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Abstract: In this paper, we present a numerical method to approximate the solution of linear stochastic Itô–Volterra

integral equations driven by fractional Brownian motion with Hurst parameter H ∈ (0, 1) based on a stochastic

operational matrix of integration for generalized hat basis functions. We obtain a linear system of algebraic equations

with a lower triangular coefficients matrix from the linear stochastic integral equation, and by solving it we get an

approximation solution with accuracy of order O(h2) . This numerical method shows that results are more accurate than

the block pulse functions method where the rate of convergence is O(h) . Finally, we investigate error analysis and with

some examples indicate the efficiency of the method.
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1. Introduction

Recently there has been an increasing demand for numerical methods to solve stochastic differential and

stochastic integral equations. Stochastic Itô–Volterra integral equations appear in models of various problems

in science and engineering events and so on. For many of them there is no exact solution, so numerical

computation and analysis will become important. As an example, in [10], Heydari et al. used hat functions

for solving stochastic Itô–Volterra integral equations, and others have tried to solve them either numerically or

theoretically [5,6,11,12,13,17,19].

For stochastic differential and integral equations caused by fractional Brownian motion, there exist several

ways to solve them: path-wise and related techniques, Dirichlet forms, Euler approximations, Malliavin calculus,

and the Skorokhod integral, but almost all methods have very poor numerical convergence [3,9,14,16,18]. It is

important to find approximation solutions for them, because they cannot be solved analytically in most cases

and have many applications in models of physics problems, telecommunication networks, and finance [4]. Ezzati

et al. used block pulse functions for solving stochastic differential equations with Hurst parameter H ∈ ( 12 , 1)

[8].

In this paper we consider the following linear stochastic Itô–Volterra integral equation, which has been

caused by a fractional Brownian motion:
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X(t) = f(t) +

t∫
0

K1(s, t)X(s)ds+

t∫
0

K2(s, t)X(s)dB(H)(s), t ∈ [0, T ], (1)

where X(t), f(t), K1(s, t), and K2(s, t), for t, s ∈ [0, T ] , are stochastic processes defined on the same

probability space (Ω, F, P ); X(t) is an unknown function; and B(H)(t) is a fractional Brownian motion with

Hurst parameter H ∈ (0, 1). We try to solve it numerically by using hat functions, which are more accurate

and efficient than block pulse basis functions where the rate of convergence is O(h) [8].

In order to compute the approximation solution of this equation, we first define some properties of hat

functions, and then we get the operational matrix of stochastic integration driven by fractional Brownian motion

and get a linear system of algebraic equations with a lower triangular coefficients matrix. Finally the convergence

and error analysis of the suggested method are given, along with some examples that show the efficiency of this

method.

2. Fractional Brownian motion and its properties

2.1. Fractional Brownian motion

A standard fractional Brownian motion (B(H)(t))t≥0 with Hurst parameter H ∈ (0, 1) is a continuous Gaussian

process with zero mean and a covariance function:

Cov(B(H)(s), B(H)(t)) =
1

2
(s2H + t2H− | t− s |2H).

Fractional Brownian motions have the following properties:

(a) B(H)(0) = 0 and E(B(H)(t)) = 0 for all t ≥ 0 .

(b) B(H) has homogeneous increments.

(c) E(B(H)(t)2) = t2H , t ≥ 0.

(d) B(H) has continuous trajectories.

If H = 1/2, we get to standard Brownian motion [4].

2.2. Fractional Itô formula

Let H ∈ (0, 1). Assume that f(s, x) : R × R → R belongs to C1,2(R × R), and assume that the random

variables

f(t, B(H)(t)),

t∫
0

∂f

∂s
(s,B(H)(s))ds,

t∫
0

∂2f

∂x2
(s,B(H)(s))s2H−1ds,

all belong to L2(Ω). Then:

f(t, B(H)(t)) = f(0, 0) +

t∫
0

∂f

∂s
(s,B(H)(s))ds+

t∫
0

∂f

∂x
(s,B(H)(s))dBH(s)+

H

t∫
0

∂2f

∂x2
(s,B(H)(s))s2H−1ds.

