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Abstract: In this paper, we study the perturbed risk model with a threshold dividend strategy
and proportional investment. The insurance companies are allowed to invest their surplus in a
financial market consisting of a risk-free asset and a risky asset in fixed proportions; the risky
assets are modeled by the jump-diffusion process. Firstly, using the theory of the stochastic process
and stochastic analysis, we obtained the integro-differential equations satisfied by the expected
discounted dividend payments and the discounted penalty function. Secondly, we obtained the
numerical approximate solutions of the integro-differential equations through the sinc method, since
the analytical solutions of them are not easy to obtain, and we found that the error is within a
manageable range. Finally, we considered some numerical examples where the claim sizes follow an
exponential distribution, a mixture of two exponential distributions or the lognormal distribution
in detail, and explored how perturbations and proportional investment affect dividends and ruin
probability. Moreover, sensitive analysis showed that the proportion of the risky investment, the
diffusion coefficient, the distribution of the claims and the positive jump in the risky assets investment
all have explicit impacts on dividends and ruin probability.

Keywords: dividend payments; penalty function; integro-differential equations; perturbed risk
process; proportional investment; sinc numerical method

MSC: 91B05; 91B70

1. Introduction

Since the beginning of the new period of economic development, the insurance in-
dustry has developed rapidly and steadily. The new coronavirus pandemic has caused
significant property damage worldwide. This unexpected risk strengthened the public
awareness of risk management and control. Insurance have also received more attention
and acceptance. The underwriting business and investment business are the two pillars of
insurance companies’ profits. With fierce competition in the insurance industry, the profits
of the insurance business are declining year by year. Investment business is increasingly
becoming the focus of insurance companies’ development. To increase profits, insurance
companies often invest their funds either only in risk-free assets (funds and bonds), risky
assets (stocks and options), or a combination of the two kinds of assets. Investors’ choice of
these assets depends on their preference for risk [1–8].

Based on this, Chen and Ou [1] and Lu and Li [3] studied the proportional investment
problem and discussed how insurance companies can obtain large possible return with
little risk.

The dividend strategy of the insurance risk model reflects the surplus cash flows in
the insurance portfolio. To attract more policyholders, insurance companies have launched
various forms of dividend insurance [9–14], of which the threshold dividend strategy is
the most extensive form. The threshold dividend strategy extends the barrier dividend
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strategy. The earliest consideration of dividends in insurance originated in De Finetti [9].
Since then, the study of barrier strategies has been described in a number of papers and
books, including [3,12,14]. Some papers on dividend threshold strategies are [1,13,15].

Motivated by the previously mentioned studies, we studied a perturbed risk model
with dividend payments and proportional investment. In addition, the majority of related
studies deal with the theoretical analysis of the related integro-differential equations, and
very few studies seek numerical solutions. At the same time, they provide a theoretical
basis for an insurance companies to better protect themselves against risk. The questions
that will be answered are as follows:

(1) How do the perturbations affect the dividend payments and ruin probability?
(2) How does proportional investment affect the dividend payments and ruin probability?
(3) If the explicit solutions are not easy to find, do the numerical solutions of the related

actuarial quantities exist?

The contributions of this research: This study focuses on the impacts of the proportion
of investment and the diffusion coefficient on related actuarial quantities. According to the
authors, no other study has considered the sinc numerical method in the risk model. In
addition, the majority of related studies used numerical analysis to solve a wide range of
linear and nonlinear optimal control problems [15–20], and very few studies discussed the
sinc numerical solution of the financial insurance model. The flow chart of research steps
can be seen in Figure 1.

Figure 1. Flowchart of research steps.
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2. Literature Review

Our work is related to two branches of research, and we provide a brief review of
these. One branch is whether perturbation factors and investment portfolios are included
in the risk model, and the other is the method of solving the problem. In Table 1 we
summarize the relevant research according to the risk model (whether or not one considers
perturbation factors, risk-free assets and risky assets, and the choice of dividend strategy),
and whether or not the sinc approximation method is adopted in the equation. Table 1
briefly presents the relevant studies.

In the first branch, the problem of investment has attracted attention for the last few
years, and a growing number of researchers have constructed risk models with stochastic
investment to depict insurance markets. Chen and Ou [1] studied the risk model with
a proportion investment problem and obtained approximate solutions through the sinc
numerical method. Wang et al. [2] investigated the problem of optimal investment strategies
by allowing the insurer to invest in two different financial markets. Lu and Li [3] studied
the perturbed risk model with investment and debit interest when an insurance company
makes fixed-proportion investments in risky and risk-free assets. Li [4], Rachev et al. [5]
and Ellanskaya and Kabanov [7] considered a perturbed risk model in a risky asset. Peng
and Wang [6] discussed a compound risk model without diffusion in two different assets.
Huang et al. [21] considered the estimation of ruin probability in an insurance risk model
with stochastic premium income. Zhu and Li [22] studied the time-consistent optimal
investment and reinsurance problem for mean-variance insurers when considering both
stochastic interest rate and stochastic volatility in the financial market. Furthermore, in
order to attract more people to participate in the insurance business and achieve a win–win
situation for the policyholder and the insurer, an insurance company has launched dividend
insurance products. De Finetti [9] proposed a barrier dividend strategy in the insurance
risk model to optimize the surplus in the insurance portfolio in 1957. Since then, scholars
have studied the dividend problem on various risk models, including [10–12]. Wan [13]
studied the dividend payments and ruin problems in a perturbed risk model by a barrier
dividend strategy, but the investment was not considered in that paper. Yang et al. [14]
investigated the dual Lévy process with a threshold under Parisian ruin.

In this paper, we consider a compound risk model with diffusion and the jump-
diffusion process in risky assets. Moreover, we allow an insurance company to make both
risk-free and risky investments. Differently from references [1,2], the model studied in
this paper is more general and has a wider range of applications. Reference [3] only gives
examples in special cases, whereas we present numerical examples in general cases.

Table 1. The comparison table of relevant literature.

Research Paper
Risk Model

Sinc
Perturbation Risk-Free

Asset
Risky
Asset Dividend

Chen and Ou [1] X X X X
Wang et al. [2] X X
Lu and Li [3] X X X X
Li [4] X X
Rachev et al. [5] X X
Peng and Wang [6] X X
Ellanskaya and
Kabanov [7] X X
Matthias and
Hanspeter [12] X
Wan [13] X X
Yang et al. [14] X X
Zhuo et al. [23] X X X X
Chen et al. [15] X X
Our work X X X X X
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The second branch is to solve complex integro-differential equations with numerical
methods. As a closed-form solution of the equations is difficult to obtain, a numerical
method based on the sinc function is proposed. Hence, we adopt the sinc method in
this paper. There are many researchers who apply the sinc method to solve integro-
differential equations, since it was developed by Frank Stenger [16]. It is widely used
for solving a wide range of linear and nonlinear optimal control problems, nonlinear
boundary-value problems, ordinary differential and partial differential equations [23–26].
Its theoretical research can be referred to in [15,17–20]. Chen and Ou [1] made use of the
sinc method to solve the approximate solutions of the integro-differential equations for the
expected discounted dividend payments and the expected discounted penalty function.
Zhuo et al. [23] studied the expected discounted penalty function by the sinc method
when the inter-claim time follows a phase-type distribution. Chen et al. [15] considered
second-order integro-differential equations satisfied by the expected discounted dividend
payments through the sinc-collocation method. Our work develops the sinc numerical
method and uses it to calculate the value of the expected discounted dividend payments
and the expected discounted penalty function. On the basis of previous articles, we analyze
the error of sinc method and conclude that the error is within the controllable range.

The general content of this paper is as follows. In Section 3, we construct risk model.
In Section 4, integro-differential equations satisfied by the expected discounted dividend
payments and Gerber–Shiu function are derived. In Section 5, the approximate solutions
of integro-differential equations are obtained through sinc numerical method. Then, we
find that the error is controllable through error analysis. In Section 6, we give some specific
numerical examples to illustrate how the investment proportion, the diffusion coefficient
and positive jump affect the expected discounted dividend payments and ruin probability.
Finally, discussion and conclusions are given.

