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Abstract Numerical magnetic field analysis is used for predicting the performance of an
induction motor and a slip-ring generator having different faults implemented in their structure.
Virtual measurement data provided by the numerical magnetic field analysis are analysed using
modern signal processing techniques to get a reliable indication of the fault. Support vector
machine based classification is applied to fault diagnostics. The stator line current, circulating
currents between parallel stator branches and forces between the stator and rotor are compared as
media of fault detection.

Introduction
Companies dealing with electrical machinery find condition monitoring and
diagnostics more and more important. The supervision of electrical drive
systems using non-invasive condition monitoring techniques is becoming a
state-of-the-art method for improving the reliability of electrical drives in many
branches of the industry.

Typical questions are, how to detect a starting fault, how to distinguish a
deteriorating fault from a harmless constructional asymmetry, which are the
physical quantities that best indicate a fault and how to measure them, and how
should the measured signals be processed to get the most reliable diagnosis.

The basis of any reliable diagnostic method is an understanding of the
electric, magnetic and mechanical behavior of the machine in healthy-state and
under fault conditions. The aim of computer simulation of magnetic field
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distribution and operating characteristics is to foresee the changes of motor

performance due to the changes of parameters as a consequence of different

faults. Simulation results represent the contribution to the correct evaluation of

the measured data in diagnostic procedures, which are the important part of

supervision system based on expert systems and artificial intelligence methods

(Filipetti et al., 1995).

Concerning the fault indicators, even though thermal and vibration

monitoring have been utilized for decades, most of the recent research has been

directed toward electrical monitoring of the motor with emphasis on inspecting

the stator current of the motor because it has been suggested that stator current

monitoring can provide the same indications without requiring access to the

motor (MCS, 1992). In particular, a large amount of research has been directed

towards using the stator current spectrum to sense specific rotor faults

(Benbouzid, 1997; Kliman, 1990). In processing plants, within electrical drives

the vibration monitoring is utilized to detect the mechanical faults of rotating

electrical machines. The vibration monitoring has been used also to detect the

electromechanical faults like broken or cracked rotor bars in squirrel-cage

induction motors (Muller and Landy, 1996).

Different kinds of artificial intelligence based methods have become

common in fault diagnostics and condition monitoring. For example, fuzzy

logic and neural networks (NN) have been used in modeling and decision

making in diagnostics schemes. Also, numerical classification methods are

widely used in the area of modern fault diagnostics, and in particular, fault

diagnostics of electrical machines. For example, in Alguindigue et al. (1993) and

Li et al. (2000), used NN based classifiers in the diagnosis of rolling element

bearings.

Support vector machine (SVM) based classification is a relatively new

classification method, and it is claimed to have better generalization properties

than NN based classifiers. Another interesting feature of SVM based classifier

is that its performance does not depend on the number of attributes of classified

entities, i.e. dimension of classified vectors. That is why it is noticed to be

especially efficient in large classification problems. In fault diagnostics process,

this property is very useful, because the number of attributes chosen to be the

base of diagnostics is thus not limited.

SVM had been for the first time successfully applied to fault diagnostics of

electrical machines in Pöyhönen et al. (2002). There we used SVM’s to classify

faults of a 15 kW induction motor from the stator line current. In the present

paper, the method is extended to classify several faults of a 1.6MVA slip-ring

generator and 35 kW cage induction motor. We extend our study concerning

the media for fault detection to the analysis of the circulating currents on

parallel branches and forces acting on the rotor.
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Numerical model for fault simulations
Electromagnetic model of a machine
The magnetic field in the core of the machine is assumed to be
two-dimensional. The three-dimensional end-region fields are modeled
approximately using end-winding impedances in the circuit equations of the
windings. The magnetic vector potential A satisfies the equation

7 £ ðn7 £ AÞ ¼ J ð1Þ

where n is the reluctivity of the material and J is the current density. The
current density can be expressed as a function of the vector potential and the
electric scalar potential f

J ¼ 2s
›A

›t
2 s7f ð2Þ

where s is the conductivity of the material. In the two-dimensional model, the
vector potential and the current density have only the z-components

A ¼ Aðx; y; tÞez

J ¼ J ðx; y; tÞez

ð3Þ

The scalar potential f has a constant value on the cross-section of a
two-dimensional conductor, and it is a linear function of the z-coordinate. The
gradient of the scalar potential can be expressed with the aid of the potential
difference u induced between the ends of the conductor. By substituting
equation (2) in equation (1) the field equation becomes

7 £ ðn7 £ AÞ þ s
›A

›t
¼

s

‘
uez ð4Þ

where ‘ is the length of the conductor. A relation between the total current i
and the potential difference u is obtained by integrating the current density
(equation (2)) over the cross-section of the conductor

u ¼ Ri þ R

Z

S

s
›A

›t
dS ð5Þ

where R is the dc resistance of the conductor. The circuit equations for the
damping cage are constructed by applying Kirchhoff’s laws and equation (5)
for the potential difference.

