
Chapter 6
Numerical Methods for Computing
Casimir Interactions

Steven G. Johnson

Abstract We review several different approaches for computing Casimir forces
and related fluctuation-induced interactions between bodies of arbitrary shapes and
materials. The relationships between this problem and well known computational
techniques from classical electromagnetism are emphasized. We also review the
basic principles of standard computational methods, categorizing them according
to three criteria—choice of problem, basis, and solution technique—that can be
used to classify proposals for the Casimir problem as well. In this way, mature
classical methods can be exploited to model Casimir physics, with a few important
modifications.

6.1 Introduction

Thanks to the ubiquity of powerful, general-purpose computers, large-scale
numerical calculations have become an important part of every field of science and
engineering, enabling quantitative predictions, analysis, and design of ever more
complex systems. There are a wide variety of different approaches to such cal-
culations, and there is no single ‘‘best’’ method for all circumstances—not only are
some methods better suited to particular situations than to others, but there are also
often severe trade-offs between generality/simplicity and theoretical efficiency.
Even in relatively mature areas like computational classical electromagnetism
(EM), a variety of techniques spanning a broad range of sophistication and
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generality remain in widespread use (and new variations are continually devel-
oped) [1–8]. Semi-analytical approaches also remain important, especially per-
turbative techniques to decompose problems containing widely differing length
scales (the most challenging situation for brute-force numerics). Nevertheless,
many commonalities and guiding principles can be identified that seem to apply to
a range of numerical techniques.

Until a few years ago, Casimir forces and other EM fluctuation-induced
interactions occupied an unusual position in this tableau. Realistic, general
numerical methods to solve for Casimir forces were simply unavailable; solu-
tions were limited to special high-symmetry geometries (and often to special
materials like perfect metals) that are amenable to analytical and semi-analytical
approaches. This is not to say that there were not, in principle, decades-old
theoretical frameworks capable of describing fluctuations for arbitrary geometries
and materials, but practical techniques for evaluating these theoretical descrip-
tions on a computer have only been demonstrated in the last few years [9–27]. In
almost all cases, these approaches turn out to be closely related to computational
methods from classical EM, which is fortunate because it means that Casimir
computations can exploit decades of progress in computational classical EM
once the relationship between the problems becomes clear. The long delay in
developing numerical methods for Casimir interactions, from the time the phe-
nomenon was first proposed in 1948 [28], can be explained by three factors.
First, accurate measurements of Casimir forces were first reported only in 1997
[29] and experimental interest in complex Casimir geometries and materials has
only recently experienced dramatic growth due to the progress in fabricating
nanoscale mechanical devices. Second, even the simplest numerical prediction of
a single force requires the equivalent of a large number of classical EM simu-
lations, a barrier to casual numerical experimentation. Third, there have histor-
ically been many equivalent theoretical formulations of Casimir forces, but some
formulations are much more amenable to computational solution than others, and
these formulations are often couched in a language that is opaque to researchers
from classical computational EM.

The purpose of this review is to survey the available and proposed numerical
techniques for evaluating Casimir forces, energies, torques, and related interac-
tions, emphasizing their relationships to standard classical-EM methods. Our goal
is not to identify a ‘‘best’’ method, but rather to illuminate the strengths and
weaknesses of each approach, highlighting the conclusions that can be gleaned
from the classical experience. We will review an intellectual framework in which
to evaluate different numerical techniques, comparing them along several axes for
which quasi-independent choices of approach can be made. We will also
emphasize a few key departures of Casimir problems from ordinary classical EM,
such as the necessity of imaginary- or complex-frequency solutions of Maxwell’s
equations and the need for wide-bandwidth analyses, that impact the adaptation of
off-the-shelf computational methods.
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6.2 Characterization of Numerical Methods: Three Axes

Numerical methods from distinct groups or research papers often differ in several
ways simultaneously, complicating the task of directly comparing or even
describing them. In order to organize one’s understanding of numerical approa-
ches, it is useful to break them down along three axes of comparison, representing
(roughly) independent choices in the design of a method:

• What problem does the method solve—even within a single area such as
classical EM, there are several conceptually different questions that one can ask
and several ways of asking them that lead to different categories of methods.

• What basis is used to express the unknowns—how the infinite number of
unknowns in the exact partial differential equation (PDE) or integral equation
are reduced to a finite number of unknowns for solution on a computer.

• What solution technique is used to determine these unknowns—even with
the same equations and the same unknowns, there are vast differences among
the types of direct, sparse, and iterative methods that can be used to attack the
problem, and the efficient application of a particular solution technique to a
particular problem is sometimes a research task unto itself.

In this section, we briefly summarize the available problems, basis choices, and
solution techniques for Casimir problems. In subsequent sections, we then discuss
in more detail the specific approaches that have currently been demonstrated or
proposed.

6.2.1 Posing Casimir Problems

In classical EM, there are several types of problems that are typically posed [6,
Appendix D], such as computing source-free time-harmonic eigensolutions
E;H� e�ixt and eigenfrequencies x, computing time-harmonic fields resulting
from a time-harmonic current source J� e�ixt, or computing the time-dependent
fields created by an arbitrary time-dependent source JðtÞ starting at t ¼ 0.
Although these are all closely mathematically related, and in some sense the
solution of one problem can give solutions to the other problems, they lead to very
different types of numerical simulations.

In a similar way, despite the fact that different formulations of Casimir-inter-
action problems are ultimately mathematically equivalent (although the equiva-
lencies are often far from obvious)—and are usually answering the same
conceptual question, such as what is the force or interaction energy for some
geometry—each one leads most naturally to distinct classes of computational
methods. Here, we exclude formulations such as proximity-force (‘‘parallel-
plate’’) approximations [30–32], pairwise summation of Casimir–Polder forces
(valid in the dilute-gas limit) [33–35], and ray optics [36–39], that are useful in
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special cases but represent uncontrolled approximations if they are applied to
arbitrary geometries. Although at some point the distinctions are blurred by the
mathematical equivalencies, we can crudely categorize the approaches as:

• Computing the eigenfrequencies xn and summing the zero-point energy
P

n
�hxn

2
[28, 40]. See Sect. 6.3.

• Integrating the mean energy density or force density (stress tensor), by evalu-
ating field correlation functions hEiEjix and hHiHjix in terms of the classical
EM Green’s functions at x via the fluctuation–dissipation theorem [11–13, 19,
20, 23, 27]. See Sect. 6.5.

• Evaluating a path-integral expression for the interaction energy (or its deriva-
tive), constrained by the boundary conditions—usually, portions of the path
integrals are performed analytically to express the problem in terms of classical
scattering matrices or Green’s functions at each x [9, 10, 14–18, 21, 22, 24–26].
See Sect. 6.6.

In each case, the result must be summed/integrated over all frequencies x to
obtain the physical result (corresponding to thermodynamic/quantum fluctuations
at all frequencies). The relationship of the problem to causal Green’s functions
(fields appear after currents) means that the integrand is analytic for Imx� 0 [41].
As a consequence, there is a choice of contours of x integration in the upper-half
complex plane, which is surprisingly important—it turns out that the integrands are
wildly oscillatory on the real-x axis and require accurate integration over a huge
bandwidth, whereas the integrands are much better-behaved along the imaginary-x
axis (‘‘Wick-rotated’’ or ‘‘Matsubara’’ frequencies). This means that Casimir cal-
culations almost always involve classical EM problems evaluated at complex or
imaginary frequencies, as is discussed further in Sect. 6.4. The nonzero-tempera-
ture case, where the integral over imaginary frequencies becomes a sum (numer-
ically equivalent to a trapezoidal-rule approximation), is discussed in Sect. 6.8.

There is also another way to categorize the problem to be solved: whether one is
solving a partial differential equation (PDE) or an integral equation. In a PDE, one
has volumetric unknowns: fields or other functions at every point in space, related to
one another locally by derivatives and so on. In an integral equation, one typically
has surface unknowns: the fields or currents on the boundaries between piecewise-
homogeneous regions, related to one another non-locally by the Green’s functions
of the homogeneous regions (typically known analytically) [1, 3] (described further
in Sect. 6.5.3). The key point is to take advantage of the common situation in which
one has piecewise-constant materials, yielding a surface integral equation.
(There are also volume integral equations for inhomogeneous media [42], as well as
hybrid integral/PDE approaches [1], but these are less common.) There are other
hybrid approaches such as eigenmode expansion [43–45], also called rigorous
coupled-wave analysis (RCWA) [46, 47] or a cross-section method [48]: a structure
is broken up along one direction into piecewise-constant cross-sections, and the
unknown fields at the interfaces between cross-sections are propagated in the
uniform sections via the eigenmodes of those cross-sections (computed analytically
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or numerically by solving the PDE in the cross-section). Eigenmode expansion is
most advantageous for geometries in which the cross-section is constant over
substantial regions, just as integral-equation methods are most advantageous to
exploit large homogeneous regions.

6.2.2 Choices of Basis

Casimir problems, for the most part, reduce to solving classical EM linear PDEs or
integral equations where the unknowns reside in an infinite-dimensional vector
space of functions. To discretize the problem approximately into a finite number N of
unknowns, these unknown functions must be expanded in some finite basis (that
converges to the exact solution as N !1). There are three typical types of basis:

• Finite differences [2, 49, 50] (FD): approximate a function f(x) by its values on
some uniform grid with spacing Dx, approximate derivatives by some differ-

ence expression [e.g. second-order center differences f 0ðxÞ � f ðxþDxÞ�f ðx�DxÞ
2Dx þ

OðDx2Þ] and integrals by summations (e.g. a trapezoidal rule).
• Finite-element methods [1, 3, 4, 7] (FEM): divide space into geometric ele-

ments (e.g. triangles/tetrahedra), and expand an unknown f(x) in a simple
localized basis expansion for each element (typically, low-degree polynomials)
with some continuity constraints. (FD methods are viewable as special cases of
FEMs for uniform grids.) For an integral-equation approach, where the
unknowns are functions on surfaces, the same idea is typically called a
boundary-element method (BEM) [1, 3, 7, 51, 52].1

• Spectral methods [53]: expand functions in a non-localized complete basis,
truncated to a finite number of terms. Most commonly, Fourier series or related
expansions are used (cosine series, Fourier–Bessel series, spherical or sphe-
roidal harmonics, Chebyshev polynomials, etc.).

Finite differences have the advantage of simplicity of implementation and
analysis, and the disadvantages of uniform spatial resolution and relatively low-
order convergence (errors typically �Dx2 [2] or even �Dx in the presence of
discontinuous materials unless special techniques are used [54, 55]). FEMs can
have nonuniform spatial resolution to resolve disparate feature sizes in the same
problem, at a price of much greater complexity of implementation and solution
techniques, and can have high-order convergence at the price of using complicated
curved elements and high-order basis functions. Spectral methods can have very
high-order or possibly exponential (‘‘spectral’’) convergence rates [53] that can

1 The name method of moments is also commonly applied to BEM techniques for EM. However,
this terminology is somewhat ambiguous, and can refer more generally to Galerkin or other
weighted-residual methods (and historically referred to monomial test functions, yielding
statistical ‘‘moments’’) [53].
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even suit them to analytical solution—hence, spectral methods were the dominant
technique before the computer era and are typically the first class of methods that
appear in any field, such as in Mie’s classic solution of wave scattering from a
sphere [56]. However, exponential convergence is usually obtained only if all
discontinuities and singularities are taken explicitly into account in the basis [53].
With discontinuous materials, this is typically only practical for very smooth, high-
symmetry geometries like spheres, cylinders, and so on; the use of a generic
Fourier/spectral basis for arbitrary geometries reduces to a brute-force method that
is sometimes very convenient [57], but may have unremarkable convergence rates
[53, 57, 58]. BEMs require the most complicated implementation techniques,
because any nontrivial change to the Green’s functions of the homogeneous
regions (e.g. a change in dimensionality, boundary conditions, or material types)
involves tricky changes to the singular-integration methods required to assemble
the matrix [59–61] and to the fast-solver methods mentioned in Sect. 6.2.3.

Given FEM/BEM or spectral basis functions bnðxÞ and a linear equation
ÂuðxÞ ¼ vðxÞ for an unknown function u in terms of a linear differential/integral
operator Â, there are two common ways [53] to obtain a finite set of N equations to
determine the N unknown coefficients cn in uðxÞ �

P
n cnbnðxÞ. One is a collo-

cation method: require that ðÂu� vÞjxn
¼ 0 be satisfied at N collocation points xn.

