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I. Introduction. In a previous paper [6], S. V. Parter and the author have studied
finite-difference methods for elliptic differential equations of the second order
whose coefficients are singular on a portion of the boundary; the uniform con-
vergence of the approximations and the existence of a solution of the Dirichlet
problem were proved for a class of such equations. The present work is an exten-
sion of those results to parabolic initial boundary-value problems. The class of
problems that we consider includes the cases of nonhomogeneous differential equa-
tions, of time-dependent coefficients, of time-dependent domains and of over-de-
termined Dirichlet problems.

Let G be a bounded (open) domain in Rn and let P = (xi, • • •, xn) denote an
element of G. Let L be a differential operator of the form

n «2 n Xi

(1.1) Lu =   ^a„ + X br —-cu.
r,s=l OXrOXs r=l OX r

The coefficients ars = asr, bT and c are functions of P; we assume that they are
"smooth"* in the interior of G; but they may be singular, for instance be un-
bounded, as P approaches the boundary dG of G. Moreover, we assume

(1.2) t«„(P)£,UO,       Vfti, •••,£.) ^0,VP EG,
(1.3) c(P)è0,       VPGG.
The work in [6] was devoted to the elliptic case :

(1.4) ¿ arYP)Us > 0 ,       VUi, ■••,&.} ̂0,VP G G.
T ,S=1

In the present paper, we are primarily interested in the parabolic case :

ar„iP) = 0 ,       r = 1, 2, • • -,n ,
n-l

(1-5) Za»(P)«. >0,        VUi, •••,&-!} ^0,
r,s=.l

6n(P)<0,       VPGG.
In this case we shall write xn = t (time variable). However, for greater generality,
we will take, at first, the operator L in the form (1.1) and we will only assume
conditions (1.2) (1.3).

Let Ti and T2 be two complementary subsets of dG; Tx f¿ 0. Let /(P) be a

Received December 4, 1967.
* We need not specify now the degree of smoothness.
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bounded function defined on G and which is "smooth" in the interior of G; let
gf(P) G CiG). We consider the differential equation

(1.6) Lu = /

and the boundary value problem

LuiP)=fiP),       PGG,
(1.7) uiP) = giP) ,       P G r,,

uiP) G C2((?) H CiG U Ti) n 5(G) ,
where P((?) denotes the space of all bounded functions on G.

We say that (1.7) is a problem of "Dirichlet type"*. Of course, Ti cannot be
chosen arbitrarily if we want problem (1.7) to admit a unique solution; this choice
depends on the type of the operator and on the singularities of its coefficients near
the boundary. A simple example is the following :

Let G C R2 be the triangle 0 < x < t < 2 and let

,    _  du   ,   _t_   du        du
Qx2        x   dx        dt

Suppose /(P) G C3(G) Pi P(G). Then, problem (1.7) has a unique solution pro-
vided we take :

Ti = (P = (i,l);0|i = xg2|U [P = (0,i);0 S t < 1} .

Problems of the type (1.7) have been studied by J. J. Kohn and L. Nirenberg
[7]; these authors give results concerning existence, unicity and regularity of the
solution; however, our hypotheses are different from theirs and, therefore, our
existence and unicity theorems are also different. Finite-difference schemes for
time-dependent problems with singular coefficients have been studied by D. Eisen
[4]; this author studies the relations between stability and convergence, in the
framework of the Lax-Richtmyer theory [11].

In Section 2 of the present paper, we recall the basic convergence and existence
argument which was used in [6]; it is based on the notion of "discrete barrier"; the
presentation is more general than in [6], which is necessary for the applications to
a wider class of problems. Our fundamental Theorem 2.1 reduces the questions of
convergence and existence to three independent questions which are studied in the
three following sections: uniform boundedness of the approximations, interior
equicontinuity and existence of local discrete barriers. Section 6 is devoted to
the problem of unicity. Finally, Section 7 is an account of numerical experiments.

II. Finite-Difference Schemes and Discrete Barriers.
1. Generalities. Let h be a parameter (for instance an n-vector with positive

components) and let Gih) be for each h a finite set of points in G with the following
property :

(2.1) supd(P, Ü(Ä))->0   as/i->0.**
i»£c?

* It is of no significance for this problem to know the values of f(P) on dG or the values of
g(P) on G U r2. But we will need those values for the discrete analogue of this problem; they can
be chosen arbitrarily.

** We denote by d(E, E') the distance between two sets E and E' in Rn.
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Let GQi) and dGQi) be two complementary nonempty subsets of Gih). We assume
that

(2.2) Max  diP, 3G) -► 0   as h -> 0 .*
p£3G(A)

To each point P G Gih) we associate a set 91 (P) G Gih) —  {P} which is called
the set of neighbor points of P in GQi) and which satisfies

(2.3) Max    Max  d(P,P')->0   as h -> 0 .
P6<?(A)   P'G3l(P)

We assume that, for /i small, G(A) has the following "connectedness" property:
VP G G(7i), 3 a sequence of points P0, Pi, ■ ■ ■, Pr such that

Po = P,
(24) Px,P2,---,Pr-xGGih),

Pr G ac(Ä),
Pí+iG3l(Pi),       *-0,1, •••, (r- 1).

Let y(P) be a function defined on Gih). At each point P G G(A), we define

(2.5) LhviP) = -A(P,P>(P) +     E    ¿(P,P'MP').
P'G3l(P)

We assume that, for h small, the operator Lh is of positive type, i.e., for all P G GQi)

(26) AiP,   P) > 0;       AiP, P') > 0,       VP' G 3l(P) ,
#(P) = AiP,P) -     E    -4(P, P') ^ 0 .

p'GsíI(P)

Under such hypotheses, the following maximum principle holds: let v(P) be any
function defined on üih) and such that LhviP) ^ 0, V P £ Gih) ; then

Max viP) á Max JO,   Max  viP)\ .
PGG(Ji) {.      pEdG(.h) J

Now, we introduce some notations and definitions which will be used later. Given
any subdomain G' of G, we define

G'ih) = {P G Gih) n G') ,
(2.7) G'(A) = {PG Gih) H G'; 3l(P) G G'} ,

aG"(Ä) = G'ih) - G'ih) .
Definition 2.1. Uniform consistency. Let G' C G. We say that Lh is a uniformly

consistent approximation to the operator L in G' if, V</> G C2iG'),

Max   |L*0(P) - Z(f>(P)| ->0   asA->0.
PGC'(A)

Definition 2.2. Discrete equicontinuity. Let G' C G and 5 = ¡w(P; /t) ¡ be a
family of mesh-functions defined on GQi) for each h. We say that the family ï is
equicontinuous in G' if, given any e > 0, there exists a constant 77 > 0 independent
of h such that |v(P; A) - w(P'; A)| < e,  VP, P' G G'(A) such that d(P, P') < »?.

