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Numerical Methods Based on Additive Splittings for
Hyperbolic Partial Differential Equations

By Randall J. LeVeque and Joseph Öliger*

Abstract. We derive and analyze several methods for systems of hyperbolic equations with
wide ranges of signal speeds. These techniques are also useful for problems whose coefficients
have large mean values about which they oscillate with small amplitude. Our methods are
based on additive splittings of the operators into components that can be approximated
independently on the different time scales, some of which are sometimes treated exactly. The
efficiency of the splitting methods is seen to depend on the error incurred in splitting the exact
solution operator. This is analyzed and a technique is discussed for reducing this error through
a simple change of variables. A procedure for generating the appropriate boundary data for
the intermediate solutions is also presented.

1. Introduction. Splitting methods for time-dependent partial differential equations
have been most frequently studied in the context of spatial splittings, as in the
approximate factorization techniques for efficiently implementing implicit algo-
rithms in more than one space dimension [6], [11], [13]. Some attention has also been
given to splitting or fractional step methods for problems where the differential
operator is split up into pieces corresponding to different physical processes which
are most naturally handled by different techniques. This has been done, for example,
with convection-diffusion and the Navier-Stokes equations [1], [4], [5].

More generally, a splitting method may be useful any time one is faced with a
problem
(1.1) u, = &u,

where 6B is some differential operator of the form

&=&x + &2,

such that the problems

(1.2a) u, = &xu

and
(1.2b) «, = ffi2«
are each easier to solve than the original problem. By alternating between solving
(1.2a) and (1.2b) we hope to compute a satisfactory solution to (1.1).
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470 RANDALL J. LEVEQUE AND JOSEPH ÖLIGER

In this paper we consider such methods applied to a one-dimensional quasilinear
hyperbolic system

(1.3) u, = A(x,t,u)ux,

where A is an n X n matrix with real eigenvalues. We assume that A is of the form

(1.4) A=Af+As.
In our notation, "/" and "s" stand for "fast" and "slow", respectively, which
reflects a common situation in which the solution contains waves traveling at quite
different wave speeds. If A is constant, then the solution operator for the problem
(1.3) on a single timestep of size k is cxp(kAdx), that is to say

(1.5) u(x, t + k) = cxp(kAdx)u(x,t).

For nonconstant A the solution operator is more complicated. Our analysis will be
concerned mostly with the constant coefficient case, so we will use the notation of
(1.5) throughout. The ideas generalize easily, but are most intuitively seen in terms of
exponentials.

The additive splitting (1.4) comes into play when the solution operator exp(kAdx)
is approximated by the product of the solution operators for the subproblems

(1.6a) u, = Afux

and

(1.6b) u, = Asux.

We replace (1.5) by

u(x, t + k) » cxp(kAfdx)exp(kAßx)u(x, r).

An approximation to u(x, t + k) is thus obtained by first solving (1.6b), with u(x, t)
as initial data, and using the resulting solution as initial data for (1.6a). If Af and As
commute, this splitting is exact. When they do not commute, we have introduced an
error which is 0(k2). As noted by Strang [16], this error can be reduced to 0(k3) by
use of the splitting

(1.7) cxp(k(Af + As)dx) ~exp[-kAfdxjexp(kAßx)exp[-kA/dx].

Analogous results hold for the corresponding splittings with variable coefficients.
Computations confirm that the global error is also improved (from O(k) to 0(k2))
by the use of this splitting.

The numerical approximations to the solution operators cxp(kAßx) and
cxp({kAfdx) will be denoted by Qs(k) and Qf(k/2), respectively. The numerical
method based on the Strang splitting ( 1.7) is then

(1.8) U:+x = Qf(k/2)Qs(k)Qf(k/2)U¿,
where U£ is the numerical approximation to u(mh, nk) on a grid with Ax = h and
Ar = k. When splitting a multidimensional problem into one-dimensional subprob-
lems, this sort of a splitting gives rise to the so-called locally one-dimensional (LOD)
method, a spatially split scheme. In the present context we will refer to (1.8) as the
time-split method.
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NUMERICAL METHODS FOR HYPERBOLIC EQUATIONS 471

In practice U"+x can be computed via the sequence

(1.9) U* = Qf(k/2)U^,
Um** = Qs{k)U*,

u:+x = Qf{k/2)u:*,
although it should be noted that when several steps of (1.8) are applied successively
the adjacent Qf(k/2) operators can be combined into Qf(k), and the half-step
operators need only be applied at the beginning and immediately before printout,
i.e.

U: = Qf(k/2)Qs(k)Qf(k) ■ ■ ■ Qf(k)Qs(k)Qf(k/2)U°.
There are several situations in which the use of the time split method may lead to

a more efficient solution of the original problem. We will mention three such cases
here. Our analysis will be mostly concerned with the first and last of these.

Problem 1. Suppose the solution to (1.3) contains both fast waves and slow waves,
i.e. the eigenvalues ju, of A satisfy

I Ui I < I IX-i I <   ... < I it    l<ltt_i_,l<--'<lu    II p*l II r2 I I t"p I      I rp+ 1 I 1 t*n I

Assume also that there are relatively few elements of A which contribute to the fast
waves. We can take advantage of this structure by splitting the operator into slow
and fast parts and using small time steps only on the fast part. That is, we can
choose k so that cxp(kAßx) can be adequately represented by a single step of some
finite difference scheme and then approximate cxp({kAfdx) by several steps of a
difference scheme with a smaller time step. Similarly, we can handle more than two
clusters of wave speeds by means of further splittings.

Such a splitting method requires less work than using small time steps on the full
unsplit problem and will thus be more efficient provided the accuracy is not too
adversely affected by the error in the splitting. We will see that this depends very
much on the problem at hand. In cases where the splitting error is small, the
time-split method actually may be more accurate, since we will be able to use nearly
optimal mesh ratios for each cluster to minimize the truncation error and improve
other characteristics of the method, such as its dissipative behavior.

Similar splittings have been considered by Engquist, Gustafsson and Vreeburg [4]
for this type of problem. However, the splitting in their problem involved little
interaction between the different time scales, so that many of the problems we shall
encounter were not present.

Example 1.1. Consider a block triangular system of the form

(1.10) A =
1

^12

A22

with \\A, \A22 ' 1 and e « 1. It is reasonable to take

(1.11) Af = A  = 0    Ax
0    A22
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For this problem the effectiveness of the split method depends greatly on the
coupling Ax2 between the different time scales. This is analyzed in Section 2 where
we also present a simple procedure for changing variables to reduce the coupling.

Problem 2. Consider the same situation as in Problem 1, but where the fast waves
are known to be absent from the physical solution of interest. Recently Kreiss [9],
[10] and Browning, Kasahara, and Kreiss [2] have considered some new approaches
for this problem which rely upon properly preparing the data so that the fast wave
components are ehminated. These can be considered as projection techniques.
Majda [12] has considered using filters to suppress the fast waves in the same
context.

In this case the true solution should satisfy

exp(^3x)«(x, r) = cxp(kAßx)u(x, t),

providing the splitting between fast and slow scales is done correctly. For variable
coefficient problems it will not be possible to have the correct splitting at all times,
and the operator Af cannot be dropped entirely. However, we can consider using the
time-split method (1.8) with a less accurate scheme for Qf(k/2) than is used for
(2j(&), perhaps by using the same time step for both with a larger spatial step for
Qj(k/2). In such a manner it may again be possible to obtain the same accuracy
more efficiently. Türkei and Zwas [18] have considered a method for this problem
which is similar in spirit.

