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Logaritmisk kapacitet är viktigt inom �era områden av tillämpad matematik och kan ha olika

benämningar beroende på forskningsområdet. T.ex. inom talteorin kallas den logaritmiska ka-

paciteten för trans�nit diameter och inom approximering av polynom är den känd som Chebyshevs

konstant. Inom potentialteorin de�nieras den logaritmiska kapaciteten som måttet på storleken av

en kompakt mängd i C.

Men trots att den logaritmiska kapaciteten är så viktig inom många forskningsområden, så är den

ytterst svår att beräkna. Tack vare dess samband till Greens funktioner går det att beräkna den

logaritmiska kapaciteten analytiskt för vissa enklare mängder, såsom ellipser och kvadrater, men

när det gäller mer komplicerade mängder så kan man endast uppskatta övre och nedre gränser. På

grund av detta har det utvecklats �era numeriska metoder för detta syfte.

I början av denna avhandling kommer vi att presentera nödvändig bakgrundsinformation för

de�niering och beräkning av logaritmisk kapacitet. I kapitel 4 presenterar vi de�nitionen av logar-

itmisk kapacitet och dess samband till Greens funktioner, samt hur man genom detta samband kan

beräkna den logaritmiska kapaciteten analytiskt. Här presenterar vi även några gränser för den loga-

ritmiska kapaciteten, samt de�nitionen för trans�nit diameter och dess samband till den logaritmiska

kapaciteten. I kapitel 5 kommer vi att presentera fyra olika numeriska metoder för approximering av

logaritmisk kapacitet: Dijkstra-Hochstenbachs metod, Rostands metod, Ransford-Rostands metod,

samt hur man kan använda Schwarz-Christo�el avbildningar för beräkning av logaritmisk kapacitet.

Vi tillämpar även Rostands metod som ett MATLAB-program.
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Chapter 1

Introduction

The logarithmic capacity of compact sets in R2 = C plays an important role in many
�elds of applied mathematics. In general it is de�ned as a measure for the capability of a
set to support a unit amount of charge, but the formal de�nition depends on which �eld
of mathematics it is being used in. For example, in potential theory logarithmic capacity
is considered the measure of the size of a compact set in C.

The term �potential theory� arose in the 19th century physics, when the belief was
that the fundamental forces of nature could be derived from potentials satisfying Laplace's
equation. These days, we know that nature is a bit more complicated then that, but the
term �potential theory� has remained to describe the study of functions which satisfy
Laplace's equation. The study of capacities is an important �eld of study in modern
potential theory.

Figure 1.1: Gustave Choquet

The notion of the capacity of a set, which refers to
the measure of the �size� of a set in Euclidean space, was
introduced by Gustave Choquet (1915-2006) in 1950. He
was a French mathematician born in Solesmes in north-
ern France, and he did his postgraduate work at the
École normale supérieure in Paris, where he received his
doctorate in 1946. Choquet became interested in poten-
tial theory in 1944, and it served as a constant source
of inspiration for him. For a historical account on the
development of the theory of capacity written by Cho-
quet himself, see La naissance de la théorie des capacités:
ré�exion sur une expérience personelle [2].

In the �eld of number theory, the logarithmic capac-
ity is known as the trans�nite diameter. One of the
key people in the subject of trans�nite diameter was the
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hungarian mathematician Michael Fekete (1886-1957).

Figure 1.2: Michael Fekete

Fekete was born into a Jewish-Hungarian family in
Zenta which, at the time of his birth, was a part of the
Austro-Hungarian Empire. Today Zenta is located in
Serbia. After having graduated from the local Gym-
nasium he entered the University of Budapest to study
mathematics. He studied undet Lipót Fejér who he, as
many hungarian mathematicians in his generation, was
greatly in�uenced by. He was awarded a doctorate by
the University of Budapest in 1909. In 1922 Fekete and
John von Neumann published a joint paper, Über die
Lage der Nullstellen gewisser Minimum Polynome [7].
This paper looked at the concept of the trans�nite di-
ameter of a set, a subject Fekete worked on throughout
the rest of his career.

In the �eld of polynomial approximation, the loga-
rithmic capacity is known as the Chebyshev constant.
Fekete proved in 1923 that with the help of Chebyshev

polynomials, named after the russian mathematician Pafnuty Chebyshev (1821-1894), one
can construct the Chebyshev constant, which is identical to the trans�nite diameter and
the logarithmic capacity.

The logarithmic capacity is also linked to the Robin constant, which is important in the
�eld of conformal mapping, and is thus connected to Green's functions. This connection
is particularly useful for calculating the capacity of some simple sets. The logarithmic
capacity is also critical in the �eld of boundary integral equations, where it determines if
the integral equation for a Dirichlet problem is singular.

The mathematical de�nitions of capacity are numerous, but one of the more notable
ones is conformal capacity, which is de�ned using conformal mapping onto the exterior of
the unit circle [15]. Using this de�nition, one can also see an association between capacity
and the conformal radius of a domain.

Despite the fact that logarithmic capacity appears in so many di�erent �elds, it is
notoriously hard to compute. Analytical computations are only possible for some simple
sets, such as squares and ellipses. In the case of more complex sets the capacity can be
numerically approximated with the help of boundaries, but accurate approximations are
rare.

The focus of this thesis is on numerical methods for computing logarithmic capac-
ity, but �rst we will introduce the neccessary background information for understanding
logarithmic capacity. In Chapter 2 we will present some preliminary concepts needed in
de�ning and calculating the logarithmic capacity, such as the extended complex plane,
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the basics of integral transforms and the concept of superharmonic functions, which is
essential for de�ning the concept of potentials. In Chapter 3 we will move on to the
concept of potentials and energy, which are essential when de�ning logarithmic capacity.
This chapter will also introduce us to Green's functions, which can be used to determine
logarithmic capacity. In Chapter 4 we will �nally introduce the concept of logarithmic ca-
pacity and some methods for calculating it with the help of Green's functions. We will also
introduce the concept of trans�nite diameter and the Chebyshev constant, as well as some
methods for approximating logarithmic capacity using boundaries. In Chapter 5 we will
�nally arrive to the heart of this thesis: the numerical methods for computing logarithmic
capacity. We will introduce some methods constructed by Dijkstra and Hochstenbach [4],
by Rostand [23] and by Ransford and Rostand [20]. This chapter will also contain a short
introduction to Schwarz-Christo�el mapping, and how the Schwarz-Christo�el toolbox for
MATLAB can be used for computing logarithmic capacity [5, 6].
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Chapter 2

Preliminaries

This chapter will contain to some of the background information needed when explaining
some concepts regarding logarithmic capacity.

2.1 The extended complex plane

The extended complex plane is the complex plane C with a point at in�nity attached.
This is denoted by C∞ or C ∪ {∞}.

De�nition 2.1. The point of in�nity satis�es the following algebraic properties:

(i) z
∞ = 0,

(ii) z +∞ =∞ (z 6=∞),

(iii) z
0

=∞ (z 6= 0),

(iv) z · ∞ =∞ (z 6= 0),

(v) ∞
z

=∞ (z 6=∞),

where z ∈ C.

The extended complex plane is often equated with the Riemann sphere. A common
way of constructing the Riemann sphere is to set up a correspondence between the points
of C and those of a sphere of radius 1/2 with the center at (0, 0, 1/2).
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De�nition 2.2. Let C be the complex plane and construct a line perpendicular to C.
This would make C the (x, y)-plane in R3, so that any x + iy ∈ C is identi�ed with
(x, y, 0) ∈ R3. Let

(2.3) S = {(ξ, η, ζ) ∈ R3 : ξ2 + η2 + (ζ − 1/2)2 = 1/4}.

Now, the plane ζ = 0 coincides with the complex plane C and the ξ and η axes are the
x and y axes, respectively. A line joining the north pole (0, 0, 1) to (x, y, 0) cuts S in a
unique point (ξ, η, ζ), so we have a unique one-to-one correspondence between C and the
points of S with the exception of the north pole itself. As (ξ, η, ζ) approaches (0, 0, 1) it
follows, that |x+ iy| becomes very large. Thus, it is not unreasonable to assign the north
pole to correspond to the point at in�nity.

