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Numerical Methods for Computing Angles
Between Linear Subspaces

o
By Ake Bjorck and Gene H. Golub *

Abstract. Assume that two subspaces F and G of a unitary space are defined as the ranges
(or null spaces) of given rectangular matrices A and B. Accurate numerical methods are
developed for computing the principal angles ek(F, G) and orthogonal sets of principal
vectors uk G Fand vk G G, k — 1,2, • • • , q - dim(G) ¿ dim(F). An important application
in statistics is computing the canonical correlations at = cos 6k between two sets of variâtes.
A perturbation analysis shows that the condition number for 8k essentially is maxWA), «(B)),
where k denotes the condition number of a matrix. The algorithms are based on a pre-
liminary ö/?-factorization of A and B (or A" and B"), for which either the method of
Householder transformations (HT) or the modified Gram-Schmidt method (MGS) is used.
Then cos 8k and sin 8k are computed as the singular values of certain related matrices.
Experimental results are given, which indicates that MGS gives 8t with equal precision and
fewer arithmetic operations than HT. However, HT gives principal vectors, which are
orthogonal to working accuracy, which is not generally true for MGS. Finally, the case when
A and /or B are rank deficient is discussed.

1. Introduction.    Let F and G be given subspaces of a unitary space £"", and
assume that

(1) p = dim(F) è dim(G) = « ¡& 1.

The smallest angle Ö,(F, G) = 9X £ [0, zr/2] between Fand G is defined by

cos d, = max max zz"i;, Hulls = 1. IM|2 =  1 •

Assume that the maximum is attained for u = u¡ and v = v¡. Then, 62(F, G) is defined
as the smallest angle between the orthogonal complement of F with respect to zz,
and that of G with respect to p,. Continuing in this way until one of the subspaces
is empty, we are led to the following definition.

Definition.   The principal angles 8k G [0, zr/2] between F and G are recursively
defined for k = 1, 2, • ■ • , q by

(2) cos 0k = max max u"v = u"kvk,        \\u\\2 = 1, \\v\\2 = 1,

subject to the constraints
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580 ÂKE BJÖRCK AND GENE H. GOLUB

u"u = 0,       vHjV = 0,       j = 1,2, ••• ,k - 1.
The vectors («„ • • • , «„) and (c,, ■ • ■ , v„) are called principal vectors of the pair
of spaces.

We note that the principal vectors need not be uniquely defined, but the principal
angles always are. The vectors V — {j>x, • • • , v„) form a unitary basis for G and the
vectors U = (ux, ■ ■ ■ , u„) can be complemented with ip — q) unitary vectors so that
(«i, • • • , uv) form a unitary basis for F. It can also be shown that

u"vk =0,       / j¿ k, j = 1, • • • , p, k = 1, • • • , q.
For an introduction to these concepts, we refer to [1]. An up to date list of references
can be found in [9].

Principal angles and vectors have many important applications in statistics and
numerical analysis. In [7], the statistical models of canonical correlations, factor
analysis and stochastic equations are described in these terms. The eigenvalue prob-
lem Ax = \Bx can have continuous eigenvalues if the nullspaces associated with
A and B intersect [13]. By taking the vectors uk corresponding to cos Bk = 1, we get
a unitary basis for the intersection, which can be used to simultaneously deflate
A and B. Other applications are found in the theory of approximate least squares
[8] and in the computation of invariant subspaces of a matrix [21].

The purpose of this paper is to develop new and more accurate methods for
computing principal angles and vectors, when the subspaces are defined as the ranges
(or nullspaces) of two given matrices A and B. In Section 2, we describe the standard
method of computing canonical correlations and show why this method may give
rise to a serious loss of accuracy. Assuming that unitary bases for F and G are known,
we derive, in Section 3, formulas for computing principal angles and vectors from
the singular values and vectors for certain matrices. To find out how accurately
the angles are defined in the presence of uncertainties in A and B, first order per-
turbation results are given in Section 4. In Section 5, different numerical methods
for computing the unitary bases, and the use of the formulas from Section 3, are
discussed with respect to efficiency and accuracy. The special problems which arise
when A and/or B are exactly or nearly rank deficient are discussed in Section 6.
Finally, some numerical results are given in Section 7.

2. Canonical Correlations. For a matrix A, we denote the range of A by RiA)
and the nullspace of A by N(A):

(3) RiA) = {u | Ax = u),        NiA) =  \x \ Ax = 0).

