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Abstract

In this paper, a numerical method for the solution of a strongly coupled reaction-diffusion system, with suitable initial and
Neumann boundary conditions, by using cubic B-spline collocation scheme on a uniform grid is presented. The scheme is
based on the usual finite difference scheme to discretize the time derivative while cubic B-spline is used as an interpolation
function in the space dimension. The scheme is shown to be unconditionally stable using the von Neumann method. The
accuracy of the proposed scheme is demonstrated by applying it on a test problem. The performance of this scheme is
shown by computing L? and L2 error norms for different time levels. The numerical results are found to be in good
agreement with known exact solutions.

Citation: Abbas M, Majid AA, Md. Ismail AI, Rashid A (2013) Numerical Method Using Cubic B-Spline for a Strongly Coupled Reaction-Diffusion System. PLoS
ONE 9(1): e83265. doi:10.1371/journal.pone.0083265

Editor: Dennis Salahub, University of Calgary, Canada

Received July 10, 2013; Accepted November 1, 2013; Published

Copyright: � 2014 Abbas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was fully supported by FRGS Grant of No. 203/PMATHS/6711324 from the School of Mathematical Sciences, Universiti Sains Malaysia,
Penang, Malaysia. The first author was supported by Post Doctorate Fellowship from School of Mathematical Sciences, Universiti Sains Malaysia, Penang, Malaysia,
during a part of the time in which the research was carried out. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: m.abbas@uos.edu.pk

Introduction

This study is concerned with the numerical solution of strongly

coupled reaction-diffusion system using cubic B-spline. Reaction-

diffusion system arises in the study of biology, chemistry and

population dynamics. It can be used to describe a mathematical

model of a class of chemical exchange reaction that arises in the

transport of ground water in an aquifer [1]. The mathematical

formulation of the problem is:

L
Lt

u

v

� �
~

a 0

b c

� �
L2

Lx2

u

v

� �
z

f (u,v)

g(u,v)

� �
x[½a,b�, t[½0,T �

ð1Þ

with the initial conditions

u(x,0)~u0(x), v(x,0)~v0(x), ð2Þ

and the boundary conditions

ux(0,t)~a1(t), ux(1,t)~b1(t),

vx(0,t)~a2(t), vx(1,t)~b2(t),
ð3Þ

where u~u(x,t) and v~v(x,t) are the concentrations of the two

substances in the interaction and the constants a,b,c are such that

aw0,bw0, c=0. The following consistency conditions hold

a1(0)~u’0(0), b1(0)~u’0(1),

a2(0)~v’0(0), b2(0)~v’0(1):
ð4Þ

The global solutions of such a system of equations have attracted

the attention of several researchers [2–6]. Researchers have also

investigated the existence, uniqueness and boundedness of the

global solution in bounded and unbounded region [3,6]. Cao and

Sun [1] derived a finite difference scheme by the method of

reduction of order for the numerical solution of strongly coupled

reaction-diffusion system with Neumann boundary values condi-

tions. They proved the solvability and convergence by using the

energy method. Several researchers focused on analytical solutions

of nonlinear equations by using approximate analytical methods.

Examples include Ghoreishi et al [7] who obtained the analytical

solution for a strongly coupled reaction-diffusion system by using

the Homotopy Analysis Method. The solution of the system was

calculated in the form of an infinite series with easily computed

components. This method cannot always guarantee the conver-

gence of approximate series [8,9] and the method depends on

choosing the proper linear operator and initial guesses.

The study of spline functions is a key element in computer aided

geometric design [10] and also several other applications. It has

also attracted attention in the literature for the numerical solution

of linear and non-linear system of second-order boundary value

problems [11,12] that arise in science and engineering. Some

researchers have considered spline collocation method for

diffusion problems [15–19]. Advection-diffusion equation arises

frequently in the study of mass, heat, energy and vorticity transfer

in engineering. Bickley [13] introduced the idea of using a chain of

low-order approximation (cubic splines) rather than a global high-

order approximation to obtain better accuracy for a linear

ordinary differential equation. Fyfe [14] used the method

proposed by Bickley [13] and conducted an error analysis. It

was concluded that the spline method is better than the usual finite
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difference scheme because it has the flexibility to obtain the

solution at any point in the domain with greater accuracy. The

numerical solution of some partial differential equations can be

obtained using B-spline functions of various degrees which can

provide simple algorithms. As an example, a combination of finite

difference approach and cubic B-spline method was used to solve

the Burgers’ equation [15], heat and wave equation [16,17],

advection-diffusion equation [18] and coupled viscous Burgers’

equation [19].

