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Abstract We present an improved version of the ECHO-

QGP numerical code, which self-consistently includes for

the first time the effects of electromagnetic fields within the

framework of relativistic magneto-hydrodynamics (RMHD).

We discuss results of its application in relativistic heavy-ion

collisions in the limit of infinite electrical conductivity of

the plasma. After reviewing the relevant covariant 3 + 1 for-

malisms, we illustrate the implementation of the evolution

equations in the code and show the results of several tests

aimed at assessing the accuracy and robustness of the imple-

mentation. After providing some estimates of the magnetic

fields arising in non-central high-energy nuclear collisions,

we perform full RMHD simulations of the evolution of the

quark–gluon plasma in the presence of electromagnetic fields

and discuss the results. In our ideal RMHD setup we find that

the magnetic field developing in non-central collisions does

not significantly modify the elliptic flow of the final hadrons.

However, since there are uncertainties in the description of

the pre-equilibrium phase and also in the properties of the

medium, a more extensive survey of the possible initial condi-

tions as well as the inclusion of dissipative effects are indeed

necessary to validate this preliminary result.

1 Introduction

High-energy nuclear collisions, studied by several experi-

mental collaborations at RHIC and at the LHC, allow one

a e-mail: inghirami@fias.uni-frankfurt.de

to explore the QCD phase-diagram in the high-temperature

region, from high to almost vanishing baryonic density.

Strong evidence, coming both from soft and hard observ-

ables, was obtained for the onset of a deconfined phase

in the RHIC and LHC energy regime. Furthermore, at the

experimentally accessible conditions (i.e. slightly above the

deconfinement phase transition), the produced system, with

a lifetime ∼10 fm/c, was found to behave like a collective,

strongly interacting medium, rather opaque to penetrating

probes, in contrast to the expected gas of weakly interacting

quarks and gluons. Relativistic hydrodynamic models (nowa-

days including also dissipative effects) were developed to

describe the evolution – driven by pressure gradients – of the

produced matter and turned out to reproduce the data quite

well [1–8], in particular the various flow-harmonics arising

from the collective response of the system to the anisotropies

and fluctuations in the initial conditions.

While the main purpose of relativistic heavy-ion experi-

ments is the study of strong interactions at extreme energy

densities similar to the early universe, it was recently real-

ized that during the collisions of high-Z nuclei (Z = 82

for Pb) at ultra-relativistic energies, one can also produce

the strongest magnetic fields reached in our universe, with

initial values of B ∼1015 T and oriented mainly in the direc-

tion perpendicular to the reaction plane [9]. In the last years

it was suggested [9,10] that, besides leading to the produc-

tion of a strongly interacting deconfined system, the pres-

ence of these strong magnetic fields in relativistic heavy-ion

collisions opens also the possibility of exploring peculiar

non-perturbative features of QCD, such as the appearance of
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non-trivial topological configurations of the color field. Once

coupled to quarks, these configurations characterized by a

non-vanishing winding number lead to an excess of quarks

of a given chirality (chiral anomaly), depending on the value

of the topological charge, and hence, on an event-by-event

basis, to a violation of parity (clearly preserved after an event

average). In the presence of strong magnetic fields this can

give rise to observable effects, with a separation of oppositely

charged particles with respect to the reaction plane. Since

for massless particles with a fixed handedness (e.g. right-

handed quarks) the chirality coincides with the helicity (i.e.

the projection of the spin along the particle momentum) and

since particles tend to align their magnetic moments along

the B-field, one would have an excess of positively charged

u-quarks moving in the direction of the magnetic field and

an excess of negative d-quarks moving in the opposite direc-

tion. Clearly, averaging over a large sample of events, each

one with a different excess of right- or left-handed quarks,

the effect should cancel at the level of single-particle dis-

tributions; however, it should leave its fingerprints in multi-

particle correlations, as suggested in [11]. Due to the inter-

play between a non-perturbative feature of strong interac-

tions (the chiral anomaly) and the role of the magnetic field,

such a phenomenon was called the chiral magnetic effect

(CME) and is currently studied by different experimental

collaborations at RHIC and at the LHC [12–14]. Analogous

effects have been recently observed also in astrophysics (as

an explanation of neutron stars kicks) [15] and in solid-state

physics, placing Dirac semi-metals in parallel magnetic and

electric fields [16–19]. Other related phenomena (chiral mag-

netic wave [20], chiral separation effect [21], chiral vortical

effect [22]), all arising from an unbalance among right- and

left-handed particles and from the presence of a strong mag-

netic field or angular momentum, were suggested to occur

in non-central heavy-ion collisions: for an overview we refer

the reader to [22].

An unambiguous observation of the CME in heavy-ion

collisions would be clearly a result of deep theoretical inter-

est, since it would represent a manifestation of the non-trivial

topological structure of a Yang–Mills theory. However, in

order to separate opposite-sign charges with respect to the

reaction plane, the initial magnetic field generated by the

colliding nuclei must be sufficiently long lived. The lifetime

of the magnetic field depends strongly on the nature of the

produced medium. In the vacuum the initial magnetic field

decays rather rapidly. On the contrary in the opposite limit,

in the presence of an ideal plasma with infinite electric con-

ductivity, the freezing of the magnetic-flux makes the field

survive much longer and may allow for the manifestation

of signatures of the possible chiral unbalance in the final

charged-hadron spectra, even though, at the same time, a

large conductivity would also tend to compensate any local

charge excess. Unfortunately, so far in the literature one can

find only semi-analytic estimates of the time evolution of the

magnetic field in heavy-ion collisions, based on simplify-

ing assumptions [23–28]. A fully realistic calculation would

require one to solve the Maxwell equations together with

the continuity equations for the energy-momentum tensor

(closed by some form of Ohm’s law), i.e. it calls for a full

relativistic magneto-hydrodynamic (RMHD) description of

the medium, in which the evolution of the electromagnetic

field is consistently coupled with the evolution of the plasma:

this is the challenge we address with the present paper.

For this first study we consider the case of an ideal plasma,

with no dissipative effects and, in particular, an infinite elec-

tric conductivity, which makes the electric field in the local

rest frame of the medium vanish. We also neglected any

anomalous term in the currents, although previous studies

[29,30] in simplified models showed that they would not to

contribute to entropy production, being in this sense “ideal”:

the inclusion of dissipative and anomalous terms (necessary

for the description of the CME) in our setup is left for future

work. In light of the small experimental uncertainties reached

at the LHC and RHIC on flow measurements the develop-

ment of a code able to consistently treat the coupled evo-

lution of the plasma and Z -enhanced electromagnetic fields

represents in any case a necessary baseline for any claim

that CME (and other related phenomena that we will be able

to address after including anomalous currents) can be dis-

entangled from possible other confounding electromagnetic

effects that could lead to charge separation.

Our paper is organized as follows. In Sect. 2 we present

the RMHD equations in their most general form, focusing

then on their ideal limit, i.e. on the case of a plasma with

infinite electrical conductivity (and neglecting other dissi-

pative effects such as viscosity and thermal conduction).

Only the ideal case is considered for the present paper. In

Sect. 3 we discuss the numerical implementation of the ideal-

RMHD equations, written in a conservative form, within our

improved ECHO-QGP code. In Sect. 4 we discuss the results

of a large variety of numerical tests to prove the accuracy and

the robustness of the implementation: the shock-tube prob-

lem, the description of Alfvén waves, the rotor test, the repro-

duction of the one-dimensional Bjorken expansion in a mag-

netic field and the accurate treatment of the in-vacuum self-

similar expansion in transverse-MHD. In Sect. 5 we show

the results obtained from the code with simplified (but rea-

sonable) initial conditions for non-central nucleus-nucleus

collisions. At least in the context of this simplified approach,

the magnetic field is not able to modify the elliptic flow of the

final hadrons substantially. Nevertheless, further and more

realistic investigations are needed before solid conclusions

can be drawn. Finally, in Sect. 6 we discuss our findings and

the future perspectives of our work, with the idea of per-

forming 3D + 1 simulations based on a much broader pool

of different initial conditions, possibly including dissipative
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effects. Appendix 1 is devoted to a discussion of the propaga-

tion of linear perturbations in RMHD, focusing on the case

of fast-magnetosonic and Alfvén waves, which are the ones

relevant for the analysis carried out in this paper.