In the problem of canonical correlations, we have F = RiA), G = R(B) where A
and B are given rectangular matrices. Then, the canonical correlations are equal
to cos Bk, and it can be shown that

(4) cos 6k = ak,        uk =   Ayk,        vk = Bzk,        k =  1, 2, • • •  , q,

where o-k S; 0 are eigenvalues and yk, zk properly normalized eigenvectors to the
generalized eigenvalue problem

(5)
0        AHB

B"A

{A" A        0

BHB)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COMPUTING  ANGLES  BETWEEN   LINEAR  SUBSPACES 581

Assume for convenience that A and B have full column rank. The standard method
[6] of computing canonical correlations is to compute AHA, BHB, AhB and perform
the Choleski decompositions

A" A = R"RA,        BhB = RHBRB,

where RA and RB are upper triangular.
The eigenvalue problem (5) is then equivalent to the eigenvalue problems for

a pair of Hermitian matrices

MM y¡ = Cipi,        M Mzí = cr^i

where
M = iR")-liAHB)R-Bl,        y, = RAy„       z, = RsZi.

These can be solved by standard numerical methods.
When q = 1 and B = b, the principal angles and vectors are closely related to

the least squares problem of minimizing \\b — Ax\\2. In fact, with the notations
above (but dropping subscripts), we have

y = x/\\Ax\\2,       z= l/\\b\\2,        a =  \\ Ax\W \\b\U,

and (5) is reduced to

A bz = a A Ay,        b Ay = ab bz.

But the first equation here is the normal equations for x = o-y/z. Thus, the classical
algorithm reduces for q = 1 to solution of the normal equations by Choleski's
method.

Lately it has been stressed by several authors that forming the normal equations
in single precision involves a loss of information which cannot be retrieved. For
linear least squares problems, other methods without this disadvantage have been
developed ([2], [16] and [17]). Our aim in this paper is to generalize these methods
to the case when q > 1.

3. Solution Using Singular Values. In most applications, each subspace is
defined as the range, or the complement of the range, of a given matrix. In this case,
a unitary basis for the subspace may be computed in a numerically stable way by
well-known methods for the ßÄ-decomposition of a matrix. These methods will
produce for an zzz X zz matrix A, with zzz ̂  zz, a decomposition

¿ = iQ'\Q'ÍÍ)\(X\Y\0/\im — p) X n

where rank(S) = p and Q = (Q' \ Q") is unitary. Then Q' gives a unitary basis for
the range of A, R(A), and Q" a unitary basis for the complement [R(A)]~. Notice
that the case when a subspace is defined as the nullspace N(A ") of a matrix A " is
included, since N(AH) = [R(A)]~. The computation of unitary bases will be dis-
cussed in more detail in Sections 5 and 6, and we assume here that such bases have
been obtained.

Recently, an efficient and numerically stable algorithm for computing the singular
value decomposition [11] (SVD) of a matrix has been developed [17]. This algorithm
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582 ÂKE BJÖRCK AND GENE H. GOLUB

will be our basic tool for computing principal angles and vectors. The relation between
singular values and our problem is clear from the following theorem.

Theorem 1. Assume that the columns of QA and Qu form unitary bases for two
subspaces of a unitary space E'". Put

(6) M = Q"AQB,

and let the SVD of this p X q matrix be

il) M =   YCZ",        C = diagiff,, • ■ •  , aq),

where YHY = ZHZ = ZZH = /„. If we assume that <r, ̂  <j2 ̂   • • • \\\ <,„ then the
principal angles and principal vectors associated with this pair of subspaces are given by

(8) cos 0, = ckiM), U = QAY, V = QBZ.

Proof. It is known [18] that the singular values and singular vectors of a matrix
M can be characterized by

(9) ok =        max        iy" Mz) = y"kMzk,
ll»l li-l UIU-1

subject to

y"y¡ = z"z; = 0, j = I, ■ ■ ■ , k — 1.

If we put

u = QAy G RiQA), v = QbzG RÍQb),

then it follows that ||u||2 = \\y\\2, \\v\\2 = \\z\\2 and
H II H Hy y j = u u,,        z z, = v v¡.

Since y"Mz = y"Q"QBz = u"v, (9) is equivalent to

o-,  = max iu"v) = u"vk

subject to

m u¡ = v Vj = 0,       j = 1, ■ ■ • , k — 1.