The other is a Galerkin method: require that hbk; Âu� vi ¼ 0 be satisfied for
k ¼ 1; . . .;N, where h�; �i is some inner product on the function space. Both
approaches result in an N � N matrix equation of the form Au ¼ v. A Galerkin
method has the useful property that if Â is Hermitian and/or definite then the
matrix Akn ¼ hbk; Âbni has the same properties.

The specific situation of vector-valued unknowns in EM creates additional con-
siderations for the basis functions. In order to obtain center-difference approximations
for all the field components, FD methods for EM typically use a staggered Yee grid
[2, 49], in which each component of the EM fields is offset onto its own Dx

2 -shifted
grid. In FEMs for EM, in order to maintain the appropriate continuity conditions for
curl or divergence operators, one uses special classes of vector-valued basis
functions such as Nédélec elements [7, 62]. In BEMs for EM, vector-valued RWG
(Rao, Wilton, and Glisson) basis functions [63] (or generalizations thereof [64]) are
used in order to enforce a physical continuity condition on surface currents (to
preclude accumulation of charge at element edges); see also Fig. 6.3 in Sect. 6.5.3.
A spectral integral-equation method for EM with cylindrical or spherical scatterers
is sometimes called a multipole-expansion method [5], since the obvious spectral
basis is equivalent to expanding the scattered fields in terms of multipole moments.

6.2.3 Solution Techniques for Linear Equations

Given a particular problem and basis choice, one at the end obtains some
N � N set of linear equations Ax ¼ b to solve (or possibly eigenequations
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Ax ¼ kBx).2 Note also that a single Casimir-force calculation requires the
solution of many such equations, at the very least for an integral over fre-
quencies (see Sect. 6.4). There are essentially three ways to solve such a set of
equations:

• Dense-direct solvers: solve Ax ¼ b using direct matrix-factorization methods
(e.g. Gaussian elimination),3 requiring OðN2Þ storage and OðN3Þ time [65].

• Sparse-direct solvers [66]: if A is sparse (mostly zero entries), use similar
direct matrix-factorization methods, but cleverly re-arranged in an attempt to
preserve the sparsity. Time and storage depend strongly on the sparsity pattern
of A (the pattern of nonzero entries).

• Iterative methods [65, 67, 68]: repeatedly improve a guess for the solution x
(usually starting with a random or zero guess), only referencing A via repeated
matrix–vector multiplies. Time depends strongly on the properties of A and the
iterative technique, but typically requires only OðNÞ storage. Exploits any fast
way [ideally OðNÞ or OðN log N)] to multiply A by any arbitrary vector.

If the number N of degrees of freedom is small, i.e. if the basis converges rapidly
for a given geometry, dense-direct methods are simple, quick, and headache-free
(and have a standard state-of-the-art implementation in the free LAPACK library
[69]). For example, N ¼ 1000 problems can be solved in under a second on any
modern computer with a few megabytes of memory. Up to N� 104 is reasonably
feasible, but N ¼ 105 requires almost 100 GB of memory and days of computation
time without a large parallel computer. This makes dense-direct solvers the
method of choice in simple geometries with a rapidly converging spectral basis, or
with BEM integral-equation methods for basic shapes that can be accurately
described by a few thousand triangular panels, but they rapidly become impractical
for larger problems involving many and/or complex objects (or for moderate-size
PDE problems even in two dimensions).

In PDE methods with a localized (FD or FEM) basis, the matrices A have a
special property: they are sparse (mostly zero). The locality of the operators in
a typical PDE means that each grid point or element directly interacts only with a
bounded number of neighbors, in which case A has only OðNÞ nonzero entries and
can be stored with OðNÞ memory. The process of solving Ax ¼ b, e.g. computing
the LU factorization A ¼ LU by Gaussian elimination [65], unfortunately, ordi-
narily destroys this sparsity: the resulting L and U triangular matrices are generally
not sparse. However, the pattern of nonzero entries that arises from a PDE is not
random, and it turns out that clever re-orderings of the rows and columns during
factorization can partially preserve sparsity for typical patterns; this insight leads

2 This applies equally well, if somewhat indirectly, to the path-integral expressions of Sect. 6.6
where one evaluates a log determinant or a trace of an inverse, since this is done using either
eigenvalues or the same matrix factorizations that are used to solve Ax ¼ b.
3 Technically, all eigensolvers for N [ 4 are necessarily iterative, but modern dense-
eigensolver techniques employ direct factorizations as steps of the process [65].
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to sparse-direct solvers [66], available via many free-software packages imple-
menting different sparsity-preserving heuristics and other variations [68]. The
sparsity pattern of A depends on the dimensionality of the problem, which
determines the number of neighbors a given element interacts with. For meshes/
grids having nearest-neighbor interactions, a sparse-direct solver typically requires
OðNÞ time and storage in 1d (where the matrices are band-diagonal), OðN3=2Þ time
with OðN log NÞ storage in 2d, and OðN2Þ time with OðN4=3Þ storage in 3d [66,
70]. The practical upshot is that sparse-direct methods work well for 1d and 2d
PDEs, but can grow to be impractical in 3d. For BEM and spectral methods, the
interactions are not localized and the matrices are not sparse, so sparse-direct
methods are not directly applicable (but see below for an indirect technique).

For the largest-scale problems, or for problems lacking a sparse A, the remaining
possibility is an iterative method. In these methods, one need only supply a fast way
to multiply A by an arbitrary vector y, and the trick is to use this Ay operation on a
clever sequence of vectors in such a way as to make an arbitrary initial guess x0

converge as rapidly as possible to the solution x, ideally using only O(N) storage.
Many such techniques have been developed [65, 67, 68]. The most favorable
situation for Ax ¼ b occurs when A is Hermitian positive-definite, in which case an
ideal Krylov method called the conjugate-gradient method can be applied, with
excellent guaranteed convergence properties [65, 67], and fortunately this is
precisely the case that usually arises for the imaginary-frequency Casimir methods
below. There are two wrinkles that require special attention, however. First, one
must have a fast way to compute Ay. If A is sparse (as for PDE and FD methods),
then only O(N) nonzero entries of A need be stored (as above) and Ay can be
computed in O(N) operations. In a spectral method, A is generally dense, but for
spectral PDE methods there are often fast OðN log NÞ techniques to compute Ay
using only O(N) storage (A is stored implicitly), based on fast Fourier transform
(FFT) algorithms [53, 57]. In a BEM, where A is again dense, a variety of
sophisticated methods that require only OðN log NÞ computation time and OðNÞ
storage to compute Ay (again storing A implicitly) have been developed [1, 3, 7,
71], beginning with the pioneering fast-multipole method (FMM) [72]. These fast
BEMs exploit the localized basis and the decaying, convolutional nature of the
Green’s function to approximate long-range interactions (to any desired accuracy).
FMMs can be viewed as an approximate factorizations into sparse matrices, at
which point sparse-direct methods are also applicable [73]. A second wrinkle is that
the convergence rates of iterative methods depend on the condition number of
A (the ratio of largest and smallest singular values) [65, 67], and condition numbers
generally worsen as the ratio of the largest and smallest lengthscales in the problem
increases. To combat this, users of iterative methods employ preconditioning
techniques: instead of solving Ax ¼ b, one solves KAx ¼ Kb or similar, where the
preconditioning matrix K is some crude approximate inverse for A (but much
simpler to compute than A�1!) such that the condition number of KA is reduced
[67]. The difficulty with this approach is that good preconditioners tend to be highly
problem-dependent, although a variety of useful approaches such as incomplete
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factorization and coarse-grid/multigrid approximations have been identified
[65, 67]. The upshot is that, while the largest-scale solvers almost invariably use
iterative techniques, for any given class of physical problems it sometimes takes
significant research before the iterative approach becomes well-optimized.

6.3 The Impracticality of Eigenmode Summations

Perhaps the simplest way to express the Casimir energy, at zero temperature, is as
a sum of zero-point energies of all oscillating EM modes in the system:

U ¼
X

x

�hx
2
; ð6:1Þ

where x is the frequency of the mode ð� e�ixtÞ [28, 74]. That is, when the
electromagnetic field is quantized into photons with energy �hx, it turns out that the
vacuum state in the absence of photons is not empty, but rather has the energy
equivalent of ‘‘half a photon’’ in each mode. The computational strategy is then
straightforward, in principle: compute the EM eigenfrequencies x in the problem
by some numerical method (many techniques are available for computing eigen-
frequencies [1, 57]) and sum them to obtain U. Forces are then given by the
derivative of U with respect to changes in the geometry, which could be
approximated by finite differences or differentiated analytically with a Hellman–
Feynman technique [75] (more generally, derivatives of any computed quantity
can be computed efficiently by an adjoint method [76]).

Of course, U in (6.1) has the disadvantage of being formally infinite, but this is
actually a minor problem in practice: as soon as one discretizes the problem into a
finite number of degrees of freedom (e.g., a finite number of grid points), the
number of eigenfrequencies becomes finite (with the upper bound representing a
Nyquist-like frequency of the grid). This is the numerical analogue [12] of
analytical regularization techniques that are applied to truncate the same sum in
analytical computations [28]. (These regularizations do not affect energy differ-
ences or forces for rigid-body motions.) Matters are also somewhat subtle for
dissipative or open systems [77]. But the most serious problem is that, even in the
lossless case, this sum is badly behaved: even when one differentiates with sepa-
ration a to obtain a finite force F ¼ � �h

2

P
dx
da , the summand is wildly oscillatory and

includes substantial contributions from essentially every frequency, which mostly
cancel to leave a tiny result [12, 78]. Numerically, therefore, one must ostensibly
compute all of the modes, to high precision, which requires OðN3Þ time and OðN2Þ
storage (for a dense-direct eigensolver [65]) given N degrees of freedom. This is
possible in simple 1d problems [12, 40], but is impractical as a general approach.

Because of the mathematical equivalence of the different approaches to the
Casimir problem, the mode-summation method is sometimes useful as a starting
point to derive alternative formulations, but the end result is invariably quite
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different in spirit from computing the eigenfrequencies one by one and summing
them. For example, if one has a function zðxÞ whose roots are the eigenfre-
quencies, then one can equivalently write U, via the residue theorem of complex

analysis, as U ¼ 1
2pi

H
C

�hx
2

d½ln zðxÞ�
dx dx, where C is any closed contour in the com-

plex-x plane that encloses the roots [79]. However, finding functions whose roots
are the eigenfrequencies naturally points towards Green’s functions (to relate
different boundary conditions), and the contour choices typically involve Wick
rotation as in Sect. 6.4, so this approach leads directly to imaginary-frequency
scattering-matrix techniques as in Sect. 6.6 [18]. A similar contour integral arises
from a zeta-function regularization of (6.1) [80].

6.4 The Complex-Frequency Plane and Contour Choices

In order to better understand the frequency integration/summation in Casimir
problems, it is illustrative to examine the analytical formula for the simple case of
two perfect-metal plates in vacuum separated by a distance a, in which case it can
be derived in a variety of ways that the attractive force F is given by [81]:

F ¼ �h

p2c3
Re

Z1

0

dx
Z1

1

dp
p2x3

e2ipðxþi0þÞa=c � 1

2

4

3

5

¼ Re

Z1

0

f ðxÞdx

2

4

3

5 ¼ Im

Z1

0

f ðinÞdn

2

4

3

5 ¼ �hc

240a4
; ð6:2Þ

where f ðxÞ is the contribution of each frequency x to the force and p is related to
the plate-parallel momentum of the contributing modes/fluctuations. In this special
case, the entire integral can be performed analytically, but for parallel plates of
some finite permittivity e the generalization (the Lifshitz formula [81]) must be
integrated numerically. In practice, however, the formula and its generalizations
are never integrated in the form at left—instead, one uses the technique of contour
integration from complex analysis to Wick rotate the integral to imaginary fre-
quencies x ¼ in, integrating over n. (In fact, the formula is typically derived
starting in imaginary frequencies, via a Matsubara approach [81].) In this section,
we review why a trick of this sort is both possible and essential in numerical
computations for all of the methods described below.