(2)

For more details see [4].
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3. Hat functions and their properties

[1,2,7,15] The family of the first (n+1) hat functions on [0, T] is defined as follows:

ϕ0(t) =


h−t
h 0 ≤ t ≤ h,

0 otherwise ,

ϕi(t) =



t−(i−1)h
h (i− 1)h ≤ t ≤ ih,

(i+1)h−t
h ih ≤ t ≤ (i+ 1)h,

0 otherwise,

for which i=1,2,...,n-1 and h = T
n . We also have:

ϕn(t) =


t−(T−h)

h T − h ≤ t ≤ T ,

0 otherwise.

From the above definitions, we have:

ϕi(jh) =

 1 i = j,

0 i ̸= j,
(3)

and
ϕi(t)ϕj(t) = 0, | i− j |≥ 2. (4)

An arbitrary function f(t) ∈ L2[0, T ] can be expanded by the hat basis functions as:

f(t) ≃
n∑

i=0

fiϕi(t) = FTΦ(t) = Φ(t)
T
F, (5)

where

F = [f0, f1, ..., fn]
T , (6)

and

Φ(t) = [ϕ0(t), ϕ1(t), ..., ϕn(t)]
T . (7)

The coefficients fi in (5) are given by:

fi = f(ih), i = 0, 1, ...,n. (8)

For an arbitrary function of two variables k(x, y) ∈ L2([0, T ]× [0, T ]) , we have the following approximation by

the hat basis functions:

k(s, t) = Φ(s)TΛΨ(t), (9)

in which Φ(s) and Ψ(t) are (n+1)-dimensional generalized hat function vectors and Λ is the (n+1)× (n+1)

generalized hat functions coefficients matrix with entries aij , i = 0, ..., n, j = 0, ..., n, as follows:

aij = k(ih, jh).
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From relation (4), we have:

Φ(t)Φ(t)T =



ϕ2
0(t) ϕ0(t)ϕ1(t)

ϕ0(t)ϕ1(t) ϕ2
1(t) ϕ1(t)ϕ2(t)
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . . ϕn−1(t)ϕn(t)

ϕn−1(t)ϕn(t) ϕ2
n(t)


.

According to (3) and expanding entries of Φ(t)Φ(t)T by the hat functions, we have:

Φ(t)Φ(t)T ≃


ϕ0(t) 0 · · · 0
0 ϕ1(t) · · · 0
...

...
. . .

...
0 0 · · · ϕn(t)

 .

Integration of vector Φ(t) defined in (7) can be expressed as [20]:

t∫
0

Φ(s)ds ≃ PΦ(t), t ∈ [0, T ], (10)

where P is an (n+ 1)× (n+ 1) operational matrix for integration and is given by:

P =
h

2



0 1 1 · · · 1 1
0 1 2 · · · 2 2
0 0 1 · · · 2 2
...

...
...

. . .
...

...
0 0 0 · · · 1 2
0 0 0 · · · 0 1


.

4. Stochastic operational matrix

Theorem 1 [10] The Itô integral of Φ(t) , which is given by (7), yields:

t∫
0

Φ(s)dB(s) ≃ PsΦ(t), (11)

where the matrix Ps is (n + 1) × (n + 1) and called the operational matrix of stochastic integration for the

generalized hat functions, and it is given by:

Ps =



0 α0 α0 · · · α0 α0

0 B(h) + β1 β1 + α1 · · · β1 + α1 β1 + α1

0 0 B(2h) + β2 β2 + α2 · · · β2 + α2 β2 + α2

...
...

...
...

. . .
...

...
0 0 0 0 · · · B((n− 1)h) + βn−1 βn−1 + αn−1

0 0 0 0 · · · 0 B(T ) + βn


,
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and 
αi =

1
h

(i+1)h∫
ih

B(s)ds i = 0, 1, 2, ...,n− 1,

βi = − 1
h

ih∫
(i−1)h

B(s)ds i = 1, 2, ...,n.

Theorem 2 Let Φ(t) be the vector defined in (7). The integral of Φ(t) according to fractional Brownian motion

can be expressed as:

t∫
0

Φ(s)dB(H)(s) ≃ PsHΦ(t), (12)

where (n+1)× (n+1) matrix PsH is called the operational matrix of stochastic integration driven by fractional

Brownian motion for the generalized hat functions and is given by:

PsH =



0 α0 α0 α0 · · · α0 α0

0 B(H)(h) + β1 β1 + α1 β1 + α1 · · · β1 + α1 β1 + α1

0 0 B(H)(2h) + β2 β2 + α2 · · · β2 + α2 β2 + α2

...
...