We have now obtained a one-to-one correspondence between the points of the Riemann
sphere S and the points of the extended complex plane C∞. [24, 17]

  

Figure 2.1: Projection of a point on the Riemann sphere.
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2.2 Integral transforms

A general integral transform is de�ned by

Kf(x) = g(x) =

∫ b

a

K(x, y)f(y) dy,

where K(x, y) is called the kernel or the nucleus of the transform. [22]
Integral representations play a central role in various �elds of pure and applied mathe-

matics, theoretical physics, and engineering. For example, many boundary value problems
and initial boundary value problems can be solved using integral kernels. [16]

Example 2.4. Consider the homogeneous heat problem with the Dirichlet condition

(2.5)


ut − kuxx = 0 0 < x < L, t > 0

u(0, t) = u(L, t) t ≥ 0

u(x, 0) = f(x) 0 ≤ x ≤ L.

This problem can be solved using a separation of variables technique, as described in [16,
Ch. 5.2]. The basis for this method is �nding a solution of the form u(x, t) = X(x)T (t).

Using the initial conditions in (2.5), we arrive at

u(x, t) =
∞∑
n=1

un(x, t) =
∞∑
n=1

Xn(x)Tn(t),

where
Xn(x) = sin

nπx

L
and Tn(t) = Bne

kn2π2t/L,

with n = 1, 2, 3 . . ..
The coe�cients Bn are the Fourier coe�cients

Bn =
2

L

∫ L

0

sin
nπy

L
f(y) dy,

with n = 1, 2, 3 . . ..
For �xed t > ε > 0 and 0 < x < L, the series

2

L

∞∑
k=1

(
ekn

2π2t/L sin
nπx

L

)
sin

nπy

L
f(y)
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converges uniformly as a function of y. Thus, we can integrate term by term, and

u(x, t) =
∞∑
k=1

ekn
2π2t/L sin

nπx

L

(
2

L

∫ L

0

sin
nπy

L
f(y) d(y)

)
=

∫ L

0

(
ekn

2π2t/L sin
nπx

L
sin

nπy

L

)
f(y) dy.

We have now arrived at an integral representation

u(x, t) =

∫ L

0

K(x, y, t)f(y) dy,

where
K(x, y, t) = ekn

2π2t/L sin
nπx

L
sin

nπy

L
.

The function K(x, y, t) is called the heat kernel of the initial boundary condition (2.5).

2.3 Superharmonic functions

A function u is said to be harmonic if its Laplacian,

∆u =
n∑
i=1

∂2u

∂x2
i

,

satis�es the condition ∆u = 0. In spirit, at least, a function u is called superharmonic if
∆u ≤ 0. But one of the advantages of superharmonic functions is their �exibility, which
would be lost if we assumed that they were smooth. Therefore, we will de�ne them in a
di�erent way.

But �rst, we will introduce the concept of semicontinuity. The following de�nition
for lower semicontinuous functions is based on the de�nition of upper semicontinuous
functions found in [19, Ch. 2.1].

De�nition 2.6. Suppose X is a topological space. The function u : X → (−∞,∞] is said
to be lower semicontinuous if {x ∈ X : u(x) > α} is an open set in X for all α ∈ R. The
function v : X → [−∞,∞) is called upper semicontinuous if −v is lower semicontinuous.

Thus a function u is continuous if and only if it is both upper and lower semicontinuous,
and a straightforward check shows us that u is lower semicontinuous if and only if

lim inf
x→y

u(x) ≥ u(y)
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for each limit point y of X.
The following de�nition for superharmonic functions has been formulated with the

help of [19, Ch. 2.2] and [1, Ch. 3].

De�nition 2.7. Let U be an open subset of C. The function u : U → (−∞,+∞] is called
superharmonic if

(i) u is lower semicontinuous on U

(ii) for any w ∈ U there is a φ > 0 so that

u(w) ≥ 1

2π

∫ 2π

0

u(w + reit) dt,

where 0 ≤ r < φ.

A function v : U → [−∞,+∞) is considered subharmonic if −v is superharmonic.

Superharmonic functions need not be smooth, and are indeed sometimes far from it,
but they can always be approximated by others which are smooth. A standard way for
doing this is through convolutions.

De�nition 2.8. Let U be an open subset of C, and de�ne

Ur = {z ∈ U : dist(z, ∂U) > r},

where r > 0.
Let u : U → [−∞,∞) be a function that is locally integrable, and let φ : C→ R be a

continuous function with suppφ ∈ ∆(0, r). Then their convolution u ∗ φ : U → R is given
by

u ∗ φ(z) =

∫
C
u(z − w)φ(w) dA(w),

where z ∈ Ur. Here (dA denotes the two-dimensional Lebesgue measure)

After a change of variable, we also have

u ∗ φ(z) =

∫
C
u(w)φ(z − w) dA(w),

where z ∈ Ur, which shows that if φ ∈ C∞, then also u∗φ ∈ C∞, since we can di�erentiate
under the integral sign arbitrarily many times.

Theorem 2.9 (Weak Identity Principle). Suppose that u and v are subharmonic
functions on an open set U in C such that u = v a.e. on U . Then u ≡ v on U .
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Proof. First, suppose that u and v are bounded below on U . Let χ : C→ R be a function
satisfying

χ ∈ C∞, χ ≥ 0, χ(z) = χ(|z|), suppχ ∈ ∆(0, 1),

∫
C
χdA = 1,

and for r > 0 de�ne

χr(z) =
1

r2
χ
(z
r

)
,

where z ∈ C.
Now, u ∗ χr = v ∗ χr on Ur, and letting r → 0 we deduce that u = v on U .
The general case follows from applying the one above to un := max(u,−n) and vn :=

max(v,−n), and then letting n→∞.
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Chapter 3

Results in Potential Theory

This chapter will introduce us to potentials and Green's functions, and results associated
with these. These concepts will be necessary when we introduce the concept of capacity.

3.1 Potentials and energy

Potentials provide an important source of examples of superharmonic functions. They
are almost as general as arbitrary superharmonic functions, and for many purposes the
classes are equivalent.

De�nition 3.1. Let E be a compact subset of C. We write P(E) for the family of all
Borel probability measures on E. Given µ ∈ P(E), we de�ne its logarithmic potential
pµ : C 7→ (−∞,∞] with the superharmonic function

(3.2) pµ =

∫
E

log
1

|z − w|
dµ(w),

where z ∈ C.

Potentials can also be de�ned as subharmonic functions, which will change the def-
inition slightly (see [19, Ch. 3.1]). If pµ : C 7→ (−∞,∞] is de�ned as a subharmonic
function, then pµ is de�ned as

(3.3) pµ =

∫
E

log |z − w| dµ(w), (z ∈ C).

Potentials enjoy several properties outside of those displayed by general superharmonic
functions. One of these is the Maximum principle. The proof for this principle can be
found in [25, Theorem III.1].
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Theorem 3.4 (Maximum principle). Let µ be a �nite Borel measure on C with compact
support E. If pµ ≤M on E, then pµ ≤M on the whole of C.

The notion of potential induces a concept of energy. Here µ can be seen as a charge
distribution on C and pµ(z) as the potential energy at z. Thus, the following de�nes the
total energy for µ.

De�nition 3.5. Using the same de�nitions as in De�nition 3.1, we de�ne the energy of
µ by

(3.6) I(µ) =

∫
E

pµ dµ(z) =

∫
E

∫
E

log
1

|z − w|
dµ(z) dµ(w).

If I(µ) =∞ then E is said to be polar.

In physics, if a charge is placed on a conductor it distributes itself so that the energy is
minimized. In our case, we consider at probability measures µ on a compact set E which
minimizes I(µ).

De�nition 3.7. If there exists µ ∈ P(E) such that I(µ) <∞, then there exists a unique
ν ∈ P(E), called the equilibrium measure, such that

(3.8) I(ν) = inf
µ∈P(E)

I(µ).

Physical intuition would tend to suggest that if ν is an equilibrium measure for E,
then pν should be constant on E. Otherwise charge would �ow from one part of E to
another, and disturb the equilibrium. This idea is con�rmed by the following theorem,
called Frostman's theorem, which is considered important and is sometimes referred to as
the �Fundamental Theorem of Potential Theory�. The proof for the following theorem has
been constructed based on the proofs in [19, Theorem 3.3.4] and in [25, Theorem III. 12].

Theorem 3.9 (Frostman's theorem). Let E be a compact set in C, and let ν be an
equilibrium measure for E. Then:

(a) pν ≤ I(ν) on C,

(b) pν = I(ν) on E \K, where K is an Fσ1 polar subset of ∂E.

Proof. If I(ν) is polar, i.e. I(ν) = ∞, then the result is obvious. Therefore we may
assume that I(ν) is non-polar.