Sahin [24] presented the B-spline methods in several degrees for

the solution of following non linear reaction-diffusion system

LU

Lt
~a1

L2U

Lx2
zb1Uzc1Vzd1U2Vze1UVzm1UV 2zn1,

LV

Lt
~a2

L2V

Lx2
zb2Uzc2Vzd2U2Vze2UVzm2UV 2zn2:

The finite element method was employed for the solution of

reaction-diffusion systems and the time discretization of the system

was achieved by the using Crank-Nicolson formulae. The system

was considered only reaction-diffusion but the problem we

propose to investigate is a strongly reaction-diffusion system with

an extra term Uxx in the second equation of system (1).

In this paper we aim to apply the combination of finite

difference approach and cubic B-spline method to solve the system

(1). Some researchers have utilized the B-spline collocation

methods to solve systems of differential equations but so far as

we are aware not the system (1). A usual finite difference scheme is

used to discretize the time derivative. Cubic B-spline is applied as

an interpolation function in the space dimension. The uncondi-

tional stability property of the method is proved by von Neumann

method. The feasibility of the method is shown by a test problem

and the approximated solutions are found to be in good agreement

with the exact solution.

This paper is structured as follows: Firstly, we discuss a

numerical method incorporating a finite difference approach with

cubic B-spline. Secondly, the von Neumann approach is used to

prove the stability of method and compare the numerical solution

with exact solution of system (1). Thirdly, a test problem is

considered to show the feasibility of the proposed method. Finally,

the conclusion of this study is given.

Description of Cubic B-Spline Collocation Method

In this section, we discuss the cubic B-spline collocation method

for solving numerically the strongly coupled reaction-diffusion

system (1). The solution domain aƒxƒb is equally divided by

knots xi into n subintervals ½xi,xiz1�, i~0,1,2,:::,n{1 where

a~x0vx1v:::vxn~b. Our approach for strongly coupled

reaction-diffusion system using collocation method with cubic B-

spline is to seek an approximate solution as [20]

Ui(x,t)~
Pn{1

i~{3 Ci(t)B3,i(x),

Vi(x,t)~
Pn{1

i~{3 Di(t)B3,i(x),

(
ð5Þ

where Ci(t) and Di(t) are (time dependent) quantities which are to

be determined for the approximated solutions Ui(x,t) and Vi(x,t)
to the exact solutions u(x,t) and v(x,t) respectively, at the point

(xi,tj) and B3,i(x) are cubic B-spline basis functions which are

defined by [21]

B3,i(x)~
1

6h3

(x{xi)
3 x[½xi,xiz1�

h3z3h2(x{xiz1)z3h(x{xiz1)2{3(x{xiz1)3 x[½xiz1,xiz2�
h3z3h2(xiz3{x)z3h(xiz3{x)2{3(xiz3{x)3 x[½xiz2,xiz3�
(xiz4{x)3 x[½xiz3,xiz4�
0 otherwise

8>>>>>><
>>>>>>:

ð6Þ

where h~(b{a)=n. The approximations U
j
i and V

j
i at the point

(xi,tj) over subinterval ½xi,xiz1� can be defined as

U
j
i ~
Pi{1

k~i{3 C
j
kB3,k(x),

V
j
i ~
Pi{1

k~i{3 D
j
kB3,k(x),

(
ð7Þ

where i~0,1,2,:::,n. So as to obtain the approximations to the

solutions, the values of B3,i(x) and its derivatives at nodal points

are required and these derivatives are tabulated in Table 1.

