is therefore

best to first pre-process the integrand so as to remove its sharp enhancements, which is

possible when their location and approximate functional form is known. In this section,

we show how this improvement can be systematically implemented for the LTD expres-

sion, using a technique known as multi-channeling which is commonly used for improving

numerical integration in various contexts.

We can write the integrand stemming from the n-loop LTD expression as

I ≡
( −i

(2π)3

)n∑

b∈B

Resb[f ], (5.8)

where each dual integrand Resb[f ] features sharp peaks resulting from each propagator put

on-shell. Each of these peaks is an integrable singularity when the corresponding propaga-
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tor is massless. These enhancements for each residue have the following functional form:

Resb[f ] ∝
∏

i∈b

E−1
i , (5.9)

where Ei =
√

~q 2
i +m2

i , with local extrema at ~qi = 0 for i ∈ e. In order to take advan-

tage of dual cancellations, i.e. the local cancellations of singularities on H-surfaces among

summands of the LTD expression, the dual integrands have to be integrated together us-

ing a unique parameterisation. We must therefore consider the complete integrand which

features the following peak structure

I ∝
∑

b∈B

∏

i∈b

E−1
i . (5.10)

In a multi-channeling approach, we seek to flatten these enhancements by first inserting

the following expression of unity in the integrand:

1 =

∑

b∈B

∏

j∈bE
−1
j

∑

b∈B

∏

i∈bE
−1
i

(5.11)

and then splitting up the sum in the numerator into |B| channels, thereby defining an

integrand for each channel identified by a basis (or equivalently spanning tree) b ∈ B,
whose expression reads:

Cb ≡
∏

j∈bE
−1
j

∑

b∈B

∏

i∈bE
−1
i

I =
∏

j∈b

E−1
j

I
∑

b∈B

∏

i∈bE
−1
i

︸ ︷︷ ︸

no strong enhancement

∝
∏

i∈b

E−1
i . (5.12)

We observe that each channel still features peaks, but only those specitic to b. This opens

the possibility of choosing a different parametrisation for each channel, selected so that

its Jacobian flattens its enhancement
∏

i∈bE
−1
i . We note that a similar multi-channeling

approach was used in refs. [74, 80]. Thanks to the continuity constraint discussed in

section 3.3.1, the denominator of the multi-channelling factor does not introduce new inte-

grable singularities when computed with our choice of contour deformation. More specifi-

cally, the integration measure from the spherical parametrisation of the loop momenta in

the basis b reads:4

[

d3~k
]

=
[
||~q||2d||~q||d2Ω

]

b
, (5.13)

where we introduced the shorthand notation

[

d3~k
]

≡
n∏

j=1

d3~kj ,
[
d|~q|d2Ω

]

b
≡
∏

j∈b

||~qj ||2d||~qj ||d2Ωj . (5.14)

We can now choose to integrate each channel Cb separately5 and use for each the specific

parametrisation of eq. (5.13). At one loop, these different parametrisations only differ by a

4The change of loop momentum basis always yields a Jacobian of one when keeping boundaries fixed.
5In practice, one can also opt to evaluate each channel successively for each sampling point considered

by the integrator. This has the advantage of retaining potential local cancellation across channels but also

complicated the overall structure of the integrand that the integrator must adapt to.
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Figure 18. Multi-channelling for a triangle integral with massless propagators with momenta

qi = k + pi, i ∈ e = {1, 2, 3}, such that ~p3 = ~0: the LTD integrand |~k|2I (blue) and the channel

|~k|2C{3} (orange) in spherical coordinates along the direction −~p1. Since the triangle has three dual

integrands, the LTD integrand I has three integrable singularites, one for each energy Ei = 0, i ∈ e.

For both integrands, the singularity at E3 = 0, i.e. when ~k = ~0, vanishes when parameterised in

spherical coordinates centered at ~k = ~0 because of the integration measure. The line along −~p1
goes directly through the singularity at E1 = 0, i.e. when ~k = −~p1 and past the one at E2 = 0

(small bump only since the direction used for this plot is not ~p2 but ~p1) of the LTD integrand. In

the channel C{3} these two enhancements are flattened and become non-vanishing constants thanks

to the multi-channel factor. We observe that at ~k = −~p1 the channel is not differentiable (as well

as at ~k = −~p2).

shift of the origin whereas beyond one loop, they also amount to a change of basis in which

the loop momenta are expressed. The resulting integral for each channel then reads:

∫ [

d3~k
]

Cb =
∫
([

||~q||2d||~q||d2Ω
]

b∏

j∈bEj

)(

I
∑

b∈B

∏

i∈bE
−1
i

)

, (5.15)

where each of the two factors building the integrand is now free from integrable singularities

(or strong enhancement in the case of massive propagators) coming for the cut propagator.

The original integral is then computed as the sum of |B| channels

I =

∫ [

d3~k
]

I =
∑

b∈B

∫
[
||~q||2d||~q||d2Ω

]

b
Cb . (5.16)

The effects of multi-channeling are shown in figure 18, where the peak due to the

crossing a focal point is removed.

We note that this multi-channeling approach can be further developed by considering

additional channels related to other enhancements coming from E-surfaces and/or infrared

limits for example. We leave this investigation to future work.
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6 Numerical implementation

In this section we discuss various details of our numerical implementation, such as the most

challenging aspects associated to the construction of the deformation contour, the evalua-

tion of the Jacobian and consistency checks that are essential for verifying the correctness

of the integration contour and guaranteeing the stability of the evaluation of the integrand.

6.1 Source determination

Determining the maximal overlap structure requires testing whether there is a point in

the interior of a given set of E-surfaces. This problem is convex and can be written as a

second-order cone program (SOCP). For example, the SOCP

minimize 1

subject to f1 + f2 ≤ c1

f1 + f3 ≤ c2

|~k + ~p1| ≤ f1

|~k + ~p2| ≤ f2

|~k + ~p3| ≤ f3

(6.1)

finds a ~k inside ellipsoids

√

(~k + ~p1)2+

√

(~k + ~p2)2−c1 and

√

(~k + ~p1)2+

√

(~k + ~p3)2−c2 if

there is overlap. SOCPs can be solved using standard methods for convex optimization. We

have used the convex constraint problem rewriter cvxpy [101] with the ecos solver [102] as

a backend to construct a program that ascertains whether a given set of E-surfaces overlap.

Given the aforementioned program, determining the maximal overlap structure O(max)

of eq. (3.23) is still an NP-hard problem, as the set of possible overlap configurations is

exponential in the number of E-surfaces and any algorithm devoted to the determination

of O(max) will have a worse-case complexity that renders it prohibitively slow. In practice

however, the class of problems of interest generally features a limited amount of overlapping

regions which are shared by many E-surfaces. Indeed, many E-surfaces share one or more

focal points, and thus naturally have the focus as a shared interior point. As a consequence

of these facts, the algorithm should be constructed so as to take advantage of this heuristic

by exploring solutions in a top-down order; that is starting with the assumption that all

E-surfaces overlap. If all E-surfaces are not in one overlapping set, one E-surface is removed

in all possible ways and the test is performed again. Once an overlap is found involving

N particular E-surfaces, then the 2N − 1 subsets of this set never need to be tested again.

In order to prevent a combinatorial blow-up, a list of all possible pair-wise intersecting

E-surfaces is constructed and used to filter many options when constructing viable subsets.

This additional improvement to the heuristic was key in rendering our implementation fast

enough for problems with more than 30 E-surfaces, as generating all 230 options is too

slow. In practice, the refined algorithm takes only a few seconds to find the solution in

the majority of cases. It therefore yields negligible overhead in comparison to time spent

in the numerical integration. We note however that for cases involving or more that 40
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E-surfaces, it may happen that when our heuristics are not well satisfied, our algorithm

cannot determine the maximal overlap structure within any reasonable amount of time, as

it happened in the case of the loop integral 7.2L8P.K1∗ for which we could then not show

results.

Once the maximal overlap structure is determined, one must find a point inside each

overlap with the extra property to be optimal from a numerical convergence point of view.

This optimality condition can loosely be approximated by requiring the point to be as far

as as possible from all the E-surface defining and enclosing the overlapping volume. The

resulting set of point constructed in this manner will serve as the set of deformation sources.

The furthest away a source ~s is from all surfaces in the overlap set, the less tangential the

deformation ~k − ~s will be when evaluated on the surfaces themselves. For higher-loop

cases, the source location is possibly subject to extra requirements due to the continuity

constraints within t a particular subspace given in eq. (3.39).

To approximate the optimal centre of the overlap region, which is related to the

Chebyschev centre of a convex region, one can solve the convex constrained optimisation

problem of maximising the radius r under the constraints that the points ~s ± rê
(j)
i all lie

inside all E-surfaces η ∈ F for every Cartesian direction in 3n dimensions, {{ê(j)i }3i=1}nj=1,

that is:
maximize r

subject to η
(

~k ± rê
(j)
i

)

≤ 0, ∀i = 1, 2, 3 ∀j = 1, . . . , n ∀η ∈ F

Imposing the extra subspace constraints of eq. (3.39) is most conveniently done by

performing a basis change. For example, for given linear constraints ~k1 = ~p1 and ~k1+~k2 =

~p2 on vectors (~k1,~k2,~k3), the following system of equations allows to identify the subspace

satisfying the constraints and its orthogonal complement





1 0 0

1 1 0

ker(C)











~k1
~k2
~k3




 =






−~p1
−~p2
~s1




 , (6.2)

where ker(C) is the kernel of the constraints C, (0, 0, 1) in this example. The inverse of the

system presented above allows to rewrite the E-surfaces in terms of fixed momenta ~p1, ~p2
and the source variable ~s1. In this particular subspace example, there remains only three

degrees of freedom for setting the source, so that only three canonical directions e
(j)
i need

to be considered when building the constraints on ~s ± rê
(j)
i , whereas the original centre

finding problem cast without change of basis would require all nine (3n).