Problem 3. Suppose that the coefficients in the problem (1.3) have large mean
values about which they oscillate with small amplitude. In this case it may be
possible to split out a constant coefficient problem which can be solved exactly,
leaving behind the small perturbations for As. Then (1.8) can be used with some
large time step approximation for Qs(k) while Qf(k/2) = exp({kAfdx) exactly. This
is clearly more efficient than using small time steps on the unsplit problem.
Moreover, since the dominant part of the operator is being handled exactly, great
increases in accuracy are also possible.

Example 1.2. The simplest example is the scalar problem

(1.12) ut=(l+a(x))ux,

where | a(x) |< 1, and we use the splitting

Af= 1,       A2 = a(x).

Take k = ph for some integer p. The operator cxp({kAfdx) is known exactly:
cxp(\kAjdx)u(x, t) = u(x + {ph, t). If Lax-Wendroff is used for the remaining
subproblem u, = a(x)ux, then the method (1.8) can be written as a single step
method.

Urn =   Um+p ~*~   jPWm+p+l  ~~  Um+p-l)

+ \p2a(xm)((a(xm + h) + a(xm))(u:+p+x - U:+p)

- (a(xm) + a(xm - h))(u:+p - U:+p_x)),

where xm = xm + {ph. Notice that even though this is a scalar problem, the
operators 3X and a(x)dx do not commute, and so the Strang splitting must be used.

The shallow water equations provide a more interesting example of Problem 3.
These are discussed in Section 8.
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NUMERICAL METHODS FOR HYPERBOLIC EQUATIONS 473

General Considerations. The effectiveness of the time-split method depends on the
error in the splitting (1.7). If this is exact, then the splitting method is clearly more
efficient for the types of problems we are considering. On the other hand, if the
splitting error dominates, it may be necessary to reduce the time step considerably,
eliminating the possible benefits of the splitting. In the next section we derive an
explicit expression for the splitting error and indicate how to determine whether a
splitting method is useful on a given problem. We will show that the equations
sometimes need to be transformed to reduce the linkage between fast and slow
modes in order to achieve the desired accuracy.

The Q operators in the time-split method can consist of one or more steps of any
explicit or implicit scheme using two time levels. It is not immediately clear how a
scheme using more than two time levels (such as leapfrog) could be used. For
suppose we want to use leapfrog as Qs(k) to go from U* to U** in (1.9). Then we
would need some approximation to cxp(-kAßx)U* (which is not U") to play the role
of U* at the previous time level. As a first step towards incorporating multilevel
schemes into the splitting framework, Section 4 introduces a different type of split
scheme which does use leapfrog for Qs(k). This method is based upon approxima-
tions to the variation of parameters formula, or Duhamel's principle, and will be
called the Leapfrog Duhamel method. Similar ideas have been used for ordinary
differential equations by Certaine [3]. The accuracy and stability of the Leapfrog
Duhamel method is considered in Sections 5 and 6.

The initial boundary value problem is considered in Section 7. In most cases
boundary data will have to be supplied for the intermediate solutions ¡J* and [/** in
(1.9). We consider the problem of approximating the correct boundary data in terms
of the given boundary conditions.

Some further examples of splittings and computational results are presented in
Section 8.

2. Accuracy of the Time-Split Method. In this section we consider discretizations
of the approximate splitting

(2.1) u(x, t + k) » exp  -~kAfdx \cxp(kAßx)cxpi — kAfdx \u(x, t)

for the solution of u, = Aux = (A¡ + As)ux with \\AS\\ « \\Af\\. Up until Section 7
we will deal only with the Cauchy problem, where -oo < x < oo. Of course these
results also hold for a strip problem with periodic boundary conditions, e.g.,
0 < x < 1 and «(0, r) = «(1, t). We will assume that Af and As are constant
matrices, but our approach carries over for more general problems if the exponen-
tials in (2.1) are replaced by the appropriate solution operators. For example, the
splitting error for the problem (1.12) is given in Example 8.2 of Section 8.

If Af and As commute, then the splitting (2.1) is exact. Otherwise we define the
splitting error operator EspXit(k) by

(2-2)   EspXit(k) = exp| 2^/3x)«tp(^Ä)exp( 2kA/dx) ~ exp(k(Af + As) 3X)

1     J  1     2 1 1 2
6^   \~AfAs ~   2AfAsAf+   ~AsAf

- ^A2Af+AsAfAs - \AfA\\ 3,3 + 0(k4).
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The local truncation error operators for the approximate solution operators Qf(k/2)
and Qs(k) are defined by

Ef(k/2) = Qf{k/2) - expj^/3,),

Es(k) = Qs(k)-cxp(kAßx).

Note that for a second order scheme such as Lax-Wendroff these are 0(kJ). We can
now compute the truncation error operator for the split scheme. The numerical
solution operator is

Qf(k/2)Qs(k)Q,(k/2) = (exp(^/LA) + E,( */2))(exp(fc4A) + £,(*))

X (expji^S,) +Ef(k/2)]j

= exp[-kAfdx}cxp(kAßx)exp[-kAfdx j

+Es(k) + 2Ef(k/2) + 0(k4)

= cxp(k(Af + As)dx) + Esp]ll(k)

+ Es(k) + 2Ef(k/2) + 0(k*).
The truncation error operator for the time-split method (TSM) is thus

(2.3) ETSM(k) = Qf(k/2)Qs(k)Qf(k/2) - cxp(k(Af +As)dx)

= EspUi(k) + Es(k) + 2E,(k/2) + O(k').
For a given problem this error can be computed directly and used to assess the
efficiency of the time-split method relative to an unsplit method.

In order to illustrate some of the properties of this method and the effect the
splitting error EspXit(k) has on its utility, we restrict our attention to the case where
Qs(k) consists of a single step of Lax-Wendroff. For convenience we use LW(yl, k)
to denote the Lax-Wendroff operator,

LW(A,k) = 1+ kAD0+ ]rk2A2D+D_ ,

where D0, D+ and D_ are the standard centered, forward, and backward difference
operators, respectively. We thus have

(2.4a) Q,(k) = lM(A„k).
For Qf(k/2) we consider both

(2.4b) Qf(k/2) = exp^kAf^

and

(2.4c) Qf(k/2) = (LW(A/,k/m))m/2

for some integer m. The situation (2.4b) occurs when the solution operator
exp({kAfdx) is known exactly, as in Problem 3. In (2.4c) Qf(k/2) consists of m/2
steps of Lax-Wendroff with time step k/m. This might be appropriate when solving
Problem 1, for example.
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The standard error analysis for Lax-Wendroff shows that for (2.4a) we have

(2.5a) Es(k) = E**(k) = -\(k'A] - kh2As) 9j + 0(k<).

When (2.4b) is used there is no error on the fast scale, and

(2.5b) Ef(k/2) = Ep>(k/2) = 0.
Otherwise, when (2.4c) is used,

,m/2

,3 K \        \m/2

3A}-±h2Af-3   '      m

Q/(k/2) = (lM(Af,k/m)y

= c*p(\kAf9x) - ¡(£-AJ - \k*Af) 3j + 0(k<),

and so

(2.5c)       Ef(k/2) = Ej"(k/2) = -7^(5^/ ~ **^/) 3* + 0(^4)"

In this case we must choose an appropriate value of m, the number of small time
steps used within each large time step. For fixed h, the error EfLV/(k/2) does not
approach zero as m -> oo. From (2.5c) it seems unreasonable to take m any larger
than a value for which \\k3AJ/m211 « \\kh2Af\\. This suggests taking

(2.6) m~j\\Af\\.