Using approximate functions (6) and (7), the values at the knots

of U
j
i and V

j
i and their derivatives up to second order are

determined in the terms of time parameters C
j
k and D

j
k as

U
j
i ~

1

6
C

j
i{3z

2

3
C

j
i{2z

1

6
C

j
i{1,

(Ux)
j
i~

1

2h
C

j
i{3{C

j
i{1

� �
,

(Uxx)
j
i~

1

h2
C

j
i{3{

2

h2
C

j
i{2z

1

h2
C

j
i{1,

V
j
i ~

1

6
D

j
i{3z

2

3
D

j
i{2z

1

6
D

j
i{1,

(Vx)
j
i~

1

2h
D

j
i{3{D

j
i{1

� �
,

(Vxx)
j
i~

1

h2
D

j
i{3{

2

h2
D

j
i{2z

1

h2
D

j
i{1,

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð8Þ

The approximations of the solutions of the system (1) at tth
jz1 time

level can be given by as [22]

(Ut)
j
i~hp

jz1
i z(1{h)p

j
i ,

(Vt)
j
i~hq

jz1
i z(1{h)q

j
i ,

(
ð9Þ

where p
j
i~a(Uxx)

j
izf

j
i , q

j
i~b(Uxx)

j
izc(Vxx)

j
izg

j
i and

f
j

i ~a3U
j
i za4V

j
i , g

j
i~a5U

j
i za6V

j
i , where ai,i~1,2,3,4 are con-

stants and the subscripts j and jz1 are successive time levels,

j~0,1,2,::::. Discretizing the time derivatives in the usual finite

difference way and rearranging the equations, we obtain

U
jz1
i {hDtp

jz1
i ~U

j
i z(1{h)Dtp

j
i ,

V
jz1
i {hDtq

jz1
i ~V

j
i z(1{h)Dtq

j
i ,

(
ð10Þ

Table 1. Values of B3,i(x) and its derivatives.

xi xi+1 xi+2 xi+3 xi+4

Bi 0 1/6 2/3 1/6 0

B’i 0 1/2h 0 21/2h 0

B’’i 0 1/h2 22/h2 1/h2 0

doi:10.1371/journal.pone.0083265.t001

ð6Þ
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where Dt is the time step. It is noted that the system becomes an

explicit scheme when h~0, a fully implicit scheme when h~1,

and a Crank-Nicolson scheme when h~0:5 [15] with time

stepping process being half explicit and half implicit. In this paper,

we use the Crank-Nicolson approach. Hence, (10) becomes

U
jz1
i {0:5Dtp

jz1
i ~U

j
i z0:5Dtp

j
i ,

V
jz1
i {0:5Dtq

jz1
i ~V

j
i z0:5Dtq

j
i :

(
ð11Þ

The system thus obtained on simplifying (11) after using (8) consists

of 2(nz1) linear equations in 2(nz3) unknowns

Cj~ C
jz1
{3 ,C

jz1
{2 ,C

jz1
{1 ,:::,Cjz1

n{1

� �
, Dj~ D

jz1
{3 ,D

jz1
{2 ,D

jz1
{1 ,:::,Djz1

n{1

� �
at the time level t~tjz1. So as to obtain a unique solution to the

resulting system, four additional linear equations are required.

Thus, equation (7) is applied to the boundary conditions (3) to

obtain

(Ux)
jz1
0 ~a1(tjz1),

(Ux)jz1
n ~b1(tjz1),

(Vx)
jz1
0 ~a2(tjz1),

(Vx)jz1
n ~b2(tjz1),

ð12Þ

From equations (11) and (12), the system becomes a matrix system

of dimension 2(nz3)|2(nz3) which is a bi-tridiagonal system

that can be solved by the Thomas Algorithm [23]. From equation

(10) and (12), the system can be written in the matrix vector form

as:

MEjz1~NEjzb, ð13Þ

where

Ejz1~½Cjz1
{3 ,C

jz1
{2 ,C

jz1
{1 ,:::,Cjz1

n{1,D
jz1
{3 ,D

jz1
{2 ,D

jz1
{1 ,:::,Djz1

n{1�
T

,

Ej~½Cj
{3,C

j
{2,C

j
{1,:::,Cj

n{1,D
j
{3,D

j
{2,D

j
{1,:::,Dj

n{1�
T

,

b~½a1(tjz1),0,0,:::,b1(tjz1),a2(tjz1),0,0,:::,b2(tjz1)�T ,j~0,1,2,::::

and M is an 2(nz3)|2(nz3) dimensional matrix given by

Table 2. Some numerical solution of U(x,t) at t~1:0.