...
...

. . .
...

...
0 0 0 0 · · · B(H)((n− 1)h) + βn−1 βn−1 + αn−1

0 0 0 0 · · · 0 B(H)(T ) + βn


,

and 
αi =

1
h

(i+1)h∫
ih

B(H)(s)ds i = 0, 1, 2, ...,n− 1,

βi = − 1
h

ih∫
(i−1)h

B(H)(s)ds i = 1, 2, ..., n.

Proof In order to compute
t∫
0

ϕ(s)dB(H)(s), choose Xt = B(H)(t) and f(t, x) = ϕi(t)× x . Then according to

relation (2), we have:

Yt = f(t, B(H)(t)) = ϕi(t)×B(H)(t).

So:

d(ϕi(t)×B(H)(t)) = B(H)(t)× ϕ′
i(t)dt+ ϕi(t)dB

(H)(t).

By integrating from 0 to t , we have:

ϕi(t)B
(H)(t)− ϕi(0)B

(H)(0) =

t∫
0

B(H)(y)ϕ′
i(y)dy +

t∫
0

ϕi(y)dB
(H)(y).

Therefore:

t∫
0

ϕi(y)dB
(H)(y) = ϕi(t)B

(H)(t)−
t∫

0

B(H)(y)ϕ′
i(y)dy. (13)
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By expanding
t∫
0

ϕi(y)dB
(H)(y) in terms of hat functions, we will have:

t∫
0

ϕi(y)dB
(H)(y) ≃

n∑
j=0

aijϕj(t) =

n∑
j=0

 jh∫
0

ϕi(y)dB
(H)(y)

ϕj(t).

Using (13), we have:

aij =

jh∫
0

ϕi(y)dB
(H)(y) = ϕi(jh)B

(H)(jh)−
jh∫
0

B(H)(y)ϕ′
i(y)dy.

By using the definition and properties of hat functions mentioned in Section 3, aij have the following form:

a0j =


0 j = 0,

1
h

h∫
0

B(H)(y)dy j ≥ 1,

aij =



0 j ≤ i− 1,

B(H)(ih)− 1
h

ih∫
(i−1)h

B(H)(y)dy j = i,

− 1
h

(
ih∫

(i−1)h

B(H)(y)dy −
(i+1)h∫
ih

B(H)(y)dy

)
j ≥ i+ 1 and i ̸= n,

where i = 1, ..., n and j = 0, 1, ..., n .

Therefore, by substituting αi =
1
h

(i+1)h∫
ih

B(H)(s)ds and βi = − 1
h

ih∫
(i−1)h

B(H)(s)ds , the matrix PsH and

so the Itô integral driven by fractional Brownian motion of Φ(x) will be obtained. 2

In this paper we will work with matrix PsH and its entries.

5. Numerical method using stochastic operational matrix

In this section, we apply the operational matrices of integration and stochastic integration caused by fractional

Brownian motion with Hurst parameter H ∈ (0, 1). By using hat basis functions and their properties we try

to solve the following equation:

X(t) = f(t) +

t∫
0

K1(s, t)X(s)ds+

t∫
0

K2(s, t)X(s)dB(H)(s), t ∈ [0, T ]. (14)

We will approximate X(t), f(t), K1(s, t), and K2(s, t) as follows:

X(t) ≃ XTΦ(t) = Φ(t)TX, (15)
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f(t) ≃ FTΦ(t) = Φ(t)TF, (16)

K1(s, t) ≃ Φ(s)
T
K1Φ(t) = Φ(t)

T
KT

1 Φ(s), (17)

K2(s, t) ≃ Φ(s)
T
K2Φ(t) = Φ(t)

T
KT

2 Φ(s), (18)

where X and F are the generalized hat coefficients vectors, and K1 and K2 are generalized hat coefficient

matrices.

By substituting the above relations in (14), we have:

XTΦ(t) ≃ FTΦ(t) +XT

 t∫
0

Φ(s)Φ(s)T ds

K1Φ(t)+

XT

 t∫
0

Φ(s)Φ(s)T dB(H)(s)

K2Φ(t).