The proper choice of m may also be influenced by stability requirements. Determin-
ing the stability of the operator Qf(k/2)Qs(k)Qf(k/2) is in general a difficult
problem, which will be considered in some detail in Section 5. It will be shown there
that for some problems the product operator is stable provided Qf(k/2) and Qs(k)
are each stable independently. It is well known that for Lax-Wendroff the stability
condition on Qf(k/2) is p(Af)k/mh *s 1, i.e., m > p(Af)k/h. The m given in (2.6)
is consistent with this requirement. Also note that, for k/h « 1/|| As II, (2.6) becomes
m~\\Af\\/\\As\\.

When the splitting error E ht(k) is negligible compared to the other terms in (2.3),
the truncation error for the split scheme becomes

ETSM(k) = Es(k) + 2Ef(k/2) + 0(k4)

l_~~6 k^A]+ ±A) ) - kh2(As + Af)} 3X3 + 0(k*).

This error is roughly the same as we would obtain using (LW(A, k/m))m, i.e.,
Lax-Wendroff with small steps on the unsplit problem. The truncation error for the
unsplit method can be derived in the same manner as (2.5c) to obtain

(2.7)        E™(k) = -i[£(Af + A.)9 - kh2(Af + A^ 3X3 + 0(k*)

l^-2A}-kh2(Af + As)\^x.
m I
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Thus we do almost as well by taking large steps with As and small steps with A, as
we would by taking small steps on the unsplit problem. This can lead to considerable
savings. If Qf(k/2) = exp({kAfdx) the results are even more striking. Now the error
(2.3) is simply

£tsm(íc) = £¿k) + 0(ifc4) = -^(k3A3s - kh2As) dl + 0(k4).

Comparing this to (2.7) shows that the split scheme is considerably more accurate. It
also requires less work, since now nothing is computed using small steps.

The results of the last paragraph are all based on the assumption that EspXit(k) is
negligible. In practice EspXit(k) may easily dominate the discretization error Es(k) +
2Ej(k/2). In this case the split scheme is less accurate than Lax-Wendroff with time
step k/m. Nonetheless the split scheme may be preferable. It may be possible to use
the split scheme with smaller k and h to obtain better accuracy while still requiring
less work than the unsplit scheme. The proper quantity for comparison is the work
required to obtain a given accuracy. This can be estimated and compared for various
methods as we now do. Under some mild assumptions, we will see that the methods
(2.4a, b) and (2.4a, c) are always more efficient than the unsplit scheme (provided we
choose k/h properly).

Work Comparisons. We will compute expressions for the work required to obtain a
solution at time r = 1 with error at most r. All of the bounds below are rough order
of magnitude bounds which are sufficient for our present purpose. Suppose that

Mil «11,4,11= a,       \\As\\=b,
where b/a = e « 1. Also suppose that IIk^JI » 1. This is for convenience only,
since it removes one common factor from all of the bounds below.

We will first analyze the unsplit Lax-Wendroff method LW(^1, k). Suppose that
W is the work required to compute LW(yl, k)U£ at a single point xm. Then the work
required to advance the solution on a unit x-interval by one unit of time is
W/kh = XW/k2 if k = Xh. The error committed in one time unit using the unsplit
method is bounded by

||((LW(i4, *))''*-exp(i4ax))w||

« U^(k3\\A\\3 + kh2\\A\\) + 0(k4)\ < \k2(a3 + a/A2) + 0(k3).

Since we require an error » t, we set

^k2(a3 + a/X2) = r,

giving

, ■> 6t
a(a2 + l/X2)

Thus w(t; A), the work required to achieve a given accuracy t using Lax-Wendroff
with stepsize ratio X, is given by

w(t; A) = —• = (Xa + l/Xa)——.A:2 6t
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We have not yet specified X. Choosing X to minimize w(r; X) gives X = I/a, and the
minimum work w(r) is

a2W(2.8) w(t) = ——    for unsplit Lax-Wendroff.3t
Now consider the split method (2.4a, b). Let Ws be the work required to apply

Lax-Wendroff on the slow scale and Wfxp the work required to compute
exp(kAfdx)U¿. Set WTSM = WS+ W/Xp. Typically WTSM « W. The error over one
unit of time for the split scheme is bounded by

\\((Qf{k/2)Qs(k)Qf(k/2))X/k - cxp(Aox))u\\

< \\\EspXit(k)u + Es(k)u + 2Ef(k/2)u + 0(k4)\\.

For (2.4b), Ef(k/2) = 0. From (2.5a),

\\Es(k)u\\ < ^k(k2b3 + h2b) = \k3(b3 + b/X2).

The splitting error is bounded using (2.2),

H£spiit(*)«H < \k3(a2b + ab2) « \k3a2b,

although it may be much smaller for some problems. Since our results depend very
much on the size of this error, we will suppose for now that

(2-9) ||£spUt(/c)«||<^3a,

for some a, so that

\\\EspXlt(k)u + Es(k)u\\ ^ \k2(o + b3 + b/X2).

In order to obtain accuracy t we must take
6t

k2 =
a + b3 + b/X2 '

so
H/TSM

(2.10) w(r; X) = XWTSM/k2 = X(a + b3 + b/X2)—^-.6t
The optimal stepsize ratio À now depends on the size of the splitting error and is
given by

(2.11) a + b

so that
I- H/TSM

w(t) = Jb(o + b3) -^r—

for the time split method (2.4a, b).If a < b3 (e.g., when Af and As commute), then
(2.11) gives X~ 1/èand

l2t^TSM
(2.12) w(T) = £Jt__.
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When WTSM « W this is better than (2.8) by a factor of e2, meaning greatly
improved efficiency. Note that when a = 0 the only error incurred is the error in
using Lax-Wendroff on the slow scale. From our previous discussion of Lax-Wendroff
it is clear why À = 1 /b is optimal in this case.

On the other hand, if the splitting error is as bad as (2.9) indicates, then a = a2b
and X « 1 /a in (2.11 ) giving

,   ,      abWTSM
w(r)=^—

This is still an improvement over (2.8), although now only a factor of e. Note that
now À is chosen appropriate to the fast scale, even though the fast part of the
problem is solved exactly, in order to reduce the error due to splitting. Indeed, if we
try to use X= l/b when a = a2b, we obtain no improvement over (2.8). For this
reason it is advisable to always use small time steps with the time-split method
(2.4a, b) unless Esp]it(k) is known to be very small, in which case even greater
efficiency is achieved by using larger time steps.

Now consider the method (2.4a, c) where Lax-Wendroff is used for both opera-
tors. In this case WTSM = Ws + mWf where Wf is the work required to apply
Lax-Wendroff on the fast scale. We are assuming that Wf « Ws « W. We will take
m*Àaas suggested in (2.6). Using (2.5c) we find that

^||£spllt(Â:)« + Es(k)u + 2Ef(k/2)u\\ < ^k2(a + b3 + b/X2 + a3/m2 + a/A2).

We then obtain
,, W. + \aWf

(2.13) w(t; X) = X(a + b3 + b/X2 + 2a/A2)-^---'-

^W. + \aWf
~A(o + b3 + 2fl/À2)       6t-'-    for (2.4a,c).

The optimal X now depends on the relation between Wf and Ws and is more difficult
to solve for. We will discuss three possible choices of A: A = I/a, X = l/b, and
X= \/x[ab.