6.2 Parameterisation

The numerical integrator Cuba [103] that we use to produce our results generates points in

the unit hypercube [0, 1]3n. These points have to be transformed to R3n where they then

correspond to a particular real-valued sample configuration for the spatial part of the the

loop momenta. Our code provides options for Cartesian maps and spherical maps with

hyperbolic and logarithmic scaling for the conformal mapping from [0, 1] to (−∞,∞). For

the results in this paper we used the following spherical and hyperbolic transformation that
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map each triplet of input variables (u1, u2, u3) ∈ [0, 1]3 to a configuration of the spatial

part of one loop momentum ~k:

r = bEcm
u1

1− u1
kx = r sin θ cosφ

φ = 2πu2 ky = r sin θ sinφ (6.3)

θ = acos (−1 + 2u3) kz = r cos θ

J = 4πEcmb r
2

(

1 +
r

Ecmb

)2

(6.4)

where Ecm is the centre-of-mass energy of the decay or scattering kinemtics, and b is a

scaling parameter that regulates how much the integrator probes the ultraviolet region.

Our default value for b is 1.

6.3 Deformation Jacobian

The contour deformation ~k → ~k− iλ(~k)~κ is effectively parametrised by the real part of the

loop-momenta. Determining the resuling Jacobian of this parametrisation analytically is

difficult due to off-diagonal contributions in the Jacobian matrix from the generally com-

plicated analytical expression of the deformation magnitude λ(~k). In order to bypass this

inconvenience, the exact Jacobian is calculated numerically using automatic differentiation.

This technique is commonly used in machine learning algorithms, such as neural networks.

Performing the computation with dual numbers






kix
kiy
kiz




→






kix + ǫkix
kiy + ǫkiy
kiz + ǫkiz




 , (6.5)

where the dual components ǫi are subject to the truncation rule ǫiǫj = 0, yields the partial

derivatives ∂k′

∂kjo
as the coefficient of ǫkjo .

In our Rust implementation, all routines are generic over floating-point-like types (such

as a double-precision floating point number). Since a dual number behaves like a floating

point number, the promotion of the arithmetics to dual number can be done transparently

from the perspective of our core routines implementing the LTD logic.

6.4 Consistency checks

In order to assess the numerical stability of each evaluation, each Monte Carlo sample

point is evaluated on numerically different but analytically equivalent integrands, taking

advantage of the manifest invariance of the integrand under rotation of the spatial part

of every momentum involved (for example, the external momenta, the loop momenta and

the sources). If the evaluation of the LTD integrand of a spatially rotated configuration

significantly differs (in terms of a sensible adimensional threshold) from the original one,

the point is deemed unstable, and we attempt to rescue it by repeating the same exact pro-

cedure in quadruple precision. If an unstable point is then considered stable in quadruple

precision by performing the same test, then the quadruple-precision result is returned to
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the integrator. Instead, if the point is still deemed numerically unstable, we set its weight

to zero. In practice, even for the more challenging integrals, less than one sample point in

a million is numerically unstable in quadruple precision. Furthermore, these exceptional

unstable points are often deep in the ultraviolet region and evaluate to values far below

the result of the integration and they can therefore safely be set to zero. We note how-

ever that the implementation of a quadruple precision rescuing system was necessary for

obtaining many of the results presented in this publication, especially for the computation

of amplitude where the ultraviolet behaviour is more relevant (see section 4.2.2).

The correctness of the complex contour deformation is verified by sampling random

points on E-surfaces and ensuring that the causality constraint is satisfied. Since finding

a parametrisation for E-surfaces is difficult at higher loops, it is more effective to use a

bisection strategy to sample points on the E-surfaces. The bisection strategy must be

seeded by one point inside the E-surface and one outside. As E-surfaces are bounded,

finding a point in the exterior of them is trivial and the most straightforward choice of

point in the interior is any of the two focal points of the E-surface. The convexity of

E-surfaces then ensures that a unique (correct) solution will be found by the bisection

algorithm and that all points of a given E-surface can be reached by our approach simply

by varying the choice of exterior point.

To verify the validity of the LTD expression, the occurrence of dual cancellations is

explicitly verified. A similar bisection strategy is used to find a point on an H-surface.

Then along the bisection line, the LTD integrand is evaluated on points iteratively closer

to the H-surface. If the slope of the interpolation between these points is below a chosen

adimensional threshold, the dual cancellation is considered successful. The same setup

is also used to verify if the local counterterms used to subtract IR-divergences have the

correct scaling behaviour (see section 4).

7 Results

The aim of our work is to provide a numerical loop integration technique based on Loop

Tree duality which is both robust and generically applicable. It is therefore crucial to

accompany the formal derivation of a valid deformation carried out in section 3 with illus-

trative applications that can demonstrate the correctness of the numerical method as well

as its practical efficiency. This will be explored in section 7.1. We present our numerical

results obtained when applying our LTD formulation together with local subtraction coun-

terterms to compute one-loop scalar topologies in section 7.2 and to compute amplitudes

for the ordered production of photons from a fermion line in section 7.3.

7.1 Multi-loop finite integrals

To demonstrate the practical efficiency and correctness of the deformation, we explore in

tables 1-8 a variety of kinematic configurations and many different scalar integral topologies

featuring up to four loops (and up to six for cases not necessitating a contour deformation),6

6The exhaustive details (incl. kinematics) necessary for reproducing the results of each integral presented

in this section is given in the ancillary material. The integral normalisation matches that of eq. (2.1).
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yielding different combinations of number NE of unique singular threshold E-surfaces and

number NS of necessary deformation sources. We also indicate the number of dual inte-

grands in the LTD expression of eq. (2.5) in the column labelled Nc; it corresponds to the

number of spanning trees of the topology and also to the number of integration channel

it would feature when adopting the multi-channeling procedure discussed in section 5.2

(which we do not use in this section, unless otherwise stated).

We also report a shortened representation of the maximal overlap structure O(max) as

a list Lmax where each entry corresponds to the number of E-surfaces contributing to each

maximally overlapping set F contained in O(max). We report the discrepancy of our numer-

ical LTD result w.r.t. the reference value, relative to each other (∆[%]) and relative to the

Monte-Carlo error (∆[σ]) reported by the implementation in Cuba [103] of the Vegas [104]

integrator.7 Unless otherwise stated, we consider different fixed statistics of 3 · 109, 1 · 109
and 0.5 · 109 Monte-Carlo sample points for each of the one-, two-, three- and higher-loop

integrals computed.8 For some of the one-loop results (e.g. 1.1L5P.V and 1.1L6P.IX), the

real part is accidentally small compared to the imaginary part and since the variance of

the LTD integrand is of the same order for both phases, we find it relevant to also indicate

in the last column of the results table the relative discrepancy of our LTD numerical result

on the modulus of the complex-valued benchmark result (∆[%]| · |). The timing per PS

point t/p is reported in microseconds, as measured on a single core of an Intel Xeon CPU

E5-2650 v4 @ 2.20GHz CPU. Throughout this section and unless otherwise mentioned,

we keep the deformation hyperparameters fixed to their default values of ǫth = 0.3 and

M = 0.07. These defaults are typically different from what would be the values optimised

for each kinematic configuration and/or topology tested, but in this exploratory work we

refrained from systematically fine-tuning hyperparameters so as to prevent any bias in our

results and be able to fairly showcase the robustness of our approach. However, we will

later show two examples where the results from specific integrals could be significantly im-

proved by adjusting the value of the hyperparameter M . Finally, the reference result for all

one-loop integrals presented in this section, as well as for the one-loop amplitude computed

in section 7.3, is obtained from the One-Loop Provider MadLoop [105, 106]. MadLoop

uses the OPP [107] or Laurent-series expansion [108] integrand-level reduction technique

as implemented in CutTools [109] and Ninja [110, 111], together with OneLOop [112] for

the evaluation of one-loop scalar master integrals (containing up to four external legs).

In table 1, we present results for one-loop five- and six-point scalar integrals for hand-

crafted kinematic configurations that correspond to many qualitatively different maxi-

mal overlapping situations. We also include the result for the four-point one-loop inte-

gral 1.Box4E which we used as an example throughout this work. The relatively good sub

per-mil accuracy obtained for this integral may be surprising in regard to the complex-

ity of the corresponding LTD integrand, depicted in figures 13 and 14. Comparing the

7Similarly to the findings of ref. [84], we also find significantly more accurate and precise results using

the Cuhre integrator at one-loop. The results with this integrator are however significantly worse beyond

one-loop. For the sake of simplifying the comparison of our results across loop counts, we only report results

obtained with the Vegas integrator.
8With typically n start ∼ 1% of n max of and n increase ∼ 0.1 % of n max in Vegas.
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Figure 19. The singular E-surfaces from the two six-point one-loop integrals 1.1L6P.VII (left)

and 1.1L6P.VIII (right) with different kinematics yielding drastically different maximally overlap-

ping regions. In both cases our construction of the deformation is generated from the combination

of four radial fields with sources indicated by blue dots. Additional support sources can potential

improve on the worse convergence of integral 1.1L6P.VIII.

Monte-Carlo accuracy and precision obtained for all integrals of table 1, we observe the

general trend that the convergence mildly degrades with an increase in the number of de-

formation sources and the number of unique threshold E-surfaces. However, the dominant

factor appears to be the shape of the threshold surfaces, which become more elongated

as the masses of the external momenta decreases or, more in general, when the hierar-

chy between the relevant scales in the scattering considered becomes more pronounced.

The integrals 1.1L6P.VII and 1.1L6P.VIII are a prime example of this observation as

the Monte-Carlo accuracy of the latter integral is much worse despite featuring the same

number of unique E-surfaces and deformation sources as the former. Indeed, the external

kinematics of integral 1.1L6P.VIII yield E-surfaces of very elongated shapes, as hinted

by the corresponding maximal overlap structure Lmax = [3, 5, 6, 7] where one deformation

source involves only three out of the total of ten unique threshold E-surfaces. Figure 19

shows a rendering of the E-surfaces from both integrals 1.1L6P.VII and 1.1L6P.VIII, which

clearly highlights their differences in shape and maximally overlapping regions.