Now (8) follows directly from the definition of principal angles and vectors (2),
which concludes the proof.

For small angles, 0k is not well determined from cos 6k and we now develop
formulas for computing sin 8k. Let QA and QB be defined as in Theorem 1. For
convenience, we change the notations slightly and write (7) and (8) as

(10) M =   YACYB,        Ua=QaYa,        Ub = QbY„.

We split QB according to

(11) Q» = PaQb + (/ - Pa)Qb = PaQb + PaQb,

where PA = QAQA ¡s the orthogonal projection onto RiQA). Here

PaQb = QaQaQb = QaM = QA YACYUB,

and hence the SVD of the matrix PAQU is given by
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(12) PAQK =   UACY%,        C = diag(cos 8k).

Since PA(I — PA) = 0, we get, from squaring (11),

Q"bU - Pa?Qb = I - QbP'aQb =   YBiI - C2) YHB.

It follows that the SVD of (/ - PA)QB can be written

(13) (/ - PA)QB =   WASY'B,        S = diag(sin 8k).

Comparing (13) with (12), it is evident that WA gives the principal vectors in the
complement [R(QA)]~ associated with the pair of subspaces ([R(QA)T, R(Qb))-

We will, for the rest of this section, assume that, in addition to (1), we have
p + q ;£ m. (This is no real restriction, since, otherwise, we have (zzz — p) + (m — q) ^
zzz, and we can work with the complements of R(QA) and R(QK) instead.) Then,
dim([R(QA)]~) = m — p ^ q, and we can choose the m X q matrix WA in (13) so
that W"AUA = 0.

By analogy, we have formulas similar to (12) and (13) related to the splitting
Qa  = PbQa + (/ - Pb)Qa,

(14) PbQa =   UBCY"A, U - Pb)Qa IVb S Y'i,

where again, since m — q 2: p ^ q, we can choose the m X q matrix WK so that
WHBUHB = 0. From (14), we get

uA = QaYa = iuBc + WbS)y"aYa = iuB ^b)[CsJ-

If we put

Pb.a  =    UAUB  =   iU b wB)(c¿) u'L

then, since R(QB) = R(UB), we have for any x E R(QB) that PB,Ax = UAU"(UBy) =
UAy, and thus

Pb.ax G RiQf), Ml* = \\Pb.ax\
We can now always find an zzz X (m — 2q) matrix ZB such that (UBWBZB) is a unitary
basis in Em. Then

(15) Pb.a = iUBWB | ZB)

c   -s
s     c

0

0 uii
w"B

Vz"B

is the matrix of a unitary transformation, mapping R(QB) into R(QA)- Its restriction
to R(QB) is Pb,a, and it leaves all vectors in R(ZB) unchanged. This transformation
is called a direct rotation [9] from R(QB) into R(QA)- It is distinguished from other
unitary transformations P taking R(QB) into R(QA) by the property that it minimizes
each unitarily invariant norm of (/ - P)H(I - P). If R(QB) C\ [R(QA)] is empty,
then all 8k < v/2 and the direct rotation is uniquely determined.

Similarly, we can construct a direct rotation taking R(UA) into R(QB). It is obvious
that the relations between the two subspaces are very completely characterized by
the quantities C, S, UA, WA, UB and WB.
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584 ÂKE BJÖRCK AND GENE H. GOLUB

4. Perturbation of Principal Angles. We consider here how the principal angles
between R(A) and R(B) change when the elements in A and B are subject to per-
turbations. We assume in this analysis that the matrices A and B are m X p and
zzz X q, respectively, and have linearly independent columns. Consider first a per-
turbation of A only,

A, =   A + e£ = (A + e£.) + tE2,

where we have split the perturbation into components in and orthogonal to R(A),

Ex = PAE,        E2 = il - PA)E.

Let the polar decomposition of A + ef, be

A + e£, = QAHA,       QAQA = I,        HA positive definite.

Then, since RiA) = RiA + eE¡), QA gives a unitary basis for R(A).
To get a unitary basis for R(At), we first note that for small absolute values of e,

the matrix

iA + eE)HA   = Qa + 6F2, F2 = il - PA)F, F = EHA\

is nearly orthogonal. Indeed, since Q"F2 = Q"APAF2 = 0, we have

S = / - iQA + *F,f(ÛA + eF2) =  -e2F"2F2,

and
(16) trfS) = e2-<r?(F2) g eV2(F).