Wick rotation is always possible as a consequence of causality. It turns out that
the frequency contributions f ðxÞ for arbitrary materials and geometries, for all of
the different formulations of the Casimir force below, are ultimately expressed in
terms of classical EM Green’s functions at x: the EM fields in response to time-
harmonic currents J� e�ixt. As a consequence of the causality of Maxwell’s
equations and physical materials—EM fields always arise after the source currents,
not before—it mathematically follows that the Green’s functions must be analytic
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functions (no poles or other singularities) when Im x [ 0 (the upper-half complex
plane) [41]. Poles in the Green’s function correspond to eigenfrequencies or
resonances of the source-free Maxwell’s equations, and must lie at Im x	 0 for any
physical system with dissipative materials (with the poles approaching Im x ¼ 0�

in the idealized lossless limit). [One can easily see explicitly that this is true for the
f ðxÞ above: the poles result from a vanishing denominator in the p integrand, which
only occurs for purely real x corresponding to the real-frequency modes trapped
between two perfect-metal plates.] As an elementary consequence of complex
analysis, this analyticity means that the

R
dx can be arbitrarily deformed to any

contour in the upper-half complex-x plane without changing the integration result.
Wick rotation is essential for computation because the frequency contributions

f ðxÞ to the force (or interaction energy or other related quantities) are extremely
ill-behaved near to the real-x axis: they are wildly oscillatory and slowly
decaying. For example, the magnitude and phase of the function f ðxÞ are plotted
in the complex x plane in Fig. 6.1, where the p integral was evaluated numerically
with a high-order Clenshaw–Curtis quadrature scheme [82]. Merely evaluating
f ðxÞ along the real-x axis is difficult because of singularities (which ultimately
reduce the integral to a summation over eigenfrequency-contributions as in
Sect. 6.3); in physical materials with dissipation, the real-x axis is non-singular
but is still badly behaved because of poles (lossy modes) located just below the
axis. Along any contour parallel to the real-x axis, the integrand is oscillatory
(as can be seen from the phase plot) and non-decaying (as can be seen from the
magnitude plot): formally, just as with the infinite summation over eigenmodes in
Sect. 6.3, one must integrate over an infinite bandwidth, regularized in some way
(e.g. by the Nyquist frequency placing an upper bound on x for a finite grid),
where the oscillations almost entirely cancel to leave a tiny remainder (the force).

Fig. 6.1 Contributions f ðxÞ to the Casimir force, from each fluctuation/mode frequency x, for
two perfect-metal plates with separation a, in the complex-x plane. Left: magnitude jf ðxÞj. Right:
phase \f ðxÞ. [The magnitude is truncated at 103�h=a3, as it diverges towards the real-x axis, and
some numerical artifacts (rapid oscillations) are visible near the real-x axis in the phase due to
difficulty in evaluating f ðxÞ.] The key point is that f ðxÞ is badly behaved (oscillatory and non-
decaying) along contours parallel to the real-x axis, whereas f ðxÞ is nicely behaved (non-
oscillatory and exponentially decaying) along contours parallel to the imaginary-x axis
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(Any physical materials must cease to polarize as x!1 where the susceptibility
vanishes [41], which will make the force contributions eventually vanish as x!
1 even in 1d, but a very wide-bandwidth oscillatory integral is still required.) This
is a disaster for any numerical method—even when one is only integrating an
analytical expression such as the Lifshitz formula, mere roundoff errors are a
severe difficulty for real x. Along the imaginary-x axis, on the other hand (or any
sufficiently vertical contour), f ðxÞ is exponentially decaying and mostly non-
oscillatory—an ideal situation for numerical integration.

Therefore, in order for classical EM solvers to be used for Casimir problems,
they need to be adapted to solve Maxwell’s equations at complex or imaginary x.
Although this sounds strange at first, the frequency-domain problem actually
becomes numerically easier in every way at imaginary x; this is discussed in more
detail in Sect. 6.5.1.2. In fact, one can even identify an exact mathematical
equivalence between a particular complex-x contour and a real-frequency system
where an artificial dissipation has been introduced, as discussed in Sect. 6.5.5
below—using this trick, one can actually use classical EM solvers with no mod-
ification at all, as long as they handle dissipative media. In any case, one needs an
integral over frequencies to compute a physically meaningful quantity, which
means that solvers and material models, not to mention any physical intuition used
for guidance, must be valid for more than just a narrow real-x bandwidth (unlike
most problems in classical EM).

Numerically, it should be pointed out that the f ðinÞ integrand is smooth and
exponentially decaying, and so the n integral can be approximated to high accuracy
by an exponentially convergent quadrature (numerical integration) scheme using
evaluations at relatively few points n. For example, one can use Gauss–Laguerre
quadrature [83], Gaussian quadrature with an appropriate change of variables [84],
or Clenshaw–Curtis quadrature with an appropriate change of variables [82].

6.5 Mean Energy/Force Densities and the
Fluctuation–Dissipation Theorem

Another, equivalent, viewpoint on Casimir interactions is that they arise from
geometry-dependent fluctuations of the electromagnetic fields E and H, which on
average have some nonzero energy density and exert a force. If we can compute
these average fields, we can integrate the resulting energy density, stress tensors,
and so on, to obtain the energy, force, or other quantities of interest. The good
news is that there is a simple expression for those fluctuations in terms of the
fluctuation–dissipation theorem of statistical physics: the correlation function of
the fields is related to the corresponding classical Green’s function [81]. Ulti-
mately, this means that any standard classical EM technique to compute Green’s
functions (fields from currents) can be applied to compute Casimir forces, with the
caveat that the techniques must be slightly modified to work at imaginary or
complex frequencies as described below.
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6.5.1 Background

The temperature-T correlation function for the fluctuating electric field at a given
frequency x is given by [81]:

hEjðxÞEkðx0Þix ¼ �
�h

p
Im x2GE

jkðx; x; x0Þ
h i

cothð�hx=2kBTÞ; ð6:3Þ

where GE
jk ¼ ðGE

k Þj is the classical dyadic ‘‘photon’’ Green’s function, propor-
tional4 to the relationship between an electric-dipole current in the k direction at x0

to the electric field at x, and solves

r� lðx; xÞ�1r��x2eðx; xÞ
h i

GE
k ðx; x; x0Þ ¼ d3ðx� x0Þêk; ð6:4Þ

where e is the electric permittivity tensor, l is the magnetic permeability tensor,
and êk is a unit vector in direction k. Similarly, the magnetic-field correlation
function is

hHjðxÞHkðx0Þix ¼ �
�h

p
Im x2GH

jkðx; x; x0Þ
h i

cothð�hx=2kBTÞ: ð6:5Þ

The magnetic Green’s function GH can be defined in two essentially equivalent
ways. The first is as derivatives 1

x2lðxÞ r �GE �r0 1
lðx0Þ of the electric Green’s

function GE
jkðx; x0Þ, where r and r0 denote derivatives with respect to x and x0ðr0

acting to the left), respectively [81]. The second way to define GH is proportional
to the magnetic field in response to a magnetic-dipole current, analogous to (6.4):

r� eðx; xÞ�1r��x2lðx; xÞ
h i

GH
k ðx; x; x0Þ ¼ d3ðx� x0Þêk; ð6:6Þ

which can be more convenient for numerical calculation [13]. These two defini-
tions are related [85] by GH ¼ 1

x2lðxÞ r �GE �r0 1
lðx0Þ � 1

x2lðx0Þ dðx� x0ÞI (with

I being the 3� 3 identity matrix),5 where the second (diagonal) term has no effect
on energy differences or forces below and is therefore irrelevant. Now, these
equations are rather nasty along the real-x axis: not only will there be poles in G
just below the axis corresponding to lossy modes, but in the limit where the
dissipative losses vanish (e and l become real), the combination of the poles

4 The electric field EðxÞ from a dipole current J ¼ d3ðx� x0Þêke�ixt is EðxÞ ¼ ixGE
k

ðx; x; x0Þe�ixt.
5 This can be seen more explicity by substituting GH ¼ 1

x2
1
lr�GE �r0 1

l0 � 1
x2l0 d into (6.6),

with d denoting dðx� x0ÞI and l or l0 denoting lðxÞ or lðx0Þ, respectively. In particular,
½r � 1

er��x2l�ð 1
x2

1
lr�GE �r0 1

l0 � 1
x2l0 dÞ yields r� ½ 1

x2er� 1
lr�GE �GE� �

r0 1
l0 � r� 1

x2l0er� dþ d, which via (6.4) gives þr� 1
x2e d�r0 1

l0 � r � 1
x2l0er� dþ d ¼

d as desired, where in the last step we have used the fact that d�r0 ¼ r � d [since r� is
antisymmetric under transposition and r0dðx� x0Þ ¼ �rdðx� x0Þ].
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approaching the real axis with the Im in the correlation function results in a delta
function at each pole6 and integrals of the correlation functions turn into sums over
modes as in Sect. 6.3 However, the saving grace, as pointed out in Sect. 6.4, is that
Green’s functions are causal, allowing us to transform any integral over all real
fluctuation frequencies into an integral over imaginary fluctuation frequencies
x ¼ in. The coth factor has poles that alter this picture, but we will eliminate those
for now by considering only the T ¼ 0þ case where cothðþ1Þ ¼ 1, returning to
nonzero temperatures in Sect. 6.8.

6.5.1.1 Energy Density

In particular, to compute the Casimir energy U, we merely integrate the classical
energy density in the EM field [41] over all positions and all fluctuation fre-
quencies, Wick-rotated to an integral over imaginary frequencies, resulting in the
expression:

U ¼
Z1

0

dn
Z

1
2

dðneÞ
dn
hjEj2iin þ

dðnlÞ
dn
hjHj2iin

� �

d3x; ð6:7Þ

where we have simplified to the case of isotropic materials (scalar e and l). At
thermodynamic equilibrium, this expression remains valid even for arbitrary dis-
sipative/dispersive media thanks to a direct equivalence with a path-integral
expression [87], which is not obvious from the classical viewpoint in which the
energy density is usually only derived in the approximation of negligible
absorption [41]. (Thanks to the relationship between the Green’s function and the
local density of states [88], there is also a direct equivalence between this energy
integral and eigenmode summation [12].) In the common case where l has neg-
ligible frequency dependence (magnetic responses are usually negligible at the
short wavelengths where Casimir forces are important, so that l � l0), we can use

the identity7 that
R

ejEj2 ¼
R

ljHj2 for fields at any given frequency [6] to simplify
this expression to [12]:

6 This follows from the standard identity that the limit Im½ðxþ i0þÞ�1�, viewed as a
distribution, yields �pdðxÞ [86].
7 Lest the application of this field identity appear too glib, we can also obtain the same equality

directly from the Green’s functions in the correlation functions. We have
R

lhjHj2i ¼
�h
p tr
R

n2lGHðx; xÞ, and from the identity after (6.6) we know that n2lGH ¼ �r�G�r0
1
l0 þ d. However, because r� is self-adjoint [6], we can integrate by parts to move r� from

the first argument/index of GE to the second, obtaining �GE �r0 1
l0 � r0 ¼ n2e0GE � d from

the first term under the integral. (Here, we employ the fact that GE is real-symmetric at
imaginary x ¼ in, from Sect. 6.5.1.2, to apply (6.10) to the second index/argument instead of
the first.) This cancels the other delta from n2lGH and leaves n2eGE, giving ehjEj2i as desired.
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U ¼
Z1

0

dn
Z

1
2n

dðn2eÞ
dn
hjEj2iind3x: ð6:8Þ

Here, the zero-temperature imaginary-frequency mean-square electric field is
given by:

hjEðxÞj2iin ¼
�h

p
n2trGEðin; x; xÞ; ð6:9Þ

where tr denotes the trace
P

j GE
jj and the Im has disappeared compared to (6.3)

because GEðin) is real and the Im cancels the i in dx! idn.
Equation (6.13) may at first strike one as odd, because one is evaluating the

Green’s function (field) at x from a source at x, which is formally infinite. This is
yet another instance of the formal infinities that appear in Casimir problems,
similar to the infinite sum over modes in Sect. 6.3. In practice, this is not a problem
either analytically or numerically. Analytically, one typically regularizes the
problem by subtracting off the vacuum Green’s function (equivalent to only
looking at the portion of the fields at x which are reflected off of inhomogeneities
in e or l) [81]. Numerically, in an FD or FEM method with a finite grid,
the Green’s function is everywhere finite (the grid is its own regularization) [12].
In a BEM, the Green’s function is explicitly written as a sum of the vacuum field
and scattered fields, so the former can again be subtracted analytically [12]. As in
Sect. 6.3, these regularizations do not affect physically observable quantities such
as forces or energy differences, assuming rigid-body motion.