2 Ideal relativistic magneto-hydrodynamics

Relativistic MHD (RMHD hereafter) is a one-fluid descrip-

tion of the interaction of matter and electromagnetic fields

in plasmas [31,32]. In general, as in the Newtonian limit of

classical MHD, one assumes that there is a dominant species

determining a main fluid current, while a secondary species

must be responsible for the conduction current, namely the

source for the electromagnetic field. The RMHD evolution

equations describing the dynamics of the overall system are

the conservation laws for this fluid current Nμ (associated to

the net-baryon current or to any other conserved charge, if

any) and for the total (matter and fields) energy-momentum

tensor of the plasma T μν , namely

dμNμ = 0, (1)

dμT μν = 0, (2)

with dμ being the covariant derivative, thus to be supple-

mented by the second law of thermodynamics

dμsμ ≥ 0, (3)

where sμ is the entropy current. On the other hand, the elec-

tromagnetic field obeys Maxwell’s equations

dμFμν = −J ν (dμ Jμ = 0), (4)

dμF⋆μν = 0, (5)

where Fμν is the Faraday tensor and F⋆μν = 1
2
ǫμνλκ Fλκ is

its dual. Notice that here we have neglected possible polar-

ization and magnetization effects of the plasma, therefore we

do not make a distinction between microscopic and macro-

scopic fields [33]. Under this assumption, the electromag-

netic contribution to the energy-momentum tensor is known

to be

T
μν
f = FμλFν

λ − 1
4

gμν Fλκ Fλκ , (6)

for which dμT
μν
f = Jμ Fμν , from Maxwell equations. Intro-

ducing the matter contribution to the energy-momentum ten-

sor T
μν
m and letting T μν = T

μν
m + T

μν
f , Eq. (2) gives

dμT μν
m = −JμFμν, (7)

where the right-hand side is the Lorentz force acting on the

plasma.

In the ideal limit all dissipative fluxes can be neglected and

local equilibrium is assumed. A single fluid four-velocity uμ

(uμuμ = −1) can be thus defined and we write

Nμ = nuμ, (8)

T μν
m = euμuν + p�μν = (e + p)uμuν + pgμν, (9)

sμ = suμ, (10)

where we have introduced the projector �μν = gμν + uμuν

(�μνuν = 0). In the above zeroth-order relations n =
−Nμuμ is the main charge density, e = T

μν
m uμuν the fluid

energy density, and p = 1
3
�μνT

μν
m the kinetic pressure, all

quantities are defined in the comoving frame. The Faraday

tensor and its dual can also be split with respect to uμ as

Fμν = uμeν − uνeμ + ǫμνλκbλuκ , (11)

F⋆μν = uμbν − uνbμ − ǫμνλκeλuκ , (12)

where

eμ = Fμνuν, (eμuμ = 0), (13)

bμ = F⋆μνuν, (bμuμ = 0), (14)

are the electric and magnetic fields measured in the comoving

frame of the fluid.

Since the electromagnetic fields do not evolve in vacuum,

but are strongly coupled with the fluid, we must now provide

an appropriate Ohm law relating the current with the fields.

In the simplest case one usually assumes the linear form

Jμ = ρeuμ + j μ; j μ = σ μνeν, (15)

where ρe is the electric charge density in the comoving frame,

j μ the conduction current ( j μuμ = 0), and σ μν the plasma

conductivity tensor. The presence of a finite conductivity

in the plasma gives rise to (anisotropic) magnetic dissipa-

tion and Joule heating, as well as to topological field line

changes known as magnetic reconnection. Recent theoretical

and numerical results may be found in [34] and the references

therein.

In the ideal MHD approximation considered in the present

paper we assume a conductivity high enough to avoid the

onset of huge currents in the plasma. We can then replace the

Ohm law with its limiting case,

eμ = 0. (16)

When the above condition holds, the expressions for the Fara-

day tensor and for its dual are simplified, and the number

of unknowns is reduced. In particular, Eq. (4) will be used

to derive the current, if needed, while Eq. (5) will become

the evolution equation for bμ. Moreover, the electromagnetic

energy-momentum tensor becomes
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T
μν
f = 1

2
b2uμuν + 1

2
b2�μν − bμbν

= b2uμuν + 1
2

b2gμν − bμbν, (17)

where b2 = bμbμ, which can be plugged into Eq. (2) together

with the corresponding matter contribution in Eq. (9). Sum-

marizing, the system of ideal RMHD equations is

dμ(nuμ) = 0, (18)

dμ

[
(e + p + b2)uμuν + (p + 1

2
b2)gμν − bμbν

]
= 0,

(19)

dμ(uμbν − uνbμ) = 0, (20)

in the unknowns n, e, p, uμ, and bμ.

Non-conservative versions of the above equations can also

be found. It is useful to decompose the covariant derivative

as

dμ = −uμ D + ∇μ, (21)

where D ≡ uμdμ indicates derivation along uμ (reducing to

the Eulerian time derivative in the nonrelativistic limit), and

∇μ = �ν
μdν is the derivative transverse to the flow (reducing

to the spatial gradient in the nonrelativistic limit). The charge

conservation (baryon number in the case of heavy-ion colli-

sions) becomes

Dn + nθ = 0, (22)

where θ ≡dμuμ = ∇μuμ is the expansion factor. The energy

equation is derived by projecting the dμT μν = 0 conserva-

tion law along the flow uν , where, we remember, the total

energy-momentum tensor is given by the sum of the matter

and field components: T μν = T
μν
m + T

μν
f . From Eq. (7) we

get

uνdμT μν
m = −JμFμνuν, (23)

which leads to

De + (e + p)θ = Jμeμ. (24)

Written in the above form, the energy equation is rather gen-

eral, the right-hand side representing the Joule heating of the

fluid. However, as previously discussed, in ideal MHD the

electric field in the local rest frame vanishes, eμ = 0, thus

one simply has

De + (e + p)θ = 0, (25)

independent of bμ, as in ordinary relativistic hydrodynam-

ics. This form of the energy equation will be exploited in dis-

cussing the Bjorken flow of a magnetized plasma in Sect. 4.4.

However, if the two contributions are kept together, we may

also write

D
(

e + 1
2

b2
)

+ (e + p + b2)θ + uμbνdνbμ = 0. (26)

The relativistic extension of the MHD Euler equation is

retrieved by projecting the total energy-momentum conser-

vation law transverse to the flow, that is,

(e + p + b2)Duμ + ∇μ
(

p + 1
2

b2
)

= bμdνbν + bνdνbμ + uμuνbλdλbν . (27)

Several expressions may be derived from the last RMHD

equation for the evolution of bμ, here we choose to rewrite

it as

Dbμ + θbμ = uμbν Duν + bνdνuμ, (28)

where we have used the relation dμbμ = bμ Duμ.

Finally, the system of ideal RMHD equations must be

closed by choosing an equation of state (EoS), for instance

of the form p = P(e, n), under the assumption that in the

ideal case each local equilibrium state can be completely

determined by uμ and two thermodynamical variables (e and

n in this case). The Euler and Gibbs–Duhem relations read

e + p = T s + μn, de = T ds + μdn, (29)

where we have defined the local temperature T = (∂e/∂s)n

and the chemical potential μ = (∂e/∂n)s . Equations (29),

(25), and (22) allow us to write

Ds + s θ = 0. (30)

We then retrieve the expected result that in the ideal case,

when all dissipative terms are neglected, there is no entropy

production and Eq. (3) holds as an equality. Notice that the

entropy current is conserved even in the case of vanishing

charge (baryon number) density and chemical potential n =
μ = 0, as appropriate for high-energy heavy-ion collisions

and an ultra-relativistic EoS with p = P(e).

3 The RMHD module in ECHO-QGP

We now rewrite the evolution equations for ideal RMHD in

a form suitable for numerical integration, for which we need

a clear separation between time and space components (the

so-called 3+1 split) and the preservation of the original con-

servative character of the equations, since shock-capturing

numerical codes such as ECHO-QGP require one to solve a

series of balance laws. Here we will provide the basic expres-

sions, for further formal and technical details, see [6,35,36]

and references therein.