1With an Fσ set we mean a countable union of closed sets.
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First, we will prove that

(3.10) pν(z) ≥ I(ν) on E \K, where E is Fσ polar.

The �rst step in this is to prove that the set

Kn := {z ∈ E : pν(z) ≤ I(ν)− 1/n}

is polar for each n ≥ 1. This will be done through contradiction.
Suppose, if possible, that some Kn is non-polar. Choose µ ∈ P(Kn) with I(µ) ≤ ∞.

Since

I(ν) =

∫
pν(z) dµ(z),

there exists such z0 ∈ supp ν that pν(z0) ≥ I(ν). By lower semicontinuity, there exists
r > 0 so that

pν > I(ν)− 1

2n

on B(z0, r). In particular, B(z0, r) ∩ Kn = ∅.Since z0 ∈ supp ν, a := ν(B(z0, r)) > 0.
De�ne a signed measure σ on E by

σ =


µ on Kn,

−ν/a on B(z0, r),

0 otherwise.

For each t ∈ (0, a), νt := ν + tσ ≥ 0, and therefore νt ∈ P(E). As I(µ) <∞ implies that
I(|σ|) <∞, we have

I(νt)− I(ν) = 2t

∫
pν(z) dσ(z) + t2I(σ)

= 2t

(∫
Kn

pν(z) dµ(z)−
∫
B(z0,r)

pν(z) dν(z)/a+
t

2
I(σ)

)
≤ 2t

(
(I(ν)− 1

n
)− (I(ν)− 1

2n
) +

t

2
I(σ)

)
= −t( 1

n
− tI(σ)).

If t is su�ciently small, we have I(νt) < I(ν). This contradicts the fact that ν is an
equilibrium measure, and hence each Kn is polar.

Since every Borel polar set has a Lebesgue measure of zero, if we put K = ∪nKn then
this implies that K is an Fσ polar set, and pν ≥ I(ν) on E \K.
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Next, we shall prove that

(3.11) pν(z) ≤ I(ν) on C.

The �rst part of this is to prove that the set the set

Ln := {z ∈ supp ν : pν(z) > I(ν) + 1/n}

is empty for each n ≥ 1. This will also be done through contradiction.
Suppose, if possible, that some Ln is non-empty. Pick Z1 ∈ Ln. By lower semiconti-

nuity, there exists s > 0 so that

pν > I(ν) +
1

n

on B(z1, s). Since z1 ∈ supp ν, b := ν(B(z1, s)) > 0. By (3.10), we now have

I(ν) =

∫
E

pν dν =

∫
B(z1,s)

pν dν +

∫
E\B(z1,s)

pν dν

≥
(
I(ν) +

1

n

)
+ I(ν)(1− b) = I(ν) +

b

n

> I(ν),

which is obviously a contradiction. Therefore, Ln is empty, which implies that pν ≤ I(ν)
on supp ν. By the maximum principle (Theorem 3.4) we get pν ≤ I(ν) on C, which proves
part (a) of the theorem.

Using (3.10) in conjuction with (3.11) , we get that pν(z) = I(ν) on E \K. We observe
that asK is polar, it must have a Lebesgue measure of zero. Therefore pν(z) = I(ν) almost
everywhere on E, and hence by the Weak Identity Principle (Theorem 2.9) pν(z) = I(ν)
everywhere on int(E). This proves part (b) of the theorem.

3.2 Green's function

Green's function is the integral kernel for the Laplacian. In essence, a Green's function is a
family of fundamental solutions to the Laplace equation, which are zero on the boundary.

The Green's function was discovered by, and named after, the English mathematician
George Green (1793-1841). [16]

De�nition 3.12. Let D be a proper subdomain of C∞, that is, a connected open subset
of the Riemann sphere. A Green's function for D is a map gD : D ×D 7→ (−∞,∞], such
that for each w ∈ D,

15



(a) z 7→ gD(z, w) is harmonic on D \ {w}

(b) gD(w,w) =∞, and as z → w,

gD(z, w) =

{
log |z|+O(1), if w =∞,
− log |z − w|+O(1), if w 6=∞;

(c) gD(z, w)→ 0 as z → ζ for all ζ ∈ ∂∞D. Here, ∂∞D means the boundary of D taken
with respect to the spherical topology.

In the case of the unit disk, the Möbius transformation

z 7→ z − w
1− zw

maps the unit disk onto itself. Thus, the Green's function for the unit disk B = B(0, 1) is

gB(z, w) = − log

∣∣∣∣ z − w1− zw

∣∣∣∣ = log

∣∣∣∣1− zwz − w

∣∣∣∣ .
Green's functions have several properties, among them the usual existence and unique-

ness properties. The proofs for the properties listed below can be found in [19, Theorem
4.4.2, Theorem 4.4.3, Theorem 4.4.6, Theorem 4.4.8].

Theorem 3.13 (Properties of Green's functions). Let D be a domain in C∞ such
that ∂D is non-polar. Then:

(a) The Green's function gD on D exists and is unique.

(b) gD(z, w) > 0 for all z, w ∈ D.

(c) If (Dn)n≥1 are such subdomains of D that D1 ⊂ D2 ⊂ · · · and ∪nDn = D. Then

lim
n→∞

gDn(z, w) = gD(z, w)

for all z, w ∈ D.

(d) gD(z, w) = gD(w, z) for all z, w ∈ D.

The following result will allow us to compute Green's functions for some elementary
domains by using conformal mapping. The proof for this theorem can be found in [19,
Theorem 4.4.4].
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Theorem 3.14 (Subordination Principle). Let D1 and D2 be domains in C∞ with
non-polar boundaries, and let f : D1 → D2 be a meromorphic function. Then

gD2(f(z), f(w)) ≥ gD1(z, w)

for all z, w ∈ D1, with equality if f is a conformal mapping of D1 onto D2.

Using the theorem above, and the Green's function for the unit disk, one can now
calculate the Green's functions for some simple sets by constructing a conformal map
from the set in question to the unit disk.

Example 3.15. (a) The Möbius transformation z 7→ z/r maps the open disk of radius
r, denoted by D1 = {z ∈ C : |z| < r}, onto the unit disk, so the Green's function for
D1 is

gD1(z, w) = gB(
z

r
,
w

r
) = log

∣∣∣∣1− zw
r2

z
r
− w

r

∣∣∣∣ = log

∣∣∣∣ r2 − zw
r(z − w)

∣∣∣∣ .
(b) The Möbius transformation for the upper half plane D2 = {z ∈ C : Im z > 0} onto

the unit disk is the Möbius transformation

z 7→ z − i
z + i

,

known as the Cayley transform. Therefore the Green's function for D2 is

gD2(z, w) = gB( z−i
z+i
, w−i
w+i

) = log

∣∣∣∣z − wz − w

∣∣∣∣ .
For further results, see Table 3.1.
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D gD(z, w)

{|z| < r} log
∣∣∣ r2−zwr(z−w)

∣∣∣
{Im z > 0} log

∣∣ z−w
z−w

∣∣
{Re z > 0} log

∣∣ z+w
z−w

∣∣
{| arg z| < π/(2a)} log

∣∣ za+wa

za−wa
∣∣

{|Re z| < π/(2a)} log
∣∣∣ eiaz+e−iaw

eiaz−eiaw

∣∣∣
Table 3.1: Examples of Green's functions
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Chapter 4

Logarithmic capacity

Logarithmic capacity is an important concept in several �elds of applied mathematics,
and it appears under several di�erent guises. For example, in the �eld of polynomial
approximation it is known as the Chebyshev constant. It is also called the trans�nite
diameter, which is a key ingredient in number theory. It can also be directly linked to the
Robin constant and so, it is also linked to Green's functions and conformal mapping.

From the point of view of potential theory, the capacity measures the size of a set in
Rn. Logarithmic capacity, speci�cally, measures the size of a compact set in R2, which
we will identify with the complex plane C.

Logarithmic capacity is notoriously hard to compute. Analytically, it can only be
computed for a few simple sets, like ellipses and squares. For slightly more complex sets
it can be bounded, but accurate approximations are rare.

De�nition 4.1. The logarithmic capacity of a non-polar subset E of C is given by

(4.2) c(E) = e−I(ν),

where ν ∈ P(E) is the equilibrium measure.
If E is polar, that is, if I(µ) =∞ for all µ ∈ P(E), then we de�ne c(E) := 0.