6.5.1.2 The Remarkable Imaginary-Frequency Green’s Function

This imaginary-frequency Green’s function is actually a remarkably nice object.
Wick-rotating (6.4), it satisfies:

r� lðin; xÞ�1r� þ n2eðin; xÞ
h i

GE
k ðin; x; x0Þ ¼ d3ðx� x0Þêk: ð6:10Þ

Because of causality, it turns out that e and l are strictly real-symmetric and
positive-definite (in the absence of gain) along the imaginary-frequency axis,
even for dissipative/dispersive materials [41]. Furthermore, the operator r�
l�1r� is real-symmetric positive-semidefinite for a positive-definite real-
symmetric l [6]. Thus, the entire bracketed operator ½� � �� in (6.10) is
real-symmetric positive-definite for n[ 0, which lends itself to some of the best
numerical solution techniques (Cholesky decomposition [65], tridiagonal QR
[65], conjugate gradients [65, 67], and Rayleigh-quotient methods [68]).
(This definiteness is also another way of seeing the lack of poles or oscillations
for x ¼ in.) It follows that the integral operator whose kernel is GE, i.e. the
inverse of the ½� � �� operator in (6.10), is also real-symmetric positive-definite,
which is equally useful for integral-equation methods.
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In vacuum, the 3d real-x Green’s function � eixjx�x0j=c=jx� x0j [41] is
Wick-rotated to � e�njx�x0 j=c=jx� x0j, an exponentially decaying, non-oscillatory
function. This is yet another way of understanding why, for x ¼ in, there are no
interference effects and hence no ‘‘modes’’ (poles in G), and integrands tend to be
non-oscillatory and exponentially decaying (as n!1;G becomes exponentially
short-ranged and does not ‘‘see’’ the interacting objects, cutting off the force
contributions). (It also means, unfortunately, that a lot of the most interesting
phenomena in classical EM, which stem from interference effects and resonances,
may have very limited consequences for Casimir interactions.)

One other property we should mention is that the operator becomes semidefinite
for n ¼ 0, with a nullspace encompassing any static field distribution (r/ for any
scalar /). This corresponds to the well-known singularity of Maxwell’s equations at
zero frequency [89, 90], where the electric and magnetic fields decouple [41]. Since
we eventually integrate over n, the measure-zero contribution from n ¼ 0 does not
actually matter, and one can use a quadrature scheme that avoids evaluating n ¼ 0.
However, in the nonzero-temperature case of Sect. 6.8 one obtains a sum over
discrete-n contributions, in which case the zero-frequency term is explicitly present.
In this case, n ¼ 0 can be interpreted if necessary as the limit n! 0þ (which can be
obtained accurately in several ways, e.g. by Richardson extrapolation [91],
although some solvers need special care to be accurate at low frequency [89, 90]);
note, however, that there has been some controversy about the zero-frequency
contribution in the unphysical limit of perfect/dissipationless metals [92].

6.5.1.3 Stress Tensor

In practice, one often wants to know the Casimir force (or torque) on an object
rather than the energy density. In this case, instead of integrating an electromag-
netic energy density over the volume, one can integrate an electromagnetic stress
tensor over a surface enclosing the object in question, schematically depicted in
Fig. 6.2 [81]. The mean stress tensor for the Casimir force is [81]:

hTjkðxÞix ¼ eðx;xÞ hEjðxÞEkðxÞix �
djk

2

X

‘

hE‘ðxÞ2ix

" #

þ lðx;xÞ hHjðxÞHkðxÞi �
djk

2

X

‘

hH‘ðxÞ2ix

" #

: ð6:11Þ

As above, the field correlation functions are expressed in terms of the classical
Green’s function, and the integral of the contributions over all x is Wick-rotated to
imaginary frequencies x ¼ in:

F ¼
Z1

0

dn
ZZ



surface

hTðxÞiin � dS; ð6:12Þ
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with (zero-temperature) correlation functions

hEjðxÞEkðxÞiin ¼
�h

p
n2GE

jkðin; x; xÞ; ð6:13Þ

hHjðxÞHkðxÞiin ¼
�h

p
n2GH

jkðin; x; xÞ; ð6:14Þ

corresponding to the fields on the stress-integration surface in response to currents
placed on that surface. To compute a Casimir torque around an origin r, one
instead uses ðx� rÞ � hTðxÞiin � dS [93].

The derivation of this stress tensor (6.11) is not as straightforward as it might at
first appear. If the stress-integration surface lies entirely in vacuum e � e0 and
l � l0, then one can interpret (6.11) as merely the ordinary EM stress tensor from
the microscopic Maxwell equations [41], albeit integrated over fluctuations. If the
stress-integration surface lies in a dispersive/dissipative medium such as a fluid,
however, then the classical EM stress tensor is well known to be problematic [41]
and (6.11) may seem superficially incorrect. However, it turns out that these prob-
lems disappear in the context of thermodynamic equilibrium, where a more careful
free-energy derivation of the Casimir force from fluctuations indeed results in (6.11)
[81, 94],8 which has also proved consistent with experiments [95, 96]. Note also that,
while (6.11) assumes the special case of isotropic media at x, it can still be used to
evaluate the force on objects made of anisotropic materials, as long as the stress-
integration surface lies in an isotropic medium (e.g. vacuum or most fluids).

This formulation is especially important for methods that use an iterative solver
for the Green’s functions as discussed below, because it only requires solving for
the response to currents on the stress-integration surface, rather than currents at
every point in space to integrate the energy density, greatly reducing the number of
right-hand sides to be solved for the linear (6.10) [12]; additional reductions in the
number of right-hand sides are described in Sect. 6.5.6.

Fig. 6.2 Schematic
depiction of two objects
whose Casimir interaction is
desired. One computational
method involves integrating a
mean stress tensor around
some closed surface (dashed
line) surrounding an object,
yielding the force on that
object

8 If compressibility of the fluid and the density-dependence of e is not neglected, then there is an
additional oe=oq term in (6.11) resulting from fluctuations in the density q [81].
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6.5.2 Finite-Difference Frequency-Domain (FDFD)

In order to determine the Casimir energy or force, one evaluates the Green’s
function by solving (6.10) and then integrates the appropriate energy/force density
over volume/surface and over the imaginary frequency n. The central numerical
problem is then the determination of the Green’s function by solving a set of linear
equations corresponding to (6.10), and probably the simplest approach is based on a
finite-difference (FD) basis: space is divided into a uniform grid with some
resolution Dx, derivatives are turned into differences, and one solves (6.10) by some
method for every desired right-hand side. In classical EM (typically finding the field
from a given current at real x), this is known as a finite-difference frequency-
domain (FDFD) method, and has been widely used for many years [5, 49].

For example, in one dimension for z-directed currents/fields with l ¼ 1, (6.10)

becomes � d2

dx2 þ n2
� �

eGE
zz ¼ dðx� x0Þẑ. If we approximate GE

zzðnDx; x0Þ � Gn,

then the corresponding finite-difference equation, with a standard center-difference
approximation for d2=dx2 [50], is

�Gnþ1 � 2Gn þ Gn�1

Dx2
þ n2enGn ¼

dnn0

Dx
; ð6:15Þ

replacing the dðx� x0Þ with a discrete equivalent at n0. Equation (6.15) is a tridi-
agonal system of equations for the unknowns Gn. More generally, of course, one has
derivatives in the y and z directions and three unknown G (or E) components to
determine at each grid point. As mentioned in Sect. 6.2.2, it turns out that accurate
center-difference approximations for the r�r� operator in three dimensions are
better suited to a ‘‘staggered’’ grid, called a Yee grid [2, 49], in which different field
components are discretized at points slightly offset in space: e.g., Exð½nx þ 1

2�
Dx; nyDy; nzDzÞ;EyðnxDx; ½ny þ 1

2�Dy; nzDzÞ, and EzðnxDx; nyDy; ½nz þ 1
2�DzÞ for the

E field components. Note that any arbitrary frequency dependence of e is trivial to
include, because in frequency domain one is solving each n separately, and a perfect
electric conductor is simply the eðinÞ ! 1 limit.

One must, of course, somehow truncate the computational domain to a finite
region of space in order to obtain a finite number N of degrees of freedom. There are
many reasonable ways to do this because Casimir interactions are rapidly decaying
in space (force � 1=adþ1 or faster with distance a in d dimensions, at least for zero
temperature). One could simply terminate the domain with Dirichlet or periodic
boundary conditions, for example, and if the cell boundaries are far enough away
from the objects of interest then the boundary effects will be negligible (quite
different from classical EM problems at real x!) [12]. In classical EM, one com-
monly uses the more sophisticated approach of a perfectly matched layer (PML),
an artificial reflectionless absorbing material placed adjacent to the boundaries of
the computational domain to eliminate outgoing waves [2]. Mathematically, a PML

in a direction x is equivalent to a complex ‘‘coordinate stretching’’ d
dx!

1þ ir=xð Þ�1 d
dx for an artificial PML ‘‘conductivity’’ rðxÞ[ 0 [2, 97–99],
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where the 1=x factor is introduced to give an equal attenuation rate at all
frequencies. However, at imaginary frequencies x ¼ in, a PML therefore results

simply in a real coordinate stretching d
dx! 1þ r=nð Þ�1 d

dx: in a PDE with decaying,
non-oscillatory solutions (such as the imaginary-x Maxwell equations), it is well
known that a reasonable approach to truncating infinite domains is to perform a
(real) coordinate transformation that compresses space far away where the solution
is small [53]. A convenience of Maxwell’s equations is that any coordinate trans-
formation (real or complex) can be converted merely into a change of e and l [100],
so any PML can be expressed simply as a change of materials while keeping the
same PDE and discretization [98, 99].

Such a center-difference scheme is nominally second-order accurate, with
discretization errors that vanish as OðDx2Þ [2, 50]. One can also construct higher-
order difference approximations (based on more grid points per difference). As a
practical matter, however, the accuracy is limited instead by the treatment of
material interfaces where e changes discontinuously. If no special allowance is
made for these interfaces, the method still converges, but its convergence rate
is reduced by the discontinuity to OðDxÞ [54, 55, 101, 102] (unless one has
E polarization completely parallel to all interfaces so that there is no field
discontinuity). There are various schemes to restore second-order (or higher)
accuracy by employing specialized FD equations at the interfaces [54, 103], but an
especially simple scheme involves unmodified FD equations with modified
materials: it turns out that, if the discontinuous e is smoothed in a particular way
(to avoid introducing first-order errors by the smoothing itself), then second-order
accuracy can be restored [55, 101, 102].9

Given the FD equations, one must then choose a solution technique to
solve the resulting linear equations Ax ¼ b, where x is the Green’s function
(or field), b is the delta-function (or current) right-hand side, and A is the
discretized r� l�1r� þ n2e operator. Note that A is a real-symmetric positive-
definite matrix at imaginary frequencies, as discussed in Sect. 6.5.1.2. Because A is
sparse [only OðNÞ nonzero entries], one can utilize a sparse-direct Cholesky
factorization A ¼ RT R (R is upper-triangular) [66] (for which many software
packages are available [68]). Given this factorization, any right-hand side can be
solved quickly by backsubstitution, so one can quickly sum the energy density
over all grid points (essentially computing the trace of A�1) to find the Casimir
energy, or alternatively sum the stress tensor over a stress-integration surface to
find the force. Precisely such a sparse-direct FD method for the Casimir energy
was suggested by Pasquali and Maggs [23], albeit derived by a path-integral
log det expression that is mathematically equivalent to summing the energy density

9 Even if the e discontinuities are dealt with in this way, however, one may still fail to obtain
second-order accuracy if the geometry contains sharp corners, which limit the accuracy to
OðDxpÞ for some 1\p\2 [101]. This is an instance of Darboux’s principle: the convergence
rate of a numerical method is generally limited by the strongest singularity in the solution that
has not been explicitly compensated for [53].
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(6.8) [87]. The alternative is an iterative technique, and in this case A’s Hermitian
definiteness means that an ideal Krylov method, the conjugate-gradient method
[65, 67] can be employed [12]. The conjugate-gradient method requires OðNÞ
storage and time per iteration, and in the absence of preconditioning requires a
number of iterations in d dimensions proportional to the diameter OðN1=dÞ of the
grid for each right-hand side [104]. The stress-tensor approach reduces the number
of right-hand sides to be solved compared to energy-density integration: one only
needs to evaluate the Green’s function for sources on a stress-integration surface,

which has OðNd�1
d Þ points in d dimensions. This gives a total time complexity of

OðNÞ � OðN1=dÞ � OðNd�1
d Þ ¼ OðN2Þ for an unpreconditioned iterative method; an

ideal multigrid preconditioner can in principle reduce the number of iterations to
Oð1Þ [4, 105] (when N is increased by improving spatial resolution), yielding an

OðN2�1
dÞ time complexity. Substantial further improvements are obtained by

realizing that one does not, in fact, need to sum over every point on the stress-
integration surface, instead switching to a different spatial integration scheme
described in Sect. 6.5.6.

