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Abstract

Footing is an important part of a structure, because its repair is extremely difficult and cumbersome. Therefore, all structural 

parameters should be carefully considered when designing a footing. An isolated footing needs sufficient depth, when con-

sidering the fixed base assumption. Extensive research has previously been conducted to define and formalize the depth of a 

rigid footing, i.e., the depth required, such that footing behaves as a rigid. Alternatively, working stress method (WSM) and 

limit state method (LSM) provide a lower depth for low subgrades and a higher depth for high subgrades than that required 

by rigid condition if a unit width footing is considered for the design. This paper presents a simple approach for calculating 

the depth to meet the rigid condition under static loading. The proposed calculation method produced a better rigidity than 

the existing approaches and it correlated well to the finite-element method (FEM) for low subgrades. The reinforcement 

distribution is function of the bending moment (BM). Steel is uniformly embedded throughout the length or width of con-

ventional footing methods, but this is inappropriate, because the bending moment is not uniform along the length or width 

of the footing. This paper proposes solutions to this by redefining the placement of steel in the central zone of the footing. 

The effective zone for reinforcement was based on the FEM results. This simple procedure was developed for calculating 

the maximum moment using the Diagonal Strip Method (DSM). DSM is a substitute for FEM, and it has been shown to 

correlate well. The BM at central zone as well as at the edges can be calculated to define the spacing of the reinforcements.

Keywords Finite-element method · Diagonal strip method · Rigidity · Static concentric load · Rigid depth

 * Sushilkumar B. Magade 

 sushil.magade284@gmail.com

 Ramakant K. Ingle 

 rkingle@apm.vnit.ac.in

1 Department of Applied Mechanics, VNIT Nagpur, Nagpur, 

India

Abbreviations

ACI  American Concrete Institute

BM  Bending moment (kNm)

DSM  Diagonal strip method

Ec  Modulus of elasticity of the concrete (kN/m2)

Es  Modulus of elasticity of the soil (kN/m2)

FEM  Finite-element method

FS  Factor of safety

Kr  Relative stiffness factor

Ks  Subgrade reaction (kN/m2)

Introduction

Typically, spread footings are provided for individual col-

umns and designed for the loads supported by the column. 

The key factor for footing design is soil pressure, which may 

be linear, parabolic, or uniform (Fig. 1). Linear distribution 

is used for dense elastic soils with low plasticity, and para-

bolic distribution is used for dense sands and clay, while 

uniform distribution is used for dense soils with limited 

plasticity or elastoplastic behavior (Rodriguez-Gutierrez and 

Aristizabal-Ochoa 2012). The ultimate bearing capacity of 

footings can be substantially increased by soil confinement 

under axial load (Prasad and Singh 2011). Uniform pressure 

is commonly assumed as the ideal condition for rigid depth. 

When the subgrade reaction is maximum at the center and a 

minimum at the corners, then it is considered to be a flexible 

foundation, but, when the reaction force is uniform, then it is 

considered a perfectly rigid foundation. The actual stress dis-

tribution depends on the rigidity of the footing and type of 

soil. For cohesion-less soils and sand, the pressure distribu-

tion depends on the depth of embedment of the foundation. 

http://crossmark.crossref.org/dialog/?doi=10.1007/s40091-018-0211-3&domain=pdf
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The pressure is usually higher in the middle (Al-Shayea and 

Zeedan 2012). Footing design by the conventional method 

resulted in a semi-rigid foundation (Farouk and Farouk 

2014a, b). Thus, the footing has a higher subgrade reaction 

concentration at the edge and lower at center. Pressure dis-

tribution of soil is a function of the settlement. By increas-

ing the number layers of rubber–sand mixture (RSM), the 

bearing capacity of the foundation can be increased, and 

the footing settlement reduced (Moghaddas Tafreshi et al. 

2016). The settlement reduction factor decreases with the 

increase in applied load (Al-Aghbari and Dutta 2008). Depth 

of footing is considered to be rigid when the settlement is 

uniform or when the settlement at each point is the same 

along the footing. The foundation may be considered flexible 

when the settlement is higher at the center than at the corner. 

The use of a non-coaxial soil model significantly increases 

the settlement of footings. However, it does not affect the 

ultimate bearing capacities (Yang and Yu 2006).