When X = l/a, m = 1 and we are simply alternating between LW(yl,, k) and
UW(AS, k). In general we would not expect this to be any more efficient than using
the unsplit method LW(/1, k). Indeed, we find that

W, + Wt W.+ W,
,(t; I/a) « ((a + b3)/a + 2a2)^-—^ ~ ^-^^

DT JT

regardless of the size of a. This is better than (2.8) only if Ws + Wf < W, which is
generally not the case for the problems we are considering. (Note that this is the
case, however, in the LOD method, where we alternate between solving one-dimen-
sional implicit problems in different space dimensions.)

For X = l/b increased efficiency is possible if the splitting error is small. From
(2.13),

W(T; l/b) = (a/b + 2b2 + 2ab)
Ws + aWf/b

6t

~(o/b + 2ab)
Ws + aWf/b
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Suppose that Wf + eWs = yW for some y < 1/2. Then Ws + aWf/b = yaW/b, and
so

(2.14) w(T,l/b) = (ao/b2 + 2a2)^.

This is better than (2.8) whenever a < ab2/y. In this case the time-split method is
more efficient. For example, if a = 0, (2.14) is better than (2.8) by a factor of y.

Unfortunately, if a = a2b as in (2.9), then

a2(Ws + aWf/b)
w(t; l/b) «-—-,

which is no better than (2.8) and may be worse if Wf > eW.
Now consider an intermediate stepsize ratio, A = 1/ x/ab. From (2.13),

t             r—S           1                              Ws+{a7bWf
w(t; l/{äb) « -^(a + 2a2b) -f-

\Jab "T

i,™,2W> + J°ÏÏW/    r 2ws + Wbwf^ai/2b\/2- -L  _   La2- -£
2t 2t

regardless of the size of a. This is better than (2.8) if W¡ + fë Ws < § W, which will
generally be true.

We conclude that the method (2.4a, c) is more efficient when X is chosen correctly.
If the splitting error is known to be small, then X= l/b can be used. Otherwise
smaller time steps should be used, e.g. A = 1/ \fa~b. Very small time steps, X = 1/a,
should never be used.

Here we have not dealt with the advantages of the split scheme resulting from the
possibility of choosing the stepsize ratio on each scale so that the k3 and kh2 terms
in each of the Lax-Wendroff errors nearly cancel out. When this can be done, the
splitting may be even more advantageous than indicated here.

Block Triangular Systems. Since the efficiency of the split scheme is limited
primarily by the splitting error, it is interesting to investigate how this error depends
on the coupling between fast and slow scales in a simple model system. Suppose that
the matrix ,4 is of the form (1.10) with ||^12|| « a < 1 and that the splitting (1.11) is
used. Here Ax2 is the coupling between fast and slow scales. If An = 0, the problem
is uncoupled and EspXit(k) = 0. In general, from (2.2),

k3
^spUt(^) = ~JsplitW g

0     4e^iil £A\\A\2     2AX2A- 3,3 + 0(k4).xx2n22

.0 0
Thus || £spHt(Â:)M || « aA:3/24e2. The efficiency of the splitting depends on the size of
a. In the notation used above, we have

1     ?a = 1/e,    b = 1,    a = —aab.

For unsplit Lax-Wendroff, (2.8) gives

(2.15) w(r) =
W
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The time-split method (2.4a, b) is always more efficient if we choose

/        1 \"'/2
\~(l + -aa2b)      .

For example, if a » 1, we should use X « 2/a = 2e in order to reduce (2.15) by a
factor of e. The maximum efficiency indicated in (2.12) is achievable only if a < e2,
in which case taking X = 1 reduces (2.15) by a factor of e2.

Reducing the Splitting Error. For block triangular systems in which AX2 is not
sufficiently small, it is possible to reduce the coupling through a change of variables
so that the optimal efficiency can be achieved. A change of variables amounts to
replacing u by ü = Bu for some nonsingular matrix B. The system ut = Aux then
becomes Ut = BAB'XUX. Clearly, if B is chosen to be the eigenvector matrix of A,
then the problem completely decouples into independent scalar equations. We are
seeking something less expensive which only decouples the fast and slow scales. Thus
we want a matrix B such that

(2.16)

with ||Cn I
form

\C22 !

BAB-1 =
1

0

0
c22

1. In the block triangular case, it suffices to consider B of the

Then

B = Bx B
-B,

BAB~X =
0

1
AXXBX2 + Ax2 + BX2A22

'22

and so B,7 should be chosen to solve

(2-17) AXXBX2     BX2A22 — AX2

in order to completely decouple the fast and slow scales.
In the present context solving for Bi2 from (2.17) is not worthwhile. In order to

achieve optimal efficiency we need only reduce the coupling by one or two factors of
e. Further reductions do not gain anything once the Lax-Wendroff errors dominate.
This suggests taking

(2.18)
so that

B„ = eA: A'12 11^12'

BAB-

where

-An aO)AX2

MU/ixl £A]\Al2A22.
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We now have \\A\¿\\ *eo provided \\AXX II » 1. The coupling is thus reduced by a
factor of e through the use of a very simple change of variables. The above process
can be repeated to obtain additional factors of e. This change of variables has been
suggested by Kreiss [9] in a similar context.

For full systems of the form
' 1

A =
A,

A,

'22

we can obtain a similar reduction in the size of both off-diagonal blocks and again
reduce the splitting error by several orders of magnitude. In this case we consider B
of the form

B = K
I

I + KL
L

It is easy to verify that the lower corner of A is annihilated by taking L to satisfy
1■LA, I 'f\ j2 Li 0.

The matrix K can then be chosen as before to remove the remaining upper corner.
This results in a system of the form (2.16). This particular transformation is
discussed more completely by O'Malley and Anderson [14]. Again, however, we are
not interested here in completely annihilating the corners, but rather in reducing
them by a factor of e. This is easily accomplished by taking

— ^11      12' —      ^21      11 *

Example 8.1 in Section 8 illustrates the use of the change of variables for a triangular
system.

3. Stability of the Time-Split Method. In this section we investigate the stability of
the time-split method when applied to a constant coefficient problem on the entire
real line, -oo < x < oo or, alternatively, on a finite interval with periodic boundary
conditions. When Qj(k/2) = Qf(k), as is true for the splittings (2,4), for example,
Cauchy stability of the Strang splitting (1.8) is equivalent to stability of the first
order splitting

(3.1) U"+x = Qs(k)Qf(k)U".
For simplicity we restrict our attention to this splitting and set Q(k) = Qs(k)Qf(k).

In general the stability of Qs(k) and Qf(k) does not imply stability of Q(k).
Instead stability must be checked directly. In fact, (3.1) can be unstable even when
Qf(k) and Qs(k) are exact solution operators for well-posed hyperbolic problems as
the following example shows.

Example 3.1. Let

Then the problems ut = A,ufux>

r1
-1
Au

0

and u, = (A, + As)ux are all well-posed,
strictly hyperbolic problems for any value of the parameter p. Let

QAk) = cxp(kAfdx),       Qs(k) = cxp(kAßx).
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and let G,(£, k) and Gs(%, k) be the corresponding amplification matrices. For the
exact solution operators,

and

GfU, k) = cxp(mAf)

G,(t, k) = cxpiiktA,)

e'ki    pi sin ki;

0 -iki

cos k£     i sin ké,
i sin ki     cos kè,

We have p(Gy(£, ¿)) = p(Gs(£, k)) = 1 for all ¿ and fc. On the other hand, the
amplification matrix G(£, k) for the time-split method (3.1) has p(G(£, k)) = 1 for
all £ and k only if | p |< 2. When | ¡u |> 2, the method is unstable. Figure 3.1 shows
graphs of p(G(£, k)) for p = 5, 10.