Table 2 and table 3 show our reproduction of some benchmark multi-loop results from

the literature. The number of sources Ns indicated in this multi-loop case refers to the total

number of sources, including the ones obtained from applying the focal point constraints

of eq. (3.39) that yield the subspace sources corresponding to each set part of the subspace

maximal overlap O(max)
b

. On the other hand, the column Lmax in the multi-loop case

still refers to the cardinality of the sets in O(max) (that is, the maximal overlap structure

obtained in the absence of any focal point constraints). Furthermore, beyond on loop, the

number of channels (i.e. number of dual LTD integrands) Nc is no longer equal to the

number of propagators, but instead corresponds to the number of spanning trees which is

a quantity specific to each integral topology.
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Integrals 2.2L6P.a.I to 2.2L6P.f.I reproduce results from ref. [91], in which the au-

thors perform a direct integration in four-dimensional Minkowski momentum space. We

investigate the exact same decay kinematic configurations as the ones considered in that

work, which are numerically well-behaved and yield results that are pure phases. We also

obtained independent reference results for these two-loop six-point integrals using an alter-

native numerical computation using pySecDec [62] and we find only small tensions between

all three results.

The multi-loop ladder four-point integrals (2.2L4P.c.I, 3.3L4P.I, 3.4L4P.b.I,

3.5L4P.I and 3.6L4P.a.I) are known analytically for massless internal lines [99], and a

generalisation to MxN fishnet topologies (of which integrals 3.4L4P.a.I and 3.6L4P.b.I

are two examples) was recently carried out in ref. [113]. Integral 4L4P.a.I has a large Monte

Carlo error due to numerical instabilities in the UV region, as discussed in section 4.2.2. We

stress that the five- and six-loop integrals 3.5L4P.I, 3.6L4P.a.I and 3.6L4P.b.I are com-

puted for external kinematics yielding no threshold singularities such that the integration

can be be performed without any contour deformation. Furthermore, for these integrals, we

used the multi-channeling treatment discussed in section 5.2 as we found it to be necessary

in order to tame the unbounded integrable singular surfaces that are of large dimensionality

at these high loop counts.9 The good agreement found for integral 3.6L4P.b.I is the first

numerical confirmation of the analytical expression obtained in ref. [113].

Finally, the two entries 2L4P.a.I and 2L4P.b.I of table 2 present challenging integrals

recently considered in ref. [114] (in which it appears as topology number B72) in the context

of the computation of the amplitude for Higgs production in association with a hard jet. In

that work, the exact dependency on the internal quark mass is retained thanks to an original

semi-numerical method for solving the system of differential equations relating master

integrals. In the case of an internal top quark (2.2L4P.a.I), the authors could validate

most of their results against the fully numerical ones obtained from sector decomposition

techniques, however the case of the much lighter bottom quark (2.2L4P.b.I) proved to

be more challenging for these approaches. The result from numerical LTD agrees with

ref. [114] and has a numerical integration error only marginally impacted by the different

values selected for the internal quark mass.

In figure 20, we explore the stability of our numerical integration for two different

classes of four-point kinematic configurations on one-, two- and three-loop ladder scalar

integrals. The first class of kinematics is unphysical, with p21 = −5 and p22 = p23 = p24 =

(p1 + p2)
2 = −1. It is such that the region (p1 + p3)

2 = t > −7 can be addressed without

any contour deformation, and for which we already showed results in figure 1 of ref. [78].

In the complement region t < −7, a threshold singularity develops that corresponds to a

single E-surface in this particular parametrisation of the kinematics and at any loop count.

Our construction of the contour deformation involves 1, 4 and 11 sources (NS) for the

1-, 2- and 3-loop integral respectively. The multi-loop results shown in this upper plot of

figure 20 were obtained with 1B integration sample points and our default values for the

contour deformation hyperparameters.

9When disabling multi-channeling at these higher loop counts, we still found similar convergence pace

but often obtained wrong biased central values.
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Figure 20. Comparison of the exact analytic result from ref. [99] with our numerical LTD

computation for ladder 1-, 2- and 3-loop integrals. The kinematics considered for the top figure is

p21 = −5 and p22 = p23 = p24 = (p1+p2)
2 = −1 and we scan over different values of the Mandelstamm

invariant t = (p1 + p3)
2. The kinematics of the bottom figure correspond to a physical 2 → 2

scattering with p2{1,2,3,4} = 1, s = (p1 + p2)
2 = 4.4 and we scan over different values of the

scattering angle θ13 = ∠(~p1, ~p3).
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The second class of kinematics concerns the physical 2-body scattering configuration

with p21,2,3,4 = 1, s = (p1 + p2)
2 = 4.4 and a variable scattering angle θ13 = ∠(~p1, ~p3).

This case is far more challenging as it involves 5, 12 and 21 unique existing E-surfaces and

necessitates a total of 1, 8 and 49 deformation sources (NS) at 1-, 2- and 3-loop respectively.

We note however that the set of maximal overlaps O(max) always contains a single set F that

involves all E-surfaces existing in the particular subspace considered, so that only a single

source is necessary for generating a valid deformation in each subspace. The results found

and presented in the lower panel of figure 20 are obtained using modified hyperparameter

values ǫth = 0.5 and M = 0.05, together with the multi-channeling treatment described in

section 5.2 and with a Monte-Carlo statistic of 100M points for each channel integrated

separately.

Figure 20 demonstrated that numerical LTD is stable for different angular configura-

tions, even when close to the crossing of thresholds in the external kinematics. We have

however already observed in the one-loop results of table 1 that the convergence mostly

depends on the shape and overlaps of the threshold singularity surfaces, which can become

increasingly more complicated for boosted external momenta (that is |~pi|2 ∼ (p0i )
2). In ta-

bles 4 to 8, we therefore seek to more systematically explore the performance of numerical

LTD for external scattering10 kinematic configurations p1 p2 → p3 . . . pN of progressively

stronger hierarchies in the scales m2
j := p2j and s := (p1 + p2)

2.

We provide our explicit choice of kinematics in the ancillary material and we limit

ourselves here to reporting their relevant scales:

• K1 — K1⋆ : mj = 1.0 + 0.1 (j − 1),
√
s = 1.1

∑N
j=1mj and minternal = 0.0 | 0.4,

• K2 — K2⋆ : mj = 1.0,
√
s = 3.0

∑N
j=1mj and minternal = 0.0 | 0.25,

• K3 — K3⋆ : mj = 1.0 + 1.0 (j − 1),
√
s = 3.0

∑N
i=j mj and minternal = 0.0 | 1.001,

where the two different values for the masses of all internal propagators correspond to the

massive (resp. massless) case labelled with (resp. without) a * in the tables. We note that

the series of kinematics K3 features internal propagators with masses set very slightly above

that of one of the external momenta. This specific choice of internal mass is such that the

existence condition of some E-surfaces are very close to being fulfilled, thus placing this

challenging kinematic very close to crossing a threshold. Similarly to what can be observed

in the scan shown in figure 20, we find numerical LTD to be in general stable even when

approaching thresholds.

At one loop (tables 4 and 5), we observe that the convergence mostly depends on the

multiplicity of the external momenta, with a central value in agreement with MadLoop’s

reference beyond the percent level. At two loops (tables 6 and 7) and for integrals with

more than four external legs, we find the scattering type of kinematics considered to be

significantly more challenging than their decay counterpart featured in table 2 and we

could not obtain a benchmark result from pySecDec. In those cases, the columns ∆[%]

10We find scattering type of kinematic configurations to be numerically significantly more challenging

than the decay kinematics previously considered in the literature and shown in table 2.
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and ∆[%]| · | refer to the Monte-Carlo precision (and not the discrepancy w.r.t. to the

benchmark result) relative to the central value, and ∆[σ] is not applicable.

While numerical LTD generally performs well for kinematics featuring weaker hier-

archies among its invariants, such as kinematics class K1, we found integrals where the

convergence for the kinematics K2 and K3 was not good enough with our default deforma-

tion hyperparameters for the results to be reported in the tables. We note however that

adjusting the two contour deformation hyperparameters ǫth (which governs the strength

of the expansion constraint), and M (which governs the strength of the anti-selection) can

significantly improve the results. We illustrate this by optimising these two parameters

for a particular six-point two-loop integral (2L6P.a) and for the K2 kinematics. Using a

low-statistics (50M points) exploratory scan, we find the optimal value of (ǫth,M) to be

close to (0.7,0.01) for this configuration (most of the sensitivity lies in M). We then report

in the table below the improvement of the convergence (especially strong in the case of

massive internal propagators) found w.r.t. to our default values (ǫth = 0.3,M = 0.07):

Topology Kin. ǫth M Np [109] Phase Exp. Numerical LTD

2L6P.a

K2

0.3 0.07 3
Re

-12
5.12 +/- 0.23

Im -0.56 +/- 0.24

0.7 0.01 3
Re

-12
5.13 +/- 0.11

Im -0.26 +/- 0.11

K2⋆
0.3 0.07 3

Re
-11

0.6 +/- 1.1

Im -3.7 +/- 0.7

0.7 0.01 2
Re

-11
0.709 +/- 0.030

Im -3.845 +/- 0.030

The two-loop eight-point integral 7.2L8P.K1 shows good convergence, but we could

not obtain a result for its massive counterpart 7.2L8P.K1∗ because it features a challenging

maximal overlap structure (despite involving less than the 46 unique E-surfaces of inte-

gral 7.2L8P.K1) that we could not determine in a reasonable amount of computing time

using the algorithm described in section 6.1. Beyond two loops (table 8), we again ob-

serve a significant improvement when considering massive internal propagators, which can

partly be explained by the fact that in this case the deformation is no longer forced by

the dynamic scaling of eq. (3.36) to become zero on the focal points of existing E-surfaces.