Proofs for the following properties can be found in [19, Theorems 5.1.2, 5.1.3 and 5.2.5]

Theorem 4.3 (Properties of the logarithmic capacity). Let E,E1, E2, . . . be compact
subsets of C. Then:

(a) If E1 ⊂ E2 then c(E1) ≤ c(E2).

(b) If α, β ∈ C, then c(αE + β) = |α|c(E).

(c) c(E) = c(∂eE), where ∂eE is the exterior boundary of the unbounded component of
C \ E.
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(d) If (En)n≥1 is a decreasing sequence, then

c
( ∞⋂
n=1

En
)

= lim
n→∞

c(En).

(e) If (En)n≥1 is a n increasing sequence such that E = ∪∞n=1En is compact, then

c(E) = lim
n→∞

c(En).

(f) If q is a polynomial of the form q(z) =
∑n

k=0 akz
k, then

c(q−1(E)) =

(
c(E)

|an|

)1/n

.

4.1 Calculating logarithmic capacity

While De�nition 4.1 is well suited for deriving theoretical properties of logarithmic ca-
pacity, it is not well suited for actually computing the capacity. Even the simplest sets
require a lot of work, while other sets are virtually impossible.

An easier alternative for calculating logarithmic capacity for compact sets is based on
the following relation between the Green's function and logarithmic capacity.

Theorem 4.4. Let E be a compact non-polar set, and let D be the unbounded component
of C∞ \ E. Then

(4.5) gD(z,∞) = log |z| − log c(E) +O

(
1

|z|

)
as z →∞.

Proof. Let ν be the equilibrium measure for E. First of all, as |z| → ∞

pν(z) =

∫
E

log
1

|z − w|
dν(w) = log

1

|z|
+

∫
E

log
1

|1− w
z
|
dν(w)

= log
1

|z|
+O

(
1

|z|

)
.

De�ne the Green's function for D as

gD(z,∞) =

{
I(ν)− pν(z) if z ∈ D\{∞},
∞ if z =∞.
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With Frostman's theorem (Theorem 3.9) one can easily check that gD(·,∞) satis�es the
conditions in 3.12 with w =∞.

Now, we have

gD(z,∞) = I(ν)− pν(z) = log |z| − log c(E) +O

(
1

|z|

)
,

when z ∈ D\{∞}.

As mentioned in the beginning of this chapter, logarithmic capacity can be directly
linked to the Robin's constant. It can be done in the following way. [14]

De�nition 4.6. The value

(4.7) γ := lim
z→∞

(gD(z,∞)− log |z|)

is called the Robin's constant and, as the theorem above shows, I(ν) = γ.

Example 4.8. Using Theorem 4.4 to determine the capacity of a disk with radius r is
relatively simple. As noted in Table 3.1, the Green's function for a disk with radius r,
denoted by E, is

gE(z, w) = log

∣∣∣∣ r2 − zw
r(z − w)

∣∣∣∣ .
Set D = C∞ \ E, then

gD(z,∞) = gE(1
z
, 0) = log

∣∣∣z
r

∣∣∣ .
Thus, the value for the Robin's constant is

γ = lim
z→∞

(log
∣∣∣z
r

∣∣∣− log |z|) = − log r,

where it follows that the capacity is c(E) = e−(− log r) = r.

From the subordination principle for Green's functions (Theorem 3.14) the following
useful theorem can be determined. The proof for this inequality can be found in [19,
Theorem 5.2.3]

Theorem 4.9. Let E1 and E2 be compact subsets of C, and let D1 and D2 be the un-
bounded components of C∞\E1 and C∞\E2 respectively. If there is a meromorphic func-
tion f : D1 → D2, so that

(4.10) f(z) = z +O(1) as z →∞,

then
c(E2) ≤ c(E1),

with equality if f is a conformal mapping of D1 onto D2.
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In practice, it is only possible to compute the conformal map f explicitly for relatively
simple sets. One such set is the line segment, where the previous inequality will be used
to calculate the capacity.

Example 4.11. The previous theorem can be used when determining the capacity of a
line segment [a, b], where b ≥ a. The function z 7→ z + 1/z maps C∞\B(0, 1) conformally
onto C∞\[−2, 2] and thus,

c([−2, 2]) = c(B(0, 1) = 1.

By translating and scaling, we can determine that the Möbius transformation

z 7→ b− a
4

z +
b+ a

2

�stretches� [−2, 2] to [a, b]. From part (b) in Theorem 4.3 it then follows, that

c([a, b]) =
b− a

4
.

Some more values of the capacity for some relatively simple sets can be found in
Table 4.1.

4.2 Trans�nite diameter

A more direct approach for estimating logarithmic capacity is through the trans�nite
diameter. Consider n points zi (i = 1, . . . , n) on the compact subset E of C and the
function

(4.12)

(
n

2

)−1 ∑
1≤j<k≤n

log
1

|zj − zk|
.

The minimum of the function is denoted by log(1/dn), and for n ≥ 2 the nth trans�nite
diameter dn of E is

dn(E) = sup

{
exp

(
−
(
n

2

)−1 ∑
1≤j<k≤n

log
1

|zj − zk|

)
: z1, . . . , zn ∈ E

}

= sup

{ ∏
1≤j<k≤n

|zj − zk|2/n(n−1) : z1, . . . , zn ∈ E

}
.

The points zk = ξk, for which the supremum is attained, are called the nth Fekete points
of E. [11, 19]
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E c(E)

disc of radius r r

ellipse with semi-axes a and b (a+ b)/2

line segment of length h h/4

square with side h
Γ2(1/4)

4π3/2
h ≈ 0.59017h

equilateral triangle of height h
31/2Γ3(1/3)

4π2
h ≈ 0.42175h

regular n-gon with side h
Γ(1/n)

21+2/nπ1/2Γ(1/2 + 1/n)

half-disc of radius r
4

33/2
r ≈ 0.76980r

lemniscate {z : |adzd + . . .+ a0| ≤ r}
(

r

|ad|

)1/d

Table 4.1: Examples of capacities, compiled from [12, 19]

As E is compact, this n-tuple of Fekete points always exists. The points are distinct
and �as far apart from each other as possible�, though, for �xed n, the set of points does
not need to be unique.

Note that d2(E) is the diameter of E, while d3(E) measures its �spread�.
The following theorem will show that the sequence (dn(E))n≥2 is decreasing and that

its limit d(E), the trans�nite diameter of E, can be equated to the logarithmic capacity
of E.The proof has been constructed using [19, Theorem 5.5.2], [12, Ch. 2 �4] and [11,
Part 2.1].

Theorem 4.13 (Fekete-Szeg® Theorem). Let E be a compact subset of C. Then the
sequence (dn(E))n≥2 is decreasing, and

lim
n→∞

dn(E) = c(E).

Proof. The �rst part of the proof will show that (dn)n≥2 is decreasing. Let ξ1, . . . ξn+1 ∈ E
be the points where the supremum for the n + 1th trans�nite diameter of E is attained.
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Then

d
n(n+1)/2
n+1 =

∏
1≤j<k≤n+1

|ξj − ξk|

= |(ξ1 − ξ2)(ξ1 − ξ3) · · · (ξ1 − ξn+1)|
∏

2≤j<k≤n+1

|ξj − ξk|

≤ |(ξ1 − ξ2)(ξ1 − ξ3) · · · (ξ1 − ξn+1)|dn(n−1)/2
n .

Similarly

d
n(n+1)/2
n+1 ≤ |(ξ2 − ξ1)(ξ2 − ξ3) · · · (ξ2 − ξn+1)|dn(n−1)/2

n ,

...

d
n(n+1)/2
n+1 ≤ |(ξn+1 − ξ1) · · · (ξn+1 − ξn)|dn(n−1)/2

n .

Multiplying these n+ 1 inequalities together gives

(d
n(n+1)/2
n+1 )n+1 ≤

(
(dn(n−1)/2
n )n+1

)
(d
n(n+1)/2
n+1 )2 ⇐⇒ (d

n(n+1)/2
n+1 )n−1 ≤ (dn(n−1)/2

n )n+1.

Hence, dn ≥ dn+1, as claimed.
The next part of the proof will show that dn ≥ c(E) for all n ≥ 2. In the beginning of

this section we de�ned that log(1/dn) is the minimum of function (4.12). In fact, we can
de�ne function (4.12) to be greater or equal to log(1/dn). By intgrating this inequality
with respect to dν(z1) · · · dν(zn), where ν is an equilibrium measure for E, we obtain(

n

2

)−1 ∑
1≤j<k≤n

∫∫
log

1

|zj − zk|
dν(zj) dν(zk) ≥ log

1

dn
,

where z1, . . . , zn ∈ E.
Hence I(ν) ≥ log(1/dn), which gives c(E) ≤ dn, as claimed.
The �nal part of the proof will show that lim supn→∞ dn ≤ c(E). First, let ε ≥ 0, and

set
Eε = {z ∈ C : dist(z, E) ≤ ε}.