Within the footing, stresses are developed due to different 

loading conditions, boundary conditions, and geometry. The 

forces acting on the footing are axial, shear, moment, and 

torsion. When the footing is loaded concentrically, the dif-

ferent modes of failure are bearing, flexure, and one-way and 

two-way shear. The effect of the stress level on the bearing 

capacity of the foundation, which is related to the foundation 

size, is very important (Jahanandish et al. 2012). ECP203 

(2011), ACI318 (2008), and EC2 (2004) code provisions 

underestimate the structural failure loads of isolated column 

footings, while BS 8110.1 (1997) overestimates the failure 

loads for punching shear (Abdrabbo et al. 2016). Maximum 

bending moment (BM) is also an important factor for the 

calculation of footing depth. In the conventional method, 

the depth calculated for maximum BM is always less than 

that for one-way shear and punching shear, so it is neglected. 

Farouk and Farouk (2014a, b) recommended increasing the 

BM by 25% or increasing the reinforcement by 25% when 

calculating footing depth, due to an increasing edge stresses, 

which leads to an increase in the maximum moment.

Bending moment distribution is not uniform along 

the length or width of a footing. Timoshenko and 

Woinowsky-Krieger (1959) showed the distribution of the 

bending moment along the midline of a footing for u/a = 0.1 

and u/a = 0.2 (refer to Fig. 2c). The equation for maximum 

bending moment is:

where Mx and My are moments along the x- and y-directions, 

u and a are the size of the column and the footing, respec-

tively, and P is the axial load on the column. This equation is 

valid for ν = 0.3 (Poisson’s ratio), but nature of the bending 

moment remains the same for any value of Poisson’s ratio. 

From Fig. 2c, it can be seen that the bending moment is 

highest at the center and reduces towards the edge.

The total moment can be calculated by Reynolds et al.’s 

(2007) method. Equations used were for concentric and 

eccentric footing. Figure 3 shows the formulae for an iso-

lated pad footing using Reynolds’s handbook method for 

square and rectangular sections. The total moment calcu-

lated using the conventional method was similar to that using 

Reynolds et al. (2007). To verify the validity of equations, 

rectangular eccentric footing is converted to concentric 

square footing by taking f1 = f2 and b = L. For this condi-

tion, the moments in both directions (Mx and My) should be 

equal and should match the square footing moment (Mx). 

Twenty cases were used for validation, as presented in 

Table 1. The moments of the converted footing were exactly 

the same as the rectangular footing and as the conventional 

method. Therefore, the conventional method or the equa-

tions in Reynolds’s handbook can be used to calculate the 

total moment. Figure 4 shows the validation of total moment 

with Reynolds’s handbook equation for various subgrades.

For tension, if lc > 0.75(C + 3d), then two-thirds of 

the reinforcement should be concentrated within a zone 

that extends on either side for a distance no more than 

1.5d from the face of the column (Reynolds et al. 2007), 

where C is the column width, lc is the distance from the 

center of a column to the edge of the pad, and d is depth. 

Seward (2014) recommended that the reinforcement for 

small pads can be uniformly distributed throughout the 

(1)Mx = My =

(

0.1034log
a

u
+ 0.020

)

P,

Fig. 1  Pressure distribution for 

different soils

Cohesion less soil

or sandy soil

Cohesive or clayey soil Uniform Pressure

(Assumed condition)
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Fig. 2  a Plan of isolated foot-

ing. b Section along middle 

line. c Bending moment distri-

bution along middle line
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width of the foundation. However, if the width of the pad 

(L) exceeds 1.5(C + 3d), two-thirds of the reinforcement 

should be placed in a middle band at a width of (C + 3d). 

IS 456 (2000) recommended a central band equal to the 

width of the footing, placed along the length of the foot-

ing with the portion of the reinforcement determined in 

accordance with the equation below. This is limited to 

rectangular footing only:

where β is the ratio of the long side to the short side of the 

footing.

Finite-element method (FEM) has become a powerful 

tool for the numerical simulation of engineering prob-

lems. FEM, therefore, is considered a benchmark, as 

its solutions are very accurate. The structural analysis 

program (SAP2000 2010) was used as an FEM tool for 

analysis purposes and the results of the proposed method 

are compared with FEM. In the present work, the diago-

nal strip method (DSM) was developed, which produces 

BM similar to finite-element method (FEM) results. This 

method provides reinforcement for a calculated bending 

moment without any increase in the percentage of steel.