We should mention that the four-point four-loop integrals included in the tables are at the

upper end of the complexity that can currently be handled by our implementation. For

massless internal propagators, the scattering kinematics Ki does not yield a good enough

convergence while the decay kinematics necessitated an adjustment of the contour defor-

mation hyperparameters (using a value for the parameter M in eq. (3.11) smaller than

our defaults, e.g. M ∼ 0.01). Given that such integrals are also beyond what is of current

phenomenological relevance, we present their results mostly to highlight the potential of

numerical LTD.
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Topology Kin. NC NE NS Lmax Np [109] t/p [µs] Phase Exp. Reference Numerical LTD ∆ [σ] ∆ [%] ∆ [%]| · |

Box4E

I 4 4 4 [2, 2, 2, 2] 3 15
Re

-08
-6.57830 -6.57637 +/- 0.00122 1.590 0.029

0.022

Im -7.43707 -7.43805 +/- 0.00121 0.813 0.013

1L5P

I 5 8 1 [8] 3 15
Re

-12
-3.44342 -3.44317 +/- 0.00045 0.564 0.007

0.007
Im -2.56487 -2.56505 +/- 0.00046 0.400 0.007

II 5 10 1 [10] 3 15
Re

-13
0 -0.00036 +/- 0.00029 1.266

0.006
Im 5.97143 5.97143 +/- 0.00029 0.003 2e-05

III 5 8 2 [7, 7] 3 16
Re

-12
-0.83905 -0.83888 +/- 0.00016 1.029 0.020

0.012
Im -1.71341 -1.71325 +/- 0.00017 0.937 0.009

IV 5 8 3 [7, 7, 7] 3 17
Re

-12
-3.48997 -3.49044 +/- 0.00054 0.870 0.013

0.013
Im -3.90013 -3.89965 +/- 0.00054 0.891 0.012

V 5 6 4 [2, 2, 3, 4] 3 19
Re

-10
0.89920 0.90036 +/- 0.00076 1.519 0.129

0.027
Im 4.17837 4.17823 +/- 0.00080 0.180 0.003

VI 5 8 5 [4, 4, 5, 5, 5] 3 19
Re

-13
0.04119 0.04227 +/- 0.00068 1.593 2.634

0.057
Im -2.18057 -2.18118 +/- 0.00068 0.891 0.028

1L6P

I 6 12 1 [12] 3 20
Re

-13
0.03040 0.03046 +/- 0.00006 1.067 0.202

0.009
Im -1.17683 -1.17691 +/- 0.00008 1.057 0.007

II 6 6 2 [1, 5] 3 21
Re

+01
-2.07014 -2.07392 +/- 0.00188 2.004 0.182

0.214
Im 0.42343 0.42593 +/- 0.00161 1.551 0.590

III 6 12 2 [11, 10] 3 20
Re

-15
1.36918 1.36950 +/- 0.00052 0.628 0.024

0.024
Im -2.25901 -2.25957 +/- 0.00053 1.054 0.025

IV 6 12 3 [9, 10, 10] 3 22
Re

-15
1.29770 1.29802 +/- 0.00038 0.847 0.025

0.019
Im -2.16590 -2.16555 +/- 0.00037 0.929 0.016

V 6 6 4 [2, 3, 3, 3] 3 22
Re

-14
-0.27217 -0.27225 +/- 0.00010 0.839 0.032

0.007
Im -1.20896 -1.20895 +/- 0.00011 0.098 0.001

VI 6 9 4 [4, 6, 6, 6] 3 23
Re

-17
2.83772 2.83777 +/- 0.00040 0.118 0.002

0.002
Im 0.83142 0.83144 +/- 0.00040 0.059 0.003

VII 6 10 4 [7, 7, 8, 8] 3 23
Re

-17
-3.01939 -3.01976 +/- 0.00040 0.917 0.012

0.008
Im -7.73337 -7.73280 +/- 0.00047 1.199 0.007

VIII 6 10 4 [3, 5, 6, 7] 3 24
Re

-02
2.11928 2.13487 +/- 0.03230 0.483 0.736

1.055
Im 0.64030 0.65770 +/- 0.03145 0.553 2.717

IX 6 12 4 [8, 9, 9, 10] 3 22
Re

-14
0.00794 0.00804 +/- 0.00014 0.710 1.253

0.009
Im -1.15282 -1.15278 +/- 0.00014 0.290 0.004

X 6 10 5 [6, 6, 7, 7, 7] 3 24
Re

+00
-2.81475 -2.81583 +/- 0.00060 1.809 0.038

0.029
Im 2.47327 2.47308 +/- 0.00061 0.313 0.008

Table 1. Results for one-loop four-point to six-point functions. Box4E has been used as an example topology throughout this work. See the main

text for details.
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Topology Kin. NC NE NS Lmax Np [109] t/p [µs] Phase Exp. Reference Numerical LTD ∆ [σ] ∆ [%] ∆ [%]| · |

2L4P.a

I 11 2 6 [2] 3 39
Re

-06
3.82891

[114]
3.82875 +/- 0.00015 1.107 0.004

0.003
Im -4.66840 -4.66843 +/- 0.00017 0.188 0.001

II 11 4 7 [4] 3 42
Re

-10
2.83647

[114]
2.83742 +/- 0.00072 1.312 0.033

0.032
Im 3.38265 3.38163 +/- 0.00066 1.558 0.030

2L4P.b

I 15 13 8 [13] 3 55
Re

-02
-5.89700

[99]
-5.89794 +/- 0.00099 0.956 0.016

0.025

Im 0 0.00112 +/- 0.00095 1.171

2L6P.a

I 20 20 14 [20] 3 88
Re

+01

-8.608 +/- 0.009 [62]
-8.64045 +/- 0.00392 0.045

0.064-8.66 +/- 0.08 [91]

Im 0 -0.00220 +/- 0.00393

2L6P.b

I 23 23 18 [21, 22] 3 95
Re

+02

-1.1886 +/- 0.0005 [62]
-1.19040 +/- 0.00092 0.077

0.109-1.17 +/- 0.02 [91]

Im 0 0.00147 +/- 0.00092

2L6P.c

I 24 24 20 [19, 22, 22] 3 94
Re

+01

-7.607 +/- 0.006 [62]
-7.62856 +/- 0.00716 0.094

0.133-7.8 +/- 0.1 [91]

Im 0 -0.00052 +/- 0.00724

2L6P.d

I 24 23 15 [23] 3 91
Re

+01

-1.833 +/- 0.002 [62]
-1.83639 +/- 0.00075 0.041

0.058-1.91 +/- 0.02 [91]

Im 0 -0.00042 +/- 0.00075

2L6P.e

I 26 26 19 [25, 25] 3 101
Re

+01

-4.597 +/- 0.004 [62]
-4.61094 +/- 0.00423 0.092

0.131-4.64 +/- 0.08 [91]

Im 0 0.00404 +/- 0.00430

2L6P.f

I 27 33 20 [29, 32] 3 119
Re

+02

-1.0271 +/- 0.0003 [62]
-1.02723 +/- 0.00111 0.108

0.153-1.03 +/- 0.02 [91]

Im 0 0.00165 +/- 0.00112

Table 2. Results for two-loop topologies with benchmark kinematics from the literature. See the main text for details.
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Topology Kin. NC NE NS Lmax Np [109] t/p [µs] Phase Exp. Reference Numerical LTD ∆ [σ] ∆ [%] ∆ [%]| · |

3L4P

I 56 22 49 [22] 1 346
Re

-03
0

[99]
0.00796 +/- 0.00877 0.907

0.149

Im -6.74400 -6.73786 +/- 0.00856 0.717 0.091

4L4P.a

I 192 44 280 [44] 0.7 0
Re

-05
8.41610

[113]
8.38828 +/- 0.07772 0.358 0.331

0.352

Im 0 -0.01028 +/- 0.07754 0.133

4L4P.b

I 209 33 270 [33] 0.5 2712
Re

-04
7.41128

[99]
7.96654 +/- 0.11281 4.922 7.492

7.562

Im 0 0.07617 +/- 0.11858 0.642

5L4P

I 780 0 0 1.8 255
Re

-16
0

[113] 0.843

Im 3.31697 3.28900 +/- 0.01964 1.424 0.843

6L4P.a

I 2415 0 0 14.5 1196
Re

-19
8.40449

[113]
8.36493 +/- 0.02167 1.825 0.471

0.471

Im 0

6L4P.b

I 2911 0 0 1 1200
Re

-18
0.90600

[113]
1.09968 +/- 0.41729 0.464 21.38

21.38

Im 0

Table 3. Results for three- to six-loop ladder and fishnet integrals. The five- and six-loop configurations do not have any singular E-surfaces. See

the main text for details.
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Topology Kin. NC NE NS Lmax Np [109] t/p [µs] Phase Exp. Reference Numerical LTD ∆ [σ] ∆ [%] ∆ [%]| · |

1L4P

K1 4 5 1 [5] 3 14
Re

-03
1.13116 1.13123 +/- 0.00006 1.126 0.006

0.005
Im -0.55487 -0.55486 +/- 0.00005 0.163 0.002

K2 4 5 1 [5] 3 12
Re

-05
5.71928 5.71929 +/- 0.00055 0.003 3e-05

0.005
Im -7.24005 -7.24055 +/- 0.00053 0.952 0.007

K3 4 5 1 [5] 3 12
Re

-06
1.55382 1.55376 +/- 0.00012 0.545 0.004

0.005
Im -2.06994 -2.07005 +/- 0.00012 0.930 0.005

K1∗ 4 5 3 [3, 3, 3] 3 16
Re

-03
1.85226 1.85214 +/- 0.00012 1.069 0.007

0.004
Im -2.18400 -2.18397 +/- 0.00012 0.285 0.002

K2∗ 4 5 2 [3, 3] 3 14
Re

-04
0.30270 0.30272 +/- 0.00004 0.527 0.007

0.005
Im -1.08125 -1.08130 +/- 0.00004 1.313 0.005

K3∗ 4 3 1 [3] 3 12
Re

-06
-0.17986 -0.17991 +/- 0.00005 1.054 0.028

0.007
Im -2.27578 -2.27593 +/- 0.00008 1.970 0.007

1L5P

K1 5 8 2 [7, 7] 3 18
Re

-05
-1.90847 -1.90856 +/- 0.00074 0.120 0.005

0.006
Im -6.45346 -6.45306 +/- 0.00077 0.515 0.006

K2 5 8 3 [5, 5, 7] 3 18
Re

-06
-0.15108 -0.15137 +/- 0.00032 0.937 0.197

0.017
Im -1.80679 -1.80672 +/- 0.00033 0.210 0.004

K3 5 8 3 [5, 5, 7] 3 20
Re

-09
-0.66240 -0.66271 +/- 0.00032 0.957 0.046

0.034
Im -1.23531 -1.23567 +/- 0.00032 1.102 0.029

K1∗ 5 8 2 [6, 6] 3 19
Re

-05
2.60399 2.60394 +/- 0.00072 0.060 0.002

0.012
Im -7.94917 -7.95017 +/- 0.00076 1.320 0.013

K2∗ 5 8 3 [4, 5, 5] 3 20
Re

-06
-0.48303 -0.48305 +/- 0.00059 0.034 0.004

0.009
Im -3.27695 -3.27664 +/- 0.00061 0.509 0.009

K3∗ 5 6 2 [5, 5] 3 16
Re

-09
-1.21497 -1.21508 +/- 0.00020 0.560 0.009

0.006
Im -1.53129 -1.53126 +/- 0.00020 0.188 0.002

Table 4. Results for one-loop four-point and five-point topologies for scattering kinematics (2 → N) for massless and massive propagators