Let n ≥ 2, and choose ξ1, . . . , ξn ∈ E so that

dn(n−1)/2
n =

∏
1≤j<k≤n

|ξj − ξk|.

24



For each j, let µj be the normalized Lebesgue measure on the circle ∂B(ξj, ε), and put
µ =

∑n
j=1 µj. Then

I(µ) =

∫∫
log

1

|z − w|
dµ(z) dµ(w)

=
1

n2

n∑
j=1

∫∫
log

1

|z − w|
µj(z)µj(w) +

2

n2

∑
1≤j<k≤n

∫∫
log

1

|z − w|
µj(z)µk(w).

The equilibrium measure of a closed disc B(ξj, ε) is equal to the normalized Lebesgue
measure of ∂b(ξj, ε), and as the capacity of a closed disc is its radius, we get∫∫

log
1

|z − w|
µj(z)µj(w) = I(µj) = log

1

ε

for each j. Because pµj is superharmonic, we get∫∫
log

1

|z − w|
µj(z)µk(w) =

∫
pµj(w) dµk(w) ≤ pµj(ξk)

for each pair j ≤ k. In a similar fashion, as log 1/|z − ξk| also is superharmonic, we get

pµj(ξk) =

∫
log

1

|z − ξk|
dµj(z) ≤ 1

|ξj − ξk|
.

Therefore,

I(µ) ≤ 1

n2

n∑
j=1

log
1

ε
+

2

n2

∑
1≤j<k≤n

log
1

|ξj − ξk|
=

1

n
log

1

ε
+
n− 1

n
log

1

dn
.

Since µ is supported on Eε, it follows that

C(Eε) ≥ ε1/nd(n−1)/n
n .

Hence lim supn→∞ dn ≤ c(Eε). Since ε is arbitrary, the desired conclusion follows from
property (d) in Theorem 4.3.

The following example will calculate the trans�nite diameter, and thus, the logarithmic
capacity of the unit circle. This example was presented in [3].

Example 4.14. Let E = {z ∈ C : |z| = 1}. The point eiθ on the unit circle E is the point
that is rotated θ radians from he standard position.
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The set of all Fekete points on E are the nth unit roots and its rotations, that is, the
points 1, ei

2π
n , ei

4π
n , . . . , ei

(n−1)·2π
n .

Because the points are equally spaced around the unit circle, the product of the dis-
tances between a speci�c Fekete point and the other Fekete points on E is the same no
matter which point we choose. The product of the distances in z = 1, and thus for any
Fekete point in E, is

n−1∏
j=0

|1− ei
2jπ
n | = n.

Multiplying the distances for all the points will cause each distance to appear twice. Thus
we have ∏

1≤j<k≤n

|zj − zk| =
n
2∏

k=1

n = n
n
2 .

The nth trans�nite diameter for E is then

dn = (n
n
2 )

2
n(n−1) = n

1
n−1

and so
d(E) = lim

n→∞
dn = 1,

which is also the capacity for E.

The following properties of the trans�nite diameter can easily be derived from the
de�nition:

(i) If E ⊂ F , then d(E) ≤ d(F ).

(ii) If z∗ = αz + β maps E onto E∗, then d(E∗) = αd(E).

(iii) Let φ : E → C be a map satisfying

|φ(z)− φ(w)| ≤ |z − w|

for z, w ∈ E. Then d(φ(E)) ≤ d(E).

The Chebyshev constant

There is a close connection between the tras�nite diameter of a compact set and polyno-
mials. Consider polynomials of the form

(4.15) pn(z) =
n∏
k=1

(z − zk),
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where zk ∈ C for all k.
Set

τn(E) := inf max
z∈E
|pn(z)|,

where the in�mum is taken over all polynomials of the form (4.15). Then there exists a
unique polynomial tn of the form (4.15), such that

τn(z) = max
z∈E
|tn(z)|.

The polynomial tn is called the Chebyshev polynomial and from the de�nition of tn it
follows that all its zero points lie in the smallest convex set which contains E.

Fekete proved in 1923 that the limit

τ(z) = lim
n→∞

τn(z)1/n

exists. The quantity τ(z) is called the Chebyshev constant of E.
A Fekete polynomial for E of degree n is a polynomial of the form

qn(z) =
n∏
k=1

(z − ξk),

where ξ1, . . . , ξn is a Fekete n-tuple for E.
Set Mn(E) = maxz∈E |qn(z)|. Then, for n = 1, 2, . . .,

d(E) ≤ τn(E)1/n ≤Mn(E)1/n → d(E)

when n→∞.
Hence, we get

c(E) = d(E) = τ(E),

which remains valid as long as τ(E) is de�ned by polynomials of the form (4.15) having
zeros in E only, as is the case with Fekete polynomials. [25, 11]

4.3 Bounds for capacity

As mentioned earlier, logarithmic capacity is very di�cult to compute. Even for simple
sets, like the square, the calculations require some e�ort, and for more complicated sets it
is usually impossible. There are, however, methods for deriving upper and lower bounds
for the capacity that are easier to compute, and many of these estimates rely on the
following basic result. The proof for this theorem can be found in [19, Theorem 5.3.1]
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Theorem 4.16. Let E be a compact subset of C, and let T : E → C be a map that for
all z, w ∈ E satis�es

(4.17) |T (z)− T (w) ≤ A|z − w|α,

where A and α are positive constants. Then

c(T (E)) ≤ Ac(E)α.

Using this theorem and the knowledge that the capacity of a line segment of length h
is h/4 (see Table 4.1), the following �1/4-estimates� for the capacity of a compact subset
E of C can be derived [19, Theorem 5.3.2].

(i) If E is connected and has diameter d, then

c(E) ≥ d/4.

(ii) If E is a recti�able curve of length l, then

c(E) ≤ l/4.

(iii) If E is a subset of the real axis of Lebesgue measure m, then

c(E) ≥ m/4.

(iv) If E is a subset of the unit circle of arc-length measure a, then

c(E) ≥ sin(a/4).

An easy consequence of the de�nition of capacity is that c(E) ≤ diam(E) for every
compact set E. But, as the following theorem shows, this fact can be improved. The
proof for this theorem can be found in [19, Theorem 5.3.4].

Theorem 4.18. If E is a compact subset of C, then

c(E) ≤ diam(E)

2
.

As there are sets with positive capacity but zero area, such as line segments, one
cannot expect to �nd an upper bound in terms of area. However, a lower bound can be
approximated.

Theorem 4.19. If E is a compact subset of C, then

c(E) ≥
√

area(E)

π

The proof for the theorem above follows from the proof for the Ahlfors-Beurling In-
equality, found in [19, Lemma 5.3.6].
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Chapter 5

Numerical methods for computing

logarithmic capacity

As mentioned in previous chapters, the logarithmic capacity can only be computed an-
alytically for a few simple sets. Accurate approximations are rare, and in this chapter
we will introduce some numerical methods for achieving this. There are many methods
for this, one of the more recent is a least-squares method developed by Malik Younsi and
Thomas Ransford which produces rigorous upper and lower bounds which converge to
the true value of capacity [21]. Due to the close relationship between conformal mapping
and logarithmic capacity, numerical methods for approximating conformal maps, such as
Schwarz-Christo�el mapping, can also be utilized. There are several methods for numeri-
cal approximation of conformal maps, two of these being Marshalls Zipper-algorithm [13]
and Koebes algorithm [18, Part 6.1]. Another important method is the FEM-algorithm,
which is a method based on the harmonic conjugate function and the properties of quadri-
laterals [8, 9]. This method is also particularly useful in the case of unbounded areas [10].

In this chapter, the following methods for calculating logarithmic capacity will be pre-
sented: the Dijkstra-Hochstenbach method, the Rostand method, the Ransford-Rostand
method and a method using Schwarz-Christo�el mapping, which has been implemented
as a toolbox for MATLAB by Tobin A. Driscoll.