Neglecting curvature effects due to gravitational fields,

we consider here a metric in special relativity (though not

necessarily Minkowskian) of the form

ds2 = −dx0dx0 + gi j dx i dx j (31)
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where the three-metric coefficients gi j may depend both on

space x i and time x0, in general. It is first useful to introduce

the fluid velocity vi and electric and magnetic fields E i and

Bi as measured in the laboratory frame, which are spatial

vectors (vanishing time component). The fluid four-velocity

can be expressed as

uμ = (γ, γ vi ), (32)

where γ = (1 − v2)−1/2 is the Lorentz factor of the bulk

flow and v2 = vkv
k , whereas the fields are, respectively,

eμ = (γ vk Ek, γ E i + γ εi jkv j Bk), (33)

bμ = (γ vk Bk, γ Bi − γ εi jkv j Ek), (34)

where εi jk is the Levi-Civita pseudo-tensor of the spatial

three-metric, namely εi jk = |g| 1
2 [i jk], with g = det{gμν} =

−det{gi j } < 0 and [i jk] the usual alternating symbol of

three-dimensional space with values ±1 or 0. From the ideal

Ohm law of Eq. (16) we can derive the spatial electric field

as

Ei = −εi jkv
j Bk, (35)

which is known once vi and Bi have been determined. In this

case the bμ field is

bμ =
(
γ vk Bk, Bi/γ + γ vk Bkvi

)
(36)

with

b2 = B2 − E2 = B2/γ 2 + (vk Bk)2 (37)

where B2 = Bk Bk and E2 = Ek Ek = v2 B2 − (vk Bk)2.

Notice that when vi = 0, that is, in the fluid rest frame, we

retrieve uμ = (1, 0) and bμ = (0, Bi ), as expected.

Let us now rewrite Eqs. (18)–(20) in a form appropriate for

numerical integration, by clearly separating time and space

derivatives and tensor components. We find the system

∂0U + ∂i F
i = S, (38)

where

U=|g| 1
2

⎛
⎜⎜⎝

γ n

S j ≡ T 0
j

E ≡ −T 0
0

B j

⎞
⎟⎟⎠ , Fi =|g| 1

2

⎛
⎜⎜⎝

γ nvi

T i
j

Si ≡ −T i
0

vi B j − Biv j

⎞
⎟⎟⎠ (39)

are, respectively, the set of conservative variables and fluxes,

while the source terms are given by

S = |g| 1
2

⎛
⎜⎜⎝

0
1
2

T ik∂ j gik

− 1
2

T ik∂0gik

0

⎞
⎟⎟⎠ , (40)

where the symmetric and antisymmetric properties of T μν

and F⋆μν , respectively, have been exploited in deriving the

above balance laws.

The components of T μν appearing in the expressions for

the conserved variables and fluxes are

Si = (e + p)γ 2vi + εi jk E j Bk, (41)

Ti j = (e + p)γ 2viv j + (p + uem)gi j − Ei E j − Bi B j ,

(42)

E = (e + p)γ 2 − p + uem, (43)

where we have defined the electromagnetic energy density

uem = 1
2
(E2 + B2). We recall that while Bi is a dynamical

variable, E i is a derived quantity, obtained from Eq. (35).

One final constraint comes from the time component of

Eq. (20), that is, the solenoidal condition

∂i (|g| 1
2 Bi ) = 0, (44)

which, if valid at the initial time of the evolution, should

be preserved analytically by the last equation of the above

RMHD system. From a numerical point of view, however,

this constraint needs some specific techniques to be actually

enforced. In fact, the accumulation of the numerical errors

associated to the computation of the derivatives of the mag-

netic field may lead to the violation of the solenoidal (i.e.

“null-B divergence”) condition (44), implying the forma-

tion of unphysical magnetic monopoles and fictitious forces.

There are several methods to avoid, or at least to limit, this

issue [37–40]. We adopted the method proposed by Dedner

for MHD and later extended to the cases of special and gen-

eral relativity [41–46].

3.1 Numerical procedures

ECHO-QGP is based on finite difference schemes. At the

beginning of the simulation, the initial values of the prim-

itive variables n (the baryon density), vi (the contravariant

components of the velocity of the fluid in the lab frame), p

(the pressure of the fluid in the comoving frame) and Bi (the

contravariant components of the magnetic induction field in

the lab frame) are discretized on the computational grid by

evaluating them at the center of each cell. Time integration of

conservative variables is performed using a second or third

order Runge–Kutta algorithm, then, at each sub-timestep:
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– the values of the primitive variables are reconstructed at

cell borders, for each direction (several algorithms are

implemented and can be selected [36]: TVD2, CENO3,

WENO3, WENO5, PPM4, MPE3, MPE5, MPE7),

– fluxes in Eq. (39) are computed,

– the Riemann problem for fluxes at cell interfaces is solved

using the HLL (Harten–Lax–Van Leer) [47] approximate

method,

– the divergence of these numerical fluxes and source terms

in Eq. (40) are computed at cell centers, allowing to inte-

grate the discretized evolution equations for the conser-

vative variables,

– the new primitive variables are retrieved from the evolved

conservative ones.

This last step above implies to solve a system of non-linear

equations and currently there is no known algorithm which

guarantees a global convergence to the solutions. The system

is more easily solved by providing an initial guess for the

solution, usually chosen as the values of the primitive vari-

able at the previous timestep. However, in a rapidly evolving

system as in the case of heavy-ion collision, this guess may

not be close enough to the real solution and the algorithm

may fail or converge to other (unphysical) solutions. Never-

theless, if we restrict to the use of a specific analytic Equation

of State (EoS), then the system of non linear equations may

be considerably simplified and it is possible to develop very

robust inversion routines [36,48].

For the present study we focus for the sake of simplicity

on the ultra-relativistic gas EoS p = e/3, using an “ad hoc”

version of the method described in [36], hereafter shortly

summarized. We exploit Eq. (35) to rewrite Eqs. (41) and

(43), then we compute S2 = Si Si and Si Bi , which are known

since Bi is both a conservative and primitive variable (the dif-

ference is only in the factor |g| 1
2 ). After introducing the new

variables x = v2 = vivi and y = 4pγ 2, with some alge-

braic manipulations we can formulate the following system

of equations:

(y + B2)2x − y−2(Si Bi )2(2y + B2) − S2 = 0, (45)

3 + x

4
y + 1

2
(1 + x)B2 − 1

2
y−2(Si Bi )2 − E = 0. (46)

These coupled non-linear equations are solved through a

nested procedure: Eq. (45) is solved for x with a one dimen-

sional iterative hybrid Newton–Raphson/bisection method

[49] with bracketing between 0 and 1; at each iteration of

this routine, the y variable is obtained by finding the (unique)

positive root of the third order polynomial of Eq. (46) multi-

plied by y2 with x = x(y). The solution of the system allows

then to compute the primitive variables through the relations:

vi = Si + (Sk Bk)Bi/y

y + B2
, p = e

3
= 1

4
(1 − x)y. (47)

For EoS where the pressure p depends also on the baryon

density n, like the ideal-gas EoS used in [36] and in the shock-

tube test presented here, note that the latter quantity can

be easily obtained by dividing the corresponding conserved

variable by the Lorentz factor γ . However, for a comparison

to high energy HIC data, a lattice QCD based equation of

state should be employed [50] (in contrast to the simplified

EoS used for the present study), which unfortunately does

not allow to simplify the system of non-linear equations on

which the inversion routine is based and needs a more careful

(and slower) numerical treatment as discussed above.

4 Tests

In this section we present some numerical test problems

selected in order to validate the code. We avoid to repeat

tests aimed at simply measuring the accuracy of the “core”

algorithms, since ECHO-QGP for relativistic hydrodynam-

ics [6,7] has been already validated against basic bench-

marks, and many additional tests have been performed on

the original ECHO code [36], from which ECHO-QGP has

been derived sharing the same base structure. Instead, here

we focus on checking the correctness of its results in the ideal

RMHD context. We use the ultra-relativistic EoS p=e/3, if

not mentioned otherwise.

We will use either Minkowski (t, x, y, z) or Milne

[τ, x, y, ηs] coordinates, where τ ≡
√

t2 − z2 is the lon-

gitudinal proper-time and ηs ≡ 1
2

ln t+z
t−z

the space-time

rapidity. In the following, in writing four-vector compo-

nents in Milne coordinates, we will employ square brack-

ets. Notice that in the first case the three-metric is gi j =
diag{1, 1, 1}, with |g| 1

2 = 1, whereas for Milne coordinates

gi j = diag{1, 1, τ 2}, with |g| 1
2 = τ . In both cases ∂ j gik = 0

and the source terms in the evolution equations simplify con-

siderably. Notice that in Milne coordinates, where g33 = τ 2,

the source term for the energy equation contains a non-

vanishing term proportional to 1
2
∂0g33 = τ .