(2)
Reinforcement in central band width

Total reinforcement in short direction
=

2

� + 1
,

Di�erent approaches for rigid depth

The American Concrete Institute (ACI) Committee 336-2R 

(1988) suggested the use of a relative stiffness factor (Kr) 

developed by Meyerhof (1953) to determine whether the 

footing should be considered flexible or rigid; the proposed 

equation is:

where Ec modulus of elasticity of the structure (or concrete), 

Es modulus of elasticity of the soil, B width of the founda-

tion, and Ib moment of inertia of the structure per unit length 

at right angles to B. The ACI Committee 336-2R, 1988 rec-

ommended that, if Kr is equal to or greater than 0.5, then the 

footing is considered rigid. If the relative stiffness factor is 

found to be less than 0.5, then footing should be designed 

as a flexible member. Vesic (1961) gives the relationship 

between the modulus of elasticity and the subgrade reaction 

of the soil as follows:

(3)Kr =

EcIb

EsB
3

,

(4)k =

Es

B
(

1 − �s

) ,

Table 1  Number of cases considered for study for validation

Case no. Footing size in m % Reinforcement 

in column

Axial load on column 

(kN) WSM

Axial load on column 

(kN) LSM

Column size (m) Ks (kN/m3)

1 2 × 2 0.8 650 725 0.3 × 0.3 20,000

2 2.2 × 2.2 1 700 775 0.3 × 0.3

3 2.2 × 2.2 1.25 750 800 0.3 × 0.3

4 2.3 × 2.3 1.5 800 850 0.3 × 0.3

5 2.3 × 2.3 2 900 925 0.3 × 0.3

6 2.6 × 2.6 0.8 1200 1300 0.4 × 0.4

7 2.8 × 2.8 1 1300 1350 0.4 × 0.4

8 2.8 × 2.8 1.25 1350 1425 0.4 × 0.4

9 3 × 3 1.5 1400 1500 0.4 × 0.4

10 3 × 3 2 1550 1650 0.4 × 0.4

11 3.3 × 3.3 0.8 1900 2025 0.5 × 0.5

12 3.5 × 3.5 1 2000 2125 0.5 × 0.5

13 3.5 × 3.5 1.25 2100 2225 0.5 × 0.5

14 3.5 × 3.5 1.5 2200 2350 0.5 × 0.5

15 3.8 × 3.8 2 2450 2575 0.5 × 0.5

16 4 × 4 0.8 2700 2925 0.6 × 0.6

17 4.2 × 4.2 1 2850 3050 0.6 × 0.6

18 4.2 × 4.2 1.25 3000 3200 0.6 × 0.6

19 4.4 × 4.4 1.5 3200 3375 0.6 × 0.6

20 4.5 × 4.5 2 3550 3700 0.6 × 0.6
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where μs Poisson’s ratio of the soil. However, without tri-

axial tests, the elasticity of the soil is difficult to determine. 

Instead, Vesic suggested using a relative stiffness factor Kr 

with the same rigidity condition, but independent of Es, 

which is given by the following:

Tabsh and Raouf Al-Shawa (2005) modified the stiffness 

factor Kr by considering all the dimensions of footing and col-

umn cross section. If Kr is less than or equal to 1, it can be 

considered flexible; otherwise, it will be considered rigid. The 

equation developed is:

(5)K
r
=

EI
b

k
s
(1 − �2

s
)B4

.

(6)Kr =
Et

3

k
(

1 − �2
)

(B − b)
2
(L − l)

2
,

where t uniform thickness of the footing, b column dimen-

sion along the footing dimension B, L footing dimension per-

pendicular to B, and l column dimension along the footing 

dimension L.

The coefficient of rigidity suggested by DIN 4018 

(1981) is given by the following equation:

Shehata (2016) conducted a study using Eq. (7) and 

recommended that, if the factor was less than or equal to 

0.05, the footing is considered flexible, and otherwise, it 

is considered rigid.