5.1 Dijkstra-Hochstenbach method

W. Dijkstra and M.E. Hochstenbach present in their article [4] an algorithm for numeri-
cally estimating the logarithmic capacity of a set in C that is bounded by a �nite set of
Jordan curves. The algorithm requires the solution of a boundary integral equation with
Dirichlet boundary data, and the solution can be achieved through a collocation approach
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or a Galerkin approach. For convenience sake, we will restrict us to simply connected sets,
even though the algorithm is also valid for disconnected sets.

First, we will de�ne the single layer operator.

De�nition 5.1. Let Γ be the boundary of a closed bounded set E of C. The single layer
operator is de�ned as a boundary integral operator V : µ 7→ pµ,

(Vµ)(x) :=

∫
Γ

log
1

|x− y|
µ(y) dΓy,

where x ∈ Γ.

(5.2)
N∑
k=1

µk

∫
Γk

log
1

|x− y|
dΓy = f(x),

where x ∈ Γ.

5.1.1 Collocation approach

The collocation approach is the method most commonly used to discretize boundary
integral equations like (5.2). The elements of the matrix it yields are evaluated by a
single evaluation of an integral. A drawback to the method is that in general, the resulting
matrices are asymmetric.

We begin by choosing nodes xp, so that xp := (xp + xp+1)/2. We substitute x with xp

in (5.2), and get

(5.3)
N∑
k=1

µk

∫
Γk

log
1

|xp − y|
dΓy = f(xp) := fp,

where p = 1, . . . , N .
We rewrite this in matrix-vector notation

Aµ = f,

where

Apk :=

∫
Γk

log
1

|xp − y|
dΓk,

µ := [µ1, . . . , µN ]T ,

f := [f1, . . . , fN ]T .
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Algorithm 5.4. The following steps are needed in the collocation approach:

1. Compute the matrix A.

2. Construct a vector of ones with length N , 1 = 1, . . . , 1]T .

3. Construct a vector containing the lengths of the boundary elements, l = [|Γ1|, . . . , |ΓN |]T .

4. Compute

C = exp

(
1

lT (A\1)

)
,

where C denotes the capacity.

5.1.2 Galerkin approach

The Galerkin approach is another well-known method to discretize boundary integral
equations. In this case, the resulting matrices are symmetric, but the computation of a
matrix element requires the evaluation of a double integral. De�ne the shape function φi
by

φi(x) =

{
1 at Γi,

0 elsewhere,

for i = 1, . . . , N .

(5.5)
N∑
j=1

N∑
k=1

µk

∫
Γj

φi(x)

∫
Γk

log
1

|x− y|
dΓy dΓx =

N∑
j=1

∫
Γj

f(x) dΓx

for i = 1, . . . , N .

(5.6)
N∑
k=1

µk

∫
Γi

∫
Γk

log
1

|x− y|
dΓy dΓx = fi|Γi|,

for i = 1, . . . , N .
We rewrite this in matrix-vector notation

Bµ = g,

where

Bik :=

∫
Γi

∫
Γk

log
1

|x− y|
dΓy dΓx,(5.7)

g := [f1|Γ1|, . . . , fN |ΓN |]T .(5.8)
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Algorithm 5.9. The following steps are needed in the Galerkin approach:

1. Compute matrix B.

2. Construct a vector containing the lengths of the boundary elements, l = [|Γ1|, . . . , |ΓN |]T .

3. Compute

C = exp

(
− 1

lT (B\l)

)
,

where C denotes the capacity.

5.2 Rostand method

J. Rostand describes in his article [23] the construction of an algorithm for estimating the
capacity of nice compact subsets of the plane C. The method is based on the relation
between the capacity and Green's function (Theorem 4.4) together with Keldy²'s theorem
of uniform approximation. In order to get a good approximation, Rostand employs a least-
square technique, which is easy to implement and has the advantage of giving a bound
on the error.

Theorem 5.10 (Keldy²). Let E be a compact subset of C such that C \ E has a �nite
number of components. Let Λ be a subset of C \ E which has at least one point in each
bounded component of C\E. Then each continuous function ϕ : ∂E → C can be uniformly
approximated on ∂E by functions of the form

Re q(z) + a log |r(z)|,

where a ∈ R, and q and r are rational functions such that the poles of q, r and 1/r all lie
in Λ ∪ {∞}.

Keldy²'s theorem says that it is possible to approximate a continuous function on the
boundary of a compact set E by functions that are harmonic in the neighborhood of E.
This will be used when constructing the numerical method.

5.2.1 Construction

To construct a numerical method, we will need the following hypothesis.

Hypothesis 5.11. Let E be a compact subset of C with a �nite number of components
Ej (j = 0, . . . , n) so that for each j, the interior int(Ej) is non-empty and has closure Ej.

32



The construction of a numerical method proceeds in 4 steps.

1) The �rst step transforms the problem of estimating the capacity of E into a problem
of uniform approximation of log |z| on ∂E by functions of the class F∗Λ, where F∗Λ :=
{z 7→ u(1/z) : u ∈ FΛ}. Here FΛ denotes the class of all functions of the form
Re q(z) + a log |r(z)|, where a ∈ R and where q and r are rational functions such that
the poles of q, r and 1/r are in Λ := {1/λ1, . . . , 1/λn}, λ1, λ2, . . . λn ∈ C, so that
λj ∈ int(Ej), j = 1, . . . , n. In conclusion, it shows that

c(E) = ε̃|r(0)|aeRe q(0),

where ε̃ ∈ [e−ε, eε], ε > 0.

Keldy²'s theorem shows that this type of construction is possible, but in practice the
theorem does not give a constructive way to obtain the desired approximation. The
geometry of ∂E and the choice of λj will, in fact, play an important role in �nding a
good approximation of log |z|.

2) In this step, we will restrict ourselves to a subspace of F∗Λ and a �nite number of points
of ∂E.

The class F∗Λ(N0, N1), with �xed integers N0 and N1, is de�ned as being the subclass
of FΛ. A typical function u∗ of F∗Λ(N0, N1) can be written as

u∗(z) = b0 +

N1∑
j=1

Re
cj + idj
zj

+
n∑
k=1

N0∑
j=1

Re
(cjk + idjk)z

j

(z − λk)j
+

n∑
k=1

bk log

∣∣∣∣z − λkz

∣∣∣∣ ,
where all the constants bk, cj, dj, cjk and djk are real.

In order to approximate log |z| by functions from F∗Λ(N0, N1) we take an N -point
discretization of the boundary of E, say {zl ∈ ∂E : l = 1, . . . , N}. N must be large
enough, in fact N ≥ 1 + 2N1 + n(2N0 + 1) := M . Using a least-square method we will
determine the values for the constants bk, cj, dj, cjk and djk, for which ∗u is as close
as possible to log |z| on {z1, . . . , zN}.
We de�ne an N ×M real matrix A by the following: for k = 1, . . . , N , we have

A1
l := (1),

A2,N1+1
l := (Re z−1

l , . . . ,Re z−N1
l ),

AN1+2,2N1+1
l := (−Im z−1

l , . . . ,−Im z−N1
l );
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for k = 1, . . . , n, we have

A
2N1+2+(k−1)N0,2N1+1+kN0

l :=

(
Re

(
zl

zl − zk

)1

, . . . ,Re

(
zl

zl − zk

)N0
)
,

A
2N1+2+(n+k−1)N0,2N1+1+(k−n)N0

l :=

(
−Im

(
zl

zl − zk

)1

, . . . , Im

(
zl

zl − zk

)N0
)
,

and �nally

A2N1+2+2nN0,2N1+1+n+2nN0

l :=

(
log

∣∣∣∣zl − λ1

zl

∣∣∣∣ , . . . , log

∣∣∣∣zl − λnzl

∣∣∣∣) .
We also de�ne b as a column vector of dimension N whose lth component is the real
number log |zl|. Finally, let x be an M -dimensional vector whose entries are

b0,

c1, . . . , cN1 ,

d1, . . . , dN1 ,

c11, . . . , cN01, . . . , c1n, . . . , cN0n,

d11, . . . , dN01, . . . , d1n, . . . , dN0n,

b1, . . . , bn.

3) If we consider x to be a variable vector, then the goal is to minimize the function

g(x) := ‖Ax− b‖2,

where ‖ · ‖2 is the standard Euclidean norm. The solutions are characterized by

ATAx = AT b.

We can explicitly compute the unique solution x̃ with minimal norm. In fact, x̃ = A+b,
where A+ is the pseudoinverse, or speci�cally, the Moore-Penrose pseudoinverse of A.