Definition 2.3. Discrete uniform convergence. Let G' C G. Let {y(P; A) j be a

It is important to observe that we do not assume G(h) n dG = 0.
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family of mesh-functions defined on G (A) for each h and let w(P) be a function
defined on G'. We say that y(P; h) converges uniformly to w(P) in G' as h —> 0 if

M_ax  \viP;h) - w(P)| —>0   asA-+0.
pGg'(A)

Now, let us consider an infinite family {h} of parameters h, with zero as an ad-
herence point, and the corresponding family {Lh\ of operators.

Definition 2.4. Discrete barrier. Let Q G dG. A function P(P; Q) is a strong
(local) discrete barrier at the point Q relative to the family {Lh} if there exists a
neighborhood N of the point Q in the relative topology of G such that

(2.8a) BiP;Q)ECiN),
(2.8b) BiQ;Q)=0,
(2.8c) B(P;Q)<0,       VP G N - {Q} ,
(2.8d) LhBiP; Q) - £(P) ^ 1,       VP G A(A) and VA small enough.

Now we consider the following system of linear equations

(2 9) LhviP) = fiP) ,   P G GQi) ,
viP) = giP) ,   P G dGQi) .

It follows from our hypotheses that, for h small enough, this system has a unique
solution i>(P; h) ; this is a direct consequence of the maximum principle.

Theorem 2.1. Let î = {t>(P; h)} be the family of the solutions of (2.9) for all h
small enough. Let us assume

(i) There exists a function c/>(P) G CiG) such that Lh<piP) ïï 1, \/P G Gih) and
for all h.

(ii) For any G' CC G f and for any sequence {v(P; A„); A„ —» 0) C í?, ¿Aere e:ris£s
a subsequence which converges uniformly in G' to a solution of Eq. (1.6).

(iii) At each point Q G Ti, ¿Aere exzsís a strong Qocal) discrete barrier relative to
the family {Lh\.

Then, problem (1.7) Aas at least one solution w(P). Moreover, if this solution is
unique, v(P; A) converges to w(P) as h —-> 0, uniformly in G — A/(r2) wAere ^(Tî)
ís an arbitrary neighborhood of T2.

Proof. The proof of this theorem is a modification of the proof of Theorem 2.3
in [6]. We shall concentrate mostly on those modifications and refer the reader to
[6] for more details.

We observe that assumption (i) implies the uniform boundedness in G of the
family ¡y(P; A) j ; this follows from the maximum principle and from the bounded-
ness of /(P); we denote by M a uniform bound for \v(P; h)\. Let Q G Ti and let
P(P; Q) be a strong discrete barrier at Q; let N be a neighborhood of Q for which
conditions (2.8) are satisfied; we can write N = No D G where iVo is a neighbor-
hood of Q in Rn. Let AY CC A0 be also a neighborhood of Q in Rn and let
N' = No' O G. It follows from assumption (2.3) and definition (2.7) (applied to
the subdomain N) that, for A small enough :

(2.10) dNih) C BGih) U (¿V - N') .

t G' CC G is an abréviation for G' C G' C 6. We say that G' is an "interior" subset of G.
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Let M' = Supp gat |/(P) | ; let e > 0 be arbitrary and let us consider the two func-
tions

(2 n) FiP) = 9ÍQ) - e + vBiP; Q) ,
GiP) = giQ) + e - vBiP; Q) ,

where 77 is so large that

„>Max{M', |i7(Q)|},
(2.12) FiP) g o(P) ^ GiP) ,       VPEN,

FiP) ^ -M <M g GiP) ,       VP G N - N'.
It is easy to check that, for A small enough:

LhFiP) ^ LhviP; A) ^ LhGiP) ,       VP G A(A) ,
FiP) á w(P; A) S GiP),       VP G dNQi) .

Therefore, using the maximum principle, we get

FiP) è viP;h) g GiP) ,       VP G Ä(A) .

The rest of the argument is the same as in [6].
Remark. Theorem 2.1 holds, more generally, for all monotone finite-difference

operators such that £(P) ^ 0 ,  VP G G(A).
2. The parabolic case. In the following sections we will restrict our attention to

the parabolic case (1.5) ; moreover we will assume ars = 0 if r ¿¿ s. We assume that
the coefficients of the equation and the function /(P) are in C^iG). All of what
follows is valid for any n, but, to avoid complications in the notations, we will
assume n = 3 and we mil write : xx = x, x% = y, xs = t and

.        . ,. d U        ,   du    .     , d U        ,, du du
(2.13) Lu = a^  +b^ + a   dy2+b^y--CU-d^/'

where a(P), a'iP), d(P) > 0 and ciP) ^ 0 for all P G G.
Let A be a positive number and let us consider the square net

RQi) = {P = iih, j A, kh); i,j, k integers}.*

To any point P = iih, jh, kh) G P(A) we associate a set 3lo(P), which consists of
the five points

Hi db 1)A, jh, kh) ,        iih, if db 1)A, kh) ,        iih, jh, (fc - 1)A) .

Let 3lo(P) be the set of the five segments joining the point P to each of the points
of 9lo(P). We define

Gih) =GD Rih),
G„(A) = {PGG(A);3lo(P)CG} ,
Txih) = {P G Gih) - Goih);diP, I\) < AJ .

* For greater simplicity we consider a square net instead of a rectangular mesh ; of course,
this is not essential.
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We choose T(A) and G(A) arbitrarily provided Ti(A) C T(A) and G0(A) C G(A).
Now, we must define the set 31 (P) and the operator Lh at each point P G G (A).
We do this in the following way: at each point P G G(A) — G0(A) we define 9l(P)
arbitrarily provided 9l(P) H Go(A) ^ cp, and at each point P G Go(A) we take
9l(P) = 3lo(P); this choice guarantees the "connectedness" of G(A) for A small.
At each point F G G(A) — G0(A) we define Lh arbitrarily provided conditions (2.6)
are satisfied at that point. At each point P G G0(A) the choice of Lh depends on
the operator L ; let vx, in, vy, ■ ■ ■ denote the usual forward and backward difference
quotients of the function v; we define

(2.14) LhviP) = avxx + ß ^±^ + a'vyJl + ß'l^^ -yv- Svj ,

where the coefficients a, ß, • ■ ■, 6 are functions of P and A, and are related to the
coefficients of the operator L; here are two possible choices for those coefficients:

First choice.