4.1 Magnetized shock tube

In order to test the shock-capturing properties of ECHO-

QGP for relativistic MHD, we run a 1D shock-tube test

in Minkowski coordinates comparing the numerical results

Table 1 Initial conditions for the magnetized shock-tube test

Left side (x < 0) Right side (x > 0)

ρ 1 ρ 0.1

p 30 p 1

By 20 By 0
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Fig. 1 Magnetized shock-tube test for t = 4, with the comparison of

quantities computed by ECHO-QGP against the solution given by the

Exact Riemann Solver by Giacomazzo and Rezzolla [51]. We display

the mass density ρ (top left), the vx velocity component (top right),

the By magnetic-field component (bottom left) and the total pressure

p + 1
2

b2 (bottom right), where b is the magnetic field in the comoving

fluid frame

against the solutions of the same problem computed by the

exact Riemann solver developed by Giacomazzo and Rez-

zolla [51]. Since the cited solver works for an ideal-gas EoS,

for the present test we impose

p = (Ŵ − 1)(e − ρ), (48)

with an adiabatic index Ŵ = 4/3, where ρ = nm stands for

the mass density in the comoving frame (m is the rest mass

and n is the number density of the conserved species), in a

situation in which particle creation/annihilation is negligible,

so that (e − ρ) is the thermal energy density. To employ Eq.

(48) in this test, when retrieving the primitive variables we

used the same method described in Ref. [36].

The initial conditions for the non-vanishing quantities are

provided in [52] and listed in Table 1 using proper dimen-

sionless units.

The test runs from an initial time t = 0 to a final time

t = 4, with a grid resolution of 0.0025 (400 cells per unit

of length). Results are displayed in Fig. 1. The comparison

shows excellent agreement between the RMHD implemen-

tation in ECHO-QGP and the exact result.

4.2 Large-amplitude CP Alfvén wave

A multi-dimensional relativistic MHD test with an exact1

solution is provided by the propagation along the diagonal of

a square numerical domain of a large-amplitude Circularly

Polarized (CP) Alfvén wave [36].

We consider a Cartesian X − Y − Z frame, rotated along

Z ≡ z in the x − y plane in such a way that X coincides with

the diagonal y = x of the numerical domain. A relativistic

MHD CP Alfvén wave is defined by the magnetic-field and

velocity components

BX = B0, BY = ηB0 cos φ, BZ = ηB0 sin φ,

vX = 0, vY = −vA BY /B0, vZ = −vA BZ/B0, (49)

where B0 is the uniform background field, the dimensionless

parameter η =
√

B2
X + B2

Y /B0 sets the scale of the pertur-

bation, and φ is the phase. For propagation along X we have

φ = k(X − vAt), where k = 2π/λ is the wave number and

1 Exact in the sense that it does not rely on the linearization of small

perturbations.
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Fig. 2 Circularly polarized Alfvén-wave test: comparison between the velocity vz(y = x) (left) and the magnetic field Bz(y = x) (right) at t = 0

and after 5 periods of the wave

the relativistic Alfvén velocity for arbitrary large amplitudes

η is given by [36]:

v2
A = 2B2

0

e + p + (1 + η2)B2
0 +
√[

e + p + (1+η2)B2
0

]2−4η2 B4
0

.

(50)

We recall that in our ideal MHD approach the electric

field is given by Eq. (35) and we notice that the quantities

v2 ≡ |v|2 = η2v2
A, B2 = B2

0 (1 + η2) and E2 = η2v2
A B2

0

are constant. Here we use the ultra-relativistic EoS p =e/3,

where p and e remain constant to their initial uniform values

p0 and e0. Notice that, as expected, for small amplitudes the

Alfvén speed in Eq. (50) correctly reduces to the expression

derived in Appendix 2 for the linearized case. With the above

assumptions the CP Alfvén wave has a period T = λ/vA, so

that at time t = nT , with n any integer number, the numer-

ical solution is expected to assume the same configuration

as at t = 0. In the following we will consider the case of

a perturbation with wavelength λ = L/2, where L is the

length of the diagonal of the x − y domain. We perform the

test in a square numerical domain [0, 2π
√

2] × [0, 2π
√

2],
so that L = 4π , discretized with a grid of 512 x 512 cells,

choosing p0 = e0/3 = B2
0 = 1 and also a large amplitude

of the wave η = 1 and a unit wave number k = 1 (so that

λ = 2π = L/2).

In Fig. 2 we compare the z components of the velocity and

of the magnetic field for t = 5T , that is, after n = 5 periods,

along the diagonal of the grid y = x . Neither deformations

nor phase lags are observed for the depicted components as

well for the other quantities not shown here. The accuracy

obviously depends on an adequate numerical resolution and

on the order of time and spatial integration. Further details

can be found in Ref. [36]. Finally, note that large-amplitude

Alfvén waves, even if exact solutions of MHD equations,

may be unstable on long timescales due to coupling with

compressive modes [53,54].

4.3 Rotor test

We now describe a modified version of the 2D “rotor” test [35,

43], here both in Minkowski and in Milne coordinates, using

the ultra-relativistic EoS p=e/3.

An initially rigidly rotating disk of radius r0 is threaded

by a constant magnetic field, causing a rapid slow down of

the motion. In the previous examples found in the literature

the disk is denser than the surrounding medium, but, since

in our case the density does not have any influence on the

evolution of the system, because the EOS does not depend

on it, we assume that the region inside the disk has an initial

thermal pressure larger than the region outside. After this

modification, the new test proposed here becomes a sort of

mixture between the “rotor” and the “magnetized cylindrical

blast wave” tests [35] (Figs. 3, 4).

The initial velocity of the fluid is null outside of the disk,

while inside the disk its components are
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vx = ω y

r0

vy = −ω x

r0

vz = 0

in the case of Minkowski coordinates, while, in Milne coor-

dinates, vz is substituted by vη =0, which amounts to assume

a longitudinal Bjorken expansion vz = z/t .

The values of the parameters chosen for the test are listed

in Table 2.

The major difference between the results in the two coor-

dinate systems is the decay of the thermal and magnetic pres-

sures in the case of Milne coordinates, which occurs in every

region of the grid, due the longitudinal expansion of the sys-

tem. Then in both cases we observe a compression wave, due
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Fig. 3 Results of the Rotor test

in Minkowski coordinates at

t f =1.4 (start time was ti =1),

using a grid of 400 × 400 cells.

The left plot shows the thermal

pressure, the right plot shows

the magnetic pressure

((Bx Bx + B y By)/2)

Fig. 4 Results of the Rotor test

in Milne cordinates at t f =1.4

(start time was ti =1), using a

grid of 400 × 400 cells. The left

plot shows the thermal pressure,

the right plot shows the

magnetic pressure

((Bx Bx + B y By)/2). We recall

that in Milne coordinates vη =0

⇔ vz = z/t , implying that this

case describes the evolution of a

system which is different from

the other one in Minkowski

coordinates

Table 2 Values of the parameters used in the rotor test

Parameter Description Value

r0 Disk radius 0.1

ω Rot. speed param. 0.995

Bx (everywhere) 2

B y (everywhere) 0

Bz (everywhere) 0

p Thermal pressure (r ≤ r0) 5

p Thermal pressure (r > r0) 1

ti Start time 1

t f End time 1.4

to the larger initial inner pressure and due to the motion of

rotation of the disk, forged into an asymmetric shape by the

effects of the magnetic field.

4.4 Bjorken flow

This test consists in a comparison with the analytical solu-

tion for the temporal evolution of a one-dimensional boost-

invariant flow, obtained extending the model by Bjorken [55]

to the case of transverse MHD [56].

We consider the relativistic flow along the z-direction of an

ideal magnetized fluid, with pressure p and energy density

e, related by the ultra-relativistic EoS p = e/3, both con-

stant in the transverse x −y plane and independent from the

space-time rapidity ηs (one employs Milne coordinates). For

the flow profile one considers a longitudinal boost-invariant

Hubble-law expansion vz = z/t , leading to a four-velocity

uμ = (cosh ηs, 0, 0, sinh ηs). In Milne coordinates the fluid

velocity reads simply uμ =[1, 0, 0, 0], so that for the comov-

ing derivative and the expansion rate one has D = ∂τ and

θ =1/τ . The transverse MHD hypothesis, i.e. the assumption

of having a magnetic field bμ = (0, bx , by, 0) orthogonal to

the fluid velocity uμ, so that uμbμ = 0, allows one to derive

from Eq. (26) the energy-conservation equation [56]

∂τ

(
e + b2

2

)
+ e + p + b2

τ
= 0. (51)

However, under the hypothesis of infinite conductivity, one

has also from Eq. (25)

∂τ e + e + p

τ
= 0. (52)

This allows one to obtain the evolution equation for the mag-

netic field:

∂τ b + b

τ
= 0. (53)
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in comparison to the analytical result

Considering the case of an ultra-relativistic p = e/3 EoS,

it is possible to derive from the above the time evolution of

the energy density and of the magnetic field:

e(τ ) = e0

(τ0

τ

)4/3
(54)

and

b(τ ) = b0
τ0

τ
. (55)

Notice that, in an ideal plasma, due to the flux-freezing con-

dition, the magnetic field decreases according to the same

law as the conserved charges or of the entropy.