Then, using a series expansion from [4] for the unitary factor QA, in the polar de-
composition of A(H~f, it follows that

iQA + eF2) = QaXI - S)W2

(17) = QA,(l - hs-fgS2-Qs*- ■••),

where the matrix series converges if p(5) = a>(S) < 1.
Also, asymptotically, when e —» 0, QA, is the unitary matrix with range ./?(/!«)

which is closest to QA.
From the well-known inequalities for singular values [15, p. 30],

ak(A + B) g akiA) + <r,(ß), crt(¿B) g ^MKiß),        fc =  1, 2, ••■  ,

we get

(18) fffF) g «¿EyjfHl1) g <rxiE)/i<rPiA) - »,(£,)).

Since certainly o-,(£) ^ <zi(£i), a sufficient condition for convergence of (17) is that

e<rxiE)/cfA) ^ \.

Premultiplying (17) by PB, we get

PbQa.   =   PbQa + tPBU -   PA)F +  PbQa\$S + | S2 +   • • •   +  (*) S" +  ••   J

from which we derive the inequality
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WuÍPbQa.) - *APbQa)\ è fafPail ~ Pa)) + r,

where

r = y¿S) + !<r2(S) + • • • á |ffi(5)/(l - »,(5)).

Now, we have o-x(PB(I — PA)) = sin 0max and, estimating <rx(S) and o-,(F) by (16)
and (18), it follows that

(19) |A cos 0,| g  5-sin 0max + 0(52),        8 = tafE)/<rriA).

If instead we premultiply (17) by (/ — PB) and proceed in the same way, we arrive at

(20) |A sin 04| g  5-cos 0min + 0(ô2),        S = eaxiE)/<jviA).

Now, assume that both A and B are perturbed by 8A and 55, respectively, where

\\aA\\2/\\A\\2ú eA,        ||M||,/||£||, á f..

Then

cos 8k = [<rkiPB,QA,) - akiPBtQA)] + WkiPB,QA) - <rkiPBQA)]

and, from (19), we get

|A cos 0,1 è íak(A) sin 8m^iA, B<) + «Bzc(ß) sin 8m^iA, 5) + 0(52),

where

(21) k(¿) = ffx(A)/<rPiA),        kíB) = afB)/afB),        8 = e.AA) + tBK(B).

A corresponding estimate holds for | A sin 8k\. Obviously, we have 8(A, Bt) = 8(A, B)
+ 0(5), and, thus, these estimates can be simplified to

icos 8k\ isin 8    \
Ism 0J Icos 0miJ

Combining these two estimates yields

|2-sin¿A0t| ^  Ôgiêk) + 0(52)

where

/as ■ /'sin 0max    cos 0min\ a        .    ,   ...g(0) = mini ——— ,-—I ,        0, =  0, + \&8k.\ sin 0 cos 0  /

The maximum of g(0) for 0 g 8 g zr/2 is attained for

0 = arctan(sin 0mas/cos 0min).

Since 2-sin JA0 = A0 + 0(A03), it follows that

(22) |A0,| ^ gm,feAKiA) + eßK(B)) + 0(52),

where
/   ■    2    a i 2    a ..1/2    ^    »1/2

gmoI = (sin   0mnx + cos   0m¡n)      S 2    .

We conclude that when both hLA) and k(5) are small, then the angles 8k are well
determined.
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We note that, if the columns in A are scaled, then k(A) will change but not R(A).
Also, the numerical algorithms for the (^-decomposition have the property that,
unless column pivoting is used, they give the same numerical results independent
of such a scaling. Therefore, it is often more relevant to take in (21) as condition
number for A the number

k'(A) = min k(AD),        D = diagtrf,, • • •  , d„).
D

It has been shown in [20] and [21] that kÍAD) is not more than a factor of p1'2 away
from its minimum, if in AD all columns have equal L2-norm. This suggests that
A and B should be assumed to be preconditioned so that

I |«<||i  =   116.112  =   1, i =   1,     ■■   ,p,j =   1,  ■■■   ,q.
We remark that k'(A) is essentially the spanning precision of the basis in R(A) provided
by A as defined in [21].