(2.15)

a(P;A) =aiP),

ßiP;h) =&(P),

5(P;A) = diP) .
Second choice. For each P = (x, y, t) G G0(A), let

o+(P;A)=exP/X4   ^Y^YY?)^'J*       a{z, y, t)

/x-h/2 ,   /

x        a\
,   y' I dz

and

(2.16)

iiz, V, t)

[*+h/2 b'jx, z, t)
o+(P;A)=exp^       ZTr—^dz,

Y-h/2b'jx,z,t)
a-'iP;h) = exp / .dz ,^ Jy        a'ix,z,t)

aiP;h)=aiP)°^P-'h)+2a-^,

ßiP; A) = aiP) a+(P;/t)~a-(P;fe) ,

a'iP;h)=a'iP)^P'h)+a~'^h)

ß'iP; h) = a'iP) ^'(P;k)-a-'iP;h)
h

7(P;A) = YP),
SiP;h) = diP) .
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Of course, the choice (2.15) is more natural; it is also easier, except in particular
cases for which the integrals above admit simple analytic representations. How-
ever, this choice is not always suitable, because we want the operator Lh to be of
positive type for A small; this condition is not always satisfied for the operator
corresponding to the choice (2.15): it depends on the behavior of the coefficients
of the operator L near the boundary. On the contrary, the operator corresponding
to the choice (2.16) is always of positive type; to see this, we observe that at each
point P G Go(A) this operator can be written in the form

/0 1-\ T      /n\ OL+Vx —  Ct-Vi , a+Vy —  Oi-Vy .(2.17) LhviP) = a ——-r-+ a' ,-- — yv — Svi,

where all the coefficients a, a+, a_,  ■ • •, 5 are nonnegative.
We will need also the two following properties of the operator L;„ which are

satisfied for both choices (2.15) and (2.16):
(A) The operator Lh is a uniformly consistent approximation to L in any in-

terior subdomain G' CC G. This follows from the relations

aiP;h) = o(P) + 0(1) ,

„1t, ßiP;h) = 6(P) + 0(1) ,

5(P;A) « diP) + 0(1) ,
which hold uniformly in G' for A small.*

(B) Given any interior subdomain G' CC G and any positive integer p, all
the difference quotients of order p of the coefficients a, ß, • • -, 5 are uniformly
bounded for all P G G'(A) and for all A sufficiently small.

III. Uniform Boundedness in the Nonhomogeneous Case. In order to apply
Theorem 2.1 to inhomogeneous problems, it is necessary to study the existence of a
function 0(P) which satisfies condition (i). The existence of such a function guaran-
tees the uniform boundedness of the approximations viP; A). We give here a few
simple criterions for the existence of $(P).

Let L be the operator (2.13). Let G(A) = G0(A) and let Lh be defined by formula
(2.14) together with (2.15) or (2.16).

1. First sufficient condition. Suppose ciP) > m > 0 in G, then there exists a
function c/>(P) which satisfies condition (i) of Theorem 2.1.

Proof. Take 0(P) = - 1/m.
2. Second sufficient condition. Suppose d(P) > m > 0 in G. Same conclusion.
Proof. Take tpiP) = - (fC + t/m) where K > 0 is chosen so large that </>(P) < 0

inG.
3. Third sufficient condition. Suppose aiP) > m > 0 and |6(P)| < M in G.

Same conclusion.
Proof. Take <¿»(P) = K[expipx) - K'], with p > M/m and K, K' sufficiently

large.

* It is interesting to note that conditions (2.18) are also necessary for the uniform consistency
of the operator Lh to the operator L in G'.
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IV. Interior Estimates. Let Lh be a finite-difference operator of positive type
which has the form (2.14) for all P G G0(A) and which satisfies properties (A)
and (B) (see the end of Section II). Let EF = {w(P; A)} be a family of mesh-func-
tions defined on G(A) for each A and such that LhviP; A) = /(P), VP G Go(A).
Let ff(p) be the family of all difference quotients of order p of the functions of 3\
Let G' be an arbitrary interior subdomain of G.

Theorem 4.1. If the family î is uniformly bounded in G, then it is equicontinuous
in G'. Moreover, each family ff(p) is equicontinuous in G'.

This theorem is an extension to parabolic problems of a well-known theorem
for elliptic problems, which is due to Courant, Friedrichs and Lewy [1]. These
authors proved this theorem in the particular case of the Laplacian operator in
two dimensions; more general proofs were given later by W. V. Koppenfels [8] for
general elliptic operators in two dimensions and by C. Cryer [3] for elliptic op-
erators in Rn. Those proofs are based on a discrete analogue of Sobolev's imbedding
theorem (see [12]) which was first discovered by Courant, Friedrichs and Lewy in
the case n = 2: let G' CC G and let ß > n/2 be an integer; assume that the sums
A" XIg'CO w2iP; h) are uniformly bounded for all m>(P; h) which are difference
quotients of order g p. of the functions of i; then the family fF is equicontinuous
in any subdomain G" C C G'.

This theorem shows that we have only to prove the uniform boundedness of
the sums A" ̂ 2g> yo w2iP; A). This proof is based on the discrete analogue of Green's
formula (see Cryer [2]). To avoid complications, we will develop the argument only
in the case n = 2, i.e., we consider only two independent variables x and t; it is
clear that this argument which is only a modification of the argument used by
Courant, Friedrichs and Lewy in the elliptic case, can be extended to Rn in the
same way as in the elliptic case.

Let A be so small that G'(A) C G0(A). Then, at each point P G G'(A), we have

(4.1) Lhv = avxi + ßivx + vx)/2 - yv - 5v{ =f,

where the coefficients a, ß, y and S satisfy conditions (2.18) and 7^0. We shall
assume 5 = 1, which is not a restriction. For A small enough, we have

(42) 0 <m <aiP;h) <M,

|/3(P;A)|,|7(P;A)|,|/(P;A)| <M,
for all P G G'(A) and for some suitable constants m and M. We will assume that
M is also an upper bound for îF and for any of the difference quotients of a, ß, y and
/ which will be used in the proof. It will be convenient to write Lhv = Lfy — v ï
where L° denotes the space-operator

L°hv = avx-x + ßivx + vx)¡2 - yv .