The WSM and LSM for the analysis and design of 

footings were described in IS 456 (2000). For both the 

approaches, the depth is calculated for one-way shear, 

which is at distance d (effective depth of footing) from the 

(7)K
r
=

(

t

L

)3

×

(

E
c

12E
s

)

.
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face of column, for two-way or punching shear, which is 

at d/2 from the face of column and for maximum bending 

moment at column face. WSM is a traditional method used 

for design, which produces higher depths when compared 

to LSM. It was observed that both depths did not fulfill 

the rigidity requirement of the footing for all the types of 

soil or subgrade.

Depth must also be sufficient to accommodate the devel-

opment length of a column bar in compression, i.e., Ldc as 

given in special publication (SP) 16 (1978) and special pub-

lication (SP) 34 (1987) of Indian standards. The develop-

ment length of the bars must be sufficient to transfer com-

pression to the supporting member, as per clause 12.3 of 

ACI 318 (2008). If the computed length is more than the 

distance available from the top of the footing to the tensile 

steel top, then the available solutions are to: (1) use a larger 

number of smaller bars in a column, (2) increase depth, and 

(3) construct a pedestal on top of the footing to provide extra 

length (McCormac and Brown 2015).

The depth of the base should be equal to or greater than 

0.5a, where a is the distance from the face of column to the 

edge of the base (Reynolds et al. 2007). Depth calculated 

using this condition was close to depth calculated by the 

finite-element analysis for low subgrade or soft soil. How-

ever, this calculation was not valid for high subgrade or hard 

soil. The depth was considered rigid when it acted as solid 

block or contained very little reinforcement. The minimum 

reinforcement of 0.12% area must be specified if the calcu-

lated reinforcement is less than this minimum reinforcement 

(IS 456 2000). There are other conditions that give a rigid 

depth close to the FEM results. Some conditions are suitable 

for high subgrade but fail in lower subgrade, or vice versa.

Most importantly, the criteria enlisted for each depth 

calculation must be satisfied for correct results. Table 2 

shows the rigid depth results using the existing approaches 

for 20,000 kN/m3 subgrade. The differences between the 

approaches were considerable, so there is a need to deter-

mine which methods provide the correct rigid depth for dif-

ferent subgrades. The present study reports the selection of 

conditions depending upon the subgrade to obtain the cor-

rect depth to which the footing acts as a rigid.

Concept of modeling

Column and pad of the footing were modeled as area (shell) 

elements, having six degrees of freedom at each node, as 

specified by Vishwakarma and Ingle (2017) for modeling a 

concrete slab. Load transferred from the column was treated 

as a concentrated load. However, the load is uniformly dis-

tributed (UDL) over the cross-sectional area of the column 

in the mathematical model. In finite-element modeling, the 

Table 2  Rigid depths for Ks = 20,000 kN/m3

Case no. Length/width 

of footing (m)

Width of 

column 

(m)

Rigid depth (m) 

by Meyerhof/ACI 

336-2R (when 

Kr = 0.5)

Rigid depth (m) 

by Tabsh and 

Al-shawa (when 

Kr = 1)

Rigid depth (m) 

by Hany Farouk/

DIN 4018 (when 

Kr = 0.05)

Rigid depth 

(m) by WSM

Rigid depth 

(m) by LSM

Rigid depth (m) 