3. The Model

Let (Ω, F , F, P) be a complete probability measure space which contains all processes
and random variables. Let Ft be right-continuous function and P be complete. We suppose
that the surplus process {X(t)}t≥0 of an insurance company evolves as the following
perturbed risk model:

X(t) = x + c1t− S1(t) + σsW1(t), t ≥ 0 , (1)

where x ≥ 0 is the value of initial surplus and c1 is the positive fixed premium income rate.

The aggregate claims process S1(t) =
N(t)
∑

i=1
Yi, where {N(t)}t≥0 is a homogeneous Poisson

process with rate τ > 0. We define N(t) = sup{k : T1 + T2 + · · ·+ Tk ≤ t}, where {Ti}∞
i=1

denote inter-claim times that are independent and identically distributed; they are mutually
independent. {Yi}∞

i=1 are non-negative independent random variables, and Yi represents
the amount of the ith claim with the common distribution function FY and density function
fY. {W1(t)}t≥0 is standard Brownian motion, and σs is a positive constant representing the
diffusion coefficient.

With the development and perfection of the insurance industry, insurance com-
panies invest their funds in the hope of earning profits. Gambrah and Pirvu [27] and
Sukono et al. [28] mentioned in their articles that investment is a commitment to some
funds or other resources at this time. The goal of investors is to obtain relatively large
profits with possibly small risk. In order to obtain more profits and resist risks, insurance
companies generally make portfolio investments. There are two kinds of assets (risk-free
assets and risky assets) in the financial market. Suppose that an insurance company wants
to invest its surplus in two different assets in a certain proportion. The differential equation
satisfied by the risk-free assets price {L(t)}t≥0 is

dL(t) = aL(t)dt, (2)
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where a > 0 is the portion of interest invested in a risk-free asset. In addition, the insurer
can invest its surplus in the risk market satisfied by a geometric Lévy process. The price
process {M(t)}t≥0 of a risky asset satisfies

M(t) = e
rt+σdW2(t)+

G(t)
∑

i=1
Zi

, (3)

where r (r > 0) is the expected instantaneous rate of return of the risky asset and σd (σd > 0)
represents the volatility in the price of a risky asset. {W2(t)}t≥0 is a standard Brownian
motion. We assume that {Zi, i = 1, 2, · · · } are random variables whose sequences are
independent and identically distributed, following a common distribution with c.d.f. FZ(·)
and p.d.f. fZ(·). {G(t)}t≥0 is a sequence of a Poisson process with rate µ; we define
G(t) = sup{k : H1 + H2 + · · ·+ Hk ≤ t}, where {Hi}∞

i=1 are independent and identically
distributed inter-jump time series that follow the common exponential distribution.

In order to describe the risky asset process more accurately, the price process (3)
also satisfies

dM(t)
M(t)

= (r +
1
2

σ2
d )dt + σddW2(t) + dS2(t), (4)

where S2(t) =
G(t)
∑

i=1
(eZi − 1). In addition, {Yi}∞

i=1, {Zi, i = 1, 2, · · · }, {N(t)}t≥0, {G(t)}t≥0

and {W2(t)}t≥0 are mutually independent.
A jump-diffusion risk model was extensively studied in financial market. Kou [29]

considered the jump in the diffusion risk model, and the jump sizes followed a double
exponential distribution. On the basis of Kou, Chi [30] studied the jump-diffusion model
with investment return in which the claim distribution was phase-type. Furthermore, the
jump-diffusion model applied to the risk asset process has been studied by Zhang and
Liang [31], He et al. [32] and Guo et al. [33].

Let θ represent the proportion of investment a risky asset, where 0 < θ < 1. Then,
the remaining proportion 1− θ is invested in risk-free assets. Thus, the surplus process
changes into

dX(t) = θX(t−)dM(t)
M(t)

+ (1− θ)X(t−)dL(t)
L(t)

+ c1dt− dS1(t) + σsdW1(t). (5)

In this paper, we study the risk model (5) with the threshold dividend strategy. Let
b (b > 0) be the dividend boundary. If the surplus is more than b, the dividends are paid
at a constant rate ι (0 < ι ≤ c1); on the contrary, if the surplus level is lower than b, the
dividends are not paid. Under this dividend strategy, the surplus process {Xb(t)}t≥0 can
be rewritten as

dXb(t)

=


θXb(t−)

dM(t)
M(t)

+ (1− θ)Xb(t−)
dL(t)
L(t)

+ c1dt− dS1(t) + σsdW1(t), Xb(t−) < b,

θXb(t−)
dM(t)
M(t)

+ (1− θ)Xb(t−)
dL(t)
L(t)

+ c2dt− dS1(t) + σsdW1(t), Xb(t−) ≥ b
(6)

=


σsdW1(t) + θσdXb(t−)dW2(t) + (β∗Xb(t−) + c1)dt + qXb(t−)dS2(t)− dS1(t), Xb(t−) < b,

σsdW1(t) + θσdXb(t−)dW2(t) + (β∗Xb(t−) + c2)dt + qXb(t−)dS2(t)− dS1(t), Xb(t−) ≥ b,

where β∗ = (r +
1
2

σ2
d )θ + (1− θ)a, and the net profit condition is c2 = c1 − ι > τE(Y1).
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Let D(t) denote the cumulative dividend payments up to time t and α > 0 be the
discount factor. Then,

Dx,b =
∫ Tb

0
e−αtdD(t) = ι

∫ Tb

0
e−αt I(Xb(t) > b)dt

is the current value of all dividends up to the moment Tb, where Tb = inf{t : Xb(t) ≤ 0}
indicates the moment of ruin and I(·) is the indicator function. It is clear that

0 < Dx,b ≤
ι

α
. (7)

For x ≥ 0, let V(x; b) express the expectation of the dividends’ current value of Dx,b.
In this paper, we do not distinguish between the symbols V(x; b) and Vb

x :

Vb
x = E[Dx,b|Xb(0) = x]. (8)

We denote the set of all dividend strategies related to b by D , and find the optimal dividend
threshold b∗ satisfying Vb∗

x = sup
b∈D

Vb
x .

Under the model (6), the expected discounted penalty function (Gerber+-Shiu func-
tion) is

Φb
x = E

[
e−αTb ω(Xb(Tb−), |Xb(Tb)|)I(Tb < ∞)|Xb(0) = x

]
, (9)

where ω(·, ·) is a nonnegative function and Xb(Tb−) denotes the surplus immediately before
ruin. |Xb(Tb)| is the deficit at ruin. α > 0 is the discounted factor which can be viewed as
the argument for the Laplace transform of Tb or an interest force for the calculation of the
present value of the penalty. In particular, if α = 0 and ω(0, 0) = 1, Φb

x is converted to the
ruin probability ψb

x = P(Tb < ∞|Xb(0) = x).

4. Integro-Differential Equations

4.1. Integro-Differential Equations for Vb
x

In this subsection, we derive the integro-differential equations satisfied by the expected
discounted dividend payments Vb

x . The expression of Vb
x is different when surplus x takes

different ranges. For convenience, we write Vb
1 (x) for 0 ≤ x ≤ b and Vb

2 (x) for b < x < +∞.
The following theorem provides integro-differential equations for the function Vb

x .