Let A be fixed (sufficiently small so that the preceding conditions are satisfied);
following Courant, Friedrichs and Lewy, we consider an expanding sequence of
concentric rectangles in G'(A), say {Q0, Qx, ■ ■ -, Qk, ■ ■ -, Qn], such that

Qk = {P = ix, t) = iihjh) G G'ih);ik ^ i =S ik',jk á j ^ jk'} ,

ik+x = ik — 1 ,    i'k+x = ik   + 1 ,    jk+X = jk — 1 ,    j'k+X = jk   + 1 ■

We define Sk = Qk — Qk-x and Rk = {P = iih,jh) G Sk;i = ikorik'} .
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2
W

First we prove the following lemma :
Lemma 4.1. For every function w(P) defined on G (A), the following inequality

holds

(m - ~ m\2 Z  E iw* + Wx) ^ 2A2 E  E \w\\Lhw\
\ ¿ / Qk-1 Qk_x

(4.3) +(j:aw2-   £ aW2) + m(i + -^A2 E  E
\ Rk Rk_x / \ * / Qk

+ /(f+ i)(|>2 +sE™2),
where k is any positive number and 1 á fc á A.

Proof. We will make the following convention: for any function w(P) defined
on G (A), we denote

w = Wi¡ = wiih,jh) ,

wi+x = wi+x,j = wiii + l)h,jh) ,

Wj+x = Wi,j+x = wiih, ij + 1)A, • • •) ,

i.e., we drop the first index each time it has the value i and the second one each
time it has the value j.

Using those notations, we define

Aiw) = ai+1wx2 + axwwx + iw/2)ißw)x — iß/2)wwx + yw2,

A~iw) = cti-xwx2 + axwwx + iw/2)ißw)x — iß/2)wwx + yw2.

Let jo ^ j ^ jo'- An elementary manipulation based on summation by parts gives

A2 È iAyw) + Aiw)) = -2A2 E wLYw
¿=i'o ¿=»o

+ [a^W2, — a^W2,, + Ql/2)ißh + ßi^W^Wi,]

+ [ati/W2,' - ciit'W2,' -  (A/2) (S,-,' + ßio')wHwn]
¿o'

=  — 2A2 E wLhW + iai,W2i, — aiow%)
i—to

+ (a./wV - aio'w2io')

+ hiM/2)iw2a + w\ + w2„' + w\>) .

Summing from j = jo to j = jo, we get

h2T,T, iAiw) + Aiw)) Ú -2A2 E E w£a°u>
Qo Oo

+ ( E«w2 — Eait!) + ^^(Ew2+ Ew2)-
\Sl «o / ^     \Si Ro /

Now, let ¿o át'S iV. By summation by parts with respect to j, we get

in' io'
<4.5)    A2 E (w/ + w¡2) = — 2A2 Z wwti + iw), + w*t' — w% — w%') .
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Using the identity

hwtt = wt — wi = iwt + wï) — 2wt ,

we deduce, for i0 1¿ i ík i o

h2 E wv°tt — iwjft'Wj,' — w,0wY) — 2A E ww,î
/—>0 i—30 .   i

. JO

^   — — («4, + 10*, + Wy„' + W2,')  — 2A    E   «>«>< •
■^ j'-JO

Taking this inequality into (4.5), we get

jo' in'
A2 £ (w? + w"i2) = 4A E «*»í + 2(u>y, + w2,') .

Summing from i = i0 to ¿ = l'i, we get

A2 E ID (wí + w~?) = 4^ E E wwí + 2 E w2 •
Qo Co Si

Multiplying this inequality by A/2 and adding (4.4), we get

a2 £ £ \aíw) + Aiw) + ~ iwr + wY)
Qo        L ¿ J

^ — 2A2 E E wiLYw — wi) + ( £ aw;2 — £ <*w2 J
Ou V  /íi Ho I

+ h% (Sw'+E^ + äZ»'.
Z    \  /il /in / .S]

Hence

*lZI (A(tc) + Z(w)) < 2A2 E E H\Uw\
(4.6) Q °"

+ (l^2-Z aw2) + A(il//2 + 1)(e w2 + E w2) •
V Hi tto ' \ Si So /

The next step of the proof is to estimate A2  ££q„ iwx2 + wi) in terms of
A* ££«o (A(w) + 3(w)). We have

(4.7) A2 £ £ iAiw) + Aiw)) -B + C + D + E,
Qo

where

B = a2 E £ («i+A + <*¿-iW),
Qo

C = h2 E E wiaxwx + OSWï) ,
Qo

A2
£> = "77 £ £ wiißw)x - ßwx + (/ÎM')ï - /3«?î)

¿        Qo

h2
= "Ti £ £ w(w.+ii8i + w,-_ift) ,

z        Qo

E = 2A2 £ £ 7«2 è o.
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Using (4.2) we deduce

B ^ mY E E iw*  + w*) ,
Qo

\C\ áMA2££(HW + |w||wi|)
Qo

^ - a2 E £ w- + ~h2ZZ (w* + yr2)
K Qo ¿ Qo

for any positive number k
■i

w

2w

(4.9)

|D| á MA2 £ E
Qi

Using those estimates we deduce from (4.7)

(m - kAT/2)A2 E £ (Wx2 + w-2)
(4.8) Qo

^ A2 E E (Aiw) +Aiw)) + MY + 1/Yh' £ £
Qo «i

Lemma 3.1 follows directly from (4.6) and (4.8) and the obvious fact that the pre-
ceding argument is valid for any k and not only for fc = 1.
We will need also the following :

Lemma 4.2. Let G" CC G' be an arbitrary interior subdomain of G'. Suppose
that w(P) satisfies for any rectangle Qk C G'Qi) an inequality of the form

a2 £ £ («,* + w-Y ̂ m„(ev - E <t>w)
Q*-i x "k Rk-x        '

+ M/hi E w2 + E w) + MX £ £ «2 + M3,

where M0, Mx, M2, M3 are positive constants and where <f>iP) is a positive bounded
function defined on G'(A).

Then, we have an estimate of the form

(4..0) A2 £ £ u>* á Kh2 £ £ w2 + K',
G'\h) G\ln

where the constants K and K' depend only on the constants M0, Mx, M2, Ms, on the
bound of the function <l>iP) and on the domains G' and G".

Proof. The proof of this lemma is essentially contained in Courant, Friedrichs
and Lewy [1]. It is based on a double summation of inequality (4.3).

Proof of Theorem 4.1. Now that we have Lemmas 4.1 and 4.2, we are able to
prove the theorem (in the case n = 2). First, we observe that, in the case n = 2,
the discrete analogue of Sobolev's imbedding theorem is true if we assume only
the boundedness of the sums A2 ££g'(a) vx2, h2 ££?'(*> v?, and A2 ££g'(a) fit
(see Courant, Friedrichs and Lewy [1]).