by Reynolds’s 

Handbook

1 2 0.3 0.330 0.184 0.194 0.400 0.360 0.425

2 2.2 0.3 0.363 0.214 0.220 0.400 0.380 0.475

3 2.2 0.3 0.363 0.214 0.219 0.450 0.400 0.475

4 2.3 0.3 0.380 0.229 0.233 0.500 0.450 0.500

5 2.3 0.3 0.380 0.229 0.233 0.500 0.450 0.500

6 2.6 0.4 0.429 0.260 0.274 0.500 0.470 0.550

7 2.8 0.4 0.463 0.292 0.303 0.550 0.500 0.600

8 2.8 0.4 0.463 0.292 0.303 0.550 0.500 0.600

9 3 0.4 0.495 0.325 0.332 0.600 0.520 0.650

10 3 0.4 0.495 0.325 0.332 0.600 0.550 0.650

11 3.3 0.5 0.545 0.359 0.377 0.650 0.580 0.700

12 3.5 0.5 0.578 0.393 0.407 0.660 0.600 0.750

13 3.5 0.5 0.578 0.393 0.408 0.700 0.620 0.750

14 3.5 0.5 0.578 0.393 0.408 0.750 0.640 0.750

15 3.8 0.5 0.628 0.446 0.455 0.750 0.670 0.825

16 4 0.6 0.660 0.465 0.488 0.750 0.680 0.850

17 4.2 0.6 0.693 0.501 0.521 0.800 0.700 0.900

18 4.2 0.6 0.693 0.501 0.521 0.800 0.720 0.900

19 4.4 0.6 0.727 0.539 0.554 0.850 0.750 0.950

20 4.5 0.6 0.743 0.558 0.572 0.900 0.800 0.975
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plate (shell) is discretised and the soil was modeled as a spring 

with equivalent stiffnesses. Spring stiffnesses were calculated 

from the modulus of subgrade reaction of soil. FEMA 356 

(2000, Fig. 4.4)  was used for the calculations of soil stiffness. 

However, this was only applicable for a single node to per-

form soil–structure interaction. In this mathematical model, 

soil springs were used with value equal to the contributing area 

multiplied by the modulus of soil reaction, i.e., area spring. To 

perform finite-element analysis, both plate (shell) elements 

were discretised and supported on springs of equivalent stiff-

ness for various subgrades. Figure 5 shows a three-dimensional 

view of column loading on a footing.

Idealization of the model

In the present study, a square footing and column were con-

sidered. M25 grade concrete and Fe415 steel were used with 

a Poisson’s ratio of 0.15 for concrete. The size of the footing 

was evaluated using load and bearing pressure. Column cross-

sectional dimensions included 0.3 m × 0.3 m, 0.4 m × 0.4 m, 

0.5 m × 0.5 m, and 0.6 m × 0.6 m. The load carrying capacity 

of the column for percentage reinforcements of 0.8, 1, 1.25, 

1.5, and 2% were considered when axially loaded. With these 

parameters, 20 cases were developed and analyzed to deter-

mine the rigid depth. These cases were considered for low-rise 

and medium-rise buildings, where isolated square footings are 

preferred. Values of the safe bearing capacity of soil included 

200 kN/m2, 500 kN/m2, 1000 kN/m2, and 2000 kN/m2, which 

indicated variation of subgrades from low to high. The modu-

lus of the subgrade was calculated as suggested by Bowles 

(1988):

where Ks is subgrade modulus in kN/m3, FS is factor of 

safety taken as 2.5–3, and qa is allowable bearing pressure 

in kN/m2.

(8)Ks = 40 × FS × qa,

New approach for rigid depth calculation

The differences seen in the maximum bending moment 

results between the conventional method (unit width) and 

FEM were significant. The design moments found with 

FEM are not uniform throughout the length or width of foot-

ing. However, addition of these moments (moment at each 

node) found to be approximately equals to the total moment 

obtained with the conventional method. Hence, designing a 

footing with the conventional method produced less accu-

rate moments. Figure 6 shows the differences for various 

subgrades.

The nature of bending moment simulated using FEM 

is similar to Timoshenko’s observation, i.e., the bending 

moment at any section is not uniform. Figure 7 shows vari-

ation of maximum BM for axial concentric load along the 

width (or length). The difference in the maximum bending 

moment between the conventional method and FEM was 

significant. Therefore, ignoring the BM when calculating 

depth is not appropriate. BM calculation by the conventional 

method (i.e., unit width method) led to inaccurate design, 

such that total moment should be considered for depth calcu-

lations. Total moment can be calculated by the conventional 

method or Reynolds et al. (2007) method.

General equation for design of RCC as per Krishna and 

Jain (1959) is as follows:

where M total moment (kNm), K moment factor depend on 

Fck and Fy, B width of footing (m), and d effective depth of 

footing (m).

The thickness of footing calculated with this method may 

be less to account the rigidity effect when compared with 

the FEM results. As the bending moment is maximum in 

central part, consideration of full width leads to an incor-

rect depth. To get the correct rigid depth, the central part of 

width should be considered with maximum moment. The 

number of cases has been analyzed with EFM to determine 

the effective central zone and is given by the following:

where L length or width of footing; b depth or width of 

column.