We perform the test for three different values of the ini-

tial magnetization σ0 = b2
0/e0: 0, 1 and 10 (in adimensional

units). The comparison with the analytic results (shown in

Figs. 5, 6) shows perfect agreement between the simulation

and the exact solution.

4.5 Self-similar expansion in vacuum

With the purpose of performing a non-trivial validation of

our numerical code, here we consider an exact solution of the

so-called transverse RMHD equations, namely a situation in

which a hot magnetized plasma flows along one direction,

with the magnetic field perpendicular to the flow. Without

loss of generality we can adopt a Minkowskian flat space in

Cartesian coordinates and take the fluid flowing along the

z-axis, while the magnetic field having only x-component

uμ = γ (1, 0, 0, v), bμ = (0, b, 0, 0) = (0, B/γ, 0, 0).

(56)

Within ideal RMHD, we recall that the relation between

the magnetic field in the comoving (bμ) and laboratory (B)

frames is given by Eq. (36):

bμ = [γ (v · B), B/γ + γ (v · B)v], (57)

and if all quantities are constant in the transverse plane, the

set of equations reduces to

D
(

e + b2/2
)

+ (e + p + b2)θ = 0, (58a)

(e + p + b2)Duμ + ∇μ(p + b2/2) = 0. (58b)

The above equations have to be solved together with the one

providing the evolution of the magnetic field in the plasma

∂t B = −∇ × E, (59)

which, in ideal MHD where E = −v × B, leads to

(∂t + v ·∇)B = (B ·∇)v − B(∇ ·v). (60)

Writing explicitly the derivatives one gets

(∂t + v ∂z)
(

e + b2/2
)

+ γ 2(e + p + b2)(v ∂t + ∂z)v = 0,

(61a)

(v ∂t + ∂z)(p + b2/2) + γ 2(e + p + b2)(∂t + v ∂z)v = 0,

(61b)

and

(∂t + v ∂z)B = −B(∂zv). (62)

We now wish to address the case of a plasma, initially at rest,

with magnetic field, pressure, energy, and entropy density b0,

p0, e0, and s0 for z < 0 and vanishing on the right. We want

to study how the system evolves in time, extending the study

performed in [57] to the case of an ultra-relativistic plasma of

massless particles. For this purpose, it is useful to introduce
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the self-similar variable ξ ≡ z/t , which allows one to rewrite

the equations as

(v − ξ)
d

dξ

(
e + b2/2

)
+ γ 2(e + p + b2)(1 − v ξ)

dv

dξ
= 0,

(63a)

(1 − v ξ)
d

dξ
(p + b2/2) + γ 2(e + p + b2)(v − ξ)

dv

dξ
= 0.

(63b)

In Ref. [57] the system was closed by combining the

induction equation for the magnetic field with the one for

mass conservation. Actually, in the case of heavy-ion col-

lisions, such a choice would not be meaningful, since one

deals with an ultra-relativistic plasma of massless parti-

cles, in which particle-antiparticle pairs are continuously

created/annihilated. However, in the absence of dissipative

effects, one can replace the conservation equation for the

mass with the one for the entropy. One can write the conser-

vation law dμsμ = ∂μsμ = 0 for the entropy current

sμ ≡ suμ = sγ (1, v) ≡ s̃ (1, v). (64)

Entropy conservation can be expressed by Eq. (30) or, more

conveniently presently, in terms of its density in the labora-

tory frame:

(∂t + v ·∇)s̃ = −s̃ ∇ ·v. (65)

Introducing the Lagrangian derivative d/dt ≡ (∂t + v ·∇)

and combining Eqs. (60) and (65) one gets

d

dt

(
B

s̃

)
= 1

s̃
(B ·∇) v. (66)

In the transverse one-dimensional MHD case we are address-

ing one has then

d

dt

(
B

s̃

)
= d

dt

(
b

s

)
= 0 −→ b(db) = b2 ds

s
. (67)

This allows one to rewrite the set of RMHD equations as

(the prime index denotes the derivative with respect to the

self-similar variable ξ )

(v − ξ)

(
e′ + b2 s′

s

)
+ γ 2(e + p + b2)(1 − v ξ)v′ = 0,

(68a)

(1 − v ξ)

(
p′ + b2 s′

s

)
+ γ 2(e + p + b2)(v − ξ)v′ = 0,

(68b)

s′ = −1 − v ξ

v − ξ
γ 2sv′. (68c)

The equation for the entropy, together with the rather general

EoS p = c2
s e (here cs is the sound speed), leads to

(v − ξ)e′ + γ 2(e + p)(1 − v ξ)v′ = 0, (69a)

(v − ξ)(1 − v ξ)c2
s e′

+ γ 2
[
(e + p + b2)(v − ξ)2 − (1 − v ξ)2b2

]
v′ = 0.

(69b)

The system has a non-trivial solution only if the determinant

vanishes, i.e. if

(1−v ξ)2c2
s (e+ p) = (e+ p)(v−ξ)2 − (1−v2)(1−ξ2)b2.

(70)

A rarefaction wave propagates from the outside inside the

plasma. The position of the rarefaction front, characterized

by a vanishing value of the fluid velocity v = 0 and with all

the other quantities equal to their initial unperturbed values

is given by

c2
s (e0 + p0) = (e0 + p0)ξ

2
rw − (1 − ξ2

rw)b2. (71)

One gets then

ξ2
rw = (e0 + p0)c

2
s + b2

0

e0 + p0 + b2
0

, (72)

which, in the case of and ideal ultra-relativistic gas EoS,

reduces to

ξ2
rw = (4/3)p0 + b2

0

4p0 + b2
0

, (73)

in agreement with what was obtained for the fast-magneto-

sonic speed in Eq. (A.8) of Appendix 1. Hence, with the

initial condition we chose, the position of the rarefaction

front propagates backwards with a velocity equal to the fast-

magnetosonic speed: zrf(t) = −c f t .

We now look for an explicit solution written in terms of

the ratio B between the initial thermal and magnetic pressure.

We will try to follow an approach as close as possible to the

one employed by Lyutikov and Hadden [57]. In the case of an

ideal ultra-relativistic plasma one has p ∼ T 4 and s ∼ T 3,

so that

p = p0

(
s

s0

)4/3

−→ p′ = 4

3
p

(
s′

s

)
. (74)

One gets then

(1 − v ξ)

(
4

3
p + b2

)
s′

s
+γ 2(4p+b2)(v − ξ)v′ =0. (75)
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Exploiting Eq. (68c) one obtains

(4p + b2)(v − ξ)2 −
(

4

3
p + b2

)
(1 − v ξ) = 0. (76)

In the approach by Lyutikov (generalized to our ultra-

relativistic case) one writes the above equation in terms of

the parameter and variable

B ≡ p0

b2
0/2

and s1 ≡ s

s0
. (77)

One has then, from Eqs. (67) and (74),

p = p0

(
s

s0

)4/3

= B
b2

0

2
s

4/3
1 (78)

and

b2 = b2
0

b2

b2
0

= b2
0

s2

s2
0

= b2
0s2

1 . (79)

Hence, we get

(2B + s
2/3
1 )(v − ξ)2 −

(
2

3
B + s

2/3
1

)
(1 − v ξ) = 0, (80)

which we can recast as

s
2/3
1 (1 − v2)(1 − ξ2) + 2

3
B[1 + 4v ξ − 3ξ2 + v2(ξ2 − 3)]

= 0.

(81)

The latter is equivalent to Eq. (6) in the paper by Lyutikov,

except that now it depends only on the parameter B (ther-

mal pressure and particle/entropy density are not indepen-

dent variables in an ultra-relativistic plasma) and it is does

not include the term arising from the mass density.