Theorem 1. For 0 ≤ x ≤ b, Vb
x satisfies the following integro-differential equation:

1
2
(σ2

s + θ2x2σ2
d )(V

b
1 )
′′(x) + (β∗x + c1)(Vb

1 )
′(x)− (τ + α + µ)Vb

1 (x)

+ τ
∫ x

0
Vb

1 (x− y)d fY(y) + µ
∫ ln θx+b−x

θx

−∞
Vb

1 (x + θx(ez − 1))dFZ(z) (10)

+ µ
∫ +∞

ln θx+b−x
θx

Vb
2 (x + θx(ez − 1))dFZ(z) = 0,
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and for b < x < +∞, Vb
x satisfies the following integro-differential equation:

1
2
(σ2

s + θ2x2σ2
d )(V

b
2 )
′′(x) + (β∗x + c2)(Vb

2 )
′(x)− (τ + α + µ)Vb

2 (x)

+ τ

[∫ x−b

0
Vb

2 (x− y)d fY(y) +
∫ x

x−b
Vb

1 (x− y)d fY(y)
]

+ µI
(

x <
b

1− θ

) ∫ ln θx+b−x
θx

−∞
Vb

1 (x + θx(ez − 1))dFZ(z) (11)

+ µI
(

x <
b

1− θ

) ∫ +∞

ln θx+b−x
θx

Vb
2 (x + θx(ez − 1))dFZ(z)

+ µI
(

x ≥ b
1− θ

) ∫ +∞

−∞
Vb

2 (x + θx(ez − 1))dFZ(z) + ι = 0,

the boundary conditions are

Vb
1 (0) = 0, lim

x→+∞
Vb

2 (x) =
ι

α
. (12)

Proof. When considering a small interval from 0 to dt and discussing the time of the
first claim, P(H1 > dt) = 1 − µdt + o(dt), P(H1 ≤ dt) = µdt + o(dt), P(T1 > dt) =
1− τdt + o(dt) and P(T1 ≤ dt) = τdt + o(dt). To avoid lengthy formulas, let

h1(t) = σsdW2(t) + θxσddW1(t) + (β∗x + c1)dt,

h2(t) = σsdW2(t) + θxσddW1(t) + (β∗x + c2)dt,

Vb
1 (Z1) = Vb

1 (x + h2(t) + θx(eZ1 − 1)),

Vb
2 (Z1) = Vb

2 (x + h2(t) + θx(eZ1 − 1)),

Q1(x) = ln
θx + b− x− h1(t)

θx
, Q2(x) = ln

θx + b− x− h2(t)
θx

.

For 0 ≤ x ≤ b, using the law of total expectation, we get

Vb
1 (x) = e−αdt

{
P(H1 > dt, T1 > dt)E[Vb

1 (x + h1(t))]
}

+ e−αdt
{

P(H1 > dt, T1 ≤ dt)E[Vb
1 (x + h1(t)−Y1)]

}
+ e−αdt

{
P(H1 ≤ dt, T1 > dt)E

[
E
[

Vb
1 (x + h1(t) + θx(eZ1 − 1))

∣∣∣Z1 ≤ Q1(x)
]

+E
[

Vb
2 (x + h1(t) + θx(eZ1 − 1))

∣∣∣Z1 > Q1(x)
]]}

= e−αdt{P(H1 > dt, T1 > dt)E[Vb
1 (x + h1(t))]}

+ e−αdt
{

P(H1 > dt, T1 ≤ dt)E
[∫ x+h1(t)−b

0
Vb

1 (x + h1(t)− y)d fY(y)
]}

(13)

+ e−αdt

{
P(H1 ≤ dt, T1 > dt)E

[ ∫ Q1(x)

−∞
Vb

1 (x + h1(t) + θx(eZ1 − 1))dFZ(z)

+
∫ +∞

Q1(x)
Vb

2 (x + h1(t) + θx(eZ1 − 1))dFZ(z)
]}

where V1(·; b) is abbreviated as Vb
1 (·), and so is V2(·; b). By Itô formula, we have

E[Vb
1 (x + h1(t))] = E[Vb

1 (x) + (Vb
1 )
′(x)h1(t) +

1
2
(Vb

1 )
′′(x)(h1(t))2]. (14)
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By substituting (14) into Equation (13), subtracting Vb
1 from both sides of Equation (13),

dividing by dt and then letting dt→ 0, we get the integro-differential equation, Equation (10).
If b < x < +∞,

Vb
2 (x) = e−αdt

{
ιdt + P(H1 > dt, T1 > dt)E

[
Vb

2 (x + h2(t))
]}

+ e−αdt
{

P(H1 > dt, T1 ≤ dt)E
[

E
[
Vb

2 (x + h2(t)−Y1)|Y1 ∈ (0, x + h2(t)− b)
]

+ E
[
Vb

1 (x + h2(t)−Y1)|Y1 ∈ (x + h2(t)− b,+∞)
]]}

+ e−αdt
{

P(H1 ≤ dt, T1 > dt)E
[

E
[
Vb

2 (Z1)
∣∣∣Z1 > Q2(x)

]]}
+ e−αdt

{
P(H1 ≤ dt, T1 > dt)E

[
E
[
Vb

1 (Z1)
∣∣∣Z1 < Q2(x)

]]}
= e−αdt

{
ιdt + P(H1 > dt, T1 > dt)E

[
Vb

1 (x + h2(t))
]}

+ e−αdt

{
P(H1 > dt, T1 ≤ dt)E

[∫ x+h2(t)−b

0
Vb

2 (x + h2(t)− y)d fY(y)

]}

+ e−αdt

{
P(H1 > dt, T1 ≤ dt)E

[∫ +∞

x+h2(t)−b
Vb

1 (x + h2(t)− y)d fY(y)

]}

+ e−αdt

{
P(H1 ≤ dt, T1 > dt)I

(
x <

b
1− θ

)
E

[∫ Q2(x)

−∞
Vb

1 (Z1)dFZ(z)

]}

+ e−αdt

{
P(H1 ≤ dt, T1 > dt)I

(
x <

b
1− θ

)
E

[∫ +∞

Q2(x)
Vb

2 (Z1)dFZ(z)

]}

+ e−αdt

{
P(H1 ≤ dt, T1 > dt)I

(
x ≥ b

1− θ

)
E

[∫ +∞

−∞
Vb

2 (Z1)dFZ(z)

]}

where by Itô formula, we have

E[Vb
2 (x + h2(t))] = E[Vb

2 (x) + (Vb
2 )
′(x)h2(t) +

1
2
(Vb

2 )
′′(x)(h2(t))2].

By the similar derivation method of Equation (10) we get the integro-differential
equation, Equation (11).

Moreover, when X0 = 0, ruin will occur immediately and there will be no dividend.
When X0 tends to ∞, ruin does not occur and dividends are distributed at the rate ι per
unit time. Thus, we obtain the conditions (12). Above is the proof of Theorem 1.

Remark 1. Due to the smooth continuity of the expected discounted dividend payment function,
we obtain Vb

1 (b−) = (Vb
2 )
′′(b+) and (Vb

1 )
′(b−) = (Vb

2 )
′(b+).

Remark 2. If diffusion coefficient σs = 0, Theorem 1 in this paper is consistent with the result of
Theorem 1 in Chen and Ou [1].

4.2. Integro-Differential Equations for Φb
x

Apparently, Φb
x is also expressed differently depending on the initial surplus x and

the barrier level b. For convenience, we denote Φb
x = Φb

1(x) if 0 ≤ x ≤ b and Φb
x = Φb

2(x)
if b < x < +∞. We get the following theorem by the same method as described in the
previous subsection.

Theorem 2. For 0 ≤ x ≤ b, Φb
1(x) satisfies the integro-differential equation
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1
2
(σ2

s + θ2x2σ2
d )(Φ

b
1)
′′(x) + (β∗x + c1)(Φ

b
1)
′(x)− (τ + α + µ)Φb

1(x)

+ τ

[∫ x

0
Φb

1(x− y)d fY(y)+
∫ +∞

x
ω(x, y− x)d fY(y)

]
(15)

+ µ

[∫ ln θx+b−x
θx

−∞
Φb

1(x + θx(ez − 1))dFZ(z) +
∫ +∞

ln θx+b−x
θx

Φb
2(x + θx(ez − 1))dFZ(z)

]
= 0,

and for b < x < +∞, Φb
2(x) satisfies the integro-differential equation

1
2
(σ2

s + θ2x2σ2
d )(Φ

b
2)
′′(x) + (β∗x + c2)(Φ

b
2)
′(x)− (τ + α)Φb

2(x)

+ τ

[∫ x−b

0
Φb

2(x− y)d fY(y) +
∫ x−b

0
Φb

1(x− y)d fY(y) +
∫ +∞

x
ω(x, y− x)d fY(y)

]
+ µI

(
x <

b
1− θ

) ∫ ln θx+b−x
θx

−∞
Φb

1(x + θx(ez − 1))dFZ(z) (16)

+ µI
(

x <
b

1− θ

) ∫ +∞

ln θx+b−x
θx

Φb
2(x + θx(ez − 1))dFZ(z)

+ µI
(

x ≥ b
1− θ

) ∫ +∞

−∞
Φb

2(x + θx(ez − 1))dFZ(z) = 0.