We will study separately each of these sums.
(a) Boundedness of A2 ££g'(/>) vx2 Since |v(P; A)| < M and \LhviP; h)\ =

|/(P)| < M, VP G G'Qi), it follows from Lemma 4.1 that the function w = v
satisfies an inequality of the form (4.9). Applying Lemma 4.2, we deduce that the
sums A2 ££g"Ci) v2 are uniformly bounded, where G", just as G', is an arbitrary
interior subdomain of G.
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(b) Boundedness of h2 ££g'(/o vt2. Let w = vx. We deduce from (4.1)

Lhw = fx - axwx - ßxüw + u\-+i)/2) + 7^¿+i •

Therefore

A2 £ £ |w||Z*w| < MA2 £ £ [|w| + |w||Ws| + \\w\2 + h\w\\wi+x\ + M].
G  (A) G  (A)

Applying the inequalities

\w\ á 4(1 + w2) ,
\w\\wx\ g w2/2k + kwx/2,

\w\\wi+x\ ^ w2/2 + tü¿+i/2 ,

and using the previous result on the boundedness of A2 ££g'ca) w2, we deduce

A2 £ £ \w\\Lhw\ < 3H0O + k(M2/2)A2 £ £ \wx\2
G'(A) G'(A)

where 9TC(k) is some positive constant depending on M and k. Choose k such that
m — YM/2 + M2) > 0 and set this estimate into (4.3). We get an inequality
of the form (4.9) and therefore we can apply Lemma 4.2 which shows that the
sums A2 ££g'(a) vlx or A2 ££c(a) vxx are uniformly bounded for any G' CC G.
But, (4.1) yields

M < M\vxx\ + Mi\vx\ + \vx\)/2 + M\v\ + M .

Therefore, the boundedness of the sums A2 ££g'(A) vx2 and A2 ££g'(aj via im-
plies the boundedness of the sums A2 ££?'(a) vf    (or A2 ££g'(a) ^i2)-

(c) Boundedness of h2 ££g'caj vxi. Let w = vt. We deduce from (4.1)

Lhw = ft— <xtvxx — ßtivx + vx)/2 — ytv

= ft- i<xt/<x)if - ßQx + vx)/2 + yv + vi) - ßtQx + vx)/2 - y,v .

Hence

\Lhw\ < Mil + M/m)il + \v\ + (|»,| + \vY)/2) + (M/m)M .
Taking this inequality into (4.3) and applying the previous results on the bounded-
ness of the sums A2 ££ vx and A2 ££ v2 we deduce, as before, an inequality
of the form (4.9) which by application of Lemma 4.2 ends the proof of (c) and of
the interior continuity of the family 5\ The interior equicontinuity of the families
îF(,,) is proved in the same way, after differencing the finite-difference equation
(4.1) p times.

Corollary 4.1. Same hypotheses as in Theorem 4.1. Then, any sequence
{f(P; hn); hn —* 0} Cï admits a subsequence which converges uniformly in G' to a
solution of the differential equation (1.6).

Proof. For A small enough, G' is covered by cubic cells of the mesh; by linear
interpolation in those cells, we can extend the mesh-functions into continuous
functions defined on G'. Thus, an equicontinuous family of mesh-functions is ex-
tended into an equicontinuous family of functions defined on all of G". The theorem
follows by application of Ascoli's theorem to the families ÍF, iF(1) and íF(2) and be-
cause of our consistency assumption (2.18).
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Remark. We have assumed that the coefficients of the differential equation are
in CxiG). Indeed we do not need so much smoothness. The degree of smoothness
which is needed in Corollary 4.1 depends on n. In particular, in the case n = 2,
our proof of Theorem 4.1 shows that the family S is equicontinuous in any interior
subdomain of G if we assume only Lipschitz-continuity of the coefficients and of
the function /(P) in any interior subdomain of G; for the equicontinuity of the
families ï(1) and iF<2) we need the assumption that the coefficients and the function
/(P) admit Lipschitz-continuous derivatives of order 2 in any interior subdomain
of G; if we do not assume so much, then we can only prove that the limit function
is a weak solution of the differential equation (1.6); to prove this we use the fact
that the operator Lh is a weakly consistent (see [6]) approximation to the operator
L in any interior subdomain of G. Very general results concerning weak solutions
of coercive parabolic problems and their numerical computation can be found in
Raviart [10].

V. Existence of Discrete Barriers. Let L and Lh be the operators defined by
(2.13) and (2.14). Throughout this section we consider a point Q = (x0, t/o, io) on
Ti and we study various types of local conditions on G and on L/, which guarantee
the existence of a strong discrete barrier at Q. We assume that there exists a neigh-
borhood A of 0 such that G(A) fï N C G0(A) for A small enough.*

(1) First sufficient condition. Assume that the coefficients of the operator L are
uniformly continuous and that Lh is a uniformly consistent approximation to L
in a neighborhood of Q.**

Assume a(Q) > 0*** and that there exists a nondegenerate sphere through Q
whose intersection with G is the single point Q and whose center is not in the plane
x = xo. Then, there exists a strong discrete barrier at Q.

Proof. Let us take the origin at the center of the sphere and let

s = x2 + y2 + i2,      so = s(Q) = xo2 + yo2 + to2.

Let fc and p be positive constants and P(P; Q)  — fc(s_p — s0~~p). This function
obviously satisfies condition (2.8a, b, c). Moreover, we have

LBiP; Q) = 2kps-"~2[2ip + l)(ax2 + a'if) - sia + bx + a' + b'y - dt)]
-cBiP;Q).

In a certain neighborhood N of Q we have aiP) > %aiQ) > 0,   x2 > \xo2, and
therefore

LBiP; Q) > 2kps-p-2[\ip + l)aiQ)xo2 - sia + bx + a' + b'y - dt)] .

It follows that LBiP; Q) can be made arbitrarily large in N provided we choose
k and p big enough. In particular we can choose k and p such that

LhBiP; Q) - EiP) = LhBiP; Q) - 7(P; A)
= LBiP; Q) - YP) + 0(1) > 1 in N ,        for A small enough.

* For instance, this condition holds if N ("I T2 = 0 or if we choose G(h) = Go(h).
** Observe that this condition is satisfied for the 2 operators Lh corresponding to formulas

(2.15) and (2.16).
*** The values of the coefficients at Q are defined by continuity.
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Thus, ß(P; Q) is a strong discrete barrier at Q.
Remark. Of course, we get a similar condition by permutation of x and y.
(2) Second sufficient condition. Assume that the coefficients of the operator L

are uniformly continuous and that Lh is a uniformly consistent approximation to
Lina neighborhood N of Q. Assume diQ) > 0 and that there exists a nondegen-
erate sphere through Q with radius R > (a(Q) + a'iQ))/diQ), whose intersection
with G H N is the single point Q and whose center lies on the half-line x = :r0,
y = 2/o,  t < t0. Then, there exists a strong discrete barrier at Q.