(19)

If we assume Ki
1 , Ki

2 , Ri , and Ri
sH be the ith rows of matrices K1 , K2 , P , and PsH and DKi

1
to be a

diagonal matrix with Ki
1 as its diagonal entries and DKi

2
a diagonal matrix with Ki

2 as its diagonal entries,

we can simplify the above relation as follows:

 t∫
0

Φ(s)Φ(s)T ds

K1Φ(t) ≃


R1Φ(t)K1

1Φ(t)
R2Φ(t)K2

1Φ(t)
...

Rn+1Φ(t)Kn+1
1 Φ(t)

 ≃


R1DK1

1

R2DK2
1

...
Rn+1DKn+1

1

Φ(t) =

B1Φ(t),

where

B1 =
h

2


0 k101 k102 · · · k10n
0 k111 2k112 · · · 2k11n
0 0 k122 · · · 2k12n
...

...
...

. . .
...

0 0 0 · · · k1nn

 .

We also have:

 t∫
0

Φ(s)Φ(s)T dB(H)(s)

K2Φ(t) ≃


R1

sHΦ(t)K1
2Φ(t)

R2
sHΦ(t)K2

2Φ(t)
...

Rn+1
sH Φ(t)Kn+1

2 Φ(t)

 ≃


R1

sHDK1
2

R2
sHDK2

2

...
Rn+1

sH DKn+1
2

Φ(t) =

B2Φ(t),

617



HASHEMI et al./Turk J Math

where

B2 =


0 α0k

2
01 α0k

2
02 · · · α0k

2
0n

0 (B(H)(h) + β1)k
2
11 (β1 + α1)k

2
12 · · · (β1 + α1)k

2
1n

0 0 (B(H)(2h) + β2)k
2
22 · · · (β2 + α2)k

2
2n

...
...

...
. . .

...
0 0 0 · · · (B(H)(T ) + βn)k

2
nn

 .

Thus, equation (19) will be:

XTΦ(t) ≃ FTΦ(t) +XTB1Φ(t) +XTB2Φ(t). (20)

Therefore, we have:

XT (I −B1 −B2) ≃ FT . (21)

By putting M = (I −B1 −B2)
T and replacing ≃ by =, we obtain the following linear lower triangular system

of the algebraic equation:

MX = F. (22)

By solving this system, we can get the approximation solution of equation (14).

6. Error analysis

In this section we get error analysis of the proposed method. First we will provide a theorem to prove that

∥B(H)(t)∥ is bounded on [0, T ] , in which ∥.∥ is sup-norm and is defined as:

∥f(t)∥ = sup
t∈[0,T ]

|f(t)|.

Theorem 3 For every x > 0

P (M(t) ≥ x) = 2P (B(H)(t) ≥ x) = 2(1− ϕ(
x√
t2H

)), (23)

in which M(t) = max0≤s≤tB
(H)(s) and ϕ(x) is the cumulative standard normal distribution function.

Proof Let Tx denote the first time at which B(H)(t) hits level x , i.e. Tx = inf{t > 0 : B(H)(t) = x} .
Obviously P (M(t) ≥ x) = P (Tx ≤ t) and we have:

P (B(H)(t) ≥ x) = P (B(H)(t) ≥ x|Tx ≤ t)P (Tx ≤ t)+

P (B(H)(t) ≥ x|Tx > t)P (Tx > t).

If Tx ≤ t , the process at the point that belongs to [0, t] will visit x and in accordance with the symmetric

property of B(H)(t), the probability of being above and below x at time t for B(H)(t) is equal, so we have:

P (B(H)(t) ≥ x|Tx ≤ t) =
1

2
.

Since P (B(H)(t) ≥ x|Tx > t) = 0, we have:

P (M(t) ≥ x) = P (Tx ≤ t) = 2P (BH(t) ≥ x) =
2√

2πt2H

∞∫
x

e
−y2

2t2H dy.
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If we put z = y√
t2H

, we will have:

P (M(t) ≥ x) =
2√
2π

∞∫
x√
t2H

e
−z2

2 dz = 2(1− ϕ(
x√
t2H

)).

Thus, ∥BH(t)∥ < ∞ almost surely. 2

In the following, we use Theorems 4 and 5 from [10] to get the order of convergence for our method, which is

obtained in Theorem 6.