5. Numerical Methods. We assume in this section that the columns in A and
B are linearly independent. The singular and near singular case will be briefly dis-
cussed in Section 6. For convenience, we also assume that A and B are real matrices,
although all algorithms given here can easily be generalized to the complex case.
Computed quantities will be marked by a bar.

In order to get the orthogonal bases for Fand G, we need the (^-decompositions
of the matrices A and B. We now describe two efficient methods for computing
these. In the method of Householder triangularizations (HT) [16], orthogonal trans-
formations of the type Qk = I — 2wkwTk are used, where

wk = (0, • • •  , 0, wkk, • • •  , wmk)T,        \\wk\\2 =  1.

The m X p matrix A is reduced to triangular form using premultiplications

Qv--Q2QiA = (^)\p\ 0 / | in — p

where wk is chosen so that Qk annihilates the appropriate elements in the kth column.
Since Qkl = Qk, orthogonal bases QA for RiA) can then be computed by premul-
tiplying the first p columns in the unit matrix /„ by the same transformations in re-
versed order,

Qa = Q1Q2 ■■■ Q,

For this method, a very satisfactory error analysis is given in [23].
Assume that floating point arithmetic with a mantissa of / binary digits is used,

and that inner-products are accumulated in double precision wherever possible.
Then, there exists an exactly orthogonal matrix Q such that the computed matrices
satisfy

(23) QT(A + EA) =  (f ) , QA  = ß(f) +  Fa  = Qa +  Fa,

\\EA\\F =  12.5j.2-' \\A\\F,        \\FA\\F =  12.5//22-\

*•
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where QA is an exactly orthogonal basis for R(A + EA). From this and a similar
estimate for QB, we get

(24) \ük(M) - <rkiM)\ ^ a,(M - M) ^ 13.0(p'V2 + q*'2^1,

where M = Q\QB and the constant 13.0 accounts for the rounding errors in com-
puting the product QAQB. We have afM) = cos 0,, where 0, are the exact angles
between (A + EA) and (B + EB). Thus, the difference between 8k and 8k can be
estimated from (22),

(25) |0, - 0,| è 12.5-2'/2-5 + 0(52),        5 = (pk(A) + g/c(ß))2"!.

Finally, the errors âfM) — ok(M) in computing the singular values of M, using the
procedure in [17], will be of the same order of magnitude as those in (24).

The error estimate given above is satisfactory, except when 0, « 1. In this case,
the errors in cos 0, from (24) will give rise to errors in 0, which may be much larger
than those in (25). We return later to the problem of accurately computing small
angles.

An orthogonal basis Q'A for [RiA)f = NiAT) can be obtained by applying the
transformations Qk, k = p, ■ ■ ■ , 1, to the last (zzz — p) columns in /„,

Q'a = OiÖ2 • • • QAy-
»■* m — p

Also, in this case, the estimate (23) for QA, (24) and (25) still hold if the factor p3'2
is everywhere replaced by pirn — p)1'2.

The gjR-decomposition of a matrix A can also be computed using the modified
Gram-Schmidt method (MGS) [2]. The matrix A is then transformed in p steps,
A = A,,A2, ■■■ , Ap+X = QA where

. , <*) UK
Ak = iqx, • ■ ■ , qk-\, «*   , ■ ■ ■ , a„  ).

The matrix Ak+X, k = 1, 2, • • • , p, is computed by

9, = ak   /\\ak   \\2,        a¡        = (/ — Q,<?(-)a;   ,        j > k,

and the elements in the kth row of RA are

I I    (,) I I T    (k) •   ^    ;
'** =   lia*    ||2, rkj = qka¡   ,        j > k.

It has been shown in [2, pp. 10, 15] that the computed matrices RA and QA satisfy

A + EA = QARA,        \\EÁ\\, Ú  l.5(p - 1)2"' ||^||„

(26) HOi - 0a\U é P(P+ 1)kíA)-2-',

where Qx is an exactly orthogonal basis for RiA + EA) and quantities of order
k\A)2~2' have been neglected. With MGS, QA will in general not be orthogonal
to working accuracy, and, therefore, we cannot hope to get principal vectors which
are nearly orthogonal. Also, the condition numbers k(A) and k(B) will enter in the
estimate corresponding to (24). However, since k(A) and k(B) already appear in
(25), we can hope to get the principal angles as accurately as with HT. Experimental
results reported in Section 7 indicate that this actually is the case.
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An advantage with MGS is that the total number of multiplications required
to compute RA and QA is less than for HT, i.e.,

MGS: p2m,        HT: 2p2(zzz - p/3).