The boundary conditions are

Φb
1(0) = ω(0, 0), (17)

lim
x→+∞

Φb
2(x) = 0. (18)

Proof. Since the derivation process of Formulas (15) and (16) is similar to that of Formu-
las (10) and (11), it will not be repeated here. When the initial surplus x = 0, it goes ruin
immediately, and then Tb = 0. Here, the instantaneous surplus and deficit before ruin are 0;
thus, the condition (17) is met. When x → +∞, ruin will not happen; hence, Tb = ∞ and
condition (18) is also satisfied.

Remark 3. Due to the smooth continuity of the expected discounted penalty function, we obtain
Φb

1(b−) = Φb
2(b+) and (Φb

1)
′(b−) = (Φ2

b)′(b+).

5. Sinc Asymptotic Numerical Analysis

Due to the exact solutions of integro-differential Equations (10), (11), (15) and (16)
being not easy to find, we provide a numerical method based on the sinc function in this
section. Stenger [16] and Lund and Bowers [34] developed sinc methods. In applied physics
and engineering, various numerical methods based on the sinc approximation are becoming
more widely acknowledged as effective tools for problem solving [16]. The books [35,36]
give excellent overviews of the existing Sinc methods that are used to solve ODEs and
PDEs. The reason for using sinc function approximation is that this approximation yields
an effective and fast convergent scheme for solving this problem and avoids the instability
problem commonly encountered in some difference methods [37].

5.1. Sinc Function Preliminaries

We first introduce the Cardinal function C(ζ, m), which is the sinc extension of function
ζ, to describe the sinc methods. The cardinal function is defined as

C(ζ, m)(g) = ∑
k∈N

ζ(km)sin
{ g

m
− k
}

, −∞ < g < +∞. (19)
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where m > 0 is the step size, and the function sinc is defined on the whole real field R by

sinc(g) =


sin(πg)
(πg)

, g 6= 0,

1, g = 0.

For any h > 0, the translation sinc functions with equally spaced nodes are repre-
sented as

f (j, m)(g) = sinc
(

g− jm
m

)
, j = 0,±1,±2, · · · .

When g takes the interpolating points km, the above formula is converted to

f (j, m)(km) = α
(0)
jk =

{
0, k 6= j,
1, k = j.

Definition 1 ([20] p. 73). On the real number field R, let δ denote a smooth one-to-one mapping
from Γ(∈ C) to R, with end-qoint s1 and s2 onto R, such that δ(s1) = −∞ and δ(s2) = +∞. Let
ψ = δ−1 denote the inverse map, so that

Γ = {g ∈ C : g = ψ(u), u ∈ R}. (20)

We give δ, ψ and a positive number h, and define the sinc points xk as

xk = xk(m) = ψ(km), k = 0,±1,±2, · · · ,

and a function ν

ν(g) = eδ(x).

Let α̃∗, β̃∗ and d be in R+, and Lα̃∗ ,β̃∗ ,d(δ) is the set of all functions ζ defined on Γ. Here,

ζ(g) =

{
O(|ν(g)|α̃∗), g→ s1,
O(|ν(g)|−β̃∗), g→ s2,

and the Fourier transform {ζ ◦ δ−1}∼ satisfies the relation

{ζ ◦ δ−1}∼(ι) = o(e−d|ι|),

for all ζ ∈ R, where α̃∗, β̃∗ ∈ (0, 1] and d ∈ (0, π). Another family of functions are Mα̃∗ ,β̃∗ ,d(δ)

defined on Γ, such that f = ζ − Lζ ∈ Lα̃∗ ,β̃∗ ,d(δ) and where Lζ is defined by

Lζ(x) =
ζ(s1) + ν(x)ζ(s2)

1 + ν(x)
.

Let N denote a positive integer, and integers q and p are defined as

q =

[
β̃∗N
α̃∗

]
, p = q + N + 1.

A diagonal matrix Dp(ζ) and an operator Vp are defined as follows:

Dp(ζ) = diag[ζ(x−q), ζ(x−q+1), . . . , ζ(xN)],

Vp(ζ) = (ζ(x−q), ζ(x−q+1), . . . , ζ(xN))
T ,

where [·] represents the maximum integer, ζ is a function defined on (0,+∞) and T means transpose. Set
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m =

(
πd

β̃∗N

) 1
2
,

`j = f (j, m) ◦ δ, j = −q,−q + 1, · · · , N,

ηj = `j j = −q + 1,−q + 2, · · · , N − 1,

η−q =
1

1 + ν
−

N

∑
j=−q+1

`j

1 + ejm ,

ηN =
ν

1 + ν
−

N−1

∑
j=−q

ejm`j

1 + ejm ,

η∗−q = (1 + e−qm)

[
1

1 + ν
−

N

∑
j=−q+1

`j

1 + ejm

]
,

η∗N = (1 + e−Nm)

[
ν

1 + ν
−

N−1

∑
j=−q

ejm`j

1 + ejm

]
,

Θp = (η−q, η−q+1, · · · , ηN),

Θ∗p = (η∗−q, η−q+1 · · · , ηq−1, η∗N).

Let

α
(−1)
kj =

1
2
+
∫ k−j

0

sin(πt)
πt

dt,

then we denote a matrix I(−1) = [α
(−1)
kj ] whose elements in row k and column j are given by α

(−1)
kj .

Theorem 3 ([34] p. 106). Let δ be a conformal one-to-one conformal transformation defined on Γ. Then,

α
(0)
jk = [ f (j, m) ◦ δ(x)]|x=xk =

{
0, k 6= j,
1, k = j.

α
(1)
jk = m

d
dδ

[ f (j, m) ◦ δ(x)]|x=xk =

{
(−1)k−j

k−j , k 6= j,
0, k = j.

and

α
(2)
jk = m2 d2

dδ2 [ f (j, m) ◦ δ(x)]|x=xk =


−2(−1)k−j

(k−j)2 , k 6= j,

−π2

3 , k = j.
(21)

5.2. Numerical Solutions of the Expected Discounted Dividend Payments

To construct an approximate estimate on the interval (0,+∞), let δ(x) = log x. Then,
we define the one to one mapping of R+ → R; thus, ν(x) = eδ(x) = x. For all m > 0, the
sinc grid points xk (k = 0,±1,±2, . . . ) take the form

xk = δ−1(km) = ekm. (22)

Based on the sinc method, we get the composite translated sinc functions

Sj(x) = f (j, m) ◦ δ(x) = sinc
(

δ(x)− jm
m

)
, (23)

on the interval (0,+∞) for x ∈ Γ.
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In order to apply the sinc numerical method step, we rearrange Equations (10) and (11)
into the following equation:

1
2
(σ2

s + θ2x2σ2
d )(V

b
x )
′′ + (β∗x + c1 − ιI(x > b))(Vb

x )
′ − (τ + α + µ)Vb

x

+ τ
∫ x

0
Vb(x− y) fY(y)dy + µ

∫ +∞

−∞
Vb(x + θx(ez − 1))FZ(z)dz + ιI(x > b) = 0. (24)

By letting w = x + θx(ez − 1) and using the convolution formula, we convert the
above equation into