Time-dependence. A time-dependent field is solved by discretizing the time
at short time intervals Dt and evaluating the field at time instants
t1; t2; t3; . . .ðtkþ1 ¼ tk þ DtÞ: In the Crank-Nicholson method, the vector
potential at time tkþ1 is approximated
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Akþ1 ¼
1

2

›A

›t

�

�

�

kþ1
þ

›A

›t

�

�

�

k

� �

Dt þ Ak ð6Þ

By adding the field equations written at times tk and tkþ1 together and
substituting the sum of the derivatives from equation (6), the equation

7 £ ðnkþ17 £ Akþ1Þ þ
2s

Dt
Akþ1 ¼

s

‘
ukþ1ez

2 7 £ ðnk7 £ AkÞ2
2s

Dt
Ak 2

s

‘
ukez

� �

ð7Þ

is obtained. The time discretization of the potential difference equation (5) gives

1

2
ðukþ1 þ ukÞ ¼

1

2
Rðikþ1 þ ikÞ þ R

Z

S

Akþ1 2 Ak

Dt
dS ð8Þ

Equations (7) and (8) form the basic system of equations in the time-stepping
formulation. Starting from the initial values and successively evaluating the
potentials and currents of the next time-steps, the time variation of the
quantities is worked out.

Numerical solution. The construction of the circuit equations and the details
of the numerical solution of the coupled field and circuit equations have been
presented by Arkkio (1988). The finite element discretization leads to a large
non-linear system of equations in which the unknown variables are the nodal
values of the vector potential and the currents or potential differences of the
windings. The equations are solved by the Newton-Raphson method.

Finite element mesh. The magnetic field of a healthy electrical machine is
periodic, typically from one pole pair to the next one. A fault in the machine
disturbs this symmetry, and the whole machine cross section has to be
modeled. For fault detection purposes, we are more interested in qualitative
than exact quantitative results, and the finite element meshes used can be
relatively sparse, as long as the geometric symmetry is the same as for the
faulty machine. In this study, triangular first-order finite elements are used,
and the finite element meshes typically contain 6,000-8,000 elements.

Motion of the rotor. In a general time-stepping analysis, the equations for
rotor and stator fields are written in their own reference frames. The solutions
of the two field equations are matched with each other in the air gap. The rotor
is rotated at each time-step by an angle corresponding to the mechanical
angular frequency. The rotation is accomplished by changing the finite element
mesh in the air gap.

Operating characteristics. The magnetic field, the currents and the potential
differences of the windings are obtained in the solution of the coupled field and
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circuit equations as discussed earlier. Most of the other machine characteristics
can be derived from these quantities.

Modeling the faults
The faults studied in the numerical simulations are:

. shorted turn in stator winding (ST)

. shorted coil in stator winding (SC)

. shorted turn in rotor winding (slip-ring generator) (RT)

. shorted coil in rotor winding (slip-ring generator) (RC)

. broken rotor bar (cage induction motor) (BB)

. broken end ring (cage induction motor) (BR)

. static or dynamic rotor eccentricity (SE, DE)

. asymmetry in line voltage (slip-ring generator) (VA)

To model a shorted turn, the sides of this turn in the finite element mesh are
substituted by conductors in perfect short-circuit. There is no galvanic contact
between the reduced phase winding and the new, shorted conductors. A shorted
coil is treated in a similar manner.

Static eccentricity is obtained by shifting the rotor by 10 percent of the radial
air-gap length, and rotating the rotor around its center point in this new
position. Dynamic eccentricity is obtained by shifting the rotor by 10 percent of
the air-gap length, but rotating it around the point that is the center point of the
stator bore. A 10 percent eccentricity is not yet a real fault, but an eccentricity
possibly growing should be detected at an early stage.