n/x 0.125 0.25 0.375 0.625 0.75 0.875

16 0.09166515 0.18393918 0.27621321 0.27621321 0.18393918 0.09166515

32 0.06452148 0.18393899 0.30335651 0.30335651 0.18393899 0.06452148

64 0.05661594 0.18393653 0.31125712 0.31125715 0.18393658 0.05661601

128 0.05457118 0.18394479 0.31331839 0.31331836 0.18394472 0.05457110

256 0.05407447 0.18393318 0.31385834 0.31385863 0.18396692 0.05407518

512 0.05392663 0.18393549 0.31405060 0.31405084 0.18394405 0.05392761

1024 0.05386625 0.18393840 0.31400978 0.31400981 0.18394110 0.05388334

uexact(x,1) 0.05387469 0.18393972 0.31400474 0.31400474 0.18393972 0.05387469

doi:10.1371/journal.pone.0083265.t002

Table 3. Some numerical solution of V (x,t) at t~1:0.

n/x 0.125 0.25 0.375 0.625 0.75 0.875

16 0.27700610 0.18393970 0.09087339 0.09087339 0.18393970 0.27700601

32 0.30361313 0.18393970 0.06426627 0.06426627 0.18393970 0.30361313

64 0.31132848 0.18393971 0.05665094 0.05665093 0.18393969 0.31132845

128 0.31333062 0.18393969 0.05454876 0.05454877 0.18393971 0.31333065

256 0.31383601 0.18393980 0.05404358 0.05404347 0.18393960 0.31383575

512 0.31396262 0.18393980 0.05391696 0.05391688 0.18393963 0.31396241

1024 0.31399647 0.18394147 0.05388465 0.05388429 0.18393793 0.31399625

vexact(x,1) 0.31400474 0.18393972 0.05387469 0.05387469 0.18393972 0.31400474

doi:10.1371/journal.pone.0083265.t003
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Also the entries in sub-matrices Ai,i~1,2,3,:::,8 have the

following form

p1~{
aDth

h2
z

(1{a3Dth)

6
,

q1~
2aDth

h2
z

2(1{a3Dth)

3
,

p2~{
a4Dth

6
,

q2~{
2a4Dth

3
,

p3~{
cDth

h2
z

(1{a6Dth)

6
,

q3~
2cDth

h2
z

2(1{a6Dth)

3
,

p4~{
bDth

h2
z

a5Dth

6

� �
,

q4~
2bDth

h2
{

2a5Dth

3

� �
,

p5~
(1za3Dt(1{h))

6
z

aDt(1{h)

h2
,

q5~
2(1za3Dt(1{h))

3
{

2aDt(1{h)

h2
,

p6~
a4Dt(1{h)

6
,

Table 5. The absolute errors at different grid points of
numerical solution of V (x,t) at t~1:0.

n/x 0.125 0.25 0.375 0.625 0.75 0.875

16 3.6998E-02 1.5559E-08 3.6998E-02 3.6998E-02 1.5097E-08 3.6998E-02

32 1.0391E-02 1.5257E-08 1.0391E-02 1.0391E-02 1.5398E-08 1.0391E-02

64 2.6762E-03 5.3785E-09 2.6762E-03 2.6762E-03 2.5277E-08 2.6762E-03

128 6.7411E-04 2.7316E-08 6.7406E-04 6.7407E-04 3.3408E-09 6.7408E-04

256 1.6873E-04 8.3759E-08 1.6888E-04 1.6877E-04 1.1441E-07 1.6898E-04

512 4.2123E-05 8.0580E-08 4.2271E-05 4.2184E-05 8.0882E-08 4.2334E-05

1024 8.2681E-06 1.7575E-06 9.9601E-06 9.5943E-06 1.7881E-06 8.4926E-06

doi:10.1371/journal.pone.0083265.t005

Figure 1. The absolute error curves of numerical solution U(x,t) at t~1:0.
doi:10.1371/journal.pone.0083265.g001

Table 4. The absolute errors at different grid points of
numerical solution of U(x,t) at t~1:0.