In spite of this example, there are some very important classes of splittings for
which the individual stability of Qf(k) and Qs(k) does imply the stability of Q(k).
It is useful to delineate such classes, since the stability of Qf(k) and Qs(k) is often
easy to determine, whereas the stability of Q(k) may be quite tedious to determine
directly.

i-1-1-1-1-1-1-1-1-1-r

0 2
Figure 3.1

Spectral radius of the amplification matrix G(£, k) of Example 3.1 for p = 5,10,
as a function of£k between -it and it

Block  Triangular Systems.  One such case is  the block triangular system of
equations

U
'22

with the splitting (1.11). The solution v does not depend on «. In solving for u, the
computed v enters essentially as a forcing function. The schemes Qs(k) and Qf(k)
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will be of the form
/      D.Jlr\]

Qf{k) =(3.2) Qs(k) =
I    Qx2{k)
0    Q22(k)

ßn(*)    o
0 /

Suppose that Qxx(k) and Ô22W are stable schemes, and in particular, that there
exist a norm || • || and a constant a > 0 such that

(3.3) Hôii(fc)H <l +ak   for all k sufficiently small.
All of the following estimates will be in this norm. We also suppose that

(3.4) \\QX2(k)V\\<kM\\D+V\\
for some constant M. These assumptions are satisfied for the methods (2.4) provided
the Lax-Wendroff operators are stable. We then have the following theorem.

Theorem 3.1. Suppose QAk) and Qs(k) are stable schemes as above. Then the split
scheme Qs(k)Qf(k) is stable for smooth initial data Vo. More precisely, we obtain
bounds for the solution which depend on a discrete Sobolev norm of the initial data,

(3.5a) ||í/"||<#r(||t/0|| + ||Z>+F°||)

(3.5b) \\V\\<KT\\V°\\,
for nk < T. Here KT and KT are constants depending only on the fixed time T.

Proof. When the full scheme U"+ ' = Qs(k)Qf(k)Un is written out we obtain

(3.6a) U"+x = QiX{k)U" + Qu{k)Ql2(k)V,
(3.6b) V"+x = Q22(k)V".

The bound (3.5b) follows immediately from (3.6b) and the stability of Q22(k).
Moreover, by linearity, an identical bound holds for the linear combination of
solutions D+ V", i.e.,

\\D+V"\\<KT\\D+V°\\.
Using this together with (3.4) in (3.6a) gives

\\U"+X\\ < ||ß,,(A:)||(||t/"|| + kMKT\\D + V°\\).

When iterated n times this gives
(3.7)       Hi/"|| < ||ßn(*)||"lit/01| + kMKT(\\Qxx(k)\\"-x

+ Hß,,(A:)ll',-2+---+||ßll(*)|| + 1)HD+K°||.

By (3.3), ||ß„(*)||" < (1 + aky < eaTiink < T. Using this in (3.7) gives

III/"II <eaT(\\U°\\ + TMKT\\D+V°\\)
for nk < T, which is of the desired form (3.5a).    D

Simultaneously Normalizable Matrices. Stability also follows directly when A, and
As are normal matrices (a normal matrix is one which commutes with its transpose).
This includes, for example, symmetric matrices and scalar problems. In fact, it
suffices that Af and As be simultaneously normalizable, i.e., that there exist some
nonsingular matrix S such that SASS~X and SAfS'x are both normal. Thus, the case
of simultaneously diagonalizable Af and As is also covered. This is a consequence of
the following, even more general, theorem.
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Theorem 3.2. Let Ax, A2,... ,Am be constant matrices. Approximate each solution
operator exp(kjAjdx) by some operator Qj(kj) with amplification matrix Gj(H).
Suppose there exists some norm || • || for which

(3.8) IIG/0IK1    VC,j=l,2,...,m.
Then the scheme

(3.9) U"+x = Qx{kx)Q2(k2) ■ ■ ■ Qm(km)U"
is stable.

Proof. Let G(£) = G,(|)G2(£) ■ ■ • Gm(|). Then powers of G(|) are uniformly
bounded in the norm II • II since

IIG"(¿)||<||G(£)||"< (110,(1)11 •••IIGm(|)||)"<l.
It follows that (3.9) is stable.    D

Corollary. Suppose there exists some nonsingular matrix S such that SA:S'X is
normalforf = 1,2,... ,m, and that the amplification matrices Gj(£) satisfy

(ï)    P(Gj(è))<\     VÉ, y =1,2,...,m,
(3.10) (Li)     SGj(£)S ' is also normal for alii, J= l,2,...,m.

Then the scheme (3.4) is stable.

Remark. Condition (3.10Ü) is satisfied if Qj(kj) is the exact solution operator or
one or more steps of Lax-Wendroff.

Proof. Since the 2-norm of a normal matrix is equal to its spectral radius,
conditions (3.10) give

\\SGj(t)S-x\\2 = P(SGjU)S-x) = p(GjU)) < 1.

It follows that the hypothesis of Theorem 3.2 is satisfied in the norm || • || defined by

Mil = \\SAS-X\\2.
This completes the proof.    D

4. The Leapfrog Duhamel Method. As mentioned in the introduction, the time-split
method does not immediately lend itself to use with multilevel difference schemes.
We now present a new method with the same basic philosophy as the time-split
method but which uses leapfrog on the slow time scale.

Using Duhamel's principle (i.e., variation of parameters) we can write the solution
to (1.3) as

u(x, t + k) — cxp(2kAfdx)u(x, t ~ k)

+ ¡'    exp((r + k — r)Afdx)Asux(x, r) dr.
Jt-k

If we now approximate the integral by the midpoint rule, we obtain

u(x, t + k) «< exp(2kAfdx)u(x, t — k) + 2kcxp(kAfdx)Asux(x, t)

= exp(kAfdx)[cxp(kAfdx)u(x, t - k) + 2kAsux(x, r)].
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Replacing ux(x, t) by the standard centered difference operator and approximating
exp(kAfdx) by Qf(k) gives the Leapfrog Duhamel method,

(4.1) U:+x = Qf(k) Qf{k)u:-x+jAs(u'i+x-u'i_x)

The term inside the brackets is essentially leapfrog for the problem «, = Asux since
Qf(k)U"~x « cxp(-kAßx)U". If Qf(k) is an 0(k?) approximation to cxp(kAfdx),
then (4.1) provides an 0(k3) accurate approximate solution, even for noncommuting
A, and A.. This will be shown in Section 5 where the method is analyzed in more
detail.

We pay a price for using a scheme involving three time levels, since (4.1) requires
two applications of the operator Qf(k). One of these is needed only to provide the
proper values at time n — 1. Nevertheless, this method may be useful, particularly in
cases where cxp(kAfdx) is known exactly and is easy to apply.

5. Accuracy of the Leapfrog Duhamel Method. The Leapfrog Duhamel scheme can
be analyzed in terms of the error in the midpoint rule directly from its derivation.
We prefer to build upon the results in Section 2 by rewriting Leapfrog Duhamel as a
splitting.

First consider the standard leapfrog scheme on w, = Asux,

[/«+' = u*-\ + 2kA,D0U".

The truncation error is given by

[u(x, t - k) + 2kAsD0u(x, t)] - u(x, t + k)

= [(I + 2kAsD0cxp(kAßx)) - cxp(2kAßx)]u(x, t - k).