The above equations can be equivalently written in terms

of the variables

δv ≡
√

1 + v

1 − v
, δξ ≡

√
1 + ξ

1 − ξ
. (82)

One obtains

δ2
vδ

2
ξ s

2/3
1 − 1

3
B

[
δ4
v − 4δ2

vδ
2
ξ + δ4

ξ

]
= 0, (83a)

(δ2
v + δ2

ξ )s1
∂δv

∂δξ

+ δv(δ
2
v − δ2

ξ )
∂s1

∂δξ

= 0. (83b)
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Fig. 7 Self-similar expansion into vacuum test, comparison of the

ECHO-QGP results with the semi-analytic solution computed with

Mathematica [58]. The graph shows s1 = s/s0 vs. ξ = z/t at t = 20

for three different values (10, 1 and 0.1 from top to bottom) of the

B = 2p0/B2
0 parameter. We used a grid of 801 cells, the reconstruc-

tion algorithm MPE5, the approximate Riemann solver HLL and the

time integration algorithm was a second order Runge–Kutta. The ini-

tial pressure was: left side (z ≤ 0) p0 = 1000, right side (z > 0)

p0 = 5 · 10−5 ≈ 0 (due to numerical reasons)

From the first equation we define

δ2
v

δ2
ξ

≡ f 2(s1) ≡
(4B + 3s

2/3
1 ) ±

√
(4B + 3s

2/3
1 )2 − 4B2

2B
.

(84)

From the second equation one then gets

∂ ln δξ

∂s1
= f (s1)(1 − f 2(s1)) − s1 f ′(s1)(1 + f 2(s1))

s1 f (s1)(1 + f 2(s1))
.

(85)

The previous equation can easily be integrated, leading to

ln
δξ (s1)

δξ0

=
∫ s1

1

dα
f (α)(1 − f 2(α)) − α f ′(α)(1 + f 2(α))

α f (α)(1 + f 2(α)
,

(86)

where δξ0 can be fixed through the initial condition, namely

the development of a left-propagating rarefaction wave, with

velocity equal to the fast-magnetosonic speed:

δξ0 =
√

1 − c f,0

1 + c f,0
, where c2

f,0 = 2B + 3

3(2B + 1)
. (87)

In Fig. 7 we display a comparison between the above semi-

analytic solution and the numerical result provided by our

code. The graph shows s1 = s/s0 vs. ξ = z/t at t = 20 for

three different values ( 10, 1 and 0.1 ) of the B = 2p0/B2
0
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parameter. We used a grid of 801 cells, reconstruction algo-

rithm: MPE5, approximate Riemann solver: HLL, time inte-

gration algorithm: second order Runge–Kutta. The initial

pressure was: left side (z ≤ 0) p0 = 1000, right side (z > 0)

p0 = 5 · 10−5 ≈ 0 (due to numerical reasons, since ECHO-

QGP cannot run with true null pressure). Again we observe

excellent agreement between the numerical implementation

and the analytical results for a large variety of parameters.

5 Results of RMHD simulations for HIC

We plan to present a more extensive study of the QGP evo-

lution in a subsequent article, nevertheless here we present

some preliminary results to evaluate the impact that the inter-

play between magnetic-field and hydro evolution may have

on some experimental observables. Although the whole 3D

+ 1 formalism has been already implemented into the code,

for simplicity here we will show a basic 2D + 1 application

to heavy ion collisions.

5.1 Setup

We consider Au–Au collisions at
√

sN N = 200 GeV. The

initial conditions are modeled with the optical Glauber

model [6,59]. In this framework, the initial energy density

distribution e in the transverse plane is given by

e(τ0, x; b) = e0

[
(1 − αH )

npart(x; b)

npart(0; 0)
+ αH

ncoll(x; b)

ncoll(0; 0)

]
,

(88)

where e0 is the value of e at x = 0 and b = 0, x the coor-

dinates in the transverse plane and b the impact parameter.

One defines the nuclear thickness function as

T̂A/B(x) ≡
∫ ∞

−∞
dz ρA/B(x, z), (89)

with

∫ ∞

−∞
T̂A/B(x) dx =1 (90)

where ρA/B(x, z) is the Wood–Saxon nuclear density distri-

bution for the nuclei A and B. One then obtains the density

of participants np(x; b) ≡ n A
p (x; b) + nB

p (x; b) from

n A
p (x; b)= A T̂A(x + b/2)

{
1−[1−T̂B(x − b/2)σ in

N N ]B
}
,

nB
p (x; b)= B T̂B(x − b/2)

{
1−[1−T̂A(x + b/2)σ in

N N ]A
}
,

(91)

and the number density of binary collisions in the transverse

plane as

nc(x; b) = AB σ in
N N T̂A(x + b/2)T̂B(x − b/2), (92)

where σ in
N N is the inelastic nucleon–nucleon cross-section.

Since ECHO-QGP is not able to run with null energy den-

sity or if the thermal pressure is much smaller than the mag-

netic pressure, to ensure the stability of the code, we increase

the initial energy density distribution by an additional small

amount emin , negligible from the point of view of the dynam-

ics of the system. We adopt Milne coordinates and we assume

boost invariance along the η direction. The velocity com-

ponents of the fluid are all null at the initial time τ0, i.e.

vx =vy = vη =0.

We compute the initial magnetic field following the

approach adopted by Tuchin [23], i.e. we consider a mag-

netic field produced by an electric charge e moving parallel

to the z-axis with a speed v having a Lorentz factor γ ≫ 1

as measured in the laboratory frame by an observer located

at r = z ẑ + b, where b is the distance from the z-axis in

the transverse plane ( b · ẑ = 0). We also assume a constant

permittivity ǫ = 1, a constant permeability μ = 1, a constant

finite electrical conductivity σ . Under these assumptions, it

can be shown that the magnetic field B = B(t, r)φ̂ is given

by

B(t, r) = e(ℏc)
3
2

2πσ

∫ ∞

0

J1(k⊥b)k2
⊥√

1 + 4k2
⊥(ℏc)2

γ 2σ 2

·

exp

⎧
⎨
⎩

σγ 2x±
2(ℏc)

⎛
⎝1 −

√
1 + 4k2

⊥(ℏc)2

γ 2σ 2

⎞
⎠
⎫
⎬
⎭ dk⊥ (93)

where x± = t ± v/z and e =
√

4πα, α being the fine struc-

ture constant. We mention that the B field has dimensions

[GeV1/2fm−3/2], so that B2 has the same dimensions as the

pressure, i.e. [GeV/fm3].

Then we approximate the electric charge distribution

inside the two colliding nuclei as being uniform and spherical

and we perform an integration over it to get the total magnetic

field in each point of our computational grid. We assume that

the motion and the distribution of the electric charges are

unaffected by the collision between the nuclei. A detailed

description of the whole procedure can be found in Ref. [23].

Since at the moment our code is not able to handle configu-

rations where the magnetic pressure is much larger than the

thermal pressure, which is the case in regions outside the fire-

ball, where the initial energy density is less than 30 MeV/fm3

we rescale the magnetic field so that the ratio between the

magnetic and the thermal pressure does not exceed 0.1. This

procedure does not affect the final results because at such a
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Table 3 Values of the parameters used in the setup of the 2D + 1 RMHD

simulations of heavy-ion collisions

Parameter Description Value

b Impact parameter 10 fm

τ0 Initial time 0.4 fm/c

e f.o. Freeze-out energy density. 150 MeV/fm3

ǫ0 Max. en. dens. 55. GeV/fm3

ǫmin Min. en. dens. 0.1. MeV/fm3

σin Inel. cross sect. 40 mb

αH Collision hardness 0.05

EoS Equation of state p = e/3

Fig. 8 The initial spatial pressure distribution in the transverse plane,

obtained using the geometrical Glauber model given by Eq. (88) with

the parameters listed in Table 3. The parameters are for the reaction Au

+ Au, b = 10 fm at
√

sN N = 200 GeV

low temperature there is no participating QCD matter and

the hydrodynamic description of the medium would cease to

be valid anyway.

Our choices of the parameters for the initial conditions

are summarized in Table 3. The initial distribution of the

thermal pressure, the magnetic field and the ratio of thermal

to magnetic pressure in the transverse plane are shown in

Figs. 8, 9, and 10 for Au + Au, b = 10 fm reactions at√
sN N = 200 GeV.

We always use the same initial conditions for the initial

energy density distribution, but for the initial magnetic field

we consider two cases:

1. B = 0 (no magnetic field);

2. B �= 0 and σ = 5.8 MeV.

In the first case we consider a pure hydrodynamical simu-

lation, without magnetic field. In the second case we assume

that in the pre-equilibrium phase there is a medium with finite

constant electrical conductivity σ = 5.8 MeV, which allows

one to compute an initial magnetic-field distribution as in

Ref. [23], shown in Fig. 9.