If only the principal angles are wanted, then the number of multiplications in the
SVD-algorithm is approximately 2q2(p — q/3). Thus, when m » p, the dominating
work is in computing QA and QB and, in this case, MGS requires only half as much
work as HT. If also the principal vectors are wanted, we must compute the full
SVD of M = YACy". Assuming two iterations per singular value, this requires
approximately lq2(p + 10</"/21) multiplications. To compute UA = QAYA and UB =
QBYB a further mq(p + q) multiplications are needed.

To get a basis for [R(A)]~ using MGS, we have to apply the method to the bordered
matrix (A | /„), and, after zzz steps, pick out (zzz — p) appropriate columns. Especially
when (zzz — p) « zzz, the number of multiplications compares unfavourably with HT,

MGS: zzi im + 2p),        HT: 2mpim — p) + f/?' .

In some applications, e.g. canonical correlations, we want to express the principal
vectors as linear combinations of the columns in A and B, respectively. We have
Ua = QaYa = A(Ra1Ya), and hence

UA =  AXA, UB = BXB,

where

(27) XA = R'AYA,        XB = R-BYB.

We remark that if we let XA and XB denote the computed matrices, then AXA and
BXB will not in general be orthogonal to working accuracy even when HT is used.

We now turn to the problem of accurately determining small angles. One method
is to compute sin 0, from the SVD (13) of the matrix

(28) G = (/ - PA)QB = QB - QAM.

If we put G = QB - Qá-M, then, using QA = Qx + FA, we get

Qb + QaÍQIQb) = G + il - QxQx)Fb + ÍQxFa + FAQTx)iQß + FB).

Neglecting second order quantities,

||Ö- ¿||, ^  HF.IU+ 2 \\FA\\2 + 2q"22-',

where the last term accounts for the final rounding of the elements in M and G.
Thus, if QA and QB are computed by HT, we have, from (23),

|a,(G) - <r,(G)| ^  13.2(V/2 + 2//2)2-\

It follows that the singular values of the computed matrix G will differ little from
sin 0„ and, thus, small angles will be as accurately determined as is allowed by (25).
From (26), the corresponding error estimate for MGS is obtained. In the spirit of
the modified Gram-Schmidt method, the matrix G should be computed as

(29) G =   (/ -  qxqTx) •••   (/ -  qvqTv)QB.
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Computational experience indicates that this gives much improved accuracy in
sin 0 when k(A) » K(B).

Since the matrix G is m X q, computing the singular values of G when zzz » q
will require about 2mq2 multiplications. If YA has been computed, then the SVD of
G may be computed with only mq2 multiplications from

(30) GYB = (/ - Pa)QbYb =   WAS.

Moreover, if UA and <_/,, are available, we can obtain sin 0 from

(31) iUB -   UACfiUB -   UAC) = S2

or, alternatively,

(32) iUB -  UA)\UB -  UA) = 2(/ - C).

From the last equation, we can compute 2 sin §0, = (2(1 — cos 0,))1/2, which, since
0 ¿¡ \8k rg zr/4, accurately determines both sin 0, and cos 0,.

We finally remark about an apparent imperfection of MGS. When A = B (exactly),
we will obviously get QA = QB. The exact angle equals zero, and HT will always
give computed angles near zero. This is not true for MGS, however, since we only
have the estimate

||/ - QTaQa\U è 2pip+ 1)kÍA)2-'.
Therefore, the singular values of M = QaQa may not be near one when k(A) is
large. If, however, only A ~ B, then the rounding errors in computing QA and QB
will not be correlated, and in an ill-conditioned case, we will probably not get all
angles near zero either with HT or MGS.

When A = B, then M = QaQa will be symmetric and, thus, SVD will give YA ̂
YB and, therefore, 0A ^ DB also with MGS. It follows that, if (32) is used, MGS
will always yield angles near zero in this case.

We have not tried to determine error estimates for the methods based on (30)-(32).
On the test matrices described in Section 7, the method based on (28) gave signifi-
cantly more accurate results, especially for the more well-conditioned angles.