The depth shall be calculated for total moment by con-

sidering effective width instead of full width of footing 

to get actual rigid depth. The depth calculated with this 

approach is safe to accommodate the development length 

in compression (Ldc) for lower subgrade and also well 

agreement with the FEM. For higher subgrade, WSM 

gives greater depth but LSM, new approach and minimum 

% steel approach are close to FEM. It is also observed that 

depth calculated with minimum steel approach for lower 

(9)M = KBd
2
,

Central zone =
L

5
+ b,

Fig. 5  3D view of column loading as UDL on footing
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subgrade is more conservative than any other approaches, 

so new approach should be preferred for lower subgrade. 

For all subgrade, the difference in depths of WSM and 

FEM is quite large. Though WSM gives higher depth than 

the other approaches, it should not be preferred for rigid 

depth calculation. Figures 8, 9, 10, 11 shows the compari-

son for rigid depth of the existing approaches and new app

roach.

Diagonal strip method (DSM)

The diagonal strip method is simple and based on the unit 

width method. In the conventional method, the unit width 

is considered to be the horizontal direction or vertical 

direction. Footings are designed for loads from a column. 

When the connection between the column and the footing 
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Fig. 7  Bending moment distri-

bution by FEM
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is rigid, the stresses develop at each point of the footing. 

The maximum distance from the face of the column is 

the diagonal distance, so using the horizontal distance or 

vertical distance from the column face is inappropriate. 

However, using the diagonal distance in the moment cal-

culation gives the maximum moment at the column face. 

The diagonal distance to be considered is shown in Fig. 9.

Now, bending moment at the face of column can be 

calculated by the following equation:

where p bearing pressure in kN/m2, l diagonal length.

Bending moments calculated with the DSM were in 

agreement with FEM, proving that this method is an alter-

native for FEM. Figure 10 shows the comparison between 

DSM and FEM for maximum bending moment. Bending 

moment is maximum at the center and reduces towards 

the edge of the footing. The BM in the central zone (Mavg 

Fig. 7) is two-thirds the maximum BM, and the BM at the 
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edge (Mmin Fig. 7) is one-third the maximum BM. The 

maximum BM value can be calculated using DSM.

Proposed approach for distribution 
of reinforcement

The proposed method for distribution of reinforcement by 

Reynolds et al. (2007) and Seward (2014) was shown not to be 

valid for all the cases, and the reinforcement placement recom-

mended by IS456 (2000) was not applicable to a square footing. 

On the other hand, when the reinforcement sizing is inconsist-

ent with the importance of the structures, it can cause serious 

damage (Sadaoui and Bahar 2017). Providing uniform rein-

forcement throughout the width was not appropriate, because 

the BM varies across the width of the footing. At the central 

zone of the footing, the BM is a maximum, and FEM produces 

larger moments than the conventional method. The distribution 

of reinforcements must be as per the BM distribution. Figure 11 

shows the details of the reinforcement for maximum BM, and 

the central zone can be calculated using the following:

where L = B = length or width of footing and b width or depth 

of column.

The bending moment is more at the central zone, i.e., 

L/5 + b, and the remaining zone equals to L−(L/5 + b), is as 

shown in Fig. 11. The central zone covers 35–40% part of total 

length or width of footing. In addition, the excessive moment 

in this zone is found to be 40% more than average bending 

moment. Hence, 40% reinforcement of total reinforcement 

should be provided in this central zone.

Conclusions

The paper presented a simple approach to calculate the depth 

of and the placement of steel reinforcement for an isolated 

square footing under concentric loading. Observations were 

limited to square footings and columns with concentric load-

ing. The working stress method (WSM) and the limit state 

(11)Central zone =
L

5
+ b or

B

5
+ b,

0 5 10 15 20

100

200

300

400

500

600

700

M
m

ax
)

m/
m

N
k(

Case Number

 Mmax-FEM

 Mmax-DSM

a For  Ks = 20000kN/m3

0 5 10 15 20

100

200

300

400

500

600

M
m

ax
)

m/
m

N
k(

 Mmax-FEM

 Mmax-DSM

Case Number

b For Ks = 50000kN/m3

0 5 10 15 20

50

100

150

200

250

300

350

400

450

M
m

ax
)