We assume that at the time τ0 the fluid is in local ther-

mal equilibrium, its electrical conductivity σ becomes infi-

nite and that the magnetic field generated by the fast moving

electric charges contained in the protons of the nuclei is con-

verted into the magnetic field of the fluid, while, consistently

with the hypothesis that initially the fluid is at rest and it

has infinite electrical conductivity, we assume that there is

no initial electric field in the fluid frame (otherwise, for Eq.

(35), we should have also initial non-null fluid velocity). We

neglect dissipative effects and we assume that the fluid obeys

the e= p/3 EoS.

We run the simulation until thermal freeze-out, when the

energy density is below 150 MeV/fm3. Then we compute

the spectra and the elliptic flow of the pions produced. Here

we adopt the Cooper–Frye prescription [6,60], without any

modification to the distribution function due to the electro-

magnetic interaction.

Fig. 9 The initial spatial distribution of the components of the magnetic field B, computed using the method described in Ref. [23]. The parameters

are for the reaction Au + Au, b = 10 fm at
√

sN N = 200 GeV
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Fig. 10 The initial ratio 1/β = B2/2p between magnetic and thermal

pressure in the transverse plane. The parameters are for the reaction Au

+ Au, b = 10 fm at
√

sN N = 200 GeV

5.2 Results

In Figs. 11 and 12 we compare the decay of the magnetic

field in the ideal 2D + 1 RMHD simulation in the center of

the of overlap region of the two nuclei (i.e. in the center of

the grid: x = y = z = η = 0) with some common analytical

models. Figure 11 shows the comparison between the decay

of the magnitude of B in the center of the grid during the 2D

+ 1 RMHD evolution and the decay expected for a Bjorken

flow, following the analytic law τ0/τ . Figure 12 show the

comparison of the time evolution of the magnitude of the

magnetic field (in neutral pion mass units squared) at the

center of the grid in five different cases:

(a) ECHO-QGP 2D + 1 RMHD evolution starting from ini-

tial conditions as described in this section, with σ = 5.8

MeV;

(b) time evolution of the magnetic field computed using the

same approach exploited to provide the initial conditions

(explained in detail in Ref. [23]), assuming a medium

with uniform and constant electrical conductivity σ =
5.8 MeV;

(c) same as in case b), but assuming zero electrical conduc-

tivity σ =0 MeV (vacuum);

(d) exponential decay of magnetic field as modeled in

Ref. [61], with tD =1.9;

(c) Bjorken flow.

We notice that the expansion of the fluid in the transverse

plane leads to a faster decrease compared to the case of a pure

longitudinal Bjorken flow [56] and tends to become roughly

exponential. However, the decay of the magnetic field of the

fluid is still slower than in the case that the fields are generated
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Fig. 11 B/B0 =
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Bi Bi (τ )/
√

Bi Bi (τ0), with τ0 = 0.4 fm/c. Com-

parison between the decay of the magnitude of B in the center of the

grid during the 2D+1 RMHD evolution and the decay expected for a

Bjorken flow, following the analytic law τ0/τ . The parameters are for

the reaction Au + Au, b = 10 fm at
√

sN N = 200 GeV
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Fig. 12 Comparison of the time evolution of the magnitude of the mag-

netic field (in neutral pion mass units squared) at the center of the grid

in five different cases: a with ECHO-QGP, as described in this section,

computing the initial conditions assuming σ = 5.8 MeV; b magnetic

field generated by the electric charges of the two colliding nuclei moving

in a medium with uniform and constant electrical conductivity σ =5.8

MeV, i.e. the same approach exploited to provide the initial conditions

(explained in details in Ref. [23]), but now adopted for the whole time

interval; c same as in case b, but assuming zero electrical conductivity

σ = 0 MeV (vacuum) d assuming an exponential decay of the mag-

netic field as modeled in Ref. [61], with tD =1.9 e) Bjorken flow. The

parameters are for the reaction Au + Au, b = 10 fm at
√

sN N = 200

GeV

by two electric charges moving in opposite directions in a

uniform medium with constant finite electrical conductivity,

as in Ref. [23], especially if there is no medium at all and

the electric charge propagates in empty space. We stress that

this comparison between different decay rates is based on a

simplified model of HIC. In a 3D + 1 simulation, adopting

a more realistic EoS and including dissipative effects, the
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Fig. 14 Transverse momentum distribution ofπ+ in two cases: a With-

out magnetic field. b With an initial magnetic field computed assuming

σ = 5.8 MeV. The parameters are for the reaction Au + Au, b = 10 fm

at
√

sN N = 200 GeV

decay rate of the B-field might be considerably quantitatively

different.

In Figs. 13 and 14 we compare the elliptic flow and the

transverse momentum distribution of pions, computed with

the Cooper–Frye prescription [6,60], with and without an

initial magnetic field, computed as described in the previ-

ous section of this article. According to our current results,

the presence of a magnetic field with a magnitude and spa-

tial distribution evaluated according to Ref. [23] seems to

have a negligible impact both on the pion spectra and on

the elliptic flow. This is in contrast to Ref. [62] where was

suggested that the magnetic field might substantially influ-

ence the anisotropic flow. In Ref. [63] it was indeed found

that a significant enhancement of the elliptic flow might be

possible. A direct comparison with our results is, however,

not possible because of the many differences compared to

our approach. However, in contrast to Refs. [62,63] and the

present study, Ref. [61] reported the opposite result, namely

a reduction of the anysotropic flow. This was attributed to

the effects of the magnetic squeezing. However, the model at

Ref. [61] does not satisfy the divergence-free condition for

the magnetic field. There the magnetic field has a rather large

magnitude and it is not completely coupled with the fluid.

6 Conclusions, discussion, and outlook

We presented the extension of the ECHO-QGP code to

the relativistic magneto-hydrodynamic regime, in the limit

of infinite electrical conductivity, i.e. without taking into

account any resistive effect. In the present version, the code

has been tested with an ideal-gas EoS, either in the pres-

ence of a finite mass density or in the ultra-relativistic regime

(p = e/3). After introducing the physics equations on which

the code is based, we gave an overview of their numerical

implementation. Then we illustrated the results of several

tests to validate the implementation. Since our final aim is

to exploit the code to study the evolution of the quark–gluon

plasma formed in heavy-ion collisions, we showed first appli-

cations in this context, adopting simplified initial conditions.

Due to the (on average) small ratio of the magnetic to

thermal pressure, the magnetic field does not seem to signif-

icantly affect the fluid evolution and we observed only a tiny

effect on inclusive hadronic observables such as the elliptic

flow and transverse momentum spectra of pions. However,

in our approach the magnitude of the initial magnetic field

could have been underestimated, possibly because in the pre-

equilibrium phase we considered the electrical conductivity

σ as constant, while there is some evidence that it increases

with the temperature [64–67]. Other authors, employing dif-

ferent initial conditions for the magnetic field, found a non-

negligible effect of the latter on the hadron elliptic flow [61–

63]. Clearly this would affect the estimate of the viscosity-to-

entropy η/s ratio obtained by comparison of hydrodynamic

results with experimental data: if, for example, part of the

hadron v2 in non-central collisions arose from the magnetic

field, one should reduce the contribution from the hydrody-

namic expansion, via for instance a larger value of η/s.

Our preliminary results suggest also that the formation

of a deconfined conductive plasma, compared to the case of

the vacuum, might slow down the decay of the initial mag-

netic field generated by the colliding nuclei, possibly affect-

ing non-perturbative phenomena relying on the presence of

huge magnetic fields to show up. Since our study refers to

the case of an ideal plasma, with infinite electrical conduc-

tivity, our results have to be considered as an upper limit

on the lifetime of the magnetic field produced in heavy-ion

collisions.

However, the recent estimates both from lattice QCD com-

putations [64–66] and fitting of experimental data [67] point
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toward high, but finite value for the electrical conductivity of

the QGP. For a quantitative comparison with experimental

data this has to be taken into account including the effects

of the electrical resistivity. We expect a considerably accel-

eration of the decay of the magnitude of the magnetic field

compared to our studies.

As a next step, we plan to evaluate better the role of the ini-

tial magnitude and spatial distribution of the magnetic fields,

performing full 3D + 1 simulations, already possible with the

present setup. This will allow one to explore a broader range

of possible initial conditions under different models [68],

using a more realistic EoS.