6.5.3 Boundary-Element Methods (BEMs)

In some sense, a volume discretization such as an FD method is too general: in
most physical situations, the medium is piecewise-constant, and one might want to
take advantage of this fact. In particular, for the basic problem of finding the field
in response to a current source at a given frequency, one can instead use a surface
integral-equation approach: the unknowns are surface currents on the interfaces
between homogeneous materials, and one solves for the surface currents so that the
total field (source + surface currents) satisfies the appropriate boundary conditions
at the interfaces [1, 3, 7]. For example, in the case of a perfect electric conductor,
the surface-current unknowns can be the physical electric currents J at the inter-
face, and the boundary condition is that of vanishing tangential E field.10 In the
case of permeable media e and l, the physical (bound) currents are volumetric
within the medium [e.g., the electric bound current is J ¼ �ixðe� e0ÞE], not
surface currents [41]. However, it turns out that one can introduce fictitious surface
electric and magnetic currents at all interfaces to provide enough degrees of
freedom to satisfy the boundary condition of continuous tangential E and H, and
thus to fully solve Maxwell’s equations. The application of this equivalence

10 This is known as an electric-field integral equation (EFIE); one can also express the equations
for perfect conductors in terms of boundary conditions enforced on magnetic fields (MFIE) or
some linear combination of the two (CFIE), and the most effective formulation is still a matter of
debate [90].

194 S. G. Johnson



principle11 to obtain surface integral equations for BEM is known as the PMCHW
approach (Poggio, Miller, Chang, Harrington, and Wu) [110–112]. In either case,
one has surface (electric and/or magnetic) currents Js, plus an external current
source J [e.g., the right-hand side of (6.4)], so one can express the E or H field at
any point x as a convolution of Jþ Js with the analytically known Green’s
function G0ðx� x0Þ of the corresponding homogeneous medium at x. In BEM, one
expresses Js, in turn, as a sum of localized basis functions bk associated with some
discrete mesh approximation of the surface. For example, Fig. 6.3 depicts a
standard triangular-type mesh of two objects, where there is a localized basis
function bk (inset) associated with each edge of this mesh such that bk is nonzero
only on the adjacent two triangles [63]; this is the RWG basis mentioned in Sect.
6.2.2. Abstractly, the resulting equations for the fields could then be written in the
following form:

fieldðxÞ ¼ G0 � ðJþ JsÞ ¼ G0 � Jþ
XN

k¼1

G0 � bkck; ð6:16Þ

where G0� denotes convolution with the (dyadic) analytical Green’s function of
the homogeneous medium at x, and ck are the unknown coefficients of each basis
function.12 (More generally, G0 � J could be replaced by any arbitrary incident

Fig. 6.3 Example triangular
mesh of the surfaces of two
objects for a BEM solver [9].
Associated with each edge
k is an ‘‘RWG’’ basis function
bk [63], schematically
represented in the inset,
which vanishes outside the
adjacent two triangles

11 The idea of solving scattering problems by introducing fictitous boundary currents had its
origins [106–109] many years before its application to BEM by Harrington [110] and subsequent
refinements.
12 Technically, only currents from surfaces bordering the medium of x contribute to this sum.
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field, regardless of how it is created.) In a Galerkin method (see Sect. 6.2.2), one
obtains N equations for the N unknowns ck by taking the inner product of both
sides of this equation (substituted into the appropriate boundary condition) with
the same basis functions bj (since they work just as well as a basis for the tan-
gential field as for the tangential surface currents). This ultimately results in a set
of linear equations Ac ¼ d, where the matrix A multiplying the unknown coeffi-
cients ck is given by

Ajk ¼
ZZ

�bjðxÞ �G0ðx� x0Þ � bkðx0Þd2xd2x0: ð6:17Þ

[For the case of a perfect conductor with a vanishing tangential E, the right-hand-
side d is given by dj ¼ �hbj;G0 � Ji ¼ �

RR
�bjðxÞ �G0ðx�~� x0Þ � Jðx0Þd2xd2x0.]

One then solves the linear system for the unknown coefficients ck, and hence for
the unknown surface currents Js. Implementing this technique is nontrivial because
the Ajk integrands (6.17) are singular for j ¼ k or for j adjacent to k, necessitating
specialized quadrature techniques for a given form of G0 [60, 61], but substantial
guidance from the past decades of literature on the subject is available.

Given these currents, one can then evaluate the electric or magnetic field at any
point x, not just on the surface, by evaluating (6.16) at that point. In particular, one
can evaluate the field correlation functions via the fluctuation-dissipation theorem
(6.3): hEjðxÞEkðxÞix is given in terms of the electric field in the j direction at x

from a delta-function current J in the k direction at x. Of course, as noted pre-
viously, this is infinite because the G0 � J term (the field from the delta function)
blows up at x, but in the Casimir case one is only interested in the change of the
correlation functions due to the geometry—so, one can use the standard trick [81]
of subtracting the vacuum contribution G0 � J and only computing the surface-
current contribution G0 � Js to the field at x. In this way, one can compute the
stress tensor, the energy density, and so on, as desired.

As explained in Sect. 6.4, the integral of contributions over all frequencies is
best performed at imaginary frequencies, so all of the above must use x ¼ in. This
only has the effect of Wick-rotating the homogeneous-medium dyadic Green’s
function G0 to the � e�njx�x0 j=jx� x0j imaginary-frequency Green’s function. This
makes the problem easier, in principle. First, the exponential decay cuts off long-
range interactions, making fast-solver techniques (see Sect. 6.2.3) potentially even
more effective. Second, the matrix A is now real-symmetric and positive-definite,
which allows the use of more efficient linear solvers as noted previously. Fortu-
nately, the 1=jx� x0j singularity of G0 is the same at real and imaginary fre-
quencies, allowing existing techniques for the integration of (6.17) to be leveraged.

At first glance, this approach seems most straightforwardly applicable to the
stress-tensor technique, as suggested in Ref. [12]: one uses the BEM solution to
evaluate the mean stress tensor hTi on any integration surface around a body,
integrating via some quadrature technique to obtain the force. If one uses a dense-
direct solver (when N is not too big), the Cholesky factorization of A can be
computed once for a given n and then many right-hand sides can be solved quickly
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via backsubstitution [65] in order to integrate hTi over the stress-integration
surface. Precisely such a dense-direct BEM stress-tensor method was recently
demonstrated to compute Casimir forces in two and three dimensions [19, 20]. As
described in Sect. 6.2.3, fast-solver techniques can be applied to multiply A by a
vector in OðN log NÞ time with OðNÞ storage; given a good preconditioner, this
implies that an iterative method such as conjugate-gradient (applicable since A is
real-symmetric positive-definite) could find hTi at a single x and n in OðN log NÞ
time. The remaining question is the number of points required for the surface
integral of hTi, which depends on why one is increasing N: either to increase
accuracy for a fixed geometry or to increase the complexity of the geometry for a
fixed accuracy. In the former case, the smoothness of hTi in x means that expo-
nentially convergent quadrature techniques are applicable, which converge much
faster than the (polynomial) BEM basis for the surface currents, so that ultimately
the number of stress-quadrature points13 should be independent of N and the
overall complexity becomes OðN log NÞ. In the latter case, for a fixed accuracy and
increasingly complex geometry (or smaller feature sizes), it appears likely that the
number of stress-quadrature points will increase with N, but detailed studies of this
scaling are not yet available.

It turns out that this BEM approach is closely related to the BEM path-integral
approach described in Sect. 6.6.3. Both approaches end up solving linear equations
with exactly the same matrix A of (6.17), with the same degrees of freedom. The
path-integral approach shows, however, that this same matrix can be applied to
compute the Casimir interaction energy as well as the force, with comparable
computational cost for dense solvers. Moreover, as explained below, expressing
the force in terms of the derivative of the path-integral energy results in a trace
expression that is conceptually equivalent to integrating a stress tensor over the
surface of an object, where the number of ‘‘quadrature points’’ is now exactly
equal to N. An unanswered question, at this point, is whether a fast solver can be
more efficiently (or more easily) exploited in the stress-tensor approach or in the
path-integral approach.

6.5.4 Other Possibilities: FEM and Spectral Methods

There are of course, many other frequency-domain techniques from classical EM
that could potentially be used to solve for the Green’s function and hence the

13 Numeric integration (quadrature) approximates an integral
R

f ðxÞdx by a sum
P

i f ðxiÞwi

over quadrature points xi with weights wi. There are many techniques for the selection of these
points and weights, and in general one can obtain an error that decreases exponentially fast with
the number of points for analytic integrands [53, 83, 84, 113]. Multidimensional quadrature,
sometimes called cubature, should be used to integrate the stress tensor over a 2d surface, and
numerous schemes have been developed for low-dimensional cubature [114, 115] (including
methods that adaptively place more quadrature points where they are most needed [116]). For
spherical integration surfaces (or surfaces that can be smoothly mapped to spheres), specialized
methods are available [117, 118].
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energy/force density. For example, one could use spectral integral-equation
methods, such as multipole expansions for spheres and cylinders [5], to compute
responses to currents, although the advantages of this approach compared to the
spectral path-integral approach in Sect. 6.6.2 are unclear. One can also solve the
PDE formulation of the Green’s function (6.10) using a finite-element (FEM)
approach with some general mesh; in principle, existing FEM techniques from
classical EM [1, 3, 4, 7] are straightforwardly applicable. One subtlety that arises
in FEM methods with a nonuniform resolution is the regularization, however [12].
In principle, as mentioned above, one needs to subtract the vacuum Green’s
function contribution from the field correlation functions in order to get a physical
result [since the vacuum Green’s function Gðx; x0Þ diverges as x0 ! x, although
the divergence is cut off by the the finite mesh resolution]. With a uniform mesh,
this vacuum contribution is the same everywhere in the mesh and hence
automatically integrates to zero in the force (when the stress tensor is integrated
over a closed surface or the energy is differentiated). For a nonuniform
mesh, however, the vacuum contribution varies at different points in space
with different resolution, so some ‘‘manual’’ regularization seems to be required
(e.g., subtracting a calculation with the same mesh but removing the objects).
These possibilities currently remain to be explored for Casimir physics.

6.5.5 Finite-Difference Time-Domain (FDTD) Methods

Casimir effects are fundamentally broad-bandwidth, integrating contributions of
fluctuations at all frequencies (real or imaginary), although the imaginary-frequency
response is dominated by a limited range of imaginary frequencies. In classical EM,
when a broad-bandwidth response is desired, such as a transmission or reflection
spectrum from some structure, there is a well-known alternative to computing the
contributions at each frequency separately—instead, one can simulate the same
problem in time, Fourier-transforming the response to a short pulse excitation in
order to obtain the broad-bandwidth response in a single time-domain simulation [6,
119]. The same ideas are applicable to the Casimir problem, with a few twists,
yielding a practical method [13, 27] that allows Casimir calculations to exploit off-
the-shelf time-domain solvers implementing the standard finite-difference
time-domain (FDTD) method [2]. There are two key components of this approach
[13]: first, converting the frequency integral to a time integral and, second, finding a
time-domain equivalent of the complex-fequency idea from Sect. 6.4.