m/
m

N
k(

 Mmax-FEM

 Mmax-DSM

Case Number

c For Ks = 100000kN/m3

0 5 10 15 20

50

100

150

200

250

300

 Mmax-FEM

 Mmax-DSM

M
m

ax
)

m/
m

N
k(

Case Number

d For Ks = 200000kN/m3

Fig. 10  Comparison of maximum BM for DSM and FEM



19International Journal of Advanced Structural Engineering (2019) 11:9–20 

1 3

method (LSM) failed to fulfill the rigidity requirements for a 

footing in the absence of sufficient width. The proposed pro-

cedure for calculating depth can be used in any case, because 

it gives a more conservative depth for lower subgrades and 

smaller depth for higher subgrades when compared to the 

existing methods. Depth calculated using the new approach 

agreed well with finite-element method (FEM), and also it 

satisfied the criterion for development length in compres-

sion (Ldc) for lower subgrades. For higher subgrades, depth 

should be calculated using the maximum of the LSM, the 

new approach, or minimum reinforcement approach. Reyn-

olds’s handbook approach should not be used for higher sub-

grades, because it results in a lower depth than FEM. For 

the calculation of rigid depth, the total moment should be 

considered, which could be calculated by the conventional 

method or by Reynolds’s handbook equations.

Diagonal strip method (DSM) is not only a simple 

approach, but it is also an effective alternative to FEM for 

determining maximum bending moment (BM). The bend-

ing moments calculated with this method are nearly iden-

tical to the FEM results. Bending moments at the central 

zone and at the edge can be calculated using the bending 

moments of the DSM. Tensile reinforcement depends on 

the BM distribution. The proposed procedure of reinforce-

ment distribution across the section of the footing is better 

than the conventional methods, which use uniform spacing 

of reinforcement, because this satisfies the BM distribution 

requirement. As per the proposed method, 40% of the total 

reinforcement must be provided at the central zone, because 

the BM distribution is highest here, and the remaining 60% 

should be placed in the remaining zones.

Compliance with ethical standards 

Conflict of interest On behalf of all authors, the corresponding author 

states that there is no conflict of interest.

Open Access This article is distributed under the terms of the Crea-

tive Commons Attribution 4.0 International License (http://creat iveco 

mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided you give appropriate 

credit to the original author(s) and the source, provide a link to the 

Creative Commons license, and indicate if changes were made.

References

Abdrabbo F, Mahmoud ZI, Ebrahim M (2016) Structural design of 

isolated column footings. Alex Eng J 55(3):2665–2678

ACI 336 (1988) Suggested design procedures for combined footings 

and mats, ACI 336.2R-88. American Concrete Institute, Farm-

ington Hills

ACI Committee, American Concrete Institute, & International Organi-

zation for Standardization (2008) Building code requirements for 

structural concrete (ACI 318-08) and commentary. American 

Concrete Institute

Al-Aghbari MY, Dutta RK (2008) Performance of square footing 

with structural skirt resting on sand. Geomech Geoeng Int J 

3(4):271–277

Al-Shayea N, Zeedan H (2012) A new approach for estimating thick-

ness of mat foundations under certain conditions. Arab J Sci Eng 

37(2):277–290

Bowles JE (1988) Foundation analysis and design, 3rd edn. McGraw-

Hill international book company, Tokyo

British Standards Institution Eurocode 2 (2004) Design of concrete 

structures: part 1-1, General Rules and Rules for Buildings British 

Standards Institution

BS8110 (1997) Code of practice for design and construction Part 1. 

British Standards Institution, London

Computers and Structures (2010) CSI Analysis Reference Man-

ual for SAP2000, ETABS, SAFE and CSiBridge. ISO No. 