The next development of the code will involve the inclu-

sion of dissipative effects (shear and bulk viscosity and a

finite electric conductivity), using the numerical techniques

presented in [6,34] and already implemented in previous ver-

sions of the ECHO code, going beyond the approximation

of an ideal plasma. A major conceptual achievement would

be represented by the inclusion in our setup of anomalous

currents, allowing one to provide a consistent description of

the CME and to estimate the possibility of disentangling it

from other charge-separating effects related to the presence

of strong electromagnetic fields.

Then, indeed, it would be necessary to modify the Cooper–

Frye formula by taking into account the presence of an elec-

tromagnetic field and of a non-uniform spatial distribution

of electric charges. After that, for a proper comparison with

experimental data, one should compute the effects on the final

particle spectra and on collective flows, in the post-freeze-out

phase, of decays, elastic collisions and of magnetic deflec-

tions by the Lorentz force.

Finally, we deem that applications of numerical calcula-

tions performed with the present relativistic MHD version

of the ECHO-QGP code could also be relevant for cosmo-

logical (generation of the primordial magnetic fields [69])

or astrophysical studies. For instance, the sudden transition

from an hadronic to a QGP-like equation of state in a proto-

magnetar (phase transition to a quark star) has recently been

suggested as a possible explanation for the observed cases of

(long) gamma-ray burst events with double prompt emission

peaks [70].

Acknowledgements G. Inghirami thanks V. Roy, L. Rezzolla, L. Pang

and M. D’Elia for fruitful discussions and useful suggestions. G. Inghi-

rami was supported by a GSI grant in cooperation with the John

von Neumann Institute for Computing. G. Inghirami also gratefully

acknowledges support from the Helmholtz Research School on Quark

Matter Studies and from Helmholtz Graduate School for Hadron and

Ion Research. M. Haddadi Moghaddam would like to thank the min-

istry of science and technology of Iran and the Physics Department and

the INFN section of Torino for warm hospitality and partial financial

support during part of this work. The computational resources were pro-

vided by the INFN - Sezione di Firenze, by the Frankfurt Institute for

Advanced Studies and by the Center for Scientific Computing (CSC)

of the Goethe University. This work was supported by the University

of Florence grant “Fisica dei plasmi relativistici: teoria e applicazioni

moderne”.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecomm

ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.

Funded by SCOAP3.

Appendix: Propagation of linear perturbations in the

plasma

In this appendix we want to present a study of the propagation

of small perturbations in a relativistic plasma embedded in a

constant magnetic field. Although this represents a standard

MHD subject, we think it is useful for the reader to explicitly

re-derive the main results for the case of an ultra-relativistic

plasma addressed in this paper, with no conservation equa-

tion for the mass density, at variance with usual astrophysical

studies. We then perform small fluctuations around a homo-

geneous background, keeping in the equations only terms lin-

ear in the fluctuations. Taking into account that γ ∼ O(δ2)

one has (we consider the case of a one-dimensional flow

along the z-axis)

uμ = [1, 0, 0, δv], p = p0 + δp,

e = e0 + δe, bμ = b
μ
0 + δbμ. (A.1)

Notice that the index 0 in the magnetic field is used to denote

its unperturbed background value and not as a covariant

index. Clearly, fluctuations in the pressure and energy density

are related by the equation of state.

Appendix 1 Magnetosonic waves

We firs want to evaluate the velocity of propagation of mag-

netosonic disturbances. This will be relevant for the study of

the self-similar one-dimensional flow described by the Lyu-

tikov solution given in Sect. 4.5. We focus then on the prop-

agation along the z-axis (i.e. δ = δ(t, z)) of the following

perturbations:

uμ = [1, 0, 0, δv]+O(δ2), bμ = [0, b0+δb, 0, 0]+O(δ2),

(A.2)

where, to linear order in the fluctuations, B0 = b0 and δB ≈
δb, so that one can identify the magnetic field in the laboratory

and in the comoving frame. The system of RMHD equations

reduces to
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∂t (δe) + b0∂t (δb) + (e0 + p0 + b2
0)∂z(δv) = 0, (A.3a)

∂z(δp) + b0∂z(δb) + (e0 + p0 + b2
0)∂t (δv) = 0, (A.3b)

∂t (δb) + b0∂z(δv) = 0. (A.3c)

Let us now perform a Fourier analysis of the fluctuations,

inserting in the above the ansatz δ = δω,ke−iωt+ikz . From

the last equation, one gets for the magnetic field (which turns

out to fluctuate in phase with the velocity)

δbω,k = b0(k/ω)δvω,k, (A.4)

which can be substituted in the other two equations. Using

an Equation of Ste of the kind δp = c2
s δe, one gets

ω δeω,k − (e0 + p0)k δvω,k = 0, (A.5a)

k c2
s δeω,k + [b2

0(k
2/ω) − (e0 + p0 + b2

0)ω] δvω,k = 0.

(A.5b)

The system has non-trivial solutions only if its determinant

vanishes, i.e.

b2
0k2 − (e0 + p0 + b2

0)ω
2 + (e0 + p0)c

2
s k2 = 0, (A.6)

whose solution provides the dispersion relation ω = ω(k)

ω2 = (e0 + p0)c
2
s + b2

0

e0 + p0 + b2
0

k2 ≡ c2
f k2, (A.7)

which allows one to identify the fast-magnetosonic speed c f .

In the case of an ideal ultra-relativistic plasma e0 = 3p0 and

c2
S = (1/3), so that one gets

c2
f = 4p0 + 3b2

0

3(4p0 + b2
0)

, (A.8)

which corresponds to the zero mass-density limit of Eq. (3)

of the paper by Lyutikov and Hadden. In terms of the thermal

to magnetic-pressure ratio

B ≡ p0

b2
0/2

(A.9)

one gets

c2
f = 2B + 3

3(2B + 1)
. (A.10)

Appendix 2 Alfvén waves

Alfvén waves are MHD excitations which propagates along

the lines of the unperturbed magnetic field. In full generality

we will consider the evolution of the following perturbations

(still neglecting O(δ2) terms in the fluctuations):

uμ ≈ [1, 0, 0, δv], bμ ≈ [0, b0 + δbx , δby, δbz], (A.11)

where we take δ = δ(t, x⊥): we will see that only the depen-

dence on x , i.e. the direction of the unperturbed magnetic

field, matters. We start considering the equations for the evo-

lution of the components of the magnetic field. To linear order

in the fluctuations we have

∂tδbx ≈ ∂tδby ≈ 0. (A.12)

If initially absent, no field perturbation develops along the

x and y directions, perpendicular to the velocity fluctuation.

Hence, in the following we set δbx = δby = 0. On the other

hand, from Faraday’s law one has

∂tδbz = b0∂xδv, (A.13)

so that, employing the Fourier ansatz δ=δω,ke−iωt+ikx x+iky y

(k⊥ = (kx , ky) = (k cos θ, k sin θ)), one gets

δbω,k = −b0(k cos θ/ω)δvω,k . (A.14)

The magnetic field develops a z-component, fluctuating in

opposition of phase with respect to the velocity. Let us now

move to the equation for the energy and the fluid velocity.

Notice that, to linear order, θ ≈ ∂xδv
x + ∂yδv

y + ∂zδv
z ≈

0. Furthermore, since the fluctuations involve only the z-

component of the B-field, one has ∂μb2 ≈ 2b0∂μδbx ≈ 0.

For the energy one gets then simply

∂tδe ≈ 0. (A.15)

For the Euler equation one gets instead

(e0 + p0 + b2
0)∂tδv

z − b0∂xδbz = 0. (A.16)

In Fourier space one has then

(e0 + p0 + b2
0) ω δvω,k + b0 kx δbω,k = 0, (A.17)

which, employing Eq. (A.14), leads to

ω2 = b2
0

e0 + p0 + b2
0

k2
x . (A.18)

The perturbation propagates then along the x-axis (the direc-

tion of the unperturbed magnetic field) with group velocity

equal to the Alfvén speed vx
g = (dω/dkx ) = vA, where

v2
A = b2

0

e0 + p0 + b2
0

, (A.19)
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which corresponds to the weak-fluctuation (η → 0) limit of

the exact result quoted in Eq. (50). Assuming an ideal-gas

EoS e0 = 3p0, the latter can be expressed in terms of B as

v2
A = 1

1 + 2B
, (A.20)

in agreement with Eq. (3) of Lyutikov paper [57], once setting

to zero the contribution from the mass density.
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