n/x 0.125 0.25 0.375 0.625 0.75 0.875

16 3.7790E-02 5.3228E-07 3.7791E-02 3.7791E-02 5.3354E-07 3.7790E-02

32 1.0646E-02 7.2246E-07 1.0648E-02 1.0648E-02 7.2208E-07 1.0646E-02

64 2.7412E-03 3.1889E-06 2.7476E-03 2.7476E-03 3.1346E-06 2.7413E-03

128 6.9649E-04 5.0748E-06 6.8634E-04 6.8638E-04 5.0093E-06 6.9640E-04

256 1.9977E-04 6.5450E-06 1.4640E-04 1.4610E-04 2.7209E-05 2.0048E-04

512 5.1944E-05 4.2320E-06 4.5862E-05 4.6101E-05 4.3318E-06 5.2920E-05

1024 8.4430E-06 1.3219E-06 5.0421E-06 5.0741E-06 1.3811E-06 8.6510E-06

doi:10.1371/journal.pone.0083265.t004
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q6~
2a4Dt(1{h)

3
,

p7~
(1za6Dt(1{h))

6
z

cDt(1{h)

h2
,

q7~
2(1za6Dt(1{h))

3
{

2cDt(1{h)

h2
,

p8~
bDt(1{h)

h2
z

a5Dt(1{h)

6
,

q8~{
2bDt(1{h)

h2
z

2a5Dt(1{h)

3
:

Initial state

After the initial vectors C0 and D0 have been computed from

the initial conditions, the approximate solutions U
jz1
i and V

jz1
i at

a particular time level can be calculated repeatedly by solving the

recurrence relation [19].

C0 and D0 can be obtained from the initial condition and

boundary values of the derivatives of the initial condition as follows

[15]:

(U0
i )x~u’0(xi),i~0,

U0
i ~u0(xi),i~0,1,2,:::,n,

(U0
i )x~u’0(xi),i~n,

8><
>: ð14Þ

and similarly for approximate solution V
jz1
i

(V0
i )x~v’0(xi),i~0,

V0
i ~v0(xi),i~0,1,2,:::,n,

(V0
i )x~v’0(xi),i~n:

8><
>: ð15Þ

Thus the equations (14) and (15) yield a 2(nz3)|2(nz3) matrix

system, of the form

AEjz1~d

Figure 2. The absolute error curves of numerical solution V (x,t) at t~1:0.
doi:10.1371/journal.pone.0083265.g002

Table 6. The absolute errors of numerical solution [1] of
u(x,t) at t~1:0.

n/x 0.125 0.375 0.625 0.875

16 1.3906E-03 9.7932E-04 9.7932E-04 1.3906E-03

32 3.4719E-04 2.4432E-04 2.4432E-04 3.4719E-04

64 8.6706E-05 6.0986E-05 6.0986E-05 8.6706E-05

128 2.1670E-05 1.5240E-05 1.5240E-05 2.1670E-05

256 5.4173E-06 3.8098E-06 3.8098E-06 5.4173E-06

512 1.3543E-06 9.5242E-07 9.5242E-07 1.3543E-06

doi:10.1371/journal.pone.0083265.t006

Table 7. The absolute errors of numerical solution [1] of
v(x,t) at t~1:0.

n/x 0.125 0.375 0.625 0.875

16 1.1016E-03 1.5129E-03 1.5129E-03 1.1016E-03

32 2.6765E-04 3.7052E-04 3.7052E-04 2.6765E-04

64 6.6834E-05 9.2554E-05 9.2554E-05 6.6834E-05

128 1.6703E-05 2.3133E-05 2.3133E-05 1.6703E-05

256 4.1756E-06 5.7831E-06 5.7831E-06 4.1756E-06

512 1.0438E-06 1.4457E-06 1.4457E-06 1.0438E-06

doi:10.1371/journal.pone.0083265.t007
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where

A~

p0 0 {p0 0 : : 0 j 0 0 0 0 : : 0

p q p 0 : : 0 j 0 0 0 0 : : 0

0 p q p : : 0 j 0 0 0 0 : : 0

: : : : : : : j : : : : : : :

: : : : : : : j : : : : : : :

: : : : : : : j : : : : : : :