Proof. Let ß(P; Q) be defined as before. Then

LBiP; Q) > 2kps-p-\dt - ia + bx + a' + b'y)].

Since the square bracket tends to RdiQ) — a(Q) — a'iQ) > 0 as P —> Q, we see
that LBiP; Q) can be made arbitrarily large in a neighborhood of Q provided we
choose k and p large enough. It follows as before that B(P; Q) is a strong discrete
barrier at Q.

Remark. The condition on the radius R of the sphere is perhaps unnecessary;
however, it is related to the results of Kohn and Nirenberg [7] who emphasized
the influence of the radius of curvature at a "characteristic" point of the boundary,
on the smoothness of the solution.

(3) Third sufficient condition. Assume that there exists a neighborhood N of Q
such that G D N lies in the half-space t > t0. Assume that the coefficients of the
operator L are bounded, except d(P) which may be unbounded, rf(P) > kQ — io)",
o- < 1, fc > 0. Let Lh be the operator corresponding to formulas (2.15) or to formu-
las (2.16). Then, there exists a strong discrete barrier at Q.

Proof. Let us take the origin at Q.
Case 1. Suppose 0 < a < 1. Let P(P; Q) = -x2 - if - Ktl-,  K > 0. Then

LhBiP; Q) = -2(« + ßx + a' + ß'y) + Kd*   ' ~ \~h)" ~ yBiP; Q) .

But

Kd l   ' ~ ([ ~ h)      > Kdil - c)C > Kkil - o-) .

It follows that condition (2.8d) is satisfied if we choose K large enough. Then,
BiP; Q) is a strong discrete barrier at Q.

Case 2. Suppose cr < 0. Let P(P; Q) = -x2 - if - Kt, K > 0. Then, for K
large enough, P(P; Q) is a strong discrete barrier at Q (straightforward).

(4) Fourth sufficient condition. Suppose that there exists a neighborhood N of
Q such that G O A is a cylinder parallel to the i-axis. Let us write L = L0 — did/dt) ;
Lo is an elliptic space-operator whose coefficients may depend on t. Define Lh° in
the same way as L°, i.e., LhV = Lh°v — hvi.

Suppose that there exists a function Po(P; Q) which does not depend on t and
which is a strong discrete barrier for the family of space-operators Lh" for any t
such that |¿ — ¿o| < t, where t > 0 is a constant (independent of A). Suppose 5(P)
is bounded. Then, there exists a strong discrete barrier at Q for the family of
operators Lh.

Proof. BoiP; Q) satisfies the conditions
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BoiP; Q) = Boix, y;Q)ECiGnN),
Boixo, y0;Q) = 0 ,
Boix, y;Q) < 0 ,        V(x, y) ^ (.to, yà) ,
Lh°BoiP; Q) - EiP) ^ 1 ,       VP G A(A) and VA small enough .

Let P(P; Q) = KBoiP; Q) - Q - ¿o)2,  X > 1.
This function satisfies conditions (2.8) ; therefore it is a strong discrete barrier

at Q for the family of operators Lh.
(5) Applications. By means of the fourth sufficient condition, all the results of

[5] and [6] for elliptic operators L° are directly extended to the corresponding
parabolic operators L = L° — did/dt).

Example 1. Let ^(.r) be a convex function defined for all real x and such that
|^(a;i) — \//ix2)\/\xx — x2\ < M for all xx and x2 ¿¿ xx, where M is a positive con-
stant. Let 6 be the curve Y = y — \¡/ix) = 0 in the plane t = 0. Let G0 be a
bounded simply-connected plane domain whose boundary consists of a portion of
(2 and of a smooth curve which lies entirely in the region Y > 0. Let G =
Go X (0, T) be a cylinder and G( = G C\ {P = ix, y, t) ; Y > e}. Let T2 =
{P = ix, y, T) G dG} and Tx = dG - T2. Let

(3-D L = ~ + ~+b^ + b'^-
d~

where

— 4- — 4- 7> — 4- 7/ —
dx2      cV dx 32/      dt

biP),       b'iP) G C(S.) H C-(G) ,        V e> 0 ,
(5.2) [62(P) + 6'2(P)]1/2 < fc/^ + ^,       VPGG,

0 < fc < min {1,2/Mj ,       K > 0 .
Let Lh be the operator defined by formulas (2.14) and (2.15). Conditions (5.2)
imply that this operator is of positive type. Let y(P; A) be the solution of (2.9).

Theorem 5.1. Under the above hypotheses, problem (1.7) Aas a unique solution
w(P) and viP; A) converges uniformly to w(P) in G as A —> 0.

Proof. Let Q = ix0, yo, to) G dG be such that (z0, i/o) G 6 and let
BoiP; Q) = -(* - *o)2 - F1-*', where k < k' < 1. The function P0(P; 0) has
the properties required for the application of our fourth sufficient condition (see
[5, p. 121]). The existence of a discrete barrier at the other points of Ti follows
from our first and second sufficient conditions. The existence of a function c/>(P)
satisfying condition (i) of Theorem 2.1 follows from our second sufficient condition
in Section III. Unicity follows from the maximum principle for parabolic operators
(see Lemma 6.1). So, we can apply Theorem 2.1.

J'articular cases. 6 is the x-axis and

(5.3) L = il+il + iLf      * W<1>
3z2      dy2       y   dy      dt

or

d2 d2 ad d
(5.4) L = ii- + ^ + ^^_^)        k|<1dx-      dy2       y  dx      dt'
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Corollary 5.1. Let Go be a "regular"* convex plane domain in the plane t = 0
and let G = Go X (0, T). Let T2 = {P = ix, y, T) G dG} and Tx = dG - T2.
Let L be the operator (5.1) where

biP),       b'iP) G C»iG) ,
(5.5) [b2iP) + b'2iP)Y12 < k/diP, dG) + K,       VP G G ,

0 < k < 1/V2 ,       K > 0 .
Let Lh be the operator defined by (2.14) and (2.15) and let y(P; A) be the solution of
(2.9). Then, problem (1.7) Aas a unique solution u{P) and v{P; A) converges uni-
formly to uQP) in G as A —> 0.