For conformity with Section 2, we define the operator Qs(2k) by

Qs(2k) = I+2kAsD0exp(kAßx).

Note that this is not the actual finite difference operator for leapfrog, since in
general U" is not exactly equal to exp(kAßx)U"~x, but it is the proper operator for
computing the local truncation error, in which U"~x and U" arc replaced by the true
solution values. We can now define the truncation error operator for leapfrog on
stepsize k by

(5.1) E**(k) = Qs(2k) - cxp(2kAßx) = 0(k3).

The Leapfrog Duhamel scheme is

(5-2) U"+x = Qf(k)(Qf(k)U"-x + 2kAsD0Un),

where Qf(k) is some approximation to exp(kAfdx) with error operator

Ef(k) = Qf(k) - cxp(kAfdx) = 0(k3).

To obtain the truncation error for Leapfrog Duhamel we replace U"~x and U" by
u(x, t — k) and u(x, t) in (5.2). The right-hand side then becomes
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(5.3)    Qf{k)[l + 2kAsD0cxp(kAdx)Q-fx(k)]Qf(k)u(x, t - k)

= Qf(k)[l + 2kAsD0exp(kAßx)

+ 2kAsD0(exp(kAdx)Q-fx(k) - cxp(kAßx))]Qf(k)u(x, t - k)

= [Qf(k)Q,(2k)Qf(k) + 2kQf(k)AsDa

x(exp(A:^3x) - exp(kAßx)cxp(kAfdx) - exp(kAdx)Ef(k))]u(x, t - k).

Thus the Leapfrog Duhamel operator can be viewed as a splitting of the form
Qf(k)Qs(2k)Qf(k) plus some additional error terms which are 0(k3). Let E'pXit(k)
denote the error operator for the first order accurate splitting

£/pllt(/V) = cxp(kAdx) - cxp(kAßx)cxp(kAJdx) = 0(k2).

Observing that

cxp(kAßx)Ef(k) = 0(k3),    Qf(k) = I+0(k),    D0=dx+O(k2),

the operator in (5.3) becomes

Qf(k)Qs(2k)Qf(k) + 2kAßxE^t(k) + 0(k4).
Using (2.3) we obtain an expression for the truncation error operator for Leapfrog
Duhamel,

EL™(k) = (Qf(k)Qs(2k)Qf(k) + 2kAßxElpU(k) + 0(k4)) - exp(2U3j

= £spllt(2^) + EsLF(k) + 2Ef(k) + 2kAßxE!pXit(k) + 0(k4).

For As and Af constant we have

E¡PM = \k2(AfAs - A,Af) 32 + 0(k3),

so

EspXlt(2k) + 2kAßxE'pht(k)

= -\k3(A}As - 2AfAsAf + AsA2 + A2Af + AsAfAs - 2AfA2)d3.

The splitting error in Leapfrog Duhamel is thus roughly 8 times as large as the
corresponding error in the time-split method with Lax-Wendroff. The work compari-
sons of Section 2 can be repeated for Leapfrog Duhamel with simlar results.

6. Stability of the Leapfrog Duhamel Method. At present the stability analysis for
Leapfrog Duhamel covers only the case in which A¡ and As are simultaneously
diagonalizable,

XAfX-x = Mf,       XASX~] = Ms,

where Mf and Ms are diagonalizable matrices. We assume that Qf(k) is stable and is
also diagonalized by X. This is true for Qf(k) = cxp(kA/dx) or for Qf(k) =
(LW(A,, k/m))m with p(Af)k/mh < 1. Let qf(k) be a single diagonal element of
XQf(k)X~x and ps a diagonal element of Ms. It suffices to consider the scalar
equation

(6.1) U"+x = qj{k)U"-x + 2kqf(k)psD0U".
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Let gf(H) be the amplification factor corresponding to qf(k). By assumption,
|g/(£)|«lforall£

Theorem 6.1. Suppose | A/iJ< 1, where X = k/h. Then the amplification factor
g(Í)for the scheme (6.1) satisfies

\g{è)\=\gf{è)\.

Proof. The amplification factor is derived by letting
U: = gn{Í)eiimh

in (6.1). We obtain the equation

g(i) = g2(i)g-x(i) + 2iXgf(i)pssinih,

which can be rewritten as

(gU)g-/U)f - 2tXpssinih(g(i)g¿x(í¡)) -1=0.
Solving this quadratic equation yields

gU)gfxU) = iXpssinih±Jl-X2p2ssin2&.

U\Xps\< 1, the square root is real and so

\gU)gjx(0\2=h
and hence

|*(€)l=ls/(i)l
as claimed.    D

Note that when the exact solution operator is used for qf(k) we have | gf(i) \ = 1
and hence | g(|) | = 1 for all £. In this case Leapfrog Duhamel is nondissipative.

7. Boundary Data for the Intermediate Solutions. For general initial boundary
value problems we must be able to generate the appropriate boundary values for the
intermediate solutions which arise in the use of a split scheme. We have developed a
general methodology for defining the proper boundary data which will be illustrated
here for constant coefficient problems at an inflow boundary. More general prob-
lems can also be handled, as will be reported on elsewhere. The procedure will be
demonstrated for the time-split method (2.4a, b), but can also be used for the other
methods previously described.

First consider the scalar problem

(7.1) u, = - (1 + e)ux,       x>0,t>0,

u(0,t) = g(t),       t>0,
with the splitting

Af=-l,       As = -e.

Take k = 2h and use the method of characteristics solution for Af and Lax-Wendroff
on As. There is no need to use a Strang-type splitting, since the operators commute,
and thus the split scheme is simply

(7-2) U* = U:_2,       m = 2,3,...,

U:+x = U:,-e(U*+x - !£_,) + 2e2(i/*+, - 2U* + [£_,),       m= 1,2,....
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The value of U0n + X is given by the boundary conditions,

U0"+x = g(tn+x).

For the splitting (7.2) we must also provide i/0* and [/,*. In general, with k = ph for
some integer/) > 1, we would need to supply U*, U*,..., U*x.

In order to generate boundary data we consider U* as an approximation to
u*(xm, tn+x), where the continuum function u*(x, t) satisfies

(7.3) u* = -u*x,       x>0,t>tn,

u*(x,t„) = u(x,t„),       x>0.

Then, using the differential equations governing u and «*, we can express U* and
U* in terms of g(t). Consider U*. We want

(7.4) U0* = u*(0,tn + k)

= u*(0, r„) + kuf(0, t„) + \k2u*t(0, r„) + • ■ •

= «*(0, r„) - ku*(0, t„) + \k2u*xx(0, r„) + • • •.

Here we used (7.3) to express u* in terms of «*. But since u*(x, tn) = u(x, tn) for all
x, this relation can be differentiated with respect to x, giving u*(x, r„) = ux(x, tn)
and similarly for higher derivatives. So (7.4) becomes

US = «(0, tn) - kux(0, t„) + \k2uxx(0, t„) + ■ ■ • .

We can now use the original equations (7.1) governing u to rewrite this in terms of
r-derivatives of u. Since

we obtain

(7.5)      u* = «(o, tn) + Y^-eut{o, r„) + j (tt7)2»»(o, O + • • ■

= «(0, t„ + k/(l+e))= g(tn + k/ (1 + e)).

This is the desired boundary data.
For such a simple example it is easy to verify that this is the correct boundary

value. According to the scheme (7.2) we would really like

U0* = U"2 = u(-2h,t„).