0 0 : : p q p j 0 0 : : 0 0 0

0 0 : : p0 0 {p0 j 0 0 : : 0 0 0

{ { { { { { { { { { { { { {

0 0 0 0 : : 0 j p0 0 {p0 0 : : 0

0 0 0 0 : : 0 j p q p 0 : : 0

0 0 0 0 : : 0 j 0 p q p : : 0

: : : : : : : j : : : : : : :

: : : : : : : j : : : : : : :

: : : : : : : j : : : : : : :

0 0 : : 0 0 0 j 0 0 : : p q p

0 0 : : 0 0 0 j 0 0 : : p0 0 {p0

2
6666666666666666666666666666666666664

3
7777777777777777777777777777777777775

,

Ejz1~½Cjz1
{3 ,C

jz1
{2 ,C

jz1
{1 ,:::,Cjz1

n{1,D
jz1
{3 ,D

jz1
{2 ,D

jz1
{1 ,:::,Djz1

n{1�
T ,

j~0,

d~½u00(x0),u0(x0),u0(x1),:::,

u0(xn),u00(xn),v00(x0),v0(x0),v0(x1),:::,

v0(xn),v00(xn)�T ,

and p0~
1

2h
,p~

1

6
,q~

2

3
.

The solution of above system can be found by Thomas

Algorithm.

Stability of the Scheme
In this section, von Neumann stability method is applied for

investigating the stability of the proposed scheme. This approach

has been used by many researchers [15–19]. Substituting the

approximate solution U and V , their derivatives at the knots and

f u,vð Þ~(f1,f2), g u,vð Þ~(g1,g2) into equation (10) yields a

difference equation with variables Cm and Dm given by:

a1(C
jz1
m{3zC

jz1
m{1)za2C

jz1
m{2za3(D

jz1
m{3zD

jz1
m{1)za4D

jz1
m{2~

a5(C
j
m{3zC

j
m{1)za6C

j
m{2za7(D

j
m{3zD

j
m{1)za8D

j
m{2,

a9(C
jz1
m{3zC

jz1
m{1)za10C

jz1
m{2za11(D

jz1
m{3zD

jz1
m{1)za12D

jz1
m{2~

a13(C
j
m{3zC

j
m{1)za14C

j
m{2za15(D

j
m{3zD

j
m{1)za16D

j
m{2,

8>>>><
>>>>:

ð16Þ

where

a1~
(1{Dthf1)

6
{

Dtha

h2
,

a2~
2(1{Dthf1)

3
z

2Dtha

h2
,

a3~{
Dthf2

6
,

a4~{
2Dthf2

3
,

a5~
(1zDt(1{h)f1)

6
z

Dt(1{h)a

h2
,

a6~
2(1zDt(1{h)f1)

3
{

2Dt(1{h)a

h2
,

a7~
Dt(1{h)f2

6
,

a8~
2Dt(1{h)f2

3
,

a9~{
Dthg1

6
z

Dtha

h2

� �
,

a10~
2Dtha

h2
{

2Dthg1

3
,

Table 8. Errors at different time-levels for U(x,t) with
Dt~0:001.

t
n = 100
L2 L‘

n = 300
L2 L‘

n = 500
L2 L‘

0.01 5.90E-05 6.95E-05 6.56E-06 7.67E-06 2.36E-06 2.76E-06

0.1 4.24E-04 5.47E-04 4.71E-05 6.04E-05 1.69E-05 2.17E-05

0.5 1.33E-03 2.56E-03 1.48E-04 2.83E-04 5.34E-05 1.01E-05

1.0 1.60E-03 5.06E-03 1.81E-03 5.61E-03 8.10E-05 2.15E-05

doi:10.1371/journal.pone.0083265.t008

Table 9. Errors at different time-levels for V (x,t) with
Dt~0:001.

t
n = 100
L2 L‘

n = 300
L2 L‘

n = 500
L2 L‘

0.01 1.05E-05 1.22E-05 1.16E-06 1.36E-06 4.21E-07 4.90E-07

0.1 3.25E-04 4.14E-04 3.62E-05 4.61E-05 1.30E-05 1.66E-05

0.5 1.26E-03 2.40E-03 1.40E-04 2.68E-04 5.07E-05 9.65E-05

1.0 1.55E-03 4.87E-03 1.74E-04 5.45E-04 6.39E-05 1.96E-05

doi:10.1371/journal.pone.0083265.t009
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a11~
(1{Dthg2)