4) The �nal step in the construction is to combine the previous steps. First, we will
compute the singular values decomposition of A. Next, we will apply step 3 to obtain
a vector x̃ that satis�es

‖Ax̃− b‖2 ≤ ‖Ax− b‖2

for all vectors x ∈ RM . Thus, the function
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(5.12) ũ∗(z) = b̃0 +

N1∑
j=1

Re
c̃j + id̃j
zj

+
n∑
k=1

N0∑
j=1

Re
(c̃jk + id̃jk)z

j

(z − λk)j
+

n∑
k=1

b̃k log

∣∣∣∣z − λkz

∣∣∣∣
of F∗Λ(N0, N1) is a good approximation of log |z| at each zl of ∂E.
It has already been shown, that

c(E) = ε̃eũ
∗(∞),

where ε̃ ∈ [e−ε, eε], and
ε =

∥∥ũ∗(z)− log |z|
∥∥
∂E
.

From equation (5.12) follows that

c(E) = ε̃ exp

(
b̃0 +

n∑
k=1

N0∑
j=1

c̃jk

)
.

Connected sets In the case where E is a connected set, several expressions in the
method above are simpli�ed. Since Λ is empty, the problem reduces to approximating
log |z| by functions of the type

u∗(z) = b0 +

N1∑
j=1

Re
cj + idj
zj

.

The matrix A is now

A =


1 Re z−1

1 · · · Re z−N1
1 −Im z−1

1 · · · − Im z−N1
1

1 Re z−1
2 · · · Re z−N1

2 −Im z−1
2 · · · − Im z−N1

2

...
...

1 Re z−1
N · · · Re z−N1

N −Im z−1
N · · · − Im z−N1

N

 ,

and the vectors x and b look like

xT = (b0, c1, . . . , cN1 , d1, . . . , dN1),

bT = (log |z1|, . . . , log |zN |).

Therefore, the capacity of E is given by

c(E) = ε̃eb̃0 .
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Theoretical bound for error A theoretical bound for the error can be estimated to

ε =
∥∥ũ∗(z)− log |z|

∥∥
∂E

≤ max
l=1,...,N

{∣∣ũ∗(zl)− log |zl|
∣∣+ δ

(
N1∑
j=1

j|c̃j + id̃j|
(|zl| − δ)j+1

+
n∑
k=1

N0∑
j=1

j|λk||c̃jk + id̃jk|(|zl|+ δ)j−1

(|zl − λk| − δ)j+1

+
n∑
k=1

|b̃k||λk|
(|zl| − λ)(|zl − λk| − δ)

+
1

(|zl| − δ)

)}
.

In the case of connected sets, the bound for the error is

ε ≤ max
l=1,...,N

{∣∣ũ∗(zl)− log |zl|
∣∣+ δ

N1∑
j=1

j|c̃j + id̃j|
(|zl| − δ)j+1

}
.

5.2.2 Practical implementation

We will now use the method described to calculate the capacity of some sets.

Example 5.13 (The disk). Consider a closed disk of radius r = 3, that is, the compact
set

E := z ∈ C : |z| ≤ 3.

We know from previous calculations that the capacity of a disk is its radius, so c(E) = 3.
This value will allow us to verufy our results.

Let f : [0, 1]→ C be the parametrization of ∂E given by f(t) := 3e2πit. Fix N and N1,
and consider the boundary points zl = f(l/N) for l = 1, . . . , N . As E is connected, we
can use the reduced model for connected sets to compute each entry for the matrix A and
the vector b. This has been implemented by the functions makeA and makeb respectively,
found in Appendix A.1. Now, we can solve the problem minx ‖Ax− b‖2. We will do this
with the MATLAB operator \, which will automatically give the least squares solution if
the linear system

ATAx = AT b

does not have a direct solution. The capacity given by the algorithm, when N1 = 5 and
N = 20, is c(E) = 2.999999999999998, which has an error less than 1.8 × 10−15. With
N1 = 5 and N = 30 the error is less than 8.9× 10−16.

Example 5.14 (The square). Consider E to be the square [−1, 1]× [−1, 1]. According
to Table 4.1, the capacity for this is

c(E) =
Γ(1/4)2

4π3/2
· 2 ≈ 1.180340599016096.
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Let f : [0, 1]→ C be the parametrization

f(t) :=


−8it+ 1 + i if 0 ≤ t ≤ 1

4

−8t+ 3− i if 1
4
< t ≤ 1

2

8it− 1− 5i if 1
2
< t ≤ 3

4

8t− 7 + i if 3
4
< t ≤ 1

.

We choose as before the points zl = f(l/N), but we have to make sure that N is a multible
of 4 if we want the corners of E to be in the discretization. The rest of the algorithm is
exactly the same. The results have been compiled in Table 5.1.

The rate of convergence is noticeable slower in the case of the square due to the fact
that, even though log |f(t)| is continuous on [0, 1], it is not di�erentiable in the corners of
the square, that is, at t = 0, 1/4, 1/2, 3/4, 1. The approximation is more di�cult in those
points.

N1 N Capacity Error
5 40 1.1616418 0.01870
5 80 1.1597769 0.02056
5 160 1.1593129 0.02103
10 80 1.1656674 0.01467
20 80 1.1719398 0.00840
30 120 1.1731882 0.00715
40 120 1.1747906 0.00555
50 160 1.1751579 0.00518

Table 5.1: Computation of capacity of a square with side h = 2.

5.3 Ransford-Rostand method

Ransford and Rostand introduce in [20] a method for computing upper and lower bound-
aries for the logarithmic capacity of a compact set. If the set has the Hölder continuity
property then the bounds converge to the value of the capacity.

A compact set E set is said to have the Hölder continuity property if its Green's
function gE exists and satis�es

|gE(z1,∞)− gE(z2,∞)| ≤ A|z1 − z2|α,

where z1, z2 ∈ C, and A and α are positive constants.
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In order to compute the capacity, we will convert the problem to the calculation of
certain matrix games.

De�nition 5.15. Fix a postitive integer n, and set ∆n = {(t1, . . . , tn) : tj ≥ 0,
∑

j tj = 1}.
Given an n× n matrix h = (hij), write

M(h) = min
s∈∆n

max
t∈∆n

∑
i,j

hijsitj = max
t∈∆n

min
s∈∆n

∑
i,j

hijsitj.

Since a convex combination of numbers always lies between their maximum and minimum,
we also have

M(h) min
s∈∆n

max
j

∑
i

hijsi = max
t∈∆n

min
i

∑
j

hijtj.

Let E be a compact subset of C whose capacity we wish to compute and suppose that
we have the compact subsets F1, . . . , Fn of C. Then

(5.16)

{
E ⊂ F1 ∪ · · · ∪ Fn,
c(E ∩ Fi) ≥ δ (i = 1, . . . n),

where δ ≥ 0 is a real number.
De�ne the symmetric n× n-matrices a and b by

(5.17) aij := log
1

diam(Fi ∪ Fj)
, bij := log

1

max(δ, dist(Fi, Fj))
,

where diam denotes the diameter of a set and dist the distance between two sets.
The method for computing the capacity of E using upper and lower bounds is based

on the following theorem.

Theorem 5.18. Let E be a compact subset of C. Suppose that F1, . . . , Fn, δ satisfy the
conditions in (5.16) and that a and b are de�ned as in (5.17). Then

M(a) ≤ log
1

c(E)
≤M(b).

5.3.1 Computing M(h)

The method described depends on being able to compute M(h) for symmetric n × n
matrices h. There are several ways to do this, one such is by reformulating the complex
non-linear programming problem stated in 5.15,

M(h) = min
s∈∆n

max
j

∑
i

hijsi,
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into a linear programming problem by use of an auxiliary variable T .
However, solving large dense linear problems is time-consuming, and in some cases

M(h) can be obtained by solving a linear equation instead of a linear program. Another
method for bypassing the linear program is to investigate the upper and lower bounds for
M(h), though while this method is faster it will yield worse bounds. For example, due to
the fact that

max
j

∑
i

tihij ≥
∑
i,j

titjhij

for all t ∈ ∆n, M(h) is bounded below by the quadratic program

Q(h) := min
t∈∆n

∑
i,j

titjhij.

Thus, e−Q(a) is an upper bound for the capacity c(E), and a quadratic program can be
solved faster than a linear program.

5.3.2 Other methods

In stead of calculating matrices a and b directly, it may be easier to compute some other
symmetric matrix that satis�es a ≤ h ≤ b. Then M(a) ≤M(h) ≤M(b).

The fact that M(a) and M(b) converge to log 1/c(E) means that M(h) will converge
to the same limit at least as quickly, and sometimes even quicker.