Proof. Same as for Theorem 5.1.
Example 2. Let G be the same domain as in the particular cases above. Let

/r „\ t 3,3 add ii.
(5-6) L = yd^ + tf + -y~o-y-o~t>     W<i,
or

(5-7) i^-. + Vrs.    W<i.y   dx       dif       y   dy      dt'
And let Lh be either of the operators defined by formulas (2.14) and (2.15) or by
formulas (2.14) and (2.16). Then, the conclusion of Theorem 5.1 holds.

This is a direct consequence of our fourth sufficient condition and of the results
of [6, Theorems 4.1-4.4].

Remark. The preceding conditions for the existence of discrete barriers are only
examples ; we can imagine many other conditions ; it seems impossible to gather all
these conditions in a unique general condition.

VI. Unicity. Again G is a domain in R1 and L is the operator (2.13). We denote
by r" the set of all points Q = (x-0, yo, to) G dG which admit a neighborhood N
such that dG C] N lies in the plane t = t0 and G O A lies in the half-space t < t0;
r" is called the set of "final" points of G.

Lemma 6.1. Suppose T2 C I". Then problem (1.7) Aas at most one solution.
Proof. By the maximum principle.
We deduce at once the following
Corollary 6.1. A necessary condition for the existence of a solution of problem

(1.7) for arbitrary a(P) G CQl) is T' C IV
From now on we will assume I" C T2 and we define T" = T2 — T'. The fol-

lowing lemma is a generalization of an idea which has been used by S. V. Parter
[9, §4] for generalized axially symmetric potentials.

Lemma 6.2. Suppose T" is closed and suppose that there exists a neighborhood
N of V" and a function Í/(P) swcA that

U G C2(Go) O G(G„ - T")        where G0 = G fï A ,
(6.1) L77(P) gO,       P G Go,

77(P) -> + °° as P -* Q ,        VQ G r" ,        P G G0 - V" .

*By "regular" we mean that in the neighborhood of any point Q0 G dG0,    dG0 admits a
representation of the form y = <f>(x) or of the form x = <¡/{y) where 4, and ^ are convex functions.
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Then, problem (1.7) has at most one solution.
Proof. We can, of course, suppose UiP) > 0 since it is always possible to make

it so by addition of a sufficiently large positive constant. Let s(P) be a solution of
the homogeneous problem associated to (1.7), i.e.

LziP) = 0 ,       PEG,
(6.2) ziP) = 0,        PETx,

z G C2iG) O CiG U Ti) n BiG) .

Let Co = Sup/»eC-G0 z(P) and suppose Co > 0. Let ôGo be the boundary of Ga-
lt follows from the maximum principle that there exists P0 G 3Go O G such that
z(Po) = Co. Let Ci = Sup/>£G0 z(P). Let A' be an arbitrary neighborhood of V"
such that A' C A and let C2 = Sup pGg„-.V UiP).

Let a be a positive number and Ua = Co + aU. For any a > 0, there exists a
neighborhood of T", N" C A' such that 7Ja(P) > Ci in A" D G. Let Gi = G0 - A"
and let 3Gi be the boundary of Gi. It follows from the definitions of Co and Ci
that z(P) g UaiP) on dGi — T'. Therefore, by the maximum principle ziP) g
UaiP) in Gi. In particular, by definition of C2 z(P) ¿ UYP) = Co + <*C2 in
Go - A'.

Since a is arbitrary, we deduce z(P) g Co in G0 — A' and since A' is arbitrary,
z(P) ^ Co in Go. Hence, by definition of C0 z(P) ^ Co in G.

But at P0 G G, we have z(Po) = Co. Therefore, by the maximum principle
2(P) = Co > 0 in G. This is a contradiction of (6.2) since z(P) = 0 on IY There-
fore, we must have Co ^ 0, which implies z(P) i= 0 in G, since A can be arbitrarily
small. We deduce the reverse inequality in the same way and finally ziP) = 0,
which ends the proof of the lemma.

Theorem 6.1. Let Gx, G2, ■ ■ ■, Gr, • • ■, G„ be a finite partition of G into sub-
domains of the form Gr = G D Y where Ir is a slab tr < t < ir+i. Let Tr" be the
closure of T" D Ir and suppose that for each r there exists a neighborhood Nr of Tr"
and a function 7Jr(P) sî/cA that

Ur G C\GY n CiGr° - 1\")       where Gr° = Gr O Ar,
(6.3) LUriP) áO,       PEG»,

UriP) -» + » as P -» Q ,       VQ G rr" ,       P G Gr» - rr" .

Then, problem (1.7) has at most one solution.
Proof. Apply Lemmas 6.1 and 6.2.
Now, we give an example of application of Theorem 6.1.
Theorem 6.2. Suppose G lies in the half-space x > 0 and let L be the operator

(2.13). Let I be a slab tx < I < t2 and assume that there exists a constant K ^ 0 such
that biP)/aiP) > l/x — K for all P = ix, y, t) E G D I,  x small enough.

Let T" = dG O I H \P = (0, y, t)}. Then, problem (1.7) has at most one
solution.

Proof. Let UiP) =  —Kx — Log x. We have

LUiP) = aiP)/x2 - ¿>(P)(A 4- l/x)
< a(P)[l/x-2 - (l/x - K)iK + l/x)]
= — K2aiP) :£ 0        in G D / and for x small enough .
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Therefore, the assumptions of Theorem 6.1 are satisfied
Examples.

d u     o-Q) dud"u   ,   d"u   .   <rU)  du       du
Lu^lY + d~Y + ~^-m

or

Lu s
„2d u
dx

d U
dy2

-<r(0 du
dx

du
dt

with o-Q) ̂  1 for tx g t g ti.
The following theorem is closely related to Theorem 6.1. It can be proved in

the same way.
Theorem 6.3. Suppose G lies in the half-space t > 0 and let To be the portion of

the boundary dG which lies in the plane t = 0. Let L be the operator (2.13) and let
T" = r0. Assume that there exists a neighborhood A of To and a function UiP) such
that

U E C2iG°) O CiG° - To) ,        where G° = G C\ N,
L7J(P) gO,       PEG0,
UiP) -* + » as P -► $,       VQ G r„,

Then, problem (1.7) Aas at most one solution.
Example. See Section 7, Example 2.

Table I

P G G° - To.