The circuit equations of the cage winding are composed of the potentials of
the bars inside the rotor core, bar ends outside the core and end ring segments
connecting the bars. When modeling a broken bar, the resistance of the bar end
outside the core is increased to a value 100 times the dc resistance of the whole
bar. When modeling a broken end ring, the resistance of an end-ring segment
between two bars is increased to a value 1,000 times the original resistance of
the segment.

An asymmetry in the line voltage is not a fault (NF) in the machine, but it
may cause problems if the fault diagnostics algorithms identify the voltage
asymmetry as a machine fault. The asymmetric voltage is obtained by adding
5 percent of negative phase-sequence voltage to an originally 100 percent
positive phase-sequence supply voltage.

Fault indicators
The parameters studied as fault indicators are line currents, circulating
currents between parallel stator branches, and force between the stator and
rotor.
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To compute the stator currents, the parallel branches are treated as separate
phases. If there are n parallel branches, the machine is treated as a 3n-phase
machine supplied from a n £ 3-phase voltage source. In the case of a star
connection, all the 3n phases have a common star-point, and a line current is
obtained as the sum of n branch currents. A circulating current is half of the
difference of two branch currents.

The electromagnetic force acting between the stator and rotor is computed
from the air-gap field using the method developed by Coulomb (1983).

SVM for multi-class classification
SVM based classification is a relatively new machine learning method based on
the statistical learning theory presented by Vapnik (1998). In SVM, an optimal
hyperplane is determined to maximize the generalization ability of the classifier
by mapping the original input space into a high dimensional dot product space
called feature space. The mapping is based on the so-called kernel function.
The optimal hyperplane is found in the feature space with a learning algorithm
from optimization theory, which implements a learning bias derived from
statistical learning theory (Cristianini and Shawe-Taylor, 2000).

A SVM based classifier is a binary classifier. In fault diagnostics of an
electrical machine, there exist several fault classes in addition to healthy
operation. We need a method to deal with a multi-class classification problem.
In this study, we use a mixture matrix approach that is suggested by Mayoraz
and Alpaydin (1999).

SVM is used to build pair-wise classifiers for all considered classes. For an
n-class classification problem nðn2 1Þ=2 pair-wise classifiers cover all pairs of
classes. Each classifier is trained on a subset of the training set containing only
training examples of the two involved classes. Final solution to the n-class
problem is reconstructed from solutions of all two-class problems.

Often, simple majority voting between pair-wise classifiers is applied to
reconstruct the n-class solution, but with this approach problems occur, if two
separate classes get equal amount of votes. Majority voting approach does not
take into account possible redundancy in pair-wise classifiers’ outputs. With a
mixture matrix approach, the n-class solution is found by linear combination of
pair-wise classifiers’ solutions. The mixture matrix is designed in the training
phase of classifiers to minimize the mean square error between the correct class
decision and the linear combination of pair-wise classifiers’ outputs.

Preprocessing data
Power spectra estimates of the stator line currents have often been used as a
medium of fault detection of electrical machines (Benbouzid, 1997). Main
disadvantage of classical spectral estimation techniques, like FFT, is the
impact of side lobe leakage due to windowing of finite data sets. Window
weighting decreases the effect of side lobes. Further, in order to improve

COMPEL
22,4

974



the statistical stability of the spectral estimate, averaging by segmenting the
data can be applied. The more segments are used, the more stable the estimate
is. However, the signal length limits the number of segments used, but with
overlapping segments the number of segments can be increased. In this study,
Welch’s method is used to calculate the power spectra estimates of signals in
motors. The method applies both the window weighting and the averaging
over overlapping segments to estimate the power spectrum. In this study, we
use Hanning window sized 500 samples, and number of overlapping samples is
250.

Before estimating the power spectra, adaptive predictive filtering is applied
to mitigate the impact of noise (Väliviita et al., 1999). Noise filtering is applied
only in the case where stator line current is used as a medium of fault detection.