Of course u is not officially defined for x < 0, but using the differential equation
(7.1) it can easily be extended from the boundary. Since (7.1) has characteristics with
slope 1/(1+ e), we find that

u(-2h, t„) = u(0, t„ + 2k/(l+ e)) = g(t„ + k/(l+ e)),
exactly as in (7.5).

We can compute U* in the same manner. We want

U* = u*(h, tn+x) = u*(0, tn+l/2),    where tn+x/2 = t„ + k/2.
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We now proceed as before,

(7.6) Uf = u*(0, t„) + \ku*(0, t„) + ^2«?,(0, t„) + ---

= «(0, tn) - 1*11,(0, tn) + \k2uxx(0, tn) + ■■■

= «(o, t„) + ̂ TT7"r(o, '») + 1(tt~£)u^ '») + • ' •

= g(r„ + i*/(l+e)).

To summarize our procedure, we switched from r-derivatives of u* to x-derivatives
of u*. Since these were evaluated at time r„, they were identical to the corresponding
^-derivatives of u. We then switched back to r-derivatives of u along the boundary,
which allowed us to use the known boundary conditions for u. Clearly this
procedure will not work so neatly when we deal with variable coefficients, systems of
equations, or inflow-outflow boundaries. Nonetheless, these same ideas, combined
with a little ingenuity, lead to sufficiently accurate approximate boundary conditions
for a wide variety of problems.

Constant Coefficient Systems. Next consider the system of equations

(7.7) u, = Aux=(Af + As)ux,       x>0,t^0,

u(0,t)=g(t),       t>0.
We assume that A and A,have strictly negative eigenvalues. In general Af and As do
not commute, so we will have to use a Strang-type splitting. There will be at least
two intermediate solutions, say

(7.8) U* ~ expiar kAfd\un,

U** ̂  cxp(kAßx)cxpl[^kAfdx]jU".

Of course there may be many more if exp({kA,dx) is itself approximated by several
steps of Lax-Wendroff, but they can be handled similarly. The general principle
should be clear from considering (7.8).

Again let u*(x, t) be a continuous function satisfying

(7.9) u*=Afu*x,       x>0, t>tn,

u*(x,tn) = u(x,tn),       x>0.

We then want
(7.10) t/0* = «*(0,r„+l/2)

= «*(0, t„) + \ku*(0, r„) + \k2ul(0, t„) + ---

«(0, tn) + jkAfux(0, tn) + ^k2A2uxx(0, tn) 4

«(0, tn) + \kAfA-xut(0, tn) + \k2A2A-2utt(0, tn) +

^kAfA-Xg'(t„)  + -r.g(t„) + ^kAfA-xg'(tn) + -k2A2A-2g"(t„) +
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We assume that the boundary is noncharacteristic so that A is invertible. In general
U* must now be approximated by the first few terms of (7.10). If we keep only the
first two terms, we will have boundary data with 0(k2) errors. This is sufficient to
retain the 0(k2) global accuracy of Lax-Wendroff; see Gustafsson [7]. It may,
however, increase the error constant considerably and partly offset the benefit
obtained by using the split scheme. Consider, for example, a case in which || Af || » 1
and MJI =» e. In this case the error ETSM(k)u is like ek3 at most and the resulting
global error, assuming u is smooth, will be like ek2. In order to achieve the same
accuracy in the boundary data we will have to include the third term of (7.10) as well
(or at least its dominant part). In some such cases it happens that

AfA-J = I + 0(e)    for/ = 1,2,....
We can then retain 0(ek2) accuracy simply by taking

U0*=g(tn+x/2)+1k{AfA-x-l)g'(tn).

This will be illustrated in Example 7.1.
Now to find boundary values of [/**. The easiest way to proceed is to note that

U* exp (4^/8-)V
which prompts us to define u**(x, t) as the continuous solution to

(7.11) u**(x,t) = Afu**(x,t) 0, t 'n+l'

u**(x,t„+l) = u(x,t„+x),       x>0.

We now solve this backwards in time for

t/** = «**(0,r„+1/2).

Proceeding as in the derivation of (7.10) we obtain

U0** = g{t„+l) ]rkAfA-Xg'(tn+x) + \k2A2A-2g"(tn+x) +

~ g(tn+W2) -\k(AfA-x - l)g'(tn+x).

Example 7.1. Consider

e2     -2

u(x,0)=f(x),
iï{0,t) = g(t),

0

O^x
r^0,

x*£ 1, r s=0,

1.

where u = (u, v)T. We have chosen a strip problem to illustrate that outflow
boundaries are frequently trivial to handle with a split method. Take

Af =
-1      0 0
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For this problem the splitting error is

491

^spiitCO        ¿k

1
-exe2     ^ex

1
AS2        e\e2

If we use the time-split method (2.4a, b) then, according to (2.11), the optimal
stepsize ratio is

je + e34

2,

where e = max | e-1. For k = 2h and h = l/M, (2.4a, b) becomes:

U* = U:_X,       m=l,2,...,M,
V* = V:_2,       m = 2,3,...,M,

Ü** = LW(As,k)Ü*,       m=l,2,...,M-l,
U0n+X = g{tn+x),

t/m"+1 = U**_x,       m=l,2,...,M,
yn + \ — j/** m = 2  3 M

Notice that no boundary conditions whatsoever need to be specified at the outflow
boundary x = 1. On the inflow side we still need to specify U*, Vf, U**, and V"+x.
For this problem,

vi2^-2 =
1 4 + e,E2 3e,

12e2        4 + 4e,e2(2-e,E2)

and we can retain 0(ek2) accuracy by taking

(7.12) Ü* = g(t„+x/2) + h(AfA-1      l)g'(t„)

= I+0{e),

= #('„ + 1/2) + 2(2 - e,e2)

e2e2       e,

2e2      e,e2 g'{tn).

Similarly we use

U0** = g('„+l/2)--k{AfA~x-l)g'(tn+x

In order to implement the split scheme, we also need Vf and V"+x. We want
Vf = v*(h, t„+x/2) = v*(0, tn+x/4), and so the appropriate value comes from the
second equation of

¿*(0,t„+i/4)~g(tn+]/4)+\k(AfA-x -l)g'{tn),

i.e.,

>? = &('„+1/4) + 4(2 - £,e2)
(2e2g;(rJ+el£2g2(rJ),
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where g = (gx, g2f. Similarly,

vri = g2(tn+3/,) - 4(2-£ie2)(2e2g;(^+i) + ^2g2{tn+i))-

Computations confirm that these boundary conditions preserve 0(ek2) global
accuracy in the split scheme. Actually, for this particular example with k = 2h, even
greater accuracy can be achieved. Computing Es(k) from (2.5a) shows that the
0(ek3) terms exactly cancel the 0(e*3) terms in EspXix(k), and that the total
truncation error ETSM(k)u is actually G(e2*3), giving G(e2*2) global accuracy.
Higher order boundary conditions can be derived which maintain this accuracy, but
this cancellation of errors is a fluke which does not occur in general.

Stability for the Initial Boundary Value Problem. The boundary approximations
derived here all depend only on the given boundary function g(t) and its derivatives.
Suppose the time-split method used in the interior is Cauchy stable. Then the
stability of the resulting scheme for the initial boundary value problem follows
directly from the theory of Gustafsson, Kreiss and Sundström [8], if we modify their
stability definition 3.3 by using an appropriate Sobolev norm of the boundary data
on the right-hand side.

8. Computational Results. In this section we give various examples of splittings
and present the results of some numerical experiments. The first example is a 2 X 2
upper triangular system of the form (1.11). We demonstrate the effects of the
splitting error and its reduction by the use of a simple change of variables as
discussed in Section 2.