GEN062708M1 Rev.4, Berkeley, California, USA

DIN4018 (1981) Beiblatt 1:1981-05 Baugrund “Berechnung der Sohl-

druckverteilung unter Flächengründungen”, Erläuterungen und 

Berechnungsbeispiele, Beuth, Berlin

ECP-Egyptian Code of Practice-203 (2011) Egyptian Code of Prac-

tice no-203 for Design and Construction of Concrete Structures, 

Research Center for Housing and Construction, Ministry of Hous-

ing, Utilities and Urban Planning, Cairo, Egypt

Farouk H, Farouk M (2014a) Soil, foundation, and superstructure inter-

action for plane two-bay frames. Int J Geomech 16(1):B4014003

Farouk H, Farouk M (2014b) Effect of soil type on contact stress. New 

Front Geotechn Eng 2014:57–66

FEMA 356 (2000) Prestandard and commentary for the seismic reha-

bilitation of buildings, Federal Emergency Management Agency, 

Washington, DC

b

L

(L/5)+b

B

(B
/5

)+
b

(L/5)+b

B
-(

(B
/5

)+
b
)/

2
B

-(
(B

/5
)+

b
)/

2

L-((L/5)+b)/2 L-((L/5)+b)/2

D

Fig. 11  Proposed placement of reinforcement in isolated square foot-

ing

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


20 International Journal of Advanced Structural Engineering (2019) 11:9–20

1 3

IS 456 (2000) Plain and reinforced concrete code of practice. Bereau 

of Indian Standards, New Delhi

Jahanandish M, Veiskarami M, Ghahramani A (2012) Effect of foun-

dation size and roughness on the bearing capacity factor, N γ, by 

stress level-based ZEL method. Arab J Sci Eng 37(7):1817–1831

Krishna JP, Jain OP (1959) Plain and reinforced concrete (8th Edition). 

Nem Chand and Bros, Roorkee

McCormac JC, Brown RH (2015) Design of reinforced concrete. 

Wiley, Hoboken

Meyerhof GT (1953) The bearing capacity of foundations under 

eccentric and inclined loads. In Proc. of 3rd ICSMFE, vol 1, pp 

440–445

Moghaddas Tafreshi SN, Joz Darabi N, Tavakoli Mehrjardi G, Dawson 

A (2016) Experimental and numerical investigation of footing 

behaviour on multi-layered rubber-reinforced soil. Eur J Environ 

Civ Eng 2016:1–24

Prasad A, Singh V (2011) Behavior of confined square and rectan-

gular footings under eccentric-inclined load. Int J Geotech Eng 

5(2):211–221

Reynolds CE, Steedman JC, Threlfall AJ (2007) Reinforced concrete 

designer’s handbook, 11th edn. CRC Press, London

Rodriguez-Gutierrez JA, Aristizabal-Ochoa JD (2012) Rigid spread 

footings resting on soil subjected to axial load and biaxial bend-

ing I: simplified analytical method. Int J Geomech 13(2):109–119

Sadaoui O, Bahar R (2017) Field measurements and back calculations 

of settlements of structures founded on improved soft soils by 

stone columns. Eur J Environ Civ Eng 2017:1–27

Seward D (2014) Understanding structures, analysis, materials design. 

The Macmillan Press Ltd, London

Shehata HF, El-Zahaby KM (2016) New trends in foundation design 

using the finite element analysis method. Geo-China 1:1–8

SP16 (1978) Design aids for reinforcement concrete to IS: 456-1978. 

Bereau of Indian Standards, New Delhi, India

SP34 (1987) Handbook on concrete reinforcement and detailing. 

Bereau of Indian Standards, New Delhi, India

Tabsh SW, Raouf Al-Shawa A (2005) Effect of spread footing flex-

ibility on structural response. Pract Period Struct Design Constr 

10(2):109–114

Timoshenko S, Woinowsky-Krieger S (1959) Theory of Plates and 

Shells, 2nd edn. McGraw-Hill book Company, Singapore

Vesic AB (1961) Bending of beams resting on isotropic elastic solid. J 

Eng Mech Div 87(2):35–54

Vishwakarma RJ, Ingle RK (2017) Simplified approach for the evalu-

ation of critical stresses in concrete pavement. Struct Eng Mech 

61(3):389–396

Yang Y, Yu HS (2006) Application of a non-coaxial soil model in shal-

low foundations. Geomech Geoeng Int J 1(2):139–150

Publisher’s Note Springer Nature remains neutral with regard to 

jurisdictional claims in published maps and institutional affiliations.


	Numerical method for analysis and design of isolated square footing under concentric loading
	Abstract
	Introduction
	Different approaches for rigid depth
	Concept of modeling
	Idealization of the model

	New approach for rigid depth calculation
	Diagonal strip method (DSM)
	Proposed approach for distribution of reinforcement
	Conclusions
	References


