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The barycentric interpolation collocation method is discussed in this paper, 
which is not valid for singularly perturbed delay partial differential equations. A 
modified version is proposed to overcome this disadvantage. Two numerical ex-
amples are provided to show the effectiveness of the present method.  
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Introduction 

Singularly perturbed delay partial differential equations arise from thermal science 
and mechanics systems which are characterized by both spatial and temporal variables, and 
exhibit various spatio-temporal patterns and provide more realistic models for thermal science 
where time-lag or after-effect has to be considered. A characteristic example is [1]: 
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which models a furnace used to process a metal sheet. Here uε is the temperature distribution 
in a metal sheet, moving at a velocity, ,v and heated by a source and specified by the function, 
f. Both v and f are dynamically adapted by a controlling device monitoring the current tem-
perature distribution. The finite speed of the controller, however, introduces a fixed delay of 
length. When τ = 0, eq. (1) becomes a thermal problem without time delay. 

When we select D = (0, 1) ´ (0, T), the problem considered is the following singu-
larly perturbed delay parabolic equation with Dirichlet boundary conditions: 
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where 0 < e   1 is singular perturbed parameter, f(x, t), y(x, t), φT(t), and φR(t) are sufficient-
ly smooth and bounded functions. The terminal time, T, is assumed to satisfy the condition  
–––––––––––––– 
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T = KT, where K is a positive integer. Under the previous assumptions and conditions, prob-
lem (2) with the initial data and boundary conditions has a unique solution [1].  

There are many methods to solve this problem [2-9], for example, the variational it-
eration method, the homotopy perturbation method, and others. In the past, the barycentric in-
terpolation collocation method (BICM) has been presented and applied to many fields [2, 3]. 
However, the direct use of the method can not solve singularly perturbed delay partial differ-
ential equations, if ignore the delay parameter, it can not always get good result. For this kind 
of singularly perturbed delay partial differential equations, based on barycentric interpolation 
collocation method, by Taylor’s series expansion, we give a modified BICM to solve them. 
Two numerical examples are given to demonstrate the efficiency of the present method. 

Modified BICM 

Expanding the delay term u(x, t – d) around x by Taylor’s series expansion, we ob-
tain u(x, t – d) ≈ u(x, t) – δ[∂u(x, t)/∂t], and eq. (2) can be approximated by the following sin-
gularly perturbed problem: 
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The differential matrix of barycentric interpolation is [2]: 

  (1) ( )ij j iD L x′= , (2) ( )ij j iD L x′′=   (4) 
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In view of eq. (3), let interval [0, 1] be dispersed as  0 = x1 < x2 < …< xn, = 1, inter-
val [0, T] dispersed as 0 = t1 < t2 < …< tn = T, let u1, u2,…un as the values of function u(x) at 
disperse nodes x1, x2,…xn,, respectively. The barycentric interpolation collocation is adopted 
to obtain an approximate solution of u(x, t) in the form: 
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where ui(t) is expressed:  
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By the assumption given in eqs. (6) and (7), we can obtain a matrix equation in the 
form LU = F, from eq. (3), where:  
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Numerical experiment 

In this section, two numerical examples are studied to demonstrate the accuracy of 
the present method.  

Example 1. Consider the following equation [4, 5]: 
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The exact solution is:  

( , ) e
xt

Tu x t ε
 − + 
 =  

the error compared with fitted difference method in classical uniform meshes (CUM) and in 
fitted piecewise uniform meshes (FPUM) are shown in tab. 1.  

Table 1. Comparison of absolute errors for Example 1 

ε 
Present method CUM [5] CUM [5] FPUM [5] FPUM [5] 

N = 64 N = 64 N = 256 N = 64 N = 256 

2·10–10 3.287·10–4 4.505·10–3 6.696·10–4 4.505·10–3 6.696·10–4 

2·10–12 3.289·10–6 1.144·10–2 1.161·10–3 4.718·10–3 8.212·10–4 

2·10–14 3.289·10–8 2.642·10–2 3.100·10–3 4.718·10–3 8.212·10–4 

2·10–16 3.289·10–10 2.611·10–2 1.027·10–2 4.718·10–3 8.212·10–4 

2·10–18 3.289·10–12 1.021·10–2 2.607·10–2 4.718·10–3 8.212·10–4 

2·10–20 3.289·10–14 2.664·10–3 2.640·10–2 4.718·10–3 8.212·10–4 
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Example 2. Consider the following equation [6]: 
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In this example:  
1
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the exact solution is:  
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the error compared with fitted operator finite difference method (FODFDM) and standard fit-
ted difference method (SFDM) are shown in tab 2. 

Table 2. Comparison of absolute errors for Example 2 

Conclusions and remarks 

In this paper, a modified BICM is proposed for solving singularly perturbed delay 
partial differential equations. Numerical results compared with other methods show that the 
present method is simple and accurate, and it is effective for solving singularly perturbed delay 
partial differential equations. It is worthy to note that our method expands the application of 
BICM, and provides a new and efficient method for singularly perturbed delay partial differen-
tial equations. All computations are performed by the MATLABR2013A software package. 

ε 
Present method FOFDM [6] FOFDM [6] FOFDM [6] SFDM [6] 

N = 16 N = 16 N = 32 N = 64 N = 512 

10–8 6.558·10–4 1.230·10–1 6.370·10–2 3.240·10–2 2.739·10–3 

10–10 6.557·10–6 1.230·10–1 6.370·10–2 3.240·10–2 2.752·10–5 

10–12 6.557·10–8 1.230·10–1 6.370·10–2 3.240·10–2 2.752·10–7 

10–14 6.557·10–10 1.230·10–1 6.370·10–2 3.240·10–2 2.752·10–9 

10–16 6.557·10–12 1.230·10–1 6.370·10–2 3.240·10–2 2.752·10–11 

10–18 6.557·10–14 1.230·10–1 6.370·10–2 3.240·10–2 2.752·10–13 
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