6. The Singular Case. We now consider the case when A and/or B does not
have full column rank. In this case, the problem of computing principal angles and
vectors is not well posed, since arbitrarily small perturbations in A and B will change
the rank of A and/or B. The main computational difficulty then lies in assigning
the correct rank to A and B. The most satisfactory way of doing this generally is
the following [10]. Let the zzz X p matrix A have the SVD

A = QaDaVa,        DA = diag(<7t (/<)).

Let e be a suitable tolerance and determine p' ^ p from

(33) ¿   afA) Ú e2 <   ¿ a2fA).

We then approximate A with an in X p matrix A' such that rank(zl') = p',

A' = ÍQaQ'a')(DqA    ¡¡K V'a VI)1', D'A = diagdr,, • ■ ■  , *„.),
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where QA = (QáQ'Á), Va = (VAVA) have been partitioned consistently with the
diagonal matrix. The matrix B is approximated in the same way.

If, instead of (1), we assume that

p' = rank(zl') \W rank(5') = q' £ 1,

then we can compute the principal angles and vectors associated with RiA') and
R{B') by the previously derived algorithms, where now Q'A and Q'B should replace
QA and ga-

in order to express the principal vectors of RiA') as linear combinations of
columns in A', we must solve the compatible system

A'Xa =  Ua = Q'aYa.

Since V" is an orthogonal basis for NiA), the general solution can be written

Xa =   V'AD'ÄXYA +   V'fCA,

where CA is an arbitrary matrix. It follows that, by taking CA = 0, we get the unique
solution which minimizes H-J^Hf, cf. [17]. Thus, we should take

(34) XA=   V'aD'a-'Ya,        Xb =   V'bD'b~1Yb,

where XA is p X p' and XB is q X q'.
The approach taken above also has the advantage that only one decomposition,

the SVD, is used throughout. It can, of course, also be used in the nonsingular case.
However, computing the SVD of A and B requires much more work than computing
the corresponding Q/?-decompositions. In order to make the (2/?-methods work
also in the singular case, column pivoting must be used. This is usually done in such
a way ([2], [12] and [16]) that the triangular matrix R = (/,,) satisfies

VkA2 ^   É |r„|\        ft < J Ú n.
i-k

Such a triangular matrix is called normalized, and, in particular, the sequence \ru\,
\r22\, ■ ■ ■ , \r„\ is nonincreasing. In practice, it is often satisfactory to take the nu-
merical rank of A to be p' if for a suitable tolerance e we have

(35) IVp-I > e ^  |v + i.p' + i|-
We then approximate A = QARA by a matrix A' = QARÁ of rank p' by putting

r'u = z-,,,        i è p',       r',¡ = 0,        i > p'.

It has been shown in [14] how to obtain the solution (32) of minimum length from
this decomposition.

If we use the criterion (33), there is a risk of choosing p' too large. Indeed, it
seems difficult to improve on the inequalities [12]

(36) 3(4* + 6ft - I)"172 \rkk\ ^ akiA) ^ in + k + I)"2 \rkk\

from which it is seen that afA) may be smaller than |r«| by a factor of magnitude 2_*.
However, this rarely occurs in practice. Often the inequality

KiA) ^  \rxl\/\r„\,
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represents a pretty good approximation to the condition number for the nonsingular
case.

7. Test Results. The algorithms in Section 5 have been tested on the UNIVAC
1108 of Lund University. Single precision floating-point numbers are represented
by a normalized 27 bit mantissa, whence the machine precision is equal to 2~26 ä,
1.5- 10s.

For the tests, we have taken F = RiA), where A is the m X p matrix

ill

A - kX/-2

e     0

0   e

0    0 lUJ

i/p

and m/p is an integer. Thus, A is already orthogonal, and we can take QA = A.
Further, G = RiB) where B is the m X p Vandermonde matrix

B =

Xo

-V,

Xo

v-l
X

Li Xm-U

Xi =  -1 + 2i/(m + 1).

The condition number k(B) is known to grow exponentially with/?, when the ratio m/p
is kept constant. These matrices A and B are the ones appearing in [6]. There is
exactly one vector, u = (1, 1, • • • , 1)T, which belongs to both Fand G, so there will
be one minimum angle 0 = 0.