Simulation results
Numerical analysis
Table I gives the main parameters of the cage induction motor and slip-ring
generator. In the present study, the cage induction motor was fed from a
frequency converter. The stator and rotor windings of the slip-ring generator
were connected to sinusoidal voltage sources. The stator is delta connected and
the rotor is star connected. Figure 1 shows the cross-sectional geometry of the
slip-ring machine. Figures 2 and 3 show two examples of simulated circulating
currents flowing in the parallel stator branches. The current in Figure 2 is
caused by 10 percent dynamic eccentricity in the slip-ring generator operating
at a capacitive power factor of 0.8 at half load. Figure 3 shows the circulating
current in the cage induction motor with one broken rotor bar and loaded by
the rated torque. The rated currents of the machines are 1,600 and 62A,
respectively.

Figures 4 and 5 show the x-components of the forces acting between the
stator and rotor for the slip-ring generator with the 10 percent dynamic
eccentricity and for the cage induction motor with a broken rotor bar,
respectively.

Induction motor Slip-ring generator

Number of poles 4 4
Parallel branches 2 4
Stator connection Star Delta
Rotor connection – Star
Rated power (kW) 35 1,600
Rated frequency (Hz) 100 50
Rated voltage (V) 400 690
Rated current (A) 64 1,500

Table I.
Main parameters of
the studied electrical

machines
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Figure 1.
Cross-sectional geometry
of the slip-ring generator

Figure 2.
Circulating currents
flowing in parallel
branches of the stator
windings for the slip-ring
generator with 10 percent
dynamic eccentricity

Figure 3.
Circulating currents
flowing in parallel
branches of the stator
windings for the cage
induction motor with one
broken rotor bar
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Support vector machine based classification
Generating the sample set. Measurement error is included to the virtual
measurement data by adding noise to the signals. Mean value of noise is zero
and variance is 3 percent of the amplitude of the current.

The power spectrum estimates are calculated 80 times from different parts
of signals in each fault case to generate a sample set. The support vector
classifiers are trained and tested separately in different load situations. Half of
the samples are chosen for training the classifier, and half of the samples are
left for testing the classifier’s generalization ability. An average healthy
spectrum from the training set is chosen to be a reference, and all the other
spectra are scaled with it. The difference values from the reference create the
sample set.

Classification results. We have six fault classes and the healthy class, so
n ¼ 7; and we need to design 21 two-class classifiers that are combined to
generate the final classification decision for a spectrum sample. Choosing the
kernel function used in building, the SVMs have a considerable influence on the
classification results. There does not exist general rules for choosing the kernel
function, but the best kernel function depends on the application where SVMs
are used. When the cage induction motor was studied, all classifiers were
designed with a radial basis kernel function width equal to 11 except when
studying forces as indicators of faults. When the slip-ring machine was studied,

Figure 4.
Force acting between the
stator and rotor for the
slip-ring generator with

10 percent dynamic
eccentricity

Figure 5.
Force acting between the
stator and rotor for the
cage induction motor

with one broken rotor bar
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and also when forces were studied in both machines, a first order polynomial
kernel function was used.

In Tables II-IV, fault classification results of a 35 kW inverter-fed cage
induction machine are presented. In Table II, a stator line current has been used
as a medium of fault detection and in Table III, the circulating currents between
parallel branches have been used. In Table IV, forces on the rotor have been
used as a media of fault detection. In Tables V-VII, fault classification results of
a 1.6MVA slip-ring generator are presented.

All of the faults from both machines in all load situations are highly more
accurately detected from the circulating currents between parallel branches or
from the forces that acts on the rotor than from the stator line current. When
using either of these indicators while monitoring the slip-ring machine, even
operation under an external disturbance, i.e. asymmetry in line voltage, is
correctly classified to the healthy operation class. Only problems occur in
monitoring the slip-ring machine: shorted rotor coil and shorted rotor turn
faults tend to get mixed up.

Percent NF BB BR ST SC SE DE Total

Full load 20 45 23 100 100 5.0 7.5 43
Half load 28 18 20 100 100 38 38 49
No load 70 85 70 100 100 50 68 78
Total 39 49 38 100 100 31 38 57

Table II.
Correct fault
classification
percentages of a
cage induction
motor, stator line
current as a medium
of fault detection

Percent NF BB BR ST SC SE DE Total

Full load 100 100 100 100 100 100 100 100
Half load 100 100 100 100 100 100 100 100
No load 83 75 100 100 100 100 100 94
Total 94 92 100 100 100 100 100 98

Table III.
Correct fault
classification
percentages of a
cage induction
motor, circulating
currents between
parallel branches as
media of fault
detection

Percent NF BB BR ST SC SE DE Total

Full load 100 100 100 100 100 100 100 100
Half load 100 100 100 100 100 100 100 100
No load 100 100 100 100 100 100 100 100
Total 100 100 100 100 100 100 100 100

Table IV.
Correct fault
classification
percentages of a
cage induction
motor, force on the
rotor as a medium of
fault detection
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The circulating currents and the force on the rotor are natural fault indicators
as they are zero for all healthy symmetric machines, but non-zero for faults that
cause asymmetry in the magnetic field distribution of a machine.