As reviewed above, the mean fluctuations in the fields, such as hE2ðxÞix, can be
expressed in terms of the fields at x from a frequency-x current at x. If, instead of a
frequency-x current, one uses a current with dðtÞ time dependence, it follows by
linearity of (6.4) that the Fourier transform of the resulting fields must yield
exactly the same hE2ðxÞix. Roughly, the procedure could be expressed as follows:
First, we compute some function CðtÞ of the time-domain fields from a sequence of
simulations with dðtÞ sources, e.g. where CðtÞ is the result of spatially integrating
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the fields making up the mean stress tensor hTðxÞi [noting that each point x
involves several separate dðtÞ-response simulations]. Second, we Fourier transform
CðtÞ to obtain ~CðxÞ. Third, we obtain the force (or energy, etcetera) by integrating
R

~CðxÞ~gðxÞdx with appropriate frequency-weighting factor ~gðxÞ (which may
come from the frequency dependence of e in hTi, a Jacobian factor from below,
etcetera). At this point, however, it is clear that the Fourier transform of C was
entirely unnecessary: because of the unitarity of the Fourier transform (the
Plancherel theorem),

R
~CðxÞ~gðxÞdx ¼

R
CðtÞgð�tÞdt. That is, we can compute

the force (or energy, etcetera) by starting with dðtÞ sources and simply integrating
the response CðtÞ in time (accumulated as the simulation progresses) multiplied by
some (precomputed, geometry-independent) kernel g(t) (which depends on tem-
perature if the coth factor is included for T [ 0). The details of this process, for the
case of the stress tensor, are described in Refs. [13, 27].

Although it turns out to be possible to carry out this time-integration process as-
is, we again find that a transformation into the complex-frequency plane is
desirable for practical computation (here, to reduce the required simulation time)
[13]. Transforming the frequency in a time-domain method, however, requires an
indirect approach. The central observation is that, in (6.4) for the electric-field
Green’s function GE, the frequency only appears explicitly in the x2e term,
together with e. So, any transformation of x can equivalently be viewed as a
transformation of e. In particular suppose that we wish to make some transfor-
mation x! xðnÞ to obtain an x in the upper-half complex plane, where n is a real
parameter (e.g. x ¼ in for a Wick rotation). Equivalently, we can view this as a
calculation at a real frequency n for a transformed complex material: x2eðx; xÞ !
n2ecðn; xÞ where the transformed material is [13, 120]

ecðn; xÞ ¼
x2ðnÞ

n2 eðxðnÞ; xÞ: ð6:18Þ

For example, a Wick rotation x! in is equivalent to operating at a real frequency
n with a material eðxÞ ! �eðinÞ. However, at this point we run into a problem:
multiplying e by �1 yields exponentially growing solutions at negative frequen-
cies [13, 120], and this will inevitably lead to exponential blowup in a time-
domain simulation (which cannot avoid exciting negative frequencies, if only from
roundoff noise). In order to obtain a useful time-domain simulation, we must
choose a contour xðnÞ that yields a causal, dissipative material ec, and one such

choice is xðnÞ ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ir=n

p
for any constant r[ 0 [13, 120]. This yields

ec ¼ ð1þ ir=xÞe, where the ir=x term behaves exactly like an artificial con-
ductivity added everywhere in space. In the frequency-domain picture, we would
say from Sect. 6.4 that this xðnÞ contour will improve the computation by moving
away from the real-x axis, transforming the frequency integrand into something
exponentially decaying and less oscillatory. In the time-domain picture, the r term
adds a dissipation everywhere in space that causes CðtÞ to decay exponentially in
time, allowing us to truncate the simulation after a short time. As long as we
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include the appropriate Jacobian factor dx
dn in our frequency integral, absorbing it

into g(t), we will obtain the same result in a much shorter time. The computational
details of this transformation are described in Refs. [13, 27]. More generally, this
equivalence between the Casimir force and a relatively narrow-bandwidth real-
frequency response of a dissipative system potentially opens other avenues for the
understanding of Casimir physics [120].

The end result is a computational method for the Casimir force in which one
takes an off-the-shelf time-domain solver (real time/frequency), adds an artificial
conductivity r everywhere, and then accumulates the response CðtÞ to short
pulses multiplied by a precomputed (geometry independent) kernel gðtÞ. The
most common time-domain simulation technique in classical EM is the FDTD
method [2]. Essentially, FDTD works by taking the same spatial Yee discreti-
zation as in the FDFD method above, and then also discretizing time with some
time step Dt. The fields are then marched through time in steps of Dt, where
each time step requires OðNÞ work for N spatial grid points. Because the
complex-x contour is implemented entirely as a choice of materials ec, existing
FDTD software can be used without modification to compute Casimir forces, and
one can exploit powerful existing software implementing parallel calculations,
various dimensionalities and symmetries, general dispersive and anisotropic
materials, PML absorbing boundaries, and techniques for accurate handling of
discontinuous materials. One such FDTD package is available as free/open-
source software from our group [119], and we have included built-in facilities to
compute Casimir forces [121].

6.5.6 Accelerating FD Convergence

Finally, we should mention a few techniques that accelerate the convergence and
reduce the computational cost of the finite-difference approaches. These tech-
niques are not necessary for convergence, but they are simple to implement and
provide significant efficiency benefits.

The simplest technique is extrapolation in Dx: since the convergence rate of the
error with the spatial resolution Dx is generally known a priori, one can fit the
results computed at two or more resolutions in order to extrapolate to Dx! 0. The
generalization of this approach is known as Richardson extrapolation [91], and it
can essentially increase the convergence order cheaply, e.g., improving OðDxÞ to
OðDx2Þ [122].

Second, suppose one is computing the force between two objects A and B sur-
rounded by a homogeneous medium. If one of the objects, say B, is removed, then
(in principle) there should be no net remaining force on A. However, because of
discretization asymmetry, a computation with A alone will sometimes still give a
small net force, which converges to zero as Dx! 0. If this ‘‘error’’ force is
subtracted from the A–B force calculation, it turns out that the net error is reduced.
More generally, the error is greatly reduced if one computes the A–B force and

200 S. G. Johnson



then subtracts the ‘‘error’’ forces for A alone and for B alone, tripling the number of
computations but greatly reducing the resolution that is required for an accurate
result [12].

Third, when integrating the stress tensor hTðxÞiin over x to obtain the net
force (6.12), the most straightforward technique in FD is to simply sum over all
the grid points on the integration surface—recall that each point x requires a
linear solve (a different right-hand side) in frequency domain, or alternatively a
separate time-domain simulation (a separate current pulse). This is wasteful,
however, because hTðxÞiin is conceptually smoothly varying in space—if one
could evaluate it at arbitrary points x (as is possible in the BEM approach), an
exponentially convergent quadrature scheme could be exploited to obtain an
accurate integral with just a few x’s. This is not directly possible in an FD
method, but one can employ a related approach. If the integration surface is a
box aligned with the grid, one can expand the fields on each side of the box in a
cosine series (a discrete cosine transform, or DCT, since space is discrete)—this
generally converges rapidly, so only a small number terms from each side are
required for an accurate integration. But instead of putting in point sources,
obtaining the responses, and expanding the response in a cosine series, it is
equivalent (by linearity) to put in cosine sources directly instead of point
sources. [Mathematically, we are exploiting the fact that a delta function can be
expanded in any orthonormal basis bnðxÞ over the surface, such as a cosine
series, via: dðx� x0Þ ¼

P
n

�bnðx0ÞbnðxÞ. Substituting this into the right-hand side
of (6.10), each bnðxÞ acts like a current source and �bnðx0Þ scales the result, which
is eventually integrated over x0.] The details of this process and its convergence
rate are described in Ref. [27], but the consequence is that many fewer linear
systems (fewer right-hand sides) need be solved (either in frequency or time
domain) than if one solved for the stress tensor at each point individually.

6.6 Path Integrals and Scattering Matrices

Another formulation of Casimir interactions is to use a derivation based on path
integrals. Although the path-integral derivation itself is a bit unusual from the
perspective of classical EM, and there are several slightly different variations on
this idea in the literature, the end result is straightforward: Casimir energies and
forces are expressed in terms of log determinants and traces of classical scattering
matrices [10, 14–18, 21, 22, 24–26], or similarly the interaction matrices (6.17)
that arise in BEM formulations [9]. Here, we omit the details of the derivations and
focus mainly on the common case of piecewise-homogeneous materials, empha-
sizing the relationship of the resulting method to surface-integral equations from
classical EM via the approach in Ref. [9].

Path integrals relate the Casimir interaction energy U of a given configuration
to a functional integral over all possible vector-potential fields A. Assuming
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piecewise-homogeneous materials, the constraint that the fields in this path inte-
gral must satisfy the appropriate boundary conditions can be expressed in terms of
auxiliary fields J at the interfaces (a sort of Lagrange multiplier) [123].14 At this
point, the original functional integral over A can be performed analytically,
resulting in an energy expression involving a functional integral ZðnÞ over only the
auxiliary fields J at each imaginary frequency n, of the form (at zero temperature):

U ¼ � �hc

2p

Z1

0

log det
ZðnÞ

Z1ðnÞ
dn; ð6:19Þ

ZðnÞ ¼
Z

DJe�
1
2

RR
d2x
RR

d2x0JðxÞ�Gnðx�x0Þ�Jðx0Þ: ð6:20Þ

Here, Z1 denotes Z when the objects are at infinite separation (non-interacting),
regularizing U to just the (finite) interaction energy (See also the Chap. 5 by S.J.
Rahi et al. in this volume for additional discussion of path integrals and Casimir
interactions.) In the case of perfect electric conductors in vacuum, J can be
interpreted as a surface current on each conductor (enforcing the vanishing tan-
gential E field), and Gn is the vacuum Green’s function in the medium outside the
conductors [9]. For permeable media (finite e and l), it turns out that a formulation
closely related to the standard PMCHW integral-equation model (see Sect. 6.5.3)
can be obtained: J represents fictitious surface electric and magnetic currents on
each interface (derived from the continuity of the tangential E and H fields), with
Gn again being a homogeneous Green’s function (with one Z factor for each
contiguous homogeneous region) [124]. Alternatively, because there is a direct
correspondence between surface currents and the outgoing/scattered fields from a
given interface, ‘‘currents’’ J can be replaced by scattered fields, again related at
different points x and x0 by the Green’s function of the homogeneous medium; this
is typically derived directly from a T-matrix formalism [14, 22, 25, 26]. Here, we
will focus on the surface-current viewpoint, which is more common in the clas-
sical-EM integral-equation community.

The path integral (6.20) is somewhat exotic in classical EM, but it quickly
reduces to a manageable expression once an approximate (finite) basis bk is chosen
for the currents J. Expanding in this basis, J �

P
ckbkðxÞ and the functional

integral DJ is replaced by an ordinary integral over the basis coefficients
dc1 � � � dcN . Equation (6.20) is then a Gaussian integral that can be performed

analytically to obtain ZðnÞ ¼ #=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det AðnÞ

p
for a proportionality constant # [9],

where Ajk ¼
R

�bj �Gn � bk is essentially the same as the BEM matrix (6.17), albeit

14 Alternatively, the path integral can be performed directly in A, resulting in an expression
equivalent to the sum over energy density in Sect. 6.5 [87] and which in an FD discretization
reduces in the same way to repeated solution of the Green’s-function diagonal at every point in
space [23].