For the tests, the matrix B was generated in double precision and then rounded
to single precision. The procedures used for the ßß-decompositions are apart from
minor details identical with procedures published in [3] and [5]. The columns were
implicitly scaled to have equal L2-norm and column pivoting was performed. Inner
products were not accumulated in double precision. For checking purposes, a three
term recurrence relation [8] was used in double precision to compute an exact single
precision orthogonal basis for R(B).

For m/p = 2 and p = 5(2)17, QA was computed both by the method of House-
holder and the modified Gram-Schmidt method. Then cos 0,, YA and YB were com-

Table 1

m
Householder

p        F(0A) F(0b) zzz(cos0,)
Gram-Schmidt

F(0a) F(Üb) zzz(cos 0,)

10
14
18
22
26
30
34

5
7
9

11
13
15
17

15
22
40
42
58
62
68

21
35
27
29
48
51
60

5
8

10
38

1416
2535
7582

20
27
37
40
47
60
76

18
33

437
1130
9013

55322
788466

4
10
41
49

621
1758

32650
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Table 2

zzz = 26 p = 13 Householder Gram-Schmidt
k cos 0, A cos 0,- 10s A cos 0,-108

1 0.99999991 2 2
2 0.99823275 0 51
3 0.99814397 - 32 -135
4 0.99032703 6 -137
5 0.98988846 5 351
6 0.97646081 0 - 58
7 0.96284604 38 21
8 0.94148906 -  5 - 10
9 0.91758607 - 31 - 40

10 0.87013717 25 -290
11 0.76365752 1416 620
12 0.06078817 106 - 18
13 0.01558526 - 52 - 55

Table 3

Householder1 Gram-Schmidt1
from (29)        from (28)

zzz p        zzz(sin 0,) zzz(sin 0,)        zzz(sin 0,)        zzz(sin 0,) zzz(sin 0,)

10 5 3 2 3 3 6
14 7 7 8 3 4 8
18 9 32 31 55 9 87
22 11 141 142 46 39 612
26 13 1661 1662 366 517 5902
30 15 2919 2912 1290 1355 32537
34 17 7604 7608 37284 798 126731

1 sin 8k computed as o-,((/ - Pa)Qb), sin 0, as <r,((/ - PB)QA)-

puted by the procedure in [17], and finally UA and UB from (11). The results are
shown in Table 1, where

miak) = max |<r, - <r,|-10\ F( U) =   \\I -   UT U\ |, • 10s.
k

Notice, that because of rounding errors in the computation of the SVD, the values
<rk are not exact to single precision.

For the Gram-Schmidt method, the predicted lack of orthogonality in U0, when
k(5) is large, is evident. However, there is no significant difference in the accuracy
of cos 0, between the two methods. In Table 2, we show for m = 26 and p = 13
the errors in cos 0, for each k.

For the same values of zzz and p, sin 0, were computed from the singular values
of both the matrix (/ — Pa)Qb and the matrix (/ — Pb)Qa- The results in Table 3
again show no significant difference in accuracy between the two methods. For the
Gram-Schmidt method, the values of sin 0, differ somewhat between the two matrices,
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Table 4

zzz = 26      p = 13 Householder1 Gram-Schmidt1
ft sin 0, A sin 0,-108    A sin 0,-108 A sin 0,-108 A sin 0,-108

1 0.00000000 2 5 2 4
2 0.05942260 0 0 0-2
3 0.06089681 485 484 69 76
4 0.13875174 56 55 2 22
5 0.14184706 -    30 -    29 - 23 - 71
6 0.21569431 32 31 - 35 - 20
7 0.27005038 -  127 -  127 - 20 - 26
8 0.33704301 26 25-2 3
9 0.39753669 91 90 - 25 -    5

10 0.49280931 -    44 -    42 260 318
11 0.64562106 -1661 -1662 -365 -517
12 0.99815036 5 11 -158 15
13 0.99987821 14 20 90 13

1 sin 8k computed as <r,((/ - Pa)Qb), sin 0, as <r,((/ - Pb)Qa)-

whereas the corresponding values for the Householder method are almost identical-
This is confirmed by Table 4, where, again for zzz = 26, p = 13, results for each ft
are shown. For the Gram-Schmidt method the matrix (I — PB)QA was computed
both from (28) as QA - Qb(QIQa) and from (29) as \\ (I - qkql)QB. The results
in Table 3 clearly show that (29) should be used.

The authors are very pleased to acknowledge the help of Mr. Jan Svensson,
who carried out most of the tests described in this section.
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