A = 1/A

4
8

16
32
64

128
256
512

uiP)

vxiP, A)

0.3245
260
274
285
292
297
300
303

0.3311

viiP, h)

0.3302
305
307
309
310
310
310
311

vziP, A)

0.3231
275
295
304
308
309
310
310

vaÍP, A)

0.3270
279
288
294
299
302
304
306

VII. Numerical Experiments.
(1) First example. First, we study the example given in the introduction. G is

the triangle 0 < x < t < 2 and

Tx = {P = ix,t);0 g t = x ^ 2} U {P = (0, i);0 g t < 1} .

We consider the problem

d2u  i    t   du      du
LU =

(7.1)
Lu " dx2 + ~Y di - ft = _1    inG

u — 0    on Ti ,

u G C2iG) H C(ö U Tx) HBiG) .
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The uniqueness of the solution follows from Theorem 6.2. To compute this solu-
tion (and prove its existence) we will consider four different schemes. Let A = 1/A,
N integer; we define

RQi) = {P = (¿A, jh) ;i, j integers} ,
G(A) =GD RQi) ,
Ti(A) = Tx H RQi) ,
T2(A) = T" Pl P(A)        where T" = {P = (0, t)/l]^J ^ 2} ,
GoQi) = [P = ix, t); 0 < x < t S 2} fï ß(A) .

Thus, G(A) = Go(A) U Ti(A) U r2(A) .

Table II
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At each point P G G0(A) we define

LhviP) = vxx + it/x)ivx + vx)/2 - vi.

Scheme 1. We take G (A) = G0(A), 3G(A) = I\(A) U T2(A), giP) = 0 on T2(A).
Then, the discrete analogue of problem (7.1) is

(72) L^iP) = -1,   PGGo(A),
viP) = 0,   P G Ti(A) U r2(A) .

Scheme 2. We take G(A) = G0(A) U T2(A) , 3G(A) = Ti(A), LhviP) = vx
if P G T2(A), /(P) = 0 on r2(A). Then, the discrete analogue of problem (7.1) is

LhviP) = -1,       PEGoih),
(7.3) viP) = 0,       PE Txih) ,

vxiP) = 0 ,       PE r2(A) .

Scheme 3. Same as Scheme 2, except that we take/(P) = 1 on r2(A). Then, we
have

LhviP) = -l,       PEGoih),
(7.4) viP) = 0,       P G Txih) ,

vxiP) = 1,       PE r2(A).

Scheme 4. We take G(A) = G0(A) U r2(A), 3G(A) = Ti(A), LhviP) =
vxj - 2v0j if P = (0, jh) G*r2(A), /(P) = 0 on r2(A). Then, we have

LhviP) = -1,        PEGoih) ,
(7.5) viP) = 0,        PE Txih) ,

vxj-2v0j = 0,       P = i0,jh) G r2(A).

The four schemes are of positive type. The function </>(P) = x — t — 1 satisfies
condition (i) of Theorem 2.1; the existence of discrete barriers at the points of Ti
follows from the first and fourth conditions of Section V. Therefore, we can apply
Theorem 2.1. The four schemes (7.2), (7.3), (7.4) and (7.5) converge to the unique
solution of problem (7.1), uniformly in any Gt = G — \P = ix, t); t > 1 — e,
0 < x < e}.*

Table I shows the convergence at the point P(l, 2) of the functions vs(P; A),
s = 1, 2, 3, 4, corresponding to each of the foregoing schemes.**

It appears that Scheme 2 is the best; this is related to the observed fact that
the solution w(P) satisfies du/dx = 0 on r". A closer examination of the results
shows that the convergence of this scheme is uniform in G except for a neighbor-
hood of the point (1, 1); of course, we cannot expect better than that since w(P)
is not continuous at this point.

* A direct application of Theorem 2.1 requires that we exclude also a neighborhood of the
line í = 2. But, of course, we can extend the domain G for í > 2 in such a way that the operator
remains of positive type and the "final" points of G (on the line segment t = 2, 0 < x < 2)
become interior points. Applying Theorem 2.1 to this extended domain, we deduce that the con-
vergence in the domain'G is uniform up to < = 2.

** The author is indebted to Mrs. F. Glain for the numerical computations.
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Scheme 3 is not as good as Scheme 2 ; but the convergence is again uniform in
G except for a neighborhood of the point (1, 1), despite the fact that we try to
impose a wrong condition on the derivative du/dx on r".

Schemes 1 and 4 converge also, but the convergence is not uniform in the
neighborhood of r"; in Scheme 1 we try to impose wrong values to the function
u on T"; in Scheme 4 we use a meaningless condition.*

Table II represents the solution uQP). The values of w(P) are not known ac-
curately near the point (1,1) where this function is discontinuous

(2) Second example. Let G be the rectangle: 0 < a; < 1, 0 < t < T, where T
is some positive number, and let Ti be the three sides of the rectangle: x = 0,
x = 1 and t = 0. Let o- be a real number. We consider the problem

du        ,adu ,      .     „
Lumd~x1~tñ=-1 lnG'

(7-6) u = 0 on Tx,

u G C2iG) H CiG U T/) n BiG) .

We define RQi) as usual, Txih)  =  Tx D Ä(A),   G(A)  =  (G -  Ti) f» ß(A) and
LhviP) = vxx — Pvu

Table III
M

* Other types  of finite-difference schemes with  "wrong"  boundary conditions have been
studied by S. V. Parter [9'] and by H.-O. Kreiss and E. Lundqvist [8']-
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The discrete analogue of problem (7.6) is

(77) LhviP) = -1,   PEGQi),
viP) =0,   PE Txih).

This scheme is of positive type; the function 4>iP) = x2 satisfies condition (i) of
Theorem 2.1 ; if cr < 1, we can apply our third sufficient condition for the existence
of barriers (Section 5); if a ^ 1, we can apply Theorem 6.3 with UiP) = —x2 —
Log t. It follows that

if a < 1, problem (7.6) has a unique solution;
if o- jg 1, problem (7.6) has no solution: a solution of the differential equation

is uniquely determined by the boundary-values at x = 0 and x = 1 ; we can impose
no initial condition.

Table III represents the solution as a function of t for x = \ and for a = f, 0,
— |, —1. When t —» », uix, t) —» ̂ x(l — x).

For cr 3: 1, the solution determined by the boundary values alone is:
uix, t) = |x(l — x).

Table IV

A = 1/A

16
32
64

128
256

ViP, A)

0.12181582
0.12489043
0.12499968
0.12500000
0.12500000

The numerical experiments show that the convergence is of the order of A for
a < 1. In the case <r ̂  1, the convergence is incredibly fast even though we start
with wrong initial values; this fact is illustrated by Table IV which gives the
values computed at x = \,   t = 1/16 in the case cr = 1.5 for different values of
A = 1/A.
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