202 S. G. Johnson

http://dx.doi.org/10.1007/978-3-642-20288-9_5


here in an arbitrary basis. In the log det of (6.19), proportionality constants and
exponents cancel, leaving:

U ¼ þ �hc

2p

Z1

0

log det A1ðnÞ�1AðnÞ
h i

dn: ð6:21Þ

Just as in Sect. 6.7, the use of a real-symmetric positive-definite homogeneous
Green’s function Gn at imaginary frequencies means that AðnÞ is also real-sym-
metric and positive-definite, ensuring positive real eigenvalues and hence a real
log det. Several further simplifications are possible, even before choosing a par-
ticular basis. For example, let p be the position of some object for which the force
F is desired. The components Fi of the force (in direction pi) can then be expressed
directly as a trace [9, 125]:

Fi ¼ �
dU

dpi
¼ � �hc

2p

Z1

0

tr A�1 oA

opi

� �

dn: ð6:22Þ

Equivalently, this trace is the sum of eigenvalues k of the generalized eigen-
problem oA

opi
v ¼ kAv; again, these k are real because A is real-symmetric positive-

definite and oA=opi is real-symmetric. (If dense-direct solvers are used, computing
A�1 oA

opi
via Cholesky factorization is much more efficient than computing eigen-

values, however [65].) The matrix A can be further block-decomposed in the usual
case where one is computing the interactions among two or more disjoint objects
(with disjoint surface currents J). For example, suppose that one has two objects 1
and 2, in which case one can write

A ¼
A11 A12

AT
12 A22;

� �

ð6:23Þ

where A11 and A22 couple currents on each object to other currents on the same
object, and A12 and AT

12 ¼ A21 couple currents on object 1 to object 2 and vice
versa. In the limit of infinite separation for A1, one obtains A12 ! 0 while A11 and
A22 are unchanged, and one can simplify the log det in (6.21) to

log det A1ðnÞ�1AðnÞ
h i

¼ log det I � A�1
22 AT

12A�1
11 A21

	 

: ð6:24Þ

Computationally, only A12 depends on the relative positions of the objects, and this
simplification immediately allows several computations to be re-used if the energy
or force is computed for multiple relative positions.

6.6.1 Monte-Carlo Path Integration

Before we continue, it should be noted that there also exists a fundamentally
different approach for evaluating a path-integral Casimir formulation. Instead of
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reducing the problem to surface/scattering unknowns and analytically integrating
Z to obtain a matrix log det expression, it is possible to retain the original path-
integral expression, in terms of a functional integral over vector potentials A in the
volume, and perform this functional integral numerically via Monte-Carlo meth-
ods [126, 127]. This reduces to a Monte-Carlo integration of an action over all
possible closed-loop paths (‘‘worldlines’’), discretized into some number of points
per path. Because this technique is so different from typical classical EM com-
putations, it is difficult to directly compare with the other approaches in this
review. Evaluating its computational requirements involves a statistical analysis of
the scaling of the necessary number of paths and number of points per path with
the desired accuracy and the complexity of the geometry [12], which is not cur-
rently available. A difficulty with this technique is that it has currently only been
formulated for scalar fields with Dirichlet boundary conditions, not for the true
Casimir force of vector electromagnetism.

6.6.2 Spectral Methods

One choice of basis functions bk for the path-integral expressions above is a
spectral basis, and (mirroring the history of integral equations in classical EM)
this was the first approach applied in the Casimir problem. With cylindrical
objects, for example, the natural spectral basis is a Fourier-series eim/ in the
angular direction /. For planar surfaces the natural choice is a Fourier transform,
for spheres it is spherical harmonics Y‘m (or their vector equivalents [41]), and
for spheroids there are spheroidal harmonics [128]. Equivalently, instead of
thinking of surface currents expanded in a Fourier-like basis, one can think of
the scattered fields from each object expanded in the corresponding Fourier-like
basis (e.g. plane, cylindrical, or spherical waves), in which case A relates the
incoming to outgoing/scattered waves for each object; this has been called a
‘‘scattering-matrix’’ or ‘‘T-matrix’’ method and is the source of many pioneering
results for Casimir interactions of non-planar geometries [14, 22, 25, 26]. Even
for nonspherical/spheroidal objects, one can expand the scattered waves in vector
spherical harmonics [22], and a variety of numerical techniques have been
developed to relate a spherical-harmonic basis to the boundary conditions on
nonspherical surfaces [58]. These spectral scattering methods have their roots in
many classical techniques for EM scattering problems [56, 129] (See also the
Chap. 5 by S.J. Rahi et al. and Chap. 4 by A. Lambrecht et al. in this volume for
additional discussions of scattering techniques and Casimir interactions.) Here,
we will use the surface-current viewpoint rather than the equivalent scattered-
wave viewpoint.

Many simplifications occur in the interaction matrix A of (6.23) for geome-
tries with highly symmetrical objects and a corresponding spectral basis [22].
Consider, for example, the case of spherical objects, with surface currents
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expressed in a vector spherical-harmonic basis (spherical harmonics for two
polarizations [22]). In the interaction matrix Ajk ¼

RR
bjðxÞ �Gðx� x0Þ � bkðx0Þ,

the convolution
R

Gðx� x0Þ � bkðx0Þ of a Green’s function G with bk is known
analytically: it is just the outgoing spherical wave produced by a spherical-
harmonic current. If bj is another spherical-harmonic current on the same sphere,
then the orthogonality of the spherical harmonics means that the x integral of
bjðxÞ against the spherical wave is zero unless j ¼ k. Thus, the self-interaction
blocks A11 and A22 of (6.23), with an appropriate normalization, are simply
identity matrices. The A12 entries are given by the coupling of a spherical wave
from bk on sphere 2 with a spherical-harmonic basis function bj on sphere 1, but
again this integral can be expressed analytically, albeit as an infinite series: the
spherical wave from sphere 2 can be re-expressed in the basis of spherical waves
centered on sphere 1 via known translation identities of spherical waves, and as
a result A12 takes the form of a ‘‘translation matrix’’ [22]. Furthermore, if there
are only two spheres in the problem, then their spherical harmonics can be
expressed with respect to a common z axis passing through the centers of the
spheres, and a Y‘m on sphere 1 will only couple with a Y‘0m0 on sphere 2 if
m ¼ m0, greatly reducing the number of nonzero matrix elements. Related
identities are available for coupling cylindrical waves around different origins,
expanding spherical/cylindrical waves in terms of planewaves for coupling to
planar surfaces, and so on [22].

As was noted in Sect. 6.2.2, such a spectral basis can converge exponentially
fast if there are no singularities (e.g. corners) that were not accounted for ana-
lytically, and the method can even lend itself to analytical study. Especially for
cylinders and spheres, the method is simple to implement and allows rapid
exploration of many configurations; the corresponding classical ‘‘multipole
methods’’ are common in classical EM for cases where such shapes are of
particular interest [5]. On the other hand, as the objects become less and less
similar to the ‘‘natural’’ shape for a given basis (e.g. less spherical for spherical
harmonics), especially objects with corners or cusps, the spectral basis converges
more slowly [58]. Even for the interaction between two spheres or a sphere and
a plate, as the two surfaces approach one another the multipole expansion will
converge more slowly [25, 130, 131]—conceptually, a spherical-harmonic basis
has uniform angular resolution all over the sphere, whereas for two near-
touching surfaces one would rather have more resolution in the regions where
the surfaces are close (e.g. by using a nonuniform BEM mesh). This exponential
convergence of a spectral (spherical harmonic [22]) Casimir calculation is
depicted in Fig. 6.4 for the case of the Casimir interaction energy U between two
gold spheres of radius R ¼ 1 lm, for various surface-to-surface separations
a. The error DU=U decreases exponentially with the maximum spherical-har-
monic order ‘ [corresponding to N ¼ 4‘ð‘þ 2Þ degrees of freedom for two
spheres], but the exponential rate slows as a=R decreases. (On the other hand, for
small a=R a perturbative expansion or extrapolation may become applicable
[130].)
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6.6.3 Boundary-Element Methods (BEMs)

In a BEM, one meshes the interfaces, say into triangles, and uses a set of localized
basis functions bk as discussed in Sect. 6.5.3. In this case, the interaction matrix
A that arises in the path-integral formulation is exactly the same as the interaction
matrix that arises in classical BEM methods (albeit at an imaginary frequency),
and is the same as the matrix A that arises in a BEM stress-tensor approach as
described in Sect. 6.5.3 . The main difference, compared to the stress-tensor
approach, lies in how one uses the matrix A: instead of solving a sequence of linear
equations to find the mean stress tensor hTi at various points on a surface around

an object, one computes log det A or tr A�1 oA
opi

h i
to obtain the energy (6.21) or force

(6.22). We have demonstrated this approach for several three-dimensional
geometries, such as the crossed capsules of Fig. 6.3 [9].

If one is using dense-matrix techniques, the advantage of this approach over the
stress-tensor technique seems clear [9]: it avoids the complication of picking a
stress-integration surface and an appropriate surface-integration technique, and
allows the size of the linear system to be easily reduced via blocking as in (6.24).
The situation is less clear as one moves to larger and larger problems, in which
dense-matrix solvers become impractical and one requires an iterative method.
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Fig. 6.4 Fractional error DU=U in the Casimir interaction energy U between two gold spheres of
radius R ¼ 1 lm, for various surface-surface separations a, as a function of the maximum
spherical-harmonic order ‘ of the spectral path-integral (scattering-matrix/multipole) method.
The error converges exponentially with ‘, but the exponential rate slows as a=R shrinks.
(Calculations thanks to A. Rodriguez.)
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In that case, computing tr A�1 oA
opi

h i
straightforwardly requires N linear systems to

be solved; if each linear system can be solved in OðN log NÞ time with a fast solver
(as discussed in Sects. 6.2.3 and 6.5.3), then the overall complexity is OðN2 log NÞ
[with O(N) storage], whereas it is possible that the stress-tensor surface integral
may require fewer than N solves. On the other hand, there may be more efficient
ways to compute the trace (or log det) via low-rank approximations: for example,
if the trace (or log det) is dominated by a small number of extremal eigenvalues,
then these eigenvalues can be computed by an iterative method [68] with the
equivalent of�N linear solves. The real-symmetric property of A, as usual, means
that the most favorable iterative methods can be employed, such as a Lanczos or
Rayleigh-quotient method [68]. Another possibility might be sparse-direct solvers
via a fast-multipole decomposition [73]. The most efficient use of a fast
OðN log NÞ BEM solver in Casimir problems, whether by stress-tensor or path-
integral methods, remains an open question (and the answer may well be problem-
dependent).

In the BEM approach with localized basis functions, the tr A�1 oA
opi

h i
expression

for the force corresponds to a sum of a diagonal components for each surface
element, and in the exact limit of infinite resolution (infinitesimal elements) this
becomes an integral over the object surfaces. Expressing the force as a surface
integral of a quantity related to Green’s-function diagonals is obviously reminis-
cent of the stress-tensor integration from Sect. 6.5.1.3, and it turns out that one can
prove an exact equivalence using only vector calculus [124]. (At least one previous
author has already shown the algebraic equivalence of the stress tensor and the
derivative of the path-integral energy for forces between periodic plates [132].)

6.6.4 Hybrid BEM/Spectral Methods

It is possible, and sometimes very useful, to employ a hybrid of the BEM and
spectral techniques in the previous two sections. One can discretize a surface using
boundary elements, and use this discretization to solve for the scattering matrix Akk

of each object in a spectral basis such as spherical waves. That is, for any given
incident spherical wave, the outgoing field can be computed with BEM via (6.16)
and then decomposed into outgoing spherical waves to obtain one row/column of Akk

at a time; alternatively, the multipole decomposition of the outgoing wave can be
computed directly from the multipole moments of the excited surface currents Js

[41]. This approach appears to be especially attractive when one has complicated
objects, for which a localized BEM basis works well to express the boundary con-
ditions, but the interactions are only to be computed at relatively large separations
where the Casimir interaction is dominated by a few low-order multipole moments.
One can perform the BEM computation once per object and re-use the resulting
scattering matrix many times via the analytical translation matrices, allowing one to
efficiently compute interactions for many rearrangements of the same objects and/or
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for ‘‘dilute’’ media consisting of many copies of the same objects [133]. (Essentially,
this could be viewed as a form of low-rank approximation of the BEM matrix,
capturing the essential details relevant to moderate-range Casimir interactions in a
much smaller matrix.) Such a hybrid approach is less attractive for closer separa-
tions, however, in which the increasing number of relevant multipole moments will
eventually lead to an impractically large matrix to be computed.