(indicated by a *). See the main text for details.
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Topology Kin. NC NE NS Lmax Np [109] t/p [µs] Phase Exp. Reference Numerical LTD ∆ [σ] ∆ [%] ∆ [%]| · |

1L6P

K1 6 12 2 [11, 9] 3 24
Re

-06
0.51025 0.51018 +/- 0.00031 0.224 0.014

0.009
Im -1.54756 -1.54768 +/- 0.00032 0.380 0.008

K2 6 12 5 [8, 8, 8, 9, 10] 3 27
Re

-08
0.60440 0.60407 +/- 0.00216 0.154 0.055

0.015
Im -6.96339 -6.96436 +/- 0.00213 0.457 0.014

K3 6 12 3 [8, 9, 10] 3 25
Re

-12
0.40660 0.40655 +/- 0.00152 0.028 0.010

0.144
Im -2.51956 -2.51588 +/- 0.00157 2.343 0.146

K1∗ 6 12 4 [8, 9, 9, 9] 3 27
Re

-06
1.30210 1.30529 +/- 0.00289 1.107 0.245

0.192
Im -2.27354 -2.27744 +/- 0.00284 1.374 0.171

K2∗ 6 12 4 [8, 8, 8, 9] 3 27
Re

-08
-2.19936 -2.20131 +/- 0.00241 0.809 0.089

0.032
Im -6.37931 -6.37841 +/- 0.00254 0.354 0.014

K3∗ 6 10 3 [7, 8, 8] 3 22
Re

-12
-1.27979 -1.28057 +/- 0.00088 0.884 0.061

0.486
Im -2.22849 -2.21602 +/- 0.00088 14.09 0.559

1L8P

K1 8 23 2 [22, 18] 3 37
Re

-10
5.09917 5.10300 +/- 0.00400 0.958 0.075

0.086
Im -1.62799 -1.62544 +/- 0.00373 0.685 0.157

K2 8 23 9 [14, 15, 16, 15, 14, 16, 19, 19, 18] 3 47
Re

-12
4.20915 4.21309 +/- 0.00421 0.934 0.093

0.134
Im -1.95289 -1.95771 +/- 0.00394 1.223 0.247

K3 8 23 12 [15, 15, 15, 14, 16, 18, 14, 18, 18, 16, 18, 18] 3 52
Re

-19
1.27379 1.26931 +/- 0.00486 0.923 0.352

1.004
Im -0.82567 -0.84023 +/- 0.00503 2.898 1.764

K1∗ 8 23 4 [20, 19, 19, 18] 3 37
Re

-09
-0.35693 -0.35626 +/- 0.00057 1.168 0.187

0.082
Im -1.46806 -1.46911 +/- 0.00058 1.822 0.072

K2∗ 8 23 7 [14, 14, 16, 17, 18, 17, 18] 3 45
Re

-12
-1.14718 -1.16905 +/- 0.00794 2.754 1.906

1.004
Im -2.70587 -2.72569 +/- 0.00967 2.050 0.732

K3∗ 8 21 6 [17, 17, 16, 15, 14, 14] 3 37
Re

-08
-0.57515 -0.57605 +/- 0.00196 0.459 0.156

0.048
Im -4.04221 -4.04047 +/- 0.00202 0.858 0.043

Table 5. Results for one-loop six-point and eight-point topologies for scattering kinematics (2 → N) for massless and massive propagators

(indicated by a *). See the main text for details.
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Topology Kin. NC NE NS Lmax Np [109] t/p [µs] Phase Exp. Reference Numerical LTD ∆ [σ] ∆ [%] ∆ [%]| · |

2L4P.b

K1 15 12 8 [12] 3 53
Re

-06
-1.08406

[99]
-1.08656 +/- 0.00127 1.971 0.230

0.090
Im 2.86821 2.86702 +/- 0.00125 0.951 0.041

K2 15 10 8 [10] 3 55
Re

-08
3.11053

[99]
3.09646 +/- 0.00696 2.021 0.452

0.140
Im 9.53885 9.53952 +/- 0.00706 0.094 0.007

K3 15 10 8 [10] 3 56
Re

-10
1.70372

[99]
1.70253 +/- 0.00285 0.419 0.070

0.025
Im 4.56497 4.56488 +/- 0.00291 0.031 0.002

K1∗ 15 9 11 [7, 8] 3 62
Re

-06
2.802 +/- 0.008

[62]
2.80094 +/- 0.00023 0.008

0.008
Im 3.345 +/- 0.008 3.34866 +/- 0.00025 0.007

K2∗ 15 6 13 [4, 4] 3 77
Re

-08
7.9 +/- 0.7

[62]
8.15559 +/- 0.00123 0.015

0.017
Im 6.9 +/- 0.7 6.10277 +/- 0.00124 0.020

K3∗ 15 7 8 [7] 3 55
Re

-10
3.1 +/- 0.1

[62]
3.10306 +/- 0.00021 0.007

0.009
Im 0.1 +/- 0.1 0.09376 +/- 0.00020 0.212

2L5P

K1 19 17 14 [16, 16] 3 80
Re

-07
n/a 0.27368 +/- 0.00131 0.479

0.125
Im n/a 1.44760 +/- 0.00129 0.089

K2 19 13 19 [8, 8, 12] 3 86
Re

-09
n/a 1.08568 +/- 0.00342 0.315

0.230
Im n/a 1.78725 +/- 0.00339 0.190

K3 19 13 19 [8, 8, 12] 3 86
Re

-13
n/a 2.09848 +/- 0.00648 0.309

0.313
Im n/a 2.04022 +/- 0.00648 0.318

K1∗ 19 14 16 [13, 12] 3 80
Re

-07
n/a 1.51586 +/- 0.00027 0.018

0.019
Im n/a 1.31451 +/- 0.00027 0.021

K2∗ 19 10 20 [8, 9] 3 97
Re

-09
n/a 1.97798 +/- 0.01394 0.705

0.799
Im n/a 1.13209 +/- 0.01173 1.036

K3∗ 19 12 18 [10, 10, 10] 3 84
Re

-13
n/a 2.00638 +/- 0.00061 0.030

0.043
Im n/a -0.08277 +/- 0.00060 0.730

Table 6. Results for two-loop topologies for scattering kinematics (2 → N) for massless and massive propagators (indicated by a *). When there

is no reference result, ∆[%] and ∆[%]| · | refer to the Monte-Carlo accuracy relative to the central value. See the main text for details.
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Topology Kin. NC NE NS Lmax Np [109] t/p [µs] Phase Exp. Reference Numerical LTD ∆ [σ] ∆ [%] ∆ [%]| · |

2L6P.a

K1 20 20 15 [19, 14] 3 100
Re

-09
n/a 4.58688 +/- 0.05132 1.119

1.059
Im n/a 5.04144 +/- 0.05075 1.007

K1∗ 20 17 24 [12, 13, 13, 13, 13] 3 116
Re

-09
n/a -1.04316 +/- 0.35247 33.79

10.99
Im n/a -4.42468 +/- 0.35421 8.005

2L6P.b

K1 23 23 15 [22, 19] 3 91
Re

-09
n/a 1.17336 +/- 0.00888 0.757

0.303
Im n/a 3.99809 +/- 0.00896 0.224

K1∗ 23 20 20 [18, 17, 18] 3 103
Re

-09
n/a 5.35217 +/- 0.00153 0.029

0.033
Im n/a 3.81579 +/- 0.00150 0.039

2L6P.c

K1 24 22 16 [20, 21] 3 89
Re

-09
n/a 4.90974 +/- 0.01407 0.286

0.375
Im n/a -2.13974 +/- 0.01434 0.670

K1∗ 24 20 22 [17, 17, 17, 17] 3 108
Re

-08
n/a 1.05934 +/- 0.15850 14.96

14.87
Im n/a 1.03698 +/- 0.15312 14.77

2L6P.d

K1 24 20 26 [16, 7, 14, 14, 4] 3 136
Re

-08
n/a 1.90487 +/- 0.05753 3.020

2.017
Im n/a -3.55267 +/- 0.05746 1.617

K1∗ 24 17 30 [13, 12, 12, 12, 2] 3 144
Re

-08
n/a -2.97419 +/- 0.00961 0.323

0.367
Im n/a -2.18847 +/- 0.00957 0.437

2L6P.e

K1 26 21 34 [16, 9, 9, 14, 15, 9, 7] 3 163
Re

-07
n/a 2.87833 +/- 0.00951 0.330

0.386
Im n/a 1.99937 +/- 0.00961 0.481

K1∗ 26 18 43 [13, 12, 7, 7, 12, 12, 12, 12, 7, 5] 3 172
Re

-07
n/a 1.67332 +/- 0.00578 0.346

0.482
Im n/a -0.21788 +/- 0.00571 2.620

2L6P.f

K1 27 27 22 [24, 21, 24] 3 121
Re

-08
n/a -0.95486 +/- 0.00890 0.932

0.368
Im n/a 3.28530 +/- 0.00889 0.271

K1∗ 27 24 34 [19, 20, 20, 20, 20] 3 152
Re

-08
n/a 2.55104 +/- 0.00208 0.082

0.097
Im n/a -1.63019 +/- 0.00205 0.126

2L8P

K1 39 46 40 [37, 42, 41, 40] 3 237
Re

-12
n/a -5.15438 +/- 0.03310 0.642

0.544

Im n/a 6.78546 +/- 0.03243 0.478

Table 7. Results for two-loop topologies for scattering kinematics (2 → N) for massless and massive propagators (indicated by a *). When there

is no reference result, ∆[%] and ∆[%]| · | refer to the Monte-Carlo accuracy relative to the central value. See the main text for details.
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Topology Kin. NC NE NS Lmax Np [109] t/p [µs] Phase Exp. Reference Numerical LTD ∆ [σ] ∆ [%] ∆ [%]| · |