1
2
(σ2

s + θ2x2σ2
d )(V

b
x )
′′ + (β∗x + c1 − ιI(x > b))(Vb

x )
′ − (τ + α + µ)Vb

x

+ τ
∫ x

0
Vb(y) fY(x− y)dy + µ

∫ +∞

(1−θ)x
Vb(w)FZ(ln

qx− x + w
θx

)
1

qx− x + w
dw

+ ιI(x > b) = 0, (25)

and furthermore, the boundary conditions here are consistent with Equation (12).
It can be seen from Definition 1 of sinc function preliminaries that

LVb
x =

Vb
s1
+ ν(x)Vb

s2

1 + ν(x)
,

where ν(u) = eδ(x). When s1 = 0 and s2 → ∞, set

R(x) = Vb
x − LVb

x = Vb
x −

x
1 + x

ι

α
, (26)

and then R(x) ∈ Lα̃∗ ,β̃∗ ,d(δ), so

Vb
x = R(x) +

x
1 + x

ι

α
, (27)

(Vb
x )
′ = R′(x) +

1

(1 + x)2
ι

α
, (28)

(Vb
x )
′′ = R′′(x)− 2

(1 + x)3
ι

α
. (29)

By replacing (27)–(29) in (25) and dividing both sides of (25) by
1
2
(σ2

s + θ2x2σ2
d ),

we have

R′′(x) + W1(x)R′(x) + W2(x)R(x) + τW3(x)
∫ x

0
fY(x− y)R(y)dy

+ µW3(x)
∫ +∞

(1−θ)x
Π(x, w)R(w)dw + U(x) = 0, (30)

furthermore,

R(0) = 0,

lim
x→∞

R(x) = 0,
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where

W1(x) =
2(β∗x + c1 − ιI(x > b))

σ2
s + θ2x2σ2

d
, W2(x) = −2(τ + α + µ)

σ2
s + θ2x2σ2

d
,

W3(x) =
2

σ2
s + θ2x2σ2

d
, Π(x, w) =

FZ(ln
qx−x+w

θx )

qx− x + w
,

U(x) =
2ιI(x > b)

σ2
s + θ2x2σ2

d
− 2ι

α(1 + x)3 +
ι

α(1 + x)2 W2(x) + τ
∫ x

0

ι

α

y
1 + y

W3(x) fY(x− y)dy

+ µ
∫ +∞

(1−θ)x

ι

α

w
1 + w

W3(x)Π(x, w)dw.

Then, by applying Theorems 1.5.13, 1.5.19 and 1.5.20 of [20], we obtain

∫ x

0
fY(x− y)R(y)dy ≈

N

∑
l=−q

N

∑
i=−q

ηi Ail Rl , (31)

∫ +∞

(1−θ)x
Π(x, w)R(w)dw ≈ m

N

∑
l=−q

N

∑
i=−q

ηiα
(−1)
li

Π(x, xl)

δ′(xl)
Rl , (32)

R(x) ≈ R̃(x) =
N

∑
l=−q

RlS(l, m) ◦ δ(x), (33)

where

A = XF(S)X−1 = hI−1Dp

(
1
ν′

)
,

where S is a diagonal matrix. A = [Aij] is a q + N + 1-dimensional square matrix. Rl
denotes an approximate estimate of R(xl), and δ(x) = ln x.

By substituting the integral terms of (31) and (32) into Equation (30), substituting x
with the sinc grid points xk (k = −q,−q+ 1, . . . , N) and then replacing (33) into (30), we get

R̃′′(xk) + W1(xk)R̃′(xk) + W2(xk)R̃(xk) + τW3(xk)
N

∑
l=−q

N

∑
i=−q

ηi(xk)Ail Rl

+ µmW3(xk)
N

∑
l=−q

N

∑
i=−q

ηi(xk)α
(−1)
li

Π(xk, xl)

δ′(xl)
Rl + U(xk) = 0, (34)

where

R̃(xk) =
N

∑
l=−q

Rl [S(l, m) ◦ δ(xk)] =
N

∑
l=−q

Rlα
(0)
lk , (35)

R̃′(xk) =
N

∑
l=−q

Rl [S(l, m) ◦ δ(xk)]
′ =

N

∑
l=−q

Rlδ
′(xk)m−1α

(1)
lk , (36)

R̃′′(xk) =
N

∑
l=−q

Rl [S(l, m) ◦ δ(xk)]
′′ =

N

∑
l=−q

Rl [δ
′′(xk)m−1α

(1)
lk + (δ′(xk))

2m−2α
(2)
lk ]. (37)

By replacing (35)–(37) in (34), the following equation is obtained:

N

∑
l=−q

{
δ′′(xk)α

(1)
lk m−1 + (δ′(xk))

2
α
(2)
lk m−2 + W1(xk)δ

′(xk)α
(1)
lk m−1 + W2(xk)α

(0)
lk

+ τW3(xk)
N

∑
i=−q

ηi(xk)Ail + µmW3(xk)
N

∑
i=−q

ηi(xk)α
(−1)
li

Π(xk, xl)

δ′(xl)

}
Rl = −U(xk). (38)
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By multiplying both sides of the above equation by m2

(δ′(xk))
2 , we have

N

∑
l=−q

{
α
(2)
lk + m

[
δ′′(xk)

(δ′(xk))
2 +

W1(xk)

δ′(xk)

]
α
(1)
lk + m2 W2(xk)

(δ′(xk))
2 α

(0)
lk

+ τ
W3(xk)m2

(δ′(xk))
2

N

∑
i=−q

ηi(xk)Ail + µ
W3(xk)m3

(δ′(xk))
2δ′(xl)

N

∑
i=−q

ηi(xk)α
(−1)
li Π(xk, xl)

}
Rl

= −m2U(xk)

(δ(xk))
2 . (39)

Since

α
(0)
lk = α

(0)
kl , α

(1)
lk = −α

(1)
kl , α

(2)
lk = α

(2)
kl ,

δ′′(xk)

(δ′(xk))
2 = −

(
1

δ′(xk)

)′
,

the results after transformation are as follows:
N

∑
l=−q

{
α
(2)
kl + m

[(
1

δ′(xk)

)′
− W1(xk)

δ′(xk)

]
α
(1)
kl + m2 W2(xk)

(δ′(xk))2 α
(0)
kl

+ τ
W3(xk)m2

(δ′(xk))
2

N

∑
i=−q

ηi(xk)Ail + µ
W3(xk)m3

(δ′(xk))
2δ′(xl)

N

∑
i=−q

ηi(xk)α
(−1)
li Π(xk, xl)

}
Rl

= −m2U(xk)

(δ(xk))
2 . (40)

Set I(s) = [α
(s)
kl ], s = −1, 0, 1, 2, where α

(s)
kl (defined by Equation (3)) are the elements

in row k and columns l. Here, I(s) is square matrices of order (q + N + 1)× (q + N + 1).
Equation (40) can be rewritten in matrix form, such as

C1R = U, (41)

where R = [Rl ]
T , l = −q,−q + 1, . . . , N,

U =

[
−m2 U(x−q)

(δ′(x−q))2 . . . ,−m2 U(xN)

(δ′(xN))2

]
,

C1 = I(2) + mDs

((
1
δ

)′
− µ1

δ′

)
I(1) + m2Ds

(
W2

(δ′)2

)
I(0) + m2τDs

(
W3

(δ′)

2
)

Θ∗p A

+ m3µDs

(
W3

(δ′)2

)
Ωs[I(−1)]TΠ.

Equation (41) is q + N + 1-dimensional, where R is the coefficient matrix, so R can be
obtained by solving Equation (41). Thus, the approximate solutions of U(x) are obtained
from Equation (33), and according to (26), the expression of the numerical solutions of
Vb

x are

Vb
x ≈ Ũ(x) +

x
1 + x

ι

α
=

N

∑
l=−q

RlS(l, m) ◦ δ(x) +
x

1 + x
ι

α
. (42)
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We denote the sinc approximation error of the expected discounted dividend pay-
ments by

errV = Vb
x −

{
N

∑
l=−q

RlS(l, m) ◦ δ(x) +
x

1 + x
ι

α
δ

}
.