The stator line current is also a good indicator of faults in noiseless situation,
but in real world applications noise is always present. Shorted turn and shorted
coil in stator are always detected regardless of noise. However, healthy
operation is often misclassified. Thus, stator line current cannot be used as
medium of fault detection without improvements on the classification method
or in noise filtering. Dropping such fault classes out of the classification
structure that cannot be separated from the healthy operation, we could
construct a classifier that is able to correctly detect healthy operation and
shorted coil and shorted turn faults from the stator line current. Also other
ways of estimating the power spectrum of the current may give some
enhancement.

Percent NF NF/VA RC RT ST SC SE DE Total

C 100 100 50 100 100 100 100 100 94
O 100 100 100 100 100 100 100 100 100
S 100 100 100 100 100 100 100 100 100
U 100 100 100 100 100 100 100 100 100
Total 100 100 88 100 100 100 100 100 99

Table VI.
Correct fault
classification
percentages

slip-ring generator,
circulating currents

between parallel
branches as media
of fault detection

Percent NF NF/VA RC RT ST SC SE DE Total

C 100 100 100 45 100 100 100 100 93
O 100 100 100 100 100 100 100 100 100
S 100 100 100 88 100 100 100 100 98
U 100 100 100 100 100 100 100 100 100
Total 100 100 100 83 100 100 100 100 98

Notes: C ¼ base speed, power factor 0.8 capacitive; O ¼ 1.12 £ base speed, resistive load;
S ¼ base speed, resistive load; U ¼ 0.88 £ base speed, resistive load.

Table VII.
Correct fault
classification

percentages of a
slip-ring generator,
force on the rotor as
a medium of fault

detection

Percent NF NF/VA RC RT ST SC SE DE Total

C 40 0 25 73 100 100 15 15 46
O 28 0 100 63 100 100 25 35 56
S 35 0 35 53 100 100 33 48 50
U 38 0 100 100 100 100 15 48 63
Total 35 0 65 72 100 100 22 37 54

Table V.
Correct fault
classification

percentages of
slip-ring generator,
stator line current as
a medium of fault

detection
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Experimental results
The 35 kW cage induction motor was fed from an inverter having a switching
frequency of 3 kHz. A DC generator was used for loading the motor. The
currents, voltages, power and supply frequency were measured using a wide
band power analyzer. The measurements were carried out for three different
load conditions. Figure 6 presents a schematic view of the measuring set-up.

The current and voltage waveforms were recorded with a transient recorder.
Hall sensors (LEM) were used as current transducers, and the voltages were
measured through an isolation amplifier. The sampling frequency was 40 kHz
and a typical number of samples was 20,000. The recording system was
calibrated using the measurements from the power analyzer.

Healthy operation, broken rotor bar operation and operation under inter-turn
short circuit were analyzed. Power spectra estimate samples were calculated
from the current, and a SVM classification structure was constructed only for
these three classes. If measurement data were used in both training and testing
the classifier, all test samples were correctly classified in all load situations
(Table VIII).

Conclusions
Numerical magnetic field analysis was used to provide virtual measurement
data from healthy and faulty operation of the machines and support vector

Figure 6.
Schematic of the
measuring set-up

NF BB ST Total

Full load 100 100 100 100
Half load 100 100 100 100
No load 100 100 100 100

Table VIII.
Correct fault
classification
percentages from
the measurements
of a cage induction
motor, stator
current as a medium
of fault detection
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classification was applied to fault diagnostics of a cage induction motor and a
slip-ring generator. Stator line current, circulating currents between parallel
branches and forces acting on the machine’s rotors were compared as media of
fault detection. Circulating currents between parallel branches and forces on
rotor were found to be superior indicators of faults compared to the stator
current. However, in experimental studies, healthy operation, broken bar
operation and operation under inter-turn short circuit were correctly classified
based on the stator current, if measurement data were used in both training and
testing the classifier.
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