3L4P

K1 56 17 49 [17] 1 357
Re

-09
-2.42423

[99]
-2.43299 +/- 0.03927 0.223 0.361

0.471
Im -3.40035 -3.41797 +/- 0.03956 0.445 0.518

K2 56 17 49 [17] 1 366
Re

-11
-5.30309

[99]
-5.36759 +/- 0.14110 0.457 1.216

1.246
Im -1.07803 -1.05826 +/- 0.13399 0.148 1.834

K3 56 17 49 [17] 1 378
Re

-14
-4.47047

[99]
-4.46226 +/- 0.10022 0.082 0.184

1.462
Im -0.66383 -0.72941 +/- 0.09918 0.661 9.879

K1∗ 56 7 55 [7] 1 379
Re

-09
n/a -3.89588 +/- 0.00173 0.044

0.043
Im n/a 3.89127 +/- 0.00165 0.043

K2∗ 56 7 61 [5, 5] 1 454
Re

-11
n/a -3.15581 +/- 0.00639 0.203

0.208
Im n/a 2.97368 +/- 0.00633 0.213

K3∗ 56 12 49 [12] 1 364
Re

-14
n/a -0.10876 +/- 0.00096 0.883

0.072
Im n/a 1.86939 +/- 0.00095 0.051

3L5P

K1 71 24 80 [23, 23] 1 490
Re

-10
n/a -1.06298 +/- 0.02843 2.675

2.922
Im n/a -0.88557 +/- 0.02875 3.246

K2 71 20 80 [14, 19] 1 503
Re

-06
n/a -3.28794 +/- 0.07308 2.223

3.202
Im n/a -0.29022 +/- 0.07635 26.31

K3 71 20 103 [13, 13, 19] 1 589
Re

-17
n/a -1.61475 +/- 0.14277 8.841

12.07
Im n/a 0.25654 +/- 0.13621 53.10

K1∗ 71 17 99 [15, 14] 1 563
Re

-10
n/a -1.26220 +/- 0.00124 0.098

0.106
Im n/a 1.06124 +/- 0.00123 0.116

K2∗ 71 3 57 [3] 1 427
Re

-07
n/a 4.58640 +/- 0.00609 0.133

0.180
Im n/a 1.80523 +/- 0.00645 0.357

K3∗ 71 20 102 [17, 17, 18] 1 572
Re

-18
n/a -1.05359 +/- 0.01706 1.619

0.396
Im n/a 5.92117 +/- 0.01660 0.280

4L4P.a

K1∗ 192 14 408 [13, 13] 0.5 3602
Re

-09
n/a 1.28725 +/- 0.00637 0.495

0.281

Im n/a 2.95568 +/- 0.00642 0.217

4L4P.b

K1∗ 209 13 292 [9, 10, 10] 0.5 3140
Re

-12
n/a -4.34119 +/- 0.01166 0.269

0.319

Im n/a -2.77244 +/- 0.01160 0.419

Table 8. Results for three- and four-loop topologies for scattering kinematics (2 → N) for massless and massive propagators (indicated by a *).

When there is no reference result, ∆[%] and ∆[%]| · | refer to the Monte-Carlo accuracy relative to the central value. See the main text for details.
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Despite the wide range of variances obtained, we always find the central value obtained

from numerical LTD integration to be within less than five sigmas away from the analytical

benchmark ones (when available), as indicated by the ∆[σ] column of the tables. This

observation is actually the most important aspect of our results, since in this work we

first aim at demonstrating that our numerical implementation of LTD is robust and can

therefore be predictive. Maximising numerical efficiency and exploring the optimisations

discussed in section 5 is left to future work, for which results presented in this section can

serve as a comparison baseline.

7.2 Divergent one-loop four- and five-point scalar integrals

We apply the subtraction scheme presented in section 4 to one-loop four- and five-point

functions with massless propagators. For a randomly selected phase-space configuration,

we go through all combinations of setting external momenta on-shell. For both the box

and pentagon kinematics, we set s12 = 1. For the box topology, when one of the external

momenta is massive, we set m2
1 = 1

4 , m
2
2 = 1

8 , m
2
3 = 2

9 , m
2
4 = 1

9 , respectively. For the

pentagon topology, the masses are set to m1 = 0.10, m2 = 0.11, m3 = 0.12, m4 = 0.13,

m5 = 0.14. The results for these different configurations are shown in figure 21, where the

particular combination of masses for the external momenta is labelled by a binary number

with the convention that a 1 in the ith position means that the ith external momentum is

massless. We use the Cuhre integrator from Cuba package [103] with 200 million sample

points. The time for each evaluation is independent of the mass configuration and is similar

with the one presented in table 1.

Both the four-point (“box”) and five-point (“pentagon”) function can be integrated

with high accuracy and precision: all but one of the central values are within a 0.005% of

the analytical result. Only the imaginary part of the box topology with all the external

momenta on-shell has a large uncertainty. The reason is that the central value of this

integral is ten times smaller than for the other box configurations. However, even this point

lies within 0.024% of the analytical result and has a relative standard error of 0.036%.

The analytic expression of the box integral and the triangle integrals required to

construct the analytical expression for the counterterms have been computed using qcd-

loop [115]. The pentagon integral has been obtained using MadLoop5 [105, 106] (ML5

henceforth).

7.3 One-loop amplitude for qq̄ → γ1γ2 and qq̄ → γ1γ2γ3

In this section we present the results from the integration of the amplitudes dd̄ to two

and three photons. For simplicity, we kept the order of the final photons fixed; the actual

result for the amplitude can then be recovered by permuting through the final-state photon

momenta. The helicities are defined following the HELAS convention [116], and are taken

positive for all the external particles. The evaluation of the numerator, involving contrac-

tions of Lorentz and spinor indices, is performed numerically at run-time. This is not an

efficient way to perform the numerator algebra, but the aim of this work is to highlight

how LTD can be used to obtain results for physical and divergent expressions.
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(b) Divergent pentagon topology.

Figure 21. Results for the computation of divergent four- and five-point scalar one-loop integrals.

We show the real and imaginary part of the expression integrated with LTD, compared with the

analytic expression computed with MadLoop5 [105, 106](ML5) and qcdloop [115]. The (nomi-

nal) horizontal axis shows different phase-space configurations using a binary notation, where a 1

(resp. 0) in the ith position signifies that the ith external momentum is on-shell with p2i = 0 (resp.

off-shell, that is with p2i 6= 0). All but one of the central values are within 0.005% of the analytical

result. The outlier with configuration 1111 lies within 0.024% of the analytical result and has a

relative standard error of 0.036%.
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The analytic expressions have been compared with ML5 with gs = 1.21771, g = 0.30795

and µr = 91.1880 as couplings. We also remind the reader that the results from ML5 are

rescaled by an overall factor (4π)ǫ/Γ(1− ǫ).

For the dd̄ → γ1γ2 process, we consider the process in its centre-of-mass rest frame, with

the quarks aligned along the z-axis. The result will only depend on the scattering energy

and angle. The former is kept fixed and corresponds to a simple rescaling of the integral

and the latter is varied in a scan and plotted in figure 22. We used the Cuhre integrator

from Cuba package [103] with two million evaluations. In the last plot of figure 22 we notice

that the result is almost completely determined by the integrated counterterms. This is

especially true for the real part, where one can see that resulting regulated integral is six

orders of magnitude smaller than the finite part of the analytic expression.

As for the case of scalar divergent integrals, we use the Cuhre integrator with however

only 2 million sample points in this case. Despite this relatively low statistics, a large

fraction of the results already have relative error below 0.05%. In the upper plot of figure 22

we show the relative deviation with a large scale in order to highlight the few points that

are not within this small error. One important observation however is that the Monte-Carlo

error reported is reliable, as highlighted by the fact that all discrepancies are smaller than

one (in modulus) when expressed in unit of the Monte-Calo standard deviation σ.

In figure 23 we show a scan of dd̄ → γ1γ2γ3. In the same way as for the two-photon

production case, we consider the scattering in the centre-of-mass rest frame. This time

however, the number of unspecified and non-trivial degrees of freedom is four so that keep-

ing a fixed energy s12 = 1 leaves us with three parameters. For the kinematic configuration

d(p1)d̄(p2) → γ1(p3)γ2(p4)γ3(p5), we choose to scan in the angle θ13 = ∠(p1, p3), and s45
which gives an indication of how collinear the momenta p4 and p5 are. We fix the remain-

ing degree of freedom by forcing the process on a plane, which allows for the configuration

where p4 is collinear to p1, thus resulting in the valley shown in plots (a–b) of figure 23. For

dd̄ → γ1γ2γ3, we observe that the relative contribution from the integrated counterterms

is not as large as for dd̄ → γ1γ2, because this five-point amplitude has more contribu-

tions that are IR-finite (specifically D4-6 from figure 15) and therefore not captured by the

counterterms.

We can see that the relative error is < 1% for most of the points in the scan as shown

in the upper plane of plot (e–f) from figure 15). In the lower part of the same plots, the

precision of the result with an error that is also < 1% for most of the points. Along the

valley, the relative accuracy is not as good as in the other regions, which is to be expected

when the central value of the integrated expression becomes smaller that the values around

it. Similarly as to elsewhere in this subsection, the results were obtained using the Cuhre

integrator and 2 million sample points. The low number of samples is due to two mainly two

reasons: first, we used a naive implementation of the numerator containing spinor chains

that are recomputed numerically for each evaluation and second, despite the measure taken

for improving the UV behaviour of the integrand, probing that region still requires many

evaluations in quadruple precision thus increasing the overall evaluation time by roughly

one order of magnitude when compared to the corresponding scalar topologies.
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(a) Integration of the one-loop dd̄ → γ1γ2 amplitude.
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(b) Regulated one-loop dd̄ → γ1γ2 amplitude.

Figure 22. A scan of our results using numerical LTD for the dd̄ → γγ amplitude for various

scattering angle θ13. In figure (a-b) we can see the results computed with LTD compared with

the analytic expression obtained with MadLoop5 [105, 106] (ML5). In the last plot we show the

result of the integral of the the finite regulated integrand that we actually integrate numerically.

This corresponds to subtracting the integrated counterterms to the exact analytic result for the

amplitude.
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(d) Imaginary part of the regulated amplitude.
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LTD integration.
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the LTD integration.