6
{

Dthb

h2
,

a12~
2(1{Dthg2)

3
z

2Dthb

h2
,

a13~
(1{h)Dtg1

6
z

(1{h)Dta

h2
,

a14~
2(1{h)Dtg1

3
{

2(1{h)Dta

h2
,

Figure 3. A comparison between numerical U(x,t) and exact solutions at different time levels.
doi:10.1371/journal.pone.0083265.g003

Figure 4. A comparison between numerical V (x,t) and exact solutions at different time levels.
doi:10.1371/journal.pone.0083265.g004
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a15~
(1z(1{h)Dtg2)

6
z

(1{h)Dtb

h2
,

a16~
2(1z(1{h)Dtg2)

3
{

2(1{h)Dtb

h2
:

Now on inserting the trial solutions (one Fourier mode out of the

full solution) at a given point xm Cj
m~Ajj exp(imyh) and

Dj
m~Bjj exp(imyh) into equation (16) and rearranging the

equations, where A and B are the harmonics amplitudes, y is

the mode number, h is the element size and i~
ffiffiffiffiffiffiffiffi
{1
p

we get

½X2ziY �jjz1~½X1ziY �jj ,

½X4ziY �jjz1~½X3ziY �jj ,

(
ð17Þ

where

X1~
AzDt(1{h)(Af1zBf2)

3

� �
cos yhz2ð Þ{

2Dt(1{h)Aa

h2

� �
1{cos yhð Þ,

X2~
A{Dth(Af1{Bf2)

3

� �
cos yhz2ð Þz

2DthAa

h2

� �
1{cos yhð Þ,

X3~
BzDt(1{h)(Ag1zBg2)

3

� �
cos yhz2ð Þ{

2Dt(1{h)(AazBb)

h2

� �
1{cos yhð Þ,

X4~
B{Dth(Ag1zBg2)

3

� �
cos yhz2ð Þz

2Dth(AazBb)

h2

� �
1{cos yhð Þ,

Y~0:

On direct calculation of equation (17) we obtain

j~

X1ziY

X2ziY
,

X3ziY

X4ziY
,

8>><
>>: ð18Þ

For stability, the maximum modulus of the eigen-values of the

matrix has to be less than or equal to one. As h~0:5 is used in the

proposed scheme, we thus substitute the value of h into equation

(18) and after some algebraic calculation, it can be noticed that

jj j2~

X 2
1 zY 2

X 2
2 zY 2

ƒ1,

X 2
3 zY 2

X 2
4 zY 2

ƒ1,

8>>><
>>>:

ð19Þ

Thus, from (19), the proposed scheme for strongly coupled

reaction-diffusion equations is unconditionally stable since the

modulus of the eigen-values must be less than one. This means

that there are no constraints on grid size h and step size in time

level Dt but we should prefer those values of h and Dt for which we

obtain the best accuracy of the scheme.

Results and Discussion

To test the accuracy of present method, one example is given in

this section with L? and relative L2 error norms are calculated by

L?~ max
i

uexact
i {Unum

i

		 		, L2~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i uexact

i {Unum
i

		 		2q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i uexact
i

		 		2q ,

and in similar way for the numerical solution V (x,t).

The numerical order of convergence R for both U(x,t) and

V (x,t) of present method is obtained by using the formula [19].

Table 10. Maximum error, ratio and order of convergence of
the proposed scheme for U(x,t).

t = 0.1
n L‘ Ratio

Order of
Conver.

t = 0.5
L‘ Ratio

Order of
Conver.

16 1.64E-02 .......... ........... 4.8E-02 .......... ...........