Theorem 4 [10] Suppose f(t) ∈ C2([0, T ]) and en(t) = f(t) − fn(t), t ∈ I = [0, T ] , where fn(t) is the

approximation of f(t) by the generalized hat functions. Then:

∥en(t)∥ ≤ T 2

2n2
∥f ′′(t)∥.

Thus, we have:

∥en(t)∥ = O

(
1

n2

)
. (24)

Theorem 5 [10] Suppose f(s, t) ∈ C2([0, T ]× [0, T ]) and en(s, t) = f(s, t)−fn(s, t), (s, t) ∈ D = [0, T ]× [0, T ] ,

where fn(s, t) is the approximation of f(s, t) by the generalized hat functions. Then:

∥en(s, t)∥ ≤ T 2

2n2

(
∥∂

2f(s, t)

∂s2
∥+ 2∥∂

2f(s, t)

∂s∂t
∥+ ∥∂

2f(s, t)

∂t2
∥
)
.

Thus, we have:

∥en(s, t)∥ = O

(
1

n2

)
. (25)

Theorem 6 Suppose X(t) and Xn(t) are the exact and approximation solution of the target equation (14). If

(a) ∥X(t)∥ ≤ ρ, t ∈ I = [0, T ],

(b) ∥K1(s, t)∥ ≤ M1, (s, t) ∈ D = I × I,

(c) ∥K2(s, t)∥ ≤ M2, (s, t) ∈ D = I × I,

(d) (d)T (M1 + λ(h)) + (M2 + γ(h))∥BH(t)∥ < 1,

then we have:

∥X(t)−Xn(t)∥ ≤ Γ(h) + Tρλ(h) + ργ(h)∥BH(t)∥
1− (T (M1 + λ(h)) + (M2 + γ(h))∥BH(t)∥)

, (26)

where

Γ(h) =
h2

2
∥f ′′(t)∥,
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λ(h) =
h2

2

(
∥∂

2K1(s, t)

∂s2
∥+ 2∥∂

2K1(s, t)

∂s∂t
∥+ ∥∂

2K1(s, t)

∂t2
∥
)
,

γ(h) =
h2

2

(
∥∂

2K2(s, t)

∂s2
∥+ 2∥∂

2K2(s, t)

∂s∂t
∥+ ∥∂

2K2(s, t)

∂t2
∥
)
.

Proof From equation (14), we have:

X(t)−Xn(t) = f(t)− fn(t) +

t∫
0

(K1(s, t)X(s)−K1n(s, t)Xn(s))ds+

t∫
0

(K2(s, t)X(s)−K2n(s, t)Xn(s))dB
(H)(s).

(27)

Thus, we can write:

∥X(t)−Xn(t)∥ ≤ ∥f(t)− fn(t)∥+ t∥K1(s, t)X(s)−K1n(s, t)Xn(s)∥+

B(H)(t)∥K2(s, t)X(s)−K2n(s, t)Xn(s)∥.
(28)

By using Theorems 4 and 5 and assumptions (a) and (b), we will have:

∥K1(s, t)X(s)−K1n(s, t)Xn(s)∥ ≤ ∥K1(s, t)∥∥X(t)−Xn(t)∥+

∥K1(s, t)−K1n(s, t)∥ (∥X(t)−Xn(t)∥+ ∥X(t)∥)

≤ (M1 + λ(h))∥X(t)−Xn(t)∥+ ρλ(h),

(29)

and also we have:

∥K2(s, t)X(s)−K2n(s, t)Xn(s)∥ ≤ ∥K2(s, t)∥∥X(t)−Xn(t)∥+

∥K2(s, t)−K2n(s, t)∥ (∥X(t)−Xn(t)∥+ ∥X(t)∥)

≤ (M2 + γ(h))∥X(t)−Xn(t)∥+ ργ(h).