Figure 23. A scan for dd̄ → γ1γ2γ3. The results are absolute values plotted on a log scale. The

first row (a–b) shows the real and the imaginary part of the amplitude computed with ML5. The

second row (c–d) shows the relative difference between the analytic expression and the integrated

counterterms. The last row (e–f) shows the LTD integration. They are a combination of two

plots: the surface above shows the relative error of the central value compared with the analytic

expression, the flat surface below shows the Monte Carlo error for the point right above.

In the present work, we put no effort in optimising the numerator expression which we

leave to future work. The main objective of these results is to demonstrate the viability

of computing physical amplitudes with numerical LTD by combining the contour defor-

mation together with the necessary infrared and ultraviolet counterterms. Optimising the

implementation of the numerator will allow us to handle more complicated amplitudes and

to consider higher integration statistics.

8 Conclusion

The ongoing and future research programme of the LHC calls for improving on the theo-

retical accuracy of the simulation of many scattering processes. A formidable effort from

the high energy physics community over the last decades lead to the computation of many
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higher-order corrections of key relevance. However, computing QCD amplitudes beyond

two loops and/or four scales remains extremely challenging, even with modern analytical

techniques. We identify this problem as being one of the main bottlenecks whose resolu-

tion demands a radically new approach.This observation is what motivates our work on

numerical Loop-Tree Duality, as its strength and limitations are orthogonal, and thus com-

plementary, to those of the canonical paradigms for predicting collider observables. The

potential of numerical LTD is reinforced by the promising perspective it entails regarding

its eventual combination with real-emission contributions. In our recent work of ref. [78],

we presented our first developments and generalisation of LTD and, encouraged by our

findings, we proceeded in this work to extend its range of applicability.

First, we established a contour deformation for regulating the threshold singularities

exhibited by loop integrals when considering physical scattering kinematics. In accordance

with our long-term goals, we built a solution that is prone to automation and made no

compromise regarding the generality of numerical LTD: availability of computational re-

sources should remain the only limiting factor. Moreover, we insisted that the validity

of the contour deformation should be independent of the particular values of its hyper-

parameters, thus guaranteeing the predictive power of numerical LTD. We demonstrated

that our construction and implementation achieves these objectives by applying it to over

100 different representative configurations, ranging from one-loop boxes to four-loop 2x2

fishnets.

Second, we presented our first step towards computing divergent integrals and phys-

ical amplitudes. This requires combining the LTD expression with local integrand-level

counterterms regularising divergences occurring for ultraviolet, soft and/or collinear loop

momenta configurations. We described this subtraction procedure at one loop and showcase

explicit examples for divergent scalar four- and five-point integrals, as well as for the one-

loop amplitude of the production of two and three photons. This paves the way for a first

application of numerical LTD to the numerical computation of two-loop divergent scalar

integrals and of complete two-loop amplitudes, using the local counterterms introduced in

refs. [85, 86].

In this work, we focused on further developing numerical LTD in a way that is provably

correct, general and that demonstrates predictive power. Therefore, we did not tune our

hyperparameters for the hundreds of cases we studied and, although already satisfactory,

the numerical convergence and run-time speed showcased by our results are by no means

final. We leave their improvement to future work.

The ability to locally regulate ultraviolet and infrared singularities at higher loops and

the performance of the numerical convergence are two key difficulties whose resolution will

determine the eventual viability of numerical LTD. Our work shows a clear path for this

novel approach to significantly contribute to the effort of meeting the theoretical accuracy

goal set by the needs of current collider experiments.
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Figure 24. The double-triangle diagram in terms of a particular choice of loop momentum basis

and momentum routing.
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A Loop-Tree Duality example at two loops

In this section we demonstrate explicitly how the LTD formula can be obtained for a

two-loop two-point topology, the double-triangle, by iteratively applying residue theorem

for each loop momentum’s energy integration. This explicit computation will highlight the

cancellation of residues involving Heaviside functions and will explicitly derive the two-loop

cut structure.

We start with the double-triangle integrand

f =
1

k21−m2
1 + iδ

1

(k1 + p)2−m2
2 + iδ

1

(k1−k2)2−m2
3 + iδ

1

(k2 + p)2−m2
4 + iδ

1

k22 −m2
5 + iδ

(A.1)

=
1

(k01)
2 − E2

1

1

(k01 + p0)2 − E2
2

1

(k01 − k02)
2 − E2

3

1

(k02 + p0)2 − E2
4

1

(k02)
2 − E2

5

, (A.2)

with the on-shell energies Ei =
√

~q 2
i +m2

i − iδ and the real external four-momentum p.

The loop integral we consider is

I =

∫
d4k1
(2π)4

d4k2
(2π)4

f. (A.3)
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where f can be seen as a meromorphic function in k01 on C. It has three poles located in

the lower half-plane:

k
(1)
1 = E1, k

(2)
1 = E2 − p0, k

(3)
1 = E3 + k02. (A.4)

We then integrate f along a contour [−R,R] closing on an arc CR in the lower half-plane in

the limit of R → ∞. With residue theorem and using that the integral along CR vanishes

(from the requirement of UV-convergence of the integrand), we find that

∫ ∞

−∞

dk01
2π

f = −i

3∑

i=1

Res
k
(i)
1

[f ], (A.5)

where the three residues are

Res
k
(1)
1

[f ] =
1

2E1

1

(E1 + p0)2 − E2
2

1

(E1 − k02)
2 − E2

3

1

(k02 + p0)2 − E2
4

1

(k02)
2 − E2

5

, (A.6)

Res
k
(2)
1

[f ] =
1

(E2 − p0)2 − E2
1

1

2E2

1

(E2 − p0 − k02)
2 − E2

3

1

(k02 + p0)2 − E2
4

1

(k02)
2 − E2

5

,

(A.7)

Res
k
(3)
1

[f ] =
1

(E3 + k02)
2 − E2

1

1

(E3 + k02 + p0)2 − E2
2

1

2E3

1

(k02 + p0)2 − E2
4

1

(k02)
2 − E2

5

.

(A.8)

Now we consider each residue Res
k
(i)
1

[f ] as a meromorphic function in k02 on C. For the

first residue, the poles located in the lower half-plane are:

k
(1,1)
2 = E4 − p0, k

(1,2)
2 = E5, (A.9)

k
(1,3)
2 = E1 + E3, k

(1,4)
2 = E1 − E3 if Im[k

(1,4)
2 ] < 0, (A.10)

for the second at

k
(2,1)
2 = k

(1,1)
2 , k

(2,2)
2 = k

(1,2)
2 , (A.11)

k
(2,3)
2 = E2 − p0 + E3, k

(2,4)
2 = E2 − p0 − E3 if Im[k

(2,4)
2 ] < 0, (A.12)

and for the third at

k
(3,1)
2 = k

(1,1)
2 , k

(3,2)
2 = k

(1,2)
2 , (A.13)

k
(3,3)
2 = k

(1,4)
2 if Im[k

(1,4)
2 ] < 0, k

(3,4)
2 = k

(2,4)
2 if Im[k

(2,4)
2 ] < 0. (A.14)

We see that each residue has poles at k
(1,1)
2 and k

(1,2)
2 . Note that there are two poles at

k
(1,4)
2 and k

(2,4)
2 , which are located in either the lower or the upper complex half-plane

depending on the values of ~k1 and ~k2.

As before, we now integrate the sum of the three residues along a contour [−R,R]

closing on an arc CR in the lower half-plane in the limit of R → ∞. With residue theorem
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and using that the integral along CR vanishes, we find that

∫ ∞

−∞

dk02
2π

∫ ∞

−∞

dk01
2π

f = −i

∫ ∞

−∞

dk02
2π

3∑

i=1

Res
k
(i)
1

[f ] (A.15)

= (−i)2
( 3∑

i=1

Res
k
(1,i)
2 k

(1)
1

[f ] +
3∑

i=1

Res
k
(2,i)
2 k

(2)
1

[f ] +
2∑

i=1

Res
k
(3,i)
2 k

(3)
1

[f ] (A.16)

+
(

Res
k
(1,4)
2 k

(1)
1

[f ] + Res
k
(3,3)
2 k

(3)
1

[f ]
)

Θ(− Im[k
(1,4)
2 ]) (A.17)

+
(

Res
k
(2,4)
2 k

(2)
1

[f ] + Res
k
(3,4)
2 k

(3)
1

[f ]
)

Θ(− Im[k
(2,4)
2 ])

)

, (A.18)

where we used the short form Resab[f ] ≡ Resa[Resb[f ]] and the Heaviside function Θ.

The twelve residues are

Res
k
(1,1)
2 k

(1)
1

[f ] =
1

2E1

1

(E1 + p0)2 − E2
2

1

(E1 − E4 + p0)2 − E2
3

1

2E4

1

(E4 − p0)2 − E2
5

, (A.19)

Res
k
(1,2)
2 k

(1)
1

[f ] =
1

2E1

1

(E1 + p0)2 − E2
2

1

(E1 − E5)2 − E2
3

1

(E5 + p0)2 − E2
4

1

2E5
, (A.20)

Res
k
(1,3)
2 k

(1)
1

[f ] =
1

2E1

1

(E1 + p0)2 − E2
2

1

2E3

1

(E1 + E3 + p0)2 − E2
4

1

(E1 + E3)2 − E2
5

,

(A.21)

Res
k
(1,4)
2 k

(1)
1

[f ] = − 1

2E1

1

(E1 + p0)2 − E2
2

1

2E3

1

(E1 − E3 + p0)2 − E2
4

1

(E1 − E3)2 − E2
5

,

(A.22)

Res
k
(2,1)
2 k

(2)
1

[f ] =
1

(E2 − p0)2 − E2
1

1

2E2

1

(E2 − E4)2 − E2
3

1

2E4

1

(E4 − p0)2 − E2
5

, (A.23)

Res
k
(2,2)
2 k

(2)
1

[f ] =
1

(E2 − p0)2 − E2
1

1

2E2

1

(E2 − E5 − p0)2 − E2
3

1

(E5 + p0)2 − E2
4

1

2E5
, (A.24)

Res
k
(2,3)
2 k

(2)
1

[f ] =
1

(E2 − p0)2 − E2
1

1

2E2

1

2E3

1

(E1 + E3 + p0)2 − E2
4

1

(E1 + E3)2 − E2
5

,

(A.25)

Res
k
(2,4)
2 k

(2)
1

[f ] = − 1

(E2 − p0)2 − E2
1

1

2E2

1

2E3

1

(E1 − E3 + p0)2 − E2
4

1

(E1 − E3)2 − E2
5

,

(A.26)

Res
k
(3,1)
2 k

(3)
1

[f ] =
1

(E3 + E4 − p0)2 − E2
1

1

(E3 + E4)2 − E2
2

1

2E3

1

2E4

1

(E4 − p0)2 − E2
5

,

(A.27)

Res
k
(3,2)
2 k

(3)
1

[f ] =
1

(E3 + E5)2 − E2
1

1

(E3 + E5 + p0)2 − E2
2

1

2E3

1

(E5 + p0)2 − E2
4

1

2E5
,

(A.28)

Res
k
(3,3)
2 k

(3)
1

[f ] = −Res
k
(1,4)
2 k

(1)
1

[f ], (A.29)

Res
k
(3,4)
2 k

(3)
1

[f ] = −Res
k
(2,4)
2 k

(2)
1

[f ]. (A.30)
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It follows that the four residues coming together with a Heaviside function cancel pairwise

and eight residues remain. The pairwise cancellation of the Heaviside functions is directly

related to dual cancellations between H-surfaces.