5.3. Numerical Solutions of the Expected Discounted Penalty Function

Similarly, by rearranging the integro-differential Equations (15) and (16) as follows
1
2
(σ2

s + θ2x2σ2
d )(Φ

b
x)
′′ + (β∗x + c1 − ιI(x > b))(Φb

x)
′ − (τ + α)Φb

x

+ τ
∫ x

0
Φb(x− y) fY(y)dy + τ

∫ +∞

x
ω(x, y− x) fY(y)dy

+ µ
∫ +∞

−∞
Φb(x + θx(ez − 1))FZ(z)dz = 0, (43)

and by applying the convolution formula, the above equation can be written as
1
2
(σ2

s + θ2x2σ2
d )(Φ

b
x)
′′ + (β∗x + c1 − ιI(x > b))(Φb

x)
′ − (τ + α)Φb

x

+ τ
∫ x

0
Φb(y) fY(x− y)dy + τ

∫ +∞

x
ω(x, y− x) fY(y)dy

+ µ
∫ +∞

−∞
Φb(x + θx(ez − 1))FZ(z)dz = 0, (44)

where the boundary conditions obtained are the same as Equations (17) and (18).
Sinc function preliminaries, Definition 1, also apply to the discounted expected

penalty function

LΦb
x =

Φb
s1
+ ν(x)Φb

s2

1 + ν(x)
,

where ν(x) = eδ(x). When s1 = 0, s2 → ∞, set

R̄(x) = Φb
x − LΦb

x = Φb
x −

1
1 + x

,

and then R̄(x) ∈ Lα̃∗ ,β̃∗ ,d(Φ) and satisfies

R̄′′(x) + W1(x)R̄′(x) + W2(x)R̄(x) + τ
∫ x

0
fY(x− y)R̄(y)dy

+ µW3(x)
∫ +∞

(1−θ)x
Π(x, w)R̄(w)dw + Ū(x) = 0, (45)

and the boundary conditions are

R̄(0) = 0,

lim
x→+∞

R̄(x) = 0,

where
Ū(x) =2(1 + x)−3 −W1(x)(1 + x)−2 + W2(x)(1 + x)−1

+ τW3(x)
∫ x

0

1
1 + y

fY(x− y)dy + µW3(x)
∫ +∞

(1−θ)x

Π(x, w)

w + 1
dw

+
2τ

(σ2
s + θ2x2σ2

d )

∫ x

0
ω(x, y− x)d fY(y). (46)
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By a similar derivation to Equation (41), we get

C1R̄ = Ū, (47)

where R̄ = [R̄l ]
T , l = −q, . . . , N; Ūl denotes an approximate value of Ūl(xl), so we achieve

Ū = [−m2 Ū(x−q)

(Φ′(x−q))2 . . . ,−m2 Ū(xN)

(Φ′(xN))2 ]. (48)

Therefore, we obtain the approximate solutions of Φb
x

Φb
x ≈ R̄(x) +

1
1 + x

=
N

∑
l=−q

R̄lS(l, m)◦δ(x) +
1

1 + x
. (49)

We denote the sinc approximation error of the expected discounted penalty function by

errψ = Φb
x −

{
N

∑
l=−q

R̄lS(l, m)◦δ(x) +
1

1 + x

}
.

5.4. Error Analysis

By dividing 1
2 (σ

2
s + θ2x2σ2

d ) on both sides of Equation (24), we obtain the following equa-
tion:

(Vb
x )
′′ + W1(x)(Vb

x )
′ + W2(x)Vb

x + τW3(x)
∫ x

0
Vb

x−y fY(y)dy

+ W3(x)
[
µ
∫ +∞

−∞
Vb(x + θx(ez − 1))FZ(z)dz + ιI(x > b)

]
= 0. (50)

For convenience, denote Λ(x) = W3(x)µ
∫ +∞
−∞ Vb(x + θx(ez − 1))FZ(z)dz+W3(x)ιI(x >

b)] + W3(x)τ
∫ x

0 Vb(x− y) fY(y)dy, so (50) corresponds to Equation (4.12) in paper [38].

Let Θ∞(D) denote the family function of all functions g bounded in D , and they are
analytic and uniform.

Assumption 1. We assume that W1/ν′, 1/(ν′)′ and W2/(ν′)2 belong to Θ∞(D) integro-differential
Equation (50) such that Λ/(ν′)2 ∈ Lβ̃∗(D) (β̃∗ ∈ (0, 1]) and Equation (50) has a unique solution
V ∈ Lβ̃∗(D).

Theorem 4. If Assumption 1 holds, let V(x) represent the exact solutions of (50) and VN(x) be the
approximate solutions defined as in (42). Noting that the vector R = (R−M, R−M+1, · · · , RN)

T

are the exact solutions obtained through the system of Equation (41). Therefore, there exists a
constant c̃ independent of N, such that

sup
x∈Γ
|V(x)−VN(x)| ≤ c̃N5/2e−(πdβ̃∗N)1/2

+ M. (51)

Proof. Let vN be defined by

vN(x) =
N

∑
k=−M

V(uk)S(k, h) ◦ ν(x). (52)

Then, by the triangle inequality theorem, we have

|V(x)−VN(x)| ≤ |V(x)−vN(x)|+ |vN(x)−VN(x)|. (53)
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Since V ∈ Lβ̃∗(D), according to Theorem 4.2.5 of [16], there is a constant c̄, which is
independent of N, such that

sup
x∈Γ

|V(x)−vN(x)| ≤ c̄N1/2e−(πdβ̃∗N)1/2
+ M. (54)

The second part on the right-side of the inequality (53) satisfies

|vN(x)−VN(x)| =
∣∣∣∣∣ N

∑
j=−q

[
V(xj)− Rj

]
S(j, h) ◦ ν(x)− x

1 + x
ι

α

∣∣∣∣∣
≤

N

∑
j=−q

∣∣V(xj)− Rj
∣∣|S(j, h) ◦ ν(x)|+ x

1 + x
ι

α
(55)

≤
(

N

∑
j=−q

∣∣V(xj)− Rj
∣∣2)1/2( N

∑
j=−q
|S(j, h) ◦ ν(x)|2

)1/2

+ M

≤
(

N

∑
j=−q

∣∣V(xj)− Rj
∣∣2)1/2

+ M = ‖V− R‖+ M,

where V = (V(x−q), V(x−q+1), · · · , V(xN))
T , R = (R−q, R−q+1, · · · , RN)

T , and it is known
that in real life an insurance company’s dividend is limited, so we suppose that 0 < ι

α ≤ M.
Similarly to Theorem 7.2.6 of [16], if x ∈ Γ (defined by (20)), then ∑k∈Z |S(k, h) ◦φ(x)|2 =

1, and from (41) we get

‖V− R‖ = ‖C1
−1C1(V− R)‖

= ‖C1
−1[C1V−U]‖

≤
∥∥∥C1

−1
∥∥∥‖C1V−U‖

≤ c̄N5/2e−(πdβ̃∗N)1/2
, (56)

where C1 is an invertible matrix defined in (41) and c̄ is a constant independent of N.
Therefore, formula (51) can be obtained by combining Formulas (52)–(56).

Remark 4. To solve the expected discounted dividend and expected discounted penalty functions,
we can also use the COS (Fourier-cosine) method. This method is also currently applied in insurance
actuarial science. Xie and Zhang [39] applied the COS numerical method to compute the finite-time
expected discounted dividend payments prior to ruin, along with the finite-time expected discounted
penalty function. For details, see Zhang [40] and Wang et al. [41].

6. Examples

In this section, we use the sinc approximation method to calculate the expected
discounted dividend payments and ruin probability. Consider the cases when the claim
sizes are an exponential—a mixture of two exponential distributions and the lognormal
distribution. It is worth mentioning that our numerical examples are implemented with
the help of MATLAB R2018a software on a computer with 2.30 GHz with 4 GB of memory.