The second example is a variable coefficient scalar equation in which the coeffi-
cient has small variations around some large mean value. We give an expression for
the splitting error in such problems.

In Example 8.3 we consider the one-dimensional shallow water equations. In some
cases this system can be broken up into a constant fast part and a quasilinear slow
part in conservation form.

Example 8.1. This problem is designed to illustrate the effects of the splitting
error. Consider

(8.1)

with initial conditions

10     1
0      1 forO =£x ^ 1, r >0,

ux(x,0) = u2(x,0) = e-m^x~x^2

and periodic boundary conditions

Uj(0,t) = Uj(l,t),       t> 0,7 =1,2.

Figure 8.1a shows the results after 236 times steps using Lax-Wendroff with
h = 1/50 and k = h/10 on the unsplit problem. Figure 8.1b shows the results based
on the splitting

A _[10    01        A  _[0     1/  Lo   or     s~\o  \:
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We used * = h = 1/50 with

Qs(k) = LWU„ fc),       ß,(*/2) = (VU(Af, k/l0))\
In this case Es(k) = Ef(k/2) = 0 by a judicious choice of k/h and m. The second
component «2 is computed exactly, and the errors in w, are due entirely to the
splitting error.

If the change of variables suggested in (2.18) is applied twice to (8.1) with e = 0.1,
we obtain the new variable

¿7, = w, — (e + e2)«2 = ux — 0.11w2,

and (8.1) becomes
"10    0.01

0        1

If we solve this system with the same split scheme as before and then transform back
to the original variables by ux = «, + 0.11«2, the errors in w, are reduced to O(10"3)
as seen in Figure 8.1c.

The Leapfrog Duhamel scheme can be applied to this system with similar results.
The same change of variables can clearly be used to reduce the splitting error in this
scheme as well.

Example 8.2. For problems of the form

u,= (a + a(x))ux

with a constant and |a(x)|«|a| , the splitting error operator corresponding to
Af = a,As = a(x) is

£sPiit(¿0 = exp( 2><:adxjcxp(ka(x)dx)cxp(~kadx} - exp(k(a + a(x))dx)

= -7^((ia + «(*))«"(*) - («'(*))2) 9, + 0(k4).

For the Leapfrog Duhamel scheme the splitting error is

Espj2k)+2ka(x)dxE>pJk)

= Esphi(2k) + 2ka(x) 3,( \k2aa'(x) dx + 0(*3))

= -^k3a[(2a + a(x))a"(x) - 4(a'(x))2 - 3a(x)a'(x) dx] dx + 0(k4).

The Lax-Wendroff and leapfrog errors on w, = a(x)ux are, respectively,

E™(k) = -±k3a(x)[a2(x) 3X3 + 3a(x)a'(x) 32 + ((a'(x))2 + a(x)a"(x)) 3X]

+ ^kh2a(x)d3 + 0(k4)

and

Er(k) = 2Er(k) + 0(k4).
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For the test problem,
u, = (1 + 0.lsin(2irx))ux   on [0,1],

u(x,0) = sin(4trx),     0<x<l,
u(o,o = «(i>0>      i3s°>

a comparison of the errors shows that the splitting error for either scheme with
k = 4h should be of roughly the same size as Es(k) and considerably smaller than
the error for the unsplit operator with the same spatial step and reduced time step
k = A/2. Thus we expect the split scheme with the true solution operator used on
u, = wv to be more accurate than the unsplit scheme. This is confirmed by the
computational results in Table 8.1. Note that in this case the improved accuracy was
obtained using only about one-eighth the work required for the unsplit scheme.

If Lax-Wendroff is used on the fast scale, Qf(k/2) = (LW(Af, */8))4, the
corresponding error 2Ef(k/2) is roughly the same size as the error in the unsplit
scheme. This error dominates in the resulting split scheme, and so we get roughly the
same accuracy as in the unsplit scheme. This is also illustrated in Table 8.1.

Example 8.3. The one-dimensional shallow water equations can be written as

m ill =-\: l]\i ,
where v(x, t) is the velocity and <j> = gh with h(x, t) the height and g the gravita-
tional constant. Typically $(x, t) = ¡j> + (p'(x, t), where <j> is constant and

\<¡>'(x, t) |«|0| ,        | v(x, t) |«|<i>| .

With the change of variables

u(x,t) = &/2v(x,t)

the system (8.2) becomes

-*' 1/2
U

4> + <í>'
The natural splitting is then

Af=4X/2 As(u,<p) = -4>-1/2

v4y ||. The matrix ,4^is constant and the method of characteristicsWe have \\A,\\
can easily be used for Qf(k/2). Furthermore, the problem on the slow scale can be
written in conservation form. Since <j>x = <b'x, we have

à
= H»1/2

1     2
2U
u<¡>'

For the numerical experiments we used the initial conditions

u(x,0) = 0,
<t>(x,0) = 16 + 0.1sin(27rx),       0<x<l,

and took <f> = 16. We again used periodic boundary conditions and compared
Lax-Wendroff on the unsplit problem with * = h/20 to the split scheme with k = h
on the slow scale and the method of characteristics for Qf(k/2). For h = 1/100 the
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results are shown in Table 8.2. Again the split scheme outperforms the unsplit
scheme. The errors were reduced by a factor of 100, while at the same time the work
was reduced by roughly a factor of 10.
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Figure 8.1
True and computed solutions at t = 1.72 for Example 8.1. The first
component, «,, is on the left and the second component, u2, is on the right.
The schemes used are:

a) top: Unsplit Lax-Wendroff
b) middle: Time-split method (2.4a, b)
c) bottom: Time-split method with change of variables
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Table 8.1
Max-norm errors for Example 8.2 at various times t. The schemes used are:

# 1 : unsplit Lax-Wendroff with * = h/2
#2: Leapfrog Duhamel with * = 4h, Q¡(k) = exp(*a3x)
#3: Time-split method (2.4a,b) with k = 4h
#4. Time-split method (2.4a, c) with * = 4h, m = 8.

#1 #2 #3 #4

1/50 0.48
0.96
1.52
2.00

6.619Í-2)
1.342(-1)
2.058(-l)
2.685(-l)

1.336(-2)
1.949(-3)
1.414(-2)
3.434(-3)

2.147(-3)
4.598(-3)
7.193(-3)
9.617(-3)

6.470(-2)
1.315(-1)
2.016(-1)
2.623(-l)

1/100 0.48
0.96
1.52
2.00

1.677(-2)
3.389(-2)
5.314(-2)
6.971(-1)

3.356(-3)
4.130(-4)
3.365(-3)
2.028(-4)

5.581(-4)
1.166(-3)
1.845(-3)
2.437(-3)

1.635(-2)
3.320(-2)
5.197(-2)
6.818(-2)

Table 8.2
Max-norm errors for « and 4> in Example 8.3 at various times r. The
schemes used are:

# 1 : unsplit Lax-Wendroff with h = 1/100, * = h/20
#2: Time-split method (2.4a, b) with k = h= 1/100.

#1 #2
0.25

0.50

0.75

1.0

Department of Computer Science
Stanford University
Stanford, California 94305

3.983(-4)
3.354(-5)
8.059(-4)
1.248(-4)
1.232(-3)
2.683(-4)
1.687(-3)
4.829(-4)

2.952(-6)
2.338(-7)
5.882(-6)
9.386(-7)
8.793(-6)
2.085(-6)
1.166(-5)
3.628(-6)
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