We observe that we can write eq. (A.15) more compactly and generally as

∫ ∞

−∞

dk02
2π

∫ ∞

−∞

dk01
2π

f = (−i)2
∑

b∈B

1
∏

i∈b 2Ei

1
∏

i∈e\bDi

∣
∣
∣
∣
∣
{q0j=σb

j Ej}j∈b

(A.31)

where, in the present double-triangle example, we have that B =

{{1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}} is the set of all loop momen-

tum bases and e = {1, 2, 3, 4, 5} the set of all edges. The energy q0i flowing in the

Feynman propagator Di = (q0i )
2 − E2

i can then be expressed as a linear combination of

loop momentum energy basis elements {q0j |j ∈ b} for any b ∈ B and the energy p0 of the

external momentum. The cut structure signs, i.e. the signs of the energy cuts that put

propagators j ∈ b on-shell, are denoted as σb
j for j ∈ b. By comparison with the eight

residues computed above, we find

(σ
{1,3}
1 , σ

{1,3}
3 ) = (σ

{2,3}
2 , σ

{2,3}
3 ) = (+1,−1) (A.32)

(σ
{1,4}
1 , σ

{1,4}
4 ) = (σ

{1,5}
1 , σ

{1,5}
5 ) = (σ

{2,4}
2 , σ

{2,4}
4 = (σ

{2,5}
2 , σ

{2,5}
5 ) = (+1,+1) (A.33)

(σ
{3,4}
3 , σ

{3,4}
4 ) = (σ

{3,5}
3 , σ

{3,5}
5 ) = (+1,+1). (A.34)

The cut structure is a result of the propagator’s signatures (i.e. the initial choice of momen-

tum routing in the loop graph), the choice of integration order and of the contour closure

(in either the upper or lower complex half-plane) of each energy integration. We stress that

since the signature is independent of the contribution to the internal momentum flow com-

ing from external legs, the cut structure is independent of which particular propagator of

a given loop line is being cut, as already suggested by the cut structure signs above. When

accounting for this degeneracy, one can limit oneself to only reporting the cut structure for

a given combination of loop lines (as opposed to propagators) being cut. In that case, any

two-loop integral will always feature exactly three cut-structures (as opposed to twelve in

the listing of eqs. (A.32)–(A.34)).

Equipped with the above, our general LTD identity applied to the double-triangle

integral reads:

I = (−i)2
∫

d3~k1
(2π)3

d3~k2
(2π)3

∑

b∈B

1
∏

i∈b 2Ei

1
∏

i∈e\bDi

∣
∣
∣
∣
∣
{q0j=σb

j Ej}j∈b

. (A.35)

B Expression for the qq̄ → γ1γ2γ3 amplitude and its counterterms

In order to provide an explicit parametrisation of all the integrals that appear in the

computation of the qq̄ → γ1γ2γ3, we give the expression for the diagrams and the coun-

terterms. The individual diagrams can be written as explicit integrals using dimensional

regularisation, since in general they contain singularities.
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The integrals appearing in figure 15 are given by:

I1 = C1 µ
2ǫ(4π)2

∫
ddk

(2π)d
v̄2/̂ε1(−/p23)γ

µ(−/k − /p23)/̂ε2(−/k + /p15)/̂ε3(−/k + /p1)γµu1

s23k2(k + p23)2(k − p15)2(k − p1)2
(B.1)

I2 = C1 µ
2ǫ(4π)2

∫
ddk

(2π)d
v̄2γ

µ(−/k − /p2)/̂ε1(−/k − /p23)/̂ε2(−/k + /p15)γµ(/p15)/̂ε3u1

s15k2(k + p2)2(k + p23)2(k − p15)2
(B.2)

I3 = C1 µ
2ǫ(4π)2

∫
ddk

(2π)d
v̄2γ

µ(−/k − /p2)/̂ε1(−/k − /p23)/̂ε2(−/k + /p15)/̂ε3(−/k + /p1)γµu1

k2(k + p2)2(k + p23)2(k − p15)2(k − p1)2
(B.3)

I4 = C1 µ
2ǫ(4π)2

∫
ddk

(2π)d
v̄2/̂ε1(−/p23)/̂ε2(/p15)γ

µ(−/k + /p15)γµ(/p15)/̂ε3u1

s23s215k
2(k − p15)2

(B.4)

I5 = C1 µ
2ǫ(4π)2

∫
ddk

(2π)d
v̄2/̂ε1(−/p23)γ

µ(−/k − /p23)/̂ε2(−/k + /p15)γµ(/p15)/̂ε3u1

s23s15k2(k + p23)2(k − p15)2
(B.5)

I6 = C1 µ
2ǫ(4π)2

∫
ddk

(2π)d
v̄2/̂ε1(−/p23)γ

µ(−/k − /p23)γµ(−/p23)/̂ε2(/p15)/̂ε3u1

s223s15k
2(k + p23)2

(B.6)

I7 = C1 µ
2ǫ(4π)2

∫
ddk

(2π)d
v̄2/̂ε1(−/p23)/̂ε2(/p15)γ

µ(−/k + /p15)/̂ε3(−/k + /p1)γµu1

s23s15k2(k − p15)2(k − p1)2
(B.7)

I8 = C1 µ
2ǫ(4π)2

∫
ddk

(2π)d
v̄2γ

µ(−/k − /p2)/̂ε1(−/k − /p23)γµ(−/p23)/̂ε2(/p15)/̂ε3u1

s23s15k2(k + p2)2(k + p23)2
(B.8)

The IR counterterm reads:

IIR = C1 µ
2ǫ(4π)2

∫
ddk

(2π)d
v̄2γ

µ(−/k − /p2)/̂ε1(−/p23)/̂ε2(/p15)/̂ε3(−/k + /p1)γµu1

s23s15k2(k + p2)2(k − p1)2
(B.9)

The UV counterterms read:

IUV4 = C1 µ
2ǫ(4π)2

∫
ddk

(2π)d

v̄2/̂ε1(−/p23)/̂ε2(/p15)γ
µ
(

(−/k)− (−/k)(/p15)(−/k)

k2−µ2
uv

)

γµ(/p15)/̂ε3u1

s23s215[k
2 − µ2

uv]
2

(B.10)

IUV5 = C1 µ
2ǫ(4π)2

∫
ddk

(2π)d
v̄2/̂ε1(−/p23)γ

µ(−/k)/̂ε2(−/k)γµ(/p15)/̂ε3u1

s23s15[k2 − µ2
uv]

3
(B.11)

IUV6 = C1 µ
2ǫ(4π)2

∫
ddk

(2π)d

v̄2/̂ε1(−/p23)γµ

(

(−/k)− (−/k)(−/p23)(−/k)

k2−µ2
uv

)

γµ(−/p23)/̂ε2(/p15)/̂ε3u1

s223s15[k
2 − µ2

uv]
2

(B.12)

IUV7 = C1 µ
2ǫ(4π)2

∫
ddk

(2π)d
v̄2/̂ε1(−/p23)/̂ε2(/p15)γ

µ(−/k)/̂ε3(−/k)γµu1

s23s15[k2 − µ2
uv]

3
(B.13)

IUV8 = C1 µ
2ǫ(4π)2

∫
ddk

(2π)d
v̄2γ

µ(−/k)/̂ε1(−/k)γµ(−/p23)/̂ε2(/p15)/̂ε3u1

s23s15[k2 − µ2
uv]

3
(B.14)

IUVIR
= C1 µ

2ǫ(4π)2
∫

ddk

(2π)d
v̄2γ

µ(−/k)/̂ε1(−/p23)/̂ε2(/p15)/̂ε3(−/k)γµu1

s23s15[k2 − µ2
uv]

3
(B.15)
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C Loop-Tree Duality with raised propagators

When a diagram contains raised propagators, the Minkowski representation of the inte-

grand features complex poles in the energy with order higher than one. Thus, in order to

generalise the integration of the energy component of loop momenta carried out in section 2,

it is necessary to use the definition of higher-order residues [117].

Raised propagators generally appear at higher loops when a diagram has a propagator

insertion on a propagator. They also appear as a result of using Integration by Parts

identities. The UV counterterm we constructed also features a raised propagator, since in

the UV limit every propagator scales as 1/
(
k2 − µ2

UV

)
.

Applying residue theorem to a general integral with raised propagators we obtain:

∮

x+

dk0
F (k0, ~k)

(k0 − x+)1+n(k0 − x−)1+n
=

1

n!

∂n

∂kn0

F (k0, ~k)

(k0 − x−)1+n

∣
∣
∣
∣
∣
k0=x+

=
1

n!

n∑

m=0

(−1)n−m (2n−m)!

(n−m)!m!

∂m
k0
F (k0,~k)

∣
∣
∣
k0=x+

(x+ − x−)1+2n−m
.

(C.1)

For the processes considered in this paper that needs UV regulation, namely the one-

loop QCD corrections to the dd̄ to photons, the numerator function F will consist of a

spinor contraction containing a product of order n in the loop momentum k and the other

propagator excluded from this particular residue.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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