6.6.5 Eigenmode-Expansion/RCWA Methods

Consider the case of the interaction between two corrugated surfaces depicted in
Fig 6.5, separated in the z direction. From the scattering-matrix viewpoint, it is
natural to consider scattering off of each object by planewaves. In this case, the
self-interaction matrices A�1

11 and A�1
22 can be re-expressed in terms of reflection

matrices R1 and R2 for each surface, relating the amplitudes of incident waves at
some plane (dashed line) above each surface to the reflected (specular and non-
specular) planewave amplitudes. The matrices A12 and A21 are replaced by a
diagonal matrix D12 ¼ DT

21 that relates the planewave amplitudes at the planes for
objects 1 and 2, separated by a distance a—at real frequencies, this would be a
phase factor, but at imaginary frequencies it is an exponential decay as discussed
below. This results in the following expression for the Casimir interaction energy:

U ¼ �hc

2p

Z1

0

log det I � R2D12R1D12½ �dn: ð6:25Þ

Alternatively, instead of viewing it as a special case of the T-matrix/scattering-
matrix idea [22], the same expression can be derived starting from an eigenmode-
summation approach [18].

The problem then reduces to computing the scattering of an incident planewave
off of a corrugated surface, with the scattered field decomposed into outgoing
planewaves. For this problem, one could use any of the tools of computational EM
(such as BEM, FD, and so on), but there is a notable method that is often well-
suited to the case of periodic surfaces, especially periodic surfaces with piecewise-
constant cross-sections15 (as in object 2 of Fig. 6.5). This method is called
eigenmode expansion [43–45] or rigorous coupled-wave analysis (RCWA) [46,
47], or alternatively a cross-section method [48]. RCWA has a long history
because it is closely tied to semi-analytical methods to study waveguides with
slowly/weakly varying cross-sections [48, 134]. An analogous method was
recently applied to Casimir problems [18]. In RCWA, one computes reflection and
scattering matrices at a given frequency x along some direction z by expanding the

15 See also the Chap. 4 by A. Lambrecht et al. in this volume for additional discussion of
Casimir interactions among periodic structures.
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fields at each z in the basis of the eigenmodes of the cross-section at that z (waves
with z dependence eibz at a given x, where b is called the propagation constant of
the mode). Along regions of uniform cross-section, the z dependence eibz of each
mode is known analytically and no computation is required (the mode amplitudes
are multiplied by a diagonal propagation matrix D). Regions of continuously
varying cross-section are approximated by breaking them up into a finite number
of constant–cross-section layers (as in object 1 of Fig. 6.5). At any z where the
cross-section changes, a change of basis is performed by matching boundary
conditions (the xy components of the fields must be continuous), yielding a
transfer matrix at that interface. All these transfer and propagation matrices can
then be combined to compute scattering/reflection matrices for an entire structure.

The main difference here from classical RCWA computations is that the modes
are computed at imaginary frequencies n. As in Sect. 6.5.1.2, this actually sim-
plifies the problem. At an imaginary frequency x ¼ in, the modes of a given cross-
section eðin; x; yÞ and lðin; x; yÞ with z dependence eibz ¼ e�czðc ¼ �ib) satisfy the
eigenequation (for isotropic materials) [135, 136]:

neþrxy� 1
nlrxy�

nlþrxy� 1
nerxy�

 !
Exy

Hxy

� �

¼ c

1

�1

�1

1

0

B
B
B
@
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C
C
C
A

Exy

Hxy

� �

;

ð6:26Þ

where the xy subscript indicates a two-component vector with xy (transverse)
components. The operators on both the left- and right-hand sides are real-symmetric,
while the operator on the left-hand side is positive-definite, and as a result the
eigenvalues c are purely real. This means that the propagation constants b are purely

1

2

R1

R2a

Λ

z

Fig. 6.5 Schematic problem for which eigenmode-expansion is well suited: the interaction
between two corrugated surfaces, with period K. The Casimir problem reduces to computing the
reflection matrices R1 and R2 for each individual surface, in a planewave basis. Eigenmode
expansion works by expanding the field in each cross-section (dashed lines) in the basis of
eigenmodes of a z-invariant structure with that cross-section, and then matching boundary
conditions whenever the cross-section changes
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imaginary (all of the imaginary-frequency modes are evanescent in z), and the
analogues of incoming/outgoing waves are those that are exponentially decaying
towards/away from the surface. Moreover, the numerical problem of solving for
these eigenmodes in a given cross-section reduces to a positive-definite generalized
eigenvalue problem (a definite matrix pencil [69]), to which the most desirable
numerical solvers apply [68, 69] (unlike the classical real-x problem in which there
are both propagating and evanescent modes because the problem is indefinite [135,
136]). For homogeneous cross-sections (as in the space between the two objects), the
solutions are simply planewaves of the form eikxxþikyy�czþnt, where for vacuum

c ¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkxyj2 þ n2=c2

q
.

For sufficiently simple cross-sections, especially in two-dimensional or axi-
symmetric geometries, it is possible to solve for the modes analytically and hence
obtain the scattering matrices, and this is how the technique was first applied to the
Casimir problem [18]. For more general geometries, one can solve for the modes
numerically by a variety of techniques, such as by a transfer-matrix method in two
dimensions [43] or by a planewave expansion (in the xy cross-section) in three
dimensions [46]. Of course, one truncates to a finite number of modes via some
cutoff jcj (which follows automatically from discretizing the cross-section in a
finite grid, for example), and convergence is obtained in the limit as this cutoff
increases. Given a basis of eigenmodes with some cutoff, the process of con-
structing the scattering/reflection matrices is thoroughly discussed elsewhere [43–
47], so we do not review it here.

The strength of RCWA is that regions of uniform cross-section are handled with
at most a 2d discretization of the cross-section, independent of the thickness of the
region, so very thick or very thin layers can be solved efficiently. The main limitation
of RCWA methods is that the transfer matrices (and the resulting reflection matrices
R1 and R2) are dense N � N matrices, where N is the number of modes required for
convergence. If N is large, as in complicated three-dimensional structures, the
problem can quickly become impractical because of the OðN2Þ storage and OðN3Þ
computation requirements. The most favorable case is that of periodic structures
with relatively simple unit cells, in which case the problem can be reduced to that of
computing the modes of each periodic unit cell (with Bloch-periodic boundary
conditions) as discussed below, and RCWA can then be quite practical even in three
dimensions. Non-periodic structures, such as compact objects, can be handled by
perfectly matched layer (PML) absorbing boundaries [44], albeit at greater com-
putational cost because of the increased cross-section size.

6.7 Periodicity and Other Symmetries

In this section, we briefly discuss the issue of periodicity and other symmetries,
which can be exploited to greatly reduce the computational effort in Casimir
calculations just as for classical EM calculations.
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If a structure is periodic in the x direction with period K, as in Fig. 6.5, the
problem simplifies considerably because one can reduce the computation to a
single unit cell of thickness K. In particular, one imposes Bloch-periodic boundary
conditions—the fields at x ¼ K equal the fields at x ¼ 0 multiplied by a phase
factor eikxK—and computes the Casimir energy or force for each Bloch wavevector

kx separately, then integrates the result over kx via
R p=K
�p=Kð� � �Þdkx. This can be

derived in a variety of ways, for example by applying Bloch’s theorem [6] to
decompose the eigenmodes into Bloch-wave solutions for each kx, or by expanding
the delta functions of the fluctuation–dissipation approach in a Fourier series [12].
More generally, for any periodic unit cell, one can perform the Casimir energy/
force computation for the unit cell with Bloch periodic boundaries and then
integrate the Bloch wavevector k over the irreducible Brillouin zone (multiplied
by the volume ratio of the Brillouin zone and the irreducible Brillouin zone).

The specific case of continuous translational symmetry, say in the x direction,
corresponds K! 0 and one must integrate over all kx (the Brillouin zone is infi-
nite). Certain additional simplifications apply in the case of a perfect-metal struc-
ture with continuous translational symmetry, in which case the fields decompose
into two polarizations and the k integration can be performed implicitly [12].

Rotational symmetry can be handled similarly: the fields can be decomposed
into fields with eim/ angular dependence, and the total force or energy is the sum
over all integers m of the contributions for each m [27]. More generally, the
Casimir contributions can be decomposed into a sum of contributions from irre-
ducible representations of the symmetry group of the structure (e.g. all eigenmodes
can be classified into these representations [137, 138]); translational and rotational
symmetries are merely special cases. As another example, in a structure with a
mirror symmetry one could sum even- and odd-symmetry contributions (in fact,
this is the underlying reason for the TE/TM polarization decomposition in two
dimensions [6]).

6.8 Nonzero-Temperature Corrections

In the preceding sections, we discussed only the computation of Casimir interactions
at zero temperature T ¼ 0þ. However, the modification of any imaginary-frequency
expression for a Casimir interaction from T ¼ 0 to T [ 0 is almost trivial: one
simply performs a sum instead of an integral. If the T ¼ 0 interaction (energy, force,
etc.) is expressed as an integral

R1
0 CðnÞdn of some contributions CðnÞ at each

imaginary frequency n, then the T [ 0 interaction is well known to be simply [81]:

Z1

0

CðnÞdn! 2pkBT

�h

X1

n¼0

0
C

2pkBT

�h
n

� �

; ð6:27Þ
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where kB is Boltzmann’s constant and
P0 indicates a sum with weight 1

2 for the
n ¼ 0 term. The frequencies nn ¼ 2pkBTn=�h are known as Matsubara frequencies,
and the corresponding (imaginary) Matsubara wavelengths are kn ¼ 2p=nn ¼
kT=n where kT ¼ �h=kBT . The conversion of the T ¼ 0 integral into a summation
can be derived in a variety of ways, most directly by considering thermodynamics
in the Matsubara formalism [81]. Physically, this arises from the cothð�hx=2kTÞ
Bose–Einstein distribution factor that appears in the fluctuation–dissipation
expressions (6.3) for nonzero temperatures. When the contour integration is per-
formed over x, the coth introduces poles at �hx=2kT ¼ ipn that convert the integral
into a sum via the residue theorem (with the n ¼ 0 residue having half weight
because it lies on the real-x axis) [77]. As explained in Sect. 6.5.1.2, some care
must be applied in evaluating the n ¼ 0 term because of the well known singu-
larity of Maxwell’s equations at x ¼ 0 (where the E and H fields decouple), and
one may need to take the limit n! 0þ (although there is some controversy in the
unphysical case of perfect metals [92]).

Mathematically, the sum of (6.27) is exactly the same as a trapezoidal-rule
approximation for the T ¼ 0 integral, with equally spaced abscissas Dn ¼ 2p=kT

[53, 91, 139]. Thanks to the OðDn2Þ convergence of the trapezoidal rule [53], this
means that the T [ 0 result is quite close to the T ¼ 0 result unless CðnÞ varies
rapidly on the scale of 2p=kT . In particular, suppose that CðnÞ varies on a scale
2p=a, corresponding to some lengthscale a in the problem (typically from a sur-
face–surface separation). In that case, assuming CðnÞ has nonzero slope16 at n ¼
0þ (typical for interactions between realistic metal surfaces), then the nonzero-
T correction should be of order Oða2=k2

TÞ. At room temperature (T ¼ 300 KÞ;
kT � 7:6 lm, and the temperature corrections to Casimir interactions are typically
negligible for submicron separations [81, 140]. On the other hand, it is possible
that careful material and geometry choices may lead to larger temperature effects
[139]. There is also the possibility of interesting effects in nonequilibrium situa-
tions (objects at different temperatures) [141, 142], but such situations are beyond
the scope of this review.

6.9 Concluding Remarks

The area of numerical Casimir computations remains rich with opportunities.
Relatively few geometry and material combinations have as yet been explored, and
thus many newly answerable questions remain regarding the ways in which
Casimir phenomena can be modified by exploiting the degrees of freedom avail-
able in modern nanofabrication. In the regime of computational techniques, while
several effective methods have already been proposed and demonstrated, the

16 If CðnÞ has zero slope at n ¼ 0þ, then the trapezoidal rule differs from the integral by
OðDn4Þ or less, depending upon which derivative is nonzero at n ¼ 0þ [53].
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parallels with computational electromagnetism lead us to anticipate ongoing
improvements and developments for some time to come. The same parallels also
caution against any absolute ‘‘rankings’’ of the different approaches, as different
numerical techniques have always exhibited unique strengths and weaknesses in
both theory and practice. And because computer time is typically much less
expensive than programmer time, there is something to be said for methods that
may be theoretically suboptimal but are easy to implement (or are available off-
the-shelf) for very general geometries and materials. Nor is the value of analytical
and semi-analytical techniques diminished, but rather these approaches are freed
from the tedium of hand computation to focus on more fundamental questions.
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