6.1. The Exponential Distribution Case

We assume that fY(y) follows an exponential distribution. All examples in this subsec-
tion are solved under the assumption that fY(y) is given by

fY(y) =
{

λe−λy, y > 0,
0, y ≤ 0.
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and the probability density function fZ(z) of the jump-diffusion process is

fZ(z) = γ1k1e−k1z I(z ≥ 0) + γ2k2ek2z I(z < 0),

where γ1 represents the probability of positive jump in a risky asset. Thus,

fY(x− y) =
{

λe−λ(x−y), y < x,
0, y ≥ x.

Π(x, w) =



γ2k2

(
θx−x+w

θx

)k2 1
θx− x + w

, (1− θ)x < w < x,

γ1k1

(
θx−x+w

θx

)−k1 1
θx− x + w

, w ≥ x,

0, w ≤ (1− θ)x.

The following examples are discussed under τ = 0.5, σd = 0.2, α = a = 0.06, r =
0.5, c = 0.4, ι = 0.1, λ = 8, k1 = 4, k2 = 3 and the fixed dividend payments level b = 5.

Example 1. Figures 2 and 3 show the variation curves of V5
x for u ∈ (0, 10) under σs = 0.2

and σs = 0.8. Comparing Figure 2 with Figure 3, we found that the curves in Figure 3 change
significantly when the initial surplus is small. From Figure 2, when comparing the two curves of
investment proportion θ = 0.1 and θ = 0.9, the curve of θ = 0.9 fluctuates greatly.
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4 , β̃∗ = 1
4 , d = π

4 and σs = 0.2.
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Let σs = 0.8 and θ = 0.9. We fixed the initial surplus x to seek the optimal dividend
level b∗ and obtained the following results. It can be seen that Vb(0.25) takes the maximum
value at b = 0.35 in Table 2, so the optimal b∗ is around 0.35.

Table 2. The values of Vb(0.25) when b ∈ (0, 0.5).

b = 0.05 b = 0.1 b = 0.15 b = 0.2 b = 0.25

Vb(0.25) 0.2208 0.2210 0.2211 0.2213 0.2215

b = 0.3 b = 0.35 b = 0.4 b = 0.45 b = 0.5

Vb(0.25) 0.2216 0.2217 0.2211 0.2209 0.2207

Example 2. The ruin probability ψb
x = P(Tb < ∞|Xb(0) = x), which can be obtained from

Equation (9) by letting α = 0, and ω(·, ·) = 1 is a special case of the discounted penalty function.
In this case,

Ū(x) = 2(1 + x)−3 −W1(x)(1 + x)−2 + W2(x)(1 + x)−1 + τW3(x)
∫ x

0

1
1 + y

λe−λ(x−y)dy

+
2µ

(σ2
s + θ2x2σ2

d )

∫ x

(1−θ)x

γ2k2

w + 1

(
qx− x + w

qx

)k2 1
qx− x + w

dw

+
2µ

(σ2
s + θ2x2σ2

d )

∫ +∞

x

γ1k1

w + 1

(
qx− x + w

qx

)−k1 1
qx− x + w

dw +
2τ

(σ2
s + θ2x2σ2

d )
e−λx.

For x ∈ (0, 10), Table 3 shows the estimated values of ψ5
x for different x. We observed

that the ruin probability changes weakly with the increase in x.

Table 3. Ruin probability ψ5
x for parameters σs = 0.8, θ = 0.1, σs = 0.2, α̃∗ = 1

4 , β̃∗ = 1
4 , d = π

4 and
different values of N.

N x = 0.1 x = 0.5 x = 0.8 x = 1.5 x = 3 x = 5 x = 7 x = 10

10 0.90414 0.66493 0.55286 0.41320 0.34186 0.32426 0.30654 0.27845
15 0.89749 0.66212 0.55084 0.40922 0.28676 0.21566 0.17488 0.13788
20 0.89998 0.66256 0.54823 0.41337 0.26072 0.17699 0.15013 0.12781
25 0.89946 0.66333 0.54786 0.41336 0.25838 0.18303 0.15359 0.12053

Example 3. Figures 4 and 5 show the change curves of ψ5
x for x ∈ (0, 10) under σs = 0.2 and

σs = 0.8. According to Figure 4, the ruin probability is small when the investment proportion is
large. Plus, the numerical value of positive jump has no obvious effect on the changes in curves ψ5

x.
From Figures 4 and 5, the ruin probability also decreases when the diffusion coefficient σs increases
from 0.2 to 0.8.
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Figure 5. Curves of ψ5
x when N = 10, α̃∗ = 1

4 , β̃∗ = 1
4 , d = π

4 and σs = 0.8.

6.2. The Case of a Mixture of Two Exponential Distributions

We assume that fY(y) follows a mixture of two exponential distributions. All examples
in this subsection are solved under the assumption that fY(y) is given by

fY(y) =
{

ϑ1ρ1e−ρ1y + ϑ2ρ2e−ρ2y, y > 0,
0, y ≤ 0.

where ϑ1ϑ2 > 0, ϑ1 + ϑ2 = 1; thus,

fY(x− y) =
{

ϑ1ρ1e−ρ1(x−y) + ϑ2ρ2e−ρ2(x−y), y < x,
0, y ≥ x.

The following examples are discussed under τ = 1, σd = 1, α = a = 0.06, r =
0.5, c = 0.4, ι = 0.1, ϑ1 = 3, ϑ2 = 2, ρ1 = 3, ρ2 = 3, k1 = 4, k2 = 3 and the fixed dividend
payments level b = 5.

Example 4. Figures 6 and 7 describe the curves of Vb
x for x ∈ (0, 10) when σs = 0.2 and σs = 0.8.

It can be observed that the curves fluctuate when the perturbed term coefficient σs = 0.2 changes
greatly. If γ = 0.2, the discounted dividend payments curves reach the maximum value when x = 5
and then decrease slowly and tend to be stable. When x is large enough, Vb

x for θ = 0.9 is larger
than for θ = 0.1.
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4 , d = π

4 and σs = 0.8.

Let σs = 0.8 and θ = 0.9. We fix the initial surplus x to seek the optimal dividend level
b∗. As is shown in Table 4, Vb(0.25) takes the maximum value 0.3176 at b = 0.45, so the
optimal b∗ is around 0.45.

Table 4. The values of Vb(0.25) when b ∈ (0, 0.5).

b = 0.05 b = 0.1 b = 0.15 b = 0.2 b = 0.25

Vb(0.25) 0.3080 0.3096 0.3109 0.3129 0.3136

b = 0.3 b = 0.35 b = 0.4 b = 0.45 b = 0.5

Vb(0.25) 0.3140 0.3157 0.3169 0.3176 0.3135

Example 5. When the claim size follows a mixture of two exponential distributions, Equation (46)
is converted to

Ū(x) = 2(1 + x)−3 +
2τ

(σ2
s + θ2x2σ2

d )

∫ ∞

x
ϑ1e−ρ1(x−y) + ϑ2e−ρ2(x−y)dy−W1(x)(1 + x)−2

+ W2(x)(1 + x)−1 +
2µ

(σ2
s + θ2x2σ2

d )

∫ x

(1−θ)x

γ2k2

w + 1

(
qx− x + w

qx

)k2 1
qx− x + w

dw

+
2µ

(σ2
s + θ2x2σ2

d )

∫ +∞

x

γ1k1

w + 1

(
qx− x + w

qx

)−k1 1
qx− x + w

dw

+ τW3(x)
∫ x

0

1
1 + y

(ϑ1ρ1e−ρ1(x−y) + ϑ2ρ2e−ρ2(x−y))dy.
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For x ∈ (0, 10), Table 5 shows the approximate values of ψ5
x for different x. No matter

what the value of N is, the ruin probability will tend to be stable.

Table 5. Ruin probability ψ5
x for parameters σs = 0.8, θ = 0.1, α̃∗ = π

4 , β̃∗ = π
4 , d = π

4 and different
values of N.