32 4.13E-03 3.9623 1.9863 1.27E-02 3.7704 1.9147

64 1.04E-03 3.9906 1.9966 3.24E-03 3.9408 1.9785

128 2.59E-04 3.9975 1.9991 8.13E-04 3.9850 1.9945

256 6.48E-05 3.9990 1.9996 2.03E-04 3.9959 1.9985

512 1.62E-05 3.9984 1.9994 5.09E-05 3.9983 1.9994

1024 4.06E-06 3.9973 1.9979 1.27E-05 3.9868 1.9952

doi:10.1371/journal.pone.0083265.t010

Table 11. Maximum error, ratio and order of convergence of
the proposed scheme for V (x,t).

t = 0.1
n L‘ Ratio

Order of
Conver.

t = 0.5
L‘ Ratio

Order of
Conver.

16 1.26E-02 ........... ........... 4.60E-02 ............ ............

32 3.17E-03 3.9819 1.9834 1.21E-02 3.7833 1.9196

64 7.95E-04 3.9956 1.9984 3.08E-03 3.9443 1.9797

128 2.59E-04 3.9988 1.9995 7.73E-04 3.9859 1.9949

256 4.97E-05 3.9992 1.9997 1.93E-04 3.9961 1.9985

512 1.24E-05 3.9981 1.9993 4.84E-05 3.9975 1.9991

1024 3.11E-06 3.9927 1.9973 1.21E-05 3.9933 1.9975

doi:10.1371/journal.pone.0083265.t011
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R~
Log L?(n)=L?(2n)ð Þ

Log 2n=nð Þ , ð20Þ

where L?(n) and L?(2n) are the errors at number of partitions n
and 2n respectively.

We compare the numerical solution obtained by cubic B-spline

collocation method for strongly coupled reaction-diffusion system

(1) with known exact solution.

Example 1
In this example, we present a strongly coupled reaction-

diffusion system (1) with numerical solution to show the capability

and efficiency of cubic B-spline collocation scheme.

We consider the following problem

ut~uxxz(2p2{1)u{2p2v, 0vxv1, 0vtƒT ,

vt~uxxzvxx{v, 0vxv1, 0vtƒT ,
ð21Þ

with initial conditions

u(x,0)~sin2px,

v(x,0)~cos2px,

(
0vxv1, ð22Þ

and boundary conditions as follows:

ux(0,t)~0, ux(1,t)~0,

vx(0,t)~0, vx(1,t)~0,



0vtƒT , ð23Þ

It is straightforward to verify that the following are the exact

solutions [1]

u(x,t)~e{t sin2px, v(x,t)~e{t cos2px,

We use the cubic B-spline collocation method (11)–(12) and (14)–

(15) to compute the numerical solution of (21)–(23). Table 2 and

Table 3 show the acceptable comparison between numerical and

exact solutions at some grid points at t~1:0 with different number

of partitions.

This problem is tested using different values of h and Dt to show

the capability of the proposed method for solving the system (21)–

(23). The final time is taken as T~1. The maximum absolute

errors of the method at some grid points are comparable with

finite difference scheme in [1]. The numerical errors of the

proposed method are presented in Table 4 and Table 5 and are

also depicted graphically in Figure 1 and Figure 2. The absolute

errors of the numerical solution using finite difference scheme in

[1] are shown in Table 6 and Table 7

The solutions are also tabulated in Table 8 and Table 9 with

different number of partition and different time levels. Results are

presented graphically for U(x,t) and V(x,t) in Figure 3 and

Figure 4 for 0vtƒ1 respectively.

The order of convergence of the present example is calculated

by the use of the formula given in (20) and which is tabulated in

Table 10 and Table 11 for U(x,t) and V (x,t) respectively. An

examination of these tables indicates the method has a nearly

second order of convergence.

Concluding Remarks

In this paper, a numerical method which incorporates a usual

finite difference scheme with cubic B-spline is presented for solving

the strongly coupled reaction diffusion system. A finite difference

approach is used to discretize the time derivatives and cubic B-

spline is used to interpolate the solutions at each time level. It is

noted that sometimes the accuracy of solution reduces as time

increases due to the time truncation errors of time derivative term

[19]. However the cubic B-spline method used in this work is

simple and straight forward to apply. The computed results show

that the cubic B-spline gives reasonable solutions which are

comparable with finite difference scheme with smaller space steps.

The obtained solution to the reaction diffusion system for various

time levels have been compared with the exact solution by finding

the L? and L2 errors. An advantage of using the cubic B-spline

method outlined in this paper is that it can give accurate solutions

at any intermediate point in the space direction.
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