(30)

Therefore, we conclude:

∥X(t)−Xn(t)∥ ≤ Γ(h) + t((M1 + λ(h))∥X(t)−Xn(t)∥+ ρλ(h))+

B(H)(t)((M2 + γ(h))∥X(t)−Xn(t)∥+ ργ(h)).
(31)

Thus, we have:

∥X(t)−Xn(t)∥ ≤ Γ(h) + Tρλ(h) + ργ(h)∥BH(t)∥
1− (T (M1 + λ(h)) + (M2 + γ(h))∥BH(t)∥)

. (32)

From the above relation and by using Theorem 3, since ∥BH(t)∥ < ∞ almost surely, we conclude that

∥X(t)−Xn(t)∥ = O( 1
n2 ). 2

7. Some numerical examples

To demonstrate the method, we consider the following examples, the exact solutions of which exist. Note that

n is the number of hat basis functions and m is the number of iterations.
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7.1. Example 1

Consider the following stochastic Itô–Volterra integral equation, which is caused by fractional Brownian motion

and has an exact solution:

X(t) = −1

8
−

t∫
0

1

4
s×X(s)ds−

t∫
0

1

40
X(s)dB(H)(s), t ∈ (0, T ], T < 1.

The exact solution of the above equation is:

X(t) =
−1

8
exp(

−1

40
BH(t)− t2

8
− 1

3200
t2H).

A comparison between the approximation of the solution given by hat functions and the block pulse method is

given in Table 1. In this example the Hurst parameter is 2
3 . You can see the exact and approximation solution

of Example 1 for t = 0.05 with n = 16 and m = 200 in Figure 1 and the exact and approximation solution of

it with n = 64 and m = 500 in Figure 2.

Table 1. Error mean, X̄E , error standard deviation, SE , and confidence interval for error mean of Example 1 with n

= 16 and 200 iterations.

95% confidence interval for error mean
t X̄E with method in [8] X̄E in our method SE Lower Upper
0.05 3.800000× 10−5 3.03682× 10−7 8.99901× 10−8 2.46586× 10−8 1.17196× 10−7

0.1 1.045000× 10−4 7.29227× 10−7 1.95298× 10−7 7.28581× 10−8 2.73684× 10−7

0.15 9.650000× 10−4 9.96107× 10−7 2.71468× 10−7 1.19682× 10−7 3.98834× 10−7

0.2 1.510000× 10−4 1.59443× 10−6 4.44693× 10−7 1.87610× 10−7 6.44890× 10−7

Figure 1. Exact and approximation solution of example 1 for n = 16, m = 200, and t = 0.05.
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Figure 2. Exact and approximation solution of example 1 for n = 64, m = 500, and t = 0.05.

7.2. Example 2

Consider the following linear stochastic Itô–Volterra integral equation, which is caused by fractional Brownian

motion:

X(t) =
1

12
−

t∫
0

1

8
Cos(s)×X(s)ds−

t∫
0

1

16
X(s)dB(H)(s), t ∈ (0, T ), T < 1.

The exact solution of the above equation is:

X(t) =
1

12
exp(

−1

16
BH(t)− 1

8
Sin(t)− 1

512
t2H).

A comparison between the approximation of the solution given by hat functions and the block pulse method is

given in Table 2. In this example the Hurst parameter is 2
3 . You can see the exact and approximation solution

of this example for t = 0.05 in Figure 3.

Table 2. Error mean, X̄E , error standard deviation, SE , and confidence interval for error mean of example 2 with n =

16 and 200 iterations.

95% confidence interval for error mean
t X̄E with method in [8] X̄E in our method SE Lower Upper
0.05 7.6300000× 10−5 8.70521× 10−7 3.05681× 10−7 3.99484× 10−7 7.13817× 10−7

0.1 1.4725000× 10−4 2.79501× 10−6 9.03227× 10−7 1.02205× 10−6 1.95084× 10−6

0.15 1.5430000× 10−4 4.53652× 10−6 1.57851× 10−6 1.82539× 10−6 3.44858× 10−6

0.2 2.6180000× 10−4 6.75661× 10−6 2.17244× 10−6 2.49057× 10−6 4.72450× 10−6

8. Conclusion

In this paper we numerically solved the linear stochastic Itô–Volterra integral equation driven by fractional

Brownian motion, which was solved for simple Brownian motion in [10]. We used hat functions as basis

functions for approximation, in which error analysis and the numerical examples showed the accuracy of the

method such that the results signify that the efficiency of the suggested method is better than block pulse

functions as basis functions used in [8].
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Figure 3. Exact and approximation solution of example 2 for n = 16, m = 200, and t = 0.05.
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