One method utilizing this idea, is the midpoint method. For each i, pick a point xi ∈ Fi
so that xi 6= xj for all i 6= j. Now, set

hij := log
1

max(δ, |xi − xj|)
.

We know that

(5.19) dist(Fi, Fj) ≤ |xi − xj| ≤ diam(Fi ∪ Fj)

for all i, j.
Since

diam(Fi ∪ Fj) ≥ diam(Fi) ≥ c(Fi) ≥ c(Fi ∩ E) ≥ δ

for all i, j, we get that a ≤ h ≤ b when we take the maximum with δ in (5.19).
Thus, e−M(h) gives an approximation of c(E).
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5.4 Schwarz-Christo�el Mapping

The Schwarz-Christo�el transformation and its variations yield formulas for conformal
maps from standard regions to the interiors or exteriors of possibly unbounded polygons.

The idea behind the Schwarz-Christo�el transformation is that a conformal transfor-
mation f may have a derivative that can be expressed as

f ′ =
∏

fk

for certain canonical functions fk. Virtually all conformal transformations, whose analyt-
ical forms are known, are Schwarz-Christo�el maps, though sometimes disguised by an
additional change of variables.

In this section, a generalized polygon Γ is de�ned by a collection of vertices w1, . . . , wn
on the extended complex plane, and interior angles α1π, . . . , αnπ. For indexing purposes,
it is also convenient to de�ne that wn+1 = w1 and w0 = wn. The vertices are given in
counterclockwise order with respect to the interior of the polygon. If |wk| < ∞, then
o < αk ≤ 2. If wk =∞, then the de�nition of the interior angle is applied to the Riemann
sphere and −2 ≤ αk ≤ 0. In addition,

n∑
k=1

(1− αk) = 2.

The following is a fundamental theorem of Schwarz-Christo�el mapping, which de-
scribes the mapping of the upper half-plane onto the interior of a polygon. The proof for
this theorem can be found in [6, Theorem 2.1].

Theorem 5.20 (Schwarz-Cristo�el formula for a half-plane). Let P be the interior
of a polygon Γ with vertices w1, . . . , wn and interior angles α1π, . . . , αnπ in counderclock-
wise order. Let f be any type of conformal map from the upper half-plane H+ to P , with
f(∞) = wn. Then

(5.21) f(z) = a+ c

∫ z n−1∏
k=1

(ζ − zk)αk−1 dζ

for some complex constants a and c, where wk = f(zk) for k = 1, . . . , n− 1.

The Schwarz-Christo�el formula (5.21) for a half-plane can be adapted to maps for
di�erent regions, to exterior map, to maps with branch points, to doubly connected re-
gions, to regions bounded by circular arcs, and even to piecewise analytic boundaries.
One of the simplest adaptations has the unit disk as its domain.
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Theorem 5.22 (Schwarz-Cristo�el formula for a unit disk). Let P be the interior of
a polygon Γ with vertices w1, . . . , wn and interior angles α1π, . . . , αnπ in counterclockwise
order. Let f be any type of conformal map from the unit disk B to P . Then

(5.23) f(z) = a+ c

∫ z n∏
k=1

(1− ζ

zk
)αk−1 dζ

for some complex constants a and c, where wk = f(zk) for k = 1, . . . , n− 1.

By modifying (5.23), one can also �nd a function which maps the unit disc into the
exterior of a polygon:

(5.24) f(z) = a+ c

∫ z n∏
k=1

ζ−2(1− ζ

zk
)1−αk dζ.

This equation is important, because |c| is in fact the value for the capacity. [6, Sections
4.4 and 5.8]

The Schwarz-Christo�el formula is mathematically appealing, but problematic in prac-
tice. In order to compute a map, one must �nd the prevertices by solving a system of
nonlinear equations which is analytically intracable in most cases. In addition, the integral
in (5.21) rarely has a simple closed form. Finally, it is usually impossible to invert f ex-
plicitly, and for these reasons, calculations with Schwarz-Christo�el maps must generally
be done on a computer.

5.4.1 Schwarz-Christo�el Toolbox for MATLAB

The Schwarz-Christo�el Toolbox for MATLAB is an implementation of the Schwarz-
Christo�el formulas for maps from the disk, half-plane, strip and rectangle domains to
polygon interiors, and from the disk to polygon exteriors. Disk mapping using the cross-
ratio formula has also been implemented in the program. By tinkering with the provided
routines, one can also implement maps for gearlike regions and Riemann surfaces.

From an algorithmic standpoint, the variations of the Schwarz-Christo�el formula,
some of which were discussed in the previous section, are pretty similar. The challenge
comes from computing integrals of the form (5.21), solving the parameter problem and,
if desired, computing the inverse of (5.21).

The toolbox de�nes polygons, and the maps to them, as named objects. Once the
objects are created, they can be manipulated by common MATLAB functions, such as
plot and inv. Polygons are created either by an interactive drawing or from a list of
vertices. Once a polygon is given, one can construct a map to the region de�ned by the
polygon. [5]
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To calculate the capacity of an object with the help of the Schwarz-Christo�el Toolbox,
one must �rst construct a polygon object with the command polygon(W), where W are the
vertices of the object in question. Using the extermap command, a Schwarz-Christo�el
exterior map object will be constructed for the polygon. After this, one can simply use
the capacity command to �nd out the logarithmic capacity of the object. To illustrate
this process, consider the following example.

Example 5.25. A 2× 2-square has its corners in (1, 1), (−1, 1), (−1,−1) and (1,−1). In
the following program, these points will be given using their complex representations.

>> format long

>> p=polygon ([1+i -1+i -1-i 1-i]);

>> f=extermap(p);

>> capacity(f)

ans =

1.180340599090706

The exact value of the capacity for this square, as de�ned in Table 4.1, is

Γ2(1/4)

4π3/2
· 2 ≈ 1.180340599016096

Thus, the error for the value given by the Schwarz-Christo�el Toolbox is approximately
7.4610 · 10−11. Comparing this value to the error values given by the Rostand method in
Table 5.1, where the smallest error was 0.00518, the Schwarz-Christo�el method appears
to be much more accurate in the case of a square.

For some more examples and comparisons, see Table 5.2.

Area Exact S-C Error
disk with radius r = 1 1.0 0.999918054482060 8.1946 · 10−5

square with side h = 2 1.180340599016096 1.180340599090706 7.4610 · 10−11

line segment of length h = 2 0.5 0.500002729695464 2.7297 · 10−6

half-disk of radius r = 1 0.769800358919501 0.769740915989960 5.9443 · 10−5

Table 5.2: Values for capacities computed with the Schwarz-Christo�el toolbox.
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Appendix A

Implementation of Rostand's method

The following programs have been implemented in MATLAB based on the program found
in [23].

A.1 Connected sets

format long

N=10; M=3;

f=@(t) 3*exp(2*pi*1i*t);

A=makeA(f,N,M);

b=makeb(f,N);

x=(A'*A)\(A'*b');

cap=exp(x(1));

disp('Capacity:')

disp(cap)

disp('Error:')

disp(abs(3-cap))

function A=makeA(f,N,M)

A=ones(N,1+2*M);

for k=1:N

A(k,2:(M+1))= real(f(k/N).^(-1:-1:-M));

A(k,(M+2):(2*M+1))=- imag(f(k/N).^(-1:-1:-M));

end

function b=makeb(f,N)

b=zeros(1,N);

for k=1:N
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b(k)=log(abs(f(k/N)));

end

A.2 Disconnected sets

function A=makeA2(f,N,N0,N1,lam)

A=ones(N,1+2*N1);

n=length(lam);

for l=1:N

zl=f(3*l/N);

A(l,2:(N1+1))= real(zl.^(-1:-1:-N1));

A(l,(N1 +2):(2* N1+1))=- imag(zl.^(-1:-1:-N1));

for k=1:n

A(l,(2*N1+2+(k-1)*N0):(2*N1+1+k*N0))= real(zl/(zl-lam(k))).^(1: N0);

A(l,(2*N1+2+(n+k-1)*N0):(2*N1+1+(k+n)*N0))=-imag(zl/(zl-lam(k))).^(1: N0);

end

A(l,(2*N1+2+2*n*N0):(2*N1+1+n+2*n*N0))=log(abs((zl-lam)./zl));

end

function b=makeb2(f,N)

b=zeros(1,N);

for l=1:N

zl=f(3*l/N);

b(l)=log(abs(zl));

end
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