N x = 0.1 x = 0.5 x = 0.8 x = 1.5 x = 3 x = 5 x = 7 x = 10

10 0.90866 0.51823 0.43358 0.33938 0.22602 0.15149 0.11418 0.08409
15 0.90094 0.45252 0.37632 0.32218 0.21997 0.14668 0.11099 0.08109
20 0.90104 0.41090 0.33789 0.31887 0.21558 0.14314 0.10882 0.07916
25 0.88713 0.38654 0.30848 0.31715 0.21273 0.14064 0.10799 0.07911

Example 6. Figures 8 and 9 describe the curves of ψ5
x for x ∈ (0, 10) when σs = 0.2 and σs = 0.8.

Figures 8 and 9 show that the risk of ruin probability being reduced when the perturbation coefficient
is small. As seen when comparing Figures 8 (right) and 9 (right), the fluctuation of curve ψ5

x is
relatively stable when θ = 0.1. The positive jump has little effect to the curve fluctuation.
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x when N = 10, α̃∗ = 1

4 , β̃∗ = 1
4 , d = π

4 and σs = 0.8.

6.3. The Lognormal Distribution Case

It was found that the claim size in automobile insurance loss obeys a lognormal
distribution. In this part, we apply this distribution to our risk model. Assume that fY(y)
follows a lognormal distribution with parameter (µ0, 2v2), where µ0 is the mean and 2v2 is



Mathematics 2023, 11, 43 23 of 27

the process variance parameter. In this subsection, we assume that the probability density
function of the claim size is

fY(y) =

 1
2πvy e−

(ln y−µ0)
2

4v2 , y > 0,
0, y ≤ 0.

Thus,

fY(x− y) =

 1
2πv(x−y) e−

[ln(x−y)−µ0 ]
2

4v2 , y < x,
0, y ≥ x.

The following examples are discussed under τ = 1, σd = 1, α = a = 0.06, r = 0.5, c =
0.4, ι = 0.1, µ0 = 0.08, v = 0.03, k1 = 4, k2 = 3 and the fixed dividend payments level
b = 5.

Example 7. Figures 10 and 11 depict the curve variation of V5
x for x ∈ (0, 10) when σs = 0.2 and

σs = 0.8. Under the condition that the claim size follows a lognormal distribution, the intersection
point of the curve V5

x increases when the coefficient of the perturbation term is 0.8 compared with
0.2. From Figure 10, when the value of investment proportion is 0.8, the curves increase rapidly. In
addition, an insurance company receives relatively small dividends when the proportion of risk-free
assets is high.
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4 and σs = 0.2.
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Figure 11. Curves of V5
x when N = 10, α̃∗ = 1

4 , β̃∗ = 1
4 , d = π

4 and σs = 0.8.

Let σs = 0.8 and θ = 0.9. We also fix the initial surplus x = 0.25 to seek the optimal
dividend level b∗ and obtain the results in Table 6. By observing the turning point of the
table, so the optimal b∗ is around 0.4.
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Table 6. The values of Vb(0.25) when b ∈ (0, 0.5).

b = 0.05 b = 0.1 b = 0.15 b = 0.2 b = 0.25

Vb(0.25) 0.1517 0.1518 0.1519 0.1520 0.1522

b = 0.3 b = 0.35 b = 0.4 b = 0.45 b = 0.5

Vb(0.25) 0.1524 0.1526 0.1527 0.1517 0.1514

Example 8. When the claim size follows the lognormal distribution, we have

Ū(x) =2(1 + x)−3 +
2τ

(σ2
s + θ2x2σ2

d )

∫ ∞

x

1
2πv(x− y)

e−
[ln(x−y)−µ0 ]

2

4v2 dy−W1(x)(1 + x)−2

+ W2(x)(1 + x)−1 +
2µ

(σ2
s + θ2x2σ2

d )

∫ x

(1−θ)x

γ2k2

w + 1

(
qx− x + w

qx

)k2 1
qx− x + w

dw

+
2µ

(σ2
s + θ2x2σ2

d )

∫ +∞

x

γ1k1

w + 1

(
qx− x + w

qx

)−k1 1
qx− x + w

dw

+ τW3(x)
∫ x

0

1
1 + y

(
1

2πv(x− y)
e−

[ln(x−y)−µ0 ]
2

4v2

)
dy.

For x ∈ (0, 10), Table 7 shows the approximate values of ψ5
x for different x, and it can be

concluded that if N is small, the ruin probability is still small.

Table 7. Ruin probability ψ5
x for parameters σs = 0.8, θ = 0.1, α̃∗ = π

4 , β̃∗ = π
4 , d = π

4 and different
values of N.

N x = 0.1 x = 0.5 x = 0.8 x = 1.5 x = 3 x = 5 x = 7 x = 10

10 0.90362 0.66308 0.55190 0.39376 0.24356 0.16124 0.11965 0.08539
15 0.89681 0.65951 0.54863 0.38461 0.22964 0.14846 0.10803 0.07444
20 0.89424 0.64789 0.53217 0.39517 0.30584 0.23360 0.17522 0.12216
25 0.89341 0.64702 0.53349 0.38471 0.25032 0.16928 0.12426 0.08682

Example 9. Figures 12 and 13 depict the curve changes of ψ5
x for x ∈ (0, 10) when σs = 0.2 and

σs = 0.8. According to Figure 12, when the investment proportion θ = 0.9, the ruin probability
intersects and then coincides. x = 1 is a turning point. From Figures 12 and 13, the probability of
ruin is increased by the great impact of perturbations when the initial surplus is small. Moreover,
when an insurance company invests most of its surplus funds in risky assets, it makes the company
experience ruin more likely.
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7. Discussion

This paper studied the impacts of perturbations and investment proportion on the
dividend payments and ruin probability. The expected discounted dividend payments
Vb

x and ruin probability ψb
x decreased with the increase in diffusion coefficients. As risky

assets occupy a large proportion in the investment, Vb
x and ψb

x are also increased. Since the
explicit solutions of Vb

x and ψb
x are not easy to find, we obtained the numerical approximate

solutions of them through the sinc numerical method. We also provide some numerical
examples to analyze the sensitivity of the sinc approximate solutions. Wang et al. [2] did
not take into account the perturbation factors, but our model is more consistent with the
actual situation of insurance companies. Lu and Li [3] gave the closed-form solutions in
the special case, but we discussed the approximate solutions in the general case and found
that the error is within a manageable range through error analysis. Zhuo et al. [23] only
considered the influence of perturbation factors on the ruin of companies.

This study has several limitations; for example, the investment proportion discussed in
this paper is a constant, the model in this paper is only applicable to insurance companies, it
is not applicable to other participants on the financial markets and we did not calibrate the
jump diffusion processes parameters with actual data. The results presented in this paper
can be generalized in various directions. (1) We will consider a stochastic control method
to obtain the optimal investment proportion or the optimal dividend strategy. (2) We will
attempt to calibrate the parameters of the jump-diffusion process with actual data. (3) We
will consider using the COS method to solve integro-differential equations. However, these
extensions may lead to new technical difficulties. We also left them for future research.

8. Conclusions

In this paper, we studied the dividend and ruin problem on the perturbed risk model
with proportional investment. By a numerical sinc method, we derived the approximate
expression of the expected discounted dividend payments and the discounted penalty func-
tion. Some examples were provided for when claim sizes follow an exponential distribution,
a mixture of two exponential distributions and a lognormal distribution. The numerical
results show that the curves in the mixed exponential case are significantly affected by the
parameters. Moreover, we also found that the larger the proportion of investment, the more
dividends the insurers will acquire, and the ruin probability will decrease.

The results of this study also have practical implications. Firstly, an insurance com-
pany’s investment strategy is related to its initial surplus and investment proportion. For a
low initial surplus level, an insurance company may consider putting most of its capital
into risk-free assets in order to avoid ruin. For a high initial surplus, an insurance company
may choose to place most of its funds in risky assets to earn greater profits. Secondly,
appropriate volatility will benefit insurers, especially if the initial surplus level is low.
Thirdly, setting a threshold for the dividend strategy allows an insurance company to have
an effective incentive for the dividend mechanism.
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