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Abstract

Many nonlinear option pricing problems can be formulated as optimal control problems, lead-
ing to Hamilton-Jacobi-Bellman (HJB) or Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations.
We show that such formulations are very convenient for developing monotone discretization
methods which ensure convergence to the financially relevant solution, which in this case is the
viscosity solution. In addition, for the HJB type equations, we can guarantee convergence of a
Newton-type (Policy) iteration scheme for the nonlinear discretized algebraic equations. How-
ever, in some cases, the Newton-type iteration cannot be guaranteed to converge (for example,
the HJBI case), or can be very costly (for example for jump processes). In this case, we can
use a piecewise constant control approximation. While we use a very general approach, we
also include numerical examples for the specific interesting case of option pricing with unequal
borrowing/lending costs and stock borrowing fees.
Keywords: Option pricing, stochastic control, nonlinear HJB PDE

1 Introduction

There are a number of financial models which result in nonlinear partial differential equations
(PDEs). Examples where such nonlinear PDEs arise include transaction cost/uncertain volatility
models [28, 4, 38], passport options [3, 43], unequal borrowing/lending costs [13], large investor
effects [2], risk control in reinsurance [32], pricing options and insurance in incomplete markets
using an instantaneous Sharpe ratio [51, 31, 11], and optimal consumption [12, 15]. A recent
survey article on the theoretical aspects of this topic is given in [35].

In many of these cases, the financial pricing problems can also be naturally posed as opti-
mal control problems, leading to nonlinear Hamilton-Jacobi-Bellman (HJB) PDEs, partial integro
differential equations (PIDEs) or Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations.
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A common approach found in the literature is to analytically determine the optimal control,
and then substitute this control back into the PDE. Unfortunately, this method leads to PDEs
which are highly nonlinear and where it is extremely difficult to design numerical schemes which
are guaranteed to converge.

In this paper we consider the discrete optimal control problem directly. Our objective is to
provide a general procedure for numerical solution of single factor optimal control problems in
option pricing. We focus on discretization methods which are unconditionally stable, and for which
convergence to the financially relevant solution is guaranteed. We place particular emphasis on the
interaction of the discretization technique with the method used to solve the nonlinear discretized
algebraic equations. Along the way we look at two specific examples which are interesting in their
own right: unequal borrowing/lending rates and stock borrowing fees.

There are many technical issues that need to be addressed when solving optimal control prob-
lems directly. For example, since we have nonlinear PDEs, the solutions are not necessarily unique.
For our problems we need to ensure that our discretization methods converge to the financially
relevant solution, which in this case is the viscosity solution [18]. As demonstrated in [38], seem-
ingly reasonable discretization methods can converge to non-viscosity solutions. We show that
an optimal control formulation is in fact quite convenient for verifying monotonicity, l∞ stability
and consistency of our discrete schemes. Using the basic results of [10, 5], this ensures that our
numerical solutions convergence to the viscosity solution.

In terms of existing solution methods, there are two basic threads of literature concerning
controlled HJB equations. One classic approach is based on a Markov chain approximation (see for
example [27]). In financial terms, this approach is similar to the usual binomial lattice, which is
equivalent to an explicit finite difference method. However, these methods are well-known to suffer
from timestep limitations due to stability considerations.

A more recent approach is based on numerical methods which ensure convergence to the viscosity
solution of the HJB equation. Unconditionally monotone implicit methods are described in [8].
This leads to a nonlinear set of discretized equations which must be solved at each timestep. It is
common in the PDE literature [8] to suggest relaxation type methods for solution of the nonlinear
algebraic equations at each timestep. However convergence of relaxation methods can be very slow
for fine grids. On the other hand if we require a monotone scheme, then the discrete equations can
be related to the discrete equations which occur in infinite horizon controlled Markov chains. If we
solve a discrete version of the control problem, then in some cases we can obtain guarantees on the
convergence of Newton-type (Policy) iteration schemes.

Nevertheless, there are cases where the nonlinear discrete equations are quite difficult to solve,
or the convergence of the iteration is very slow. A case in point, which we will not pursue in this
paper, would be the PIDE case. It may be quite difficult to solve a local control problem with a
control parameter in the integral operator. An alternative possibility, is to approximate the action
of the control as piecewise constant in time [25]. A simple case of this which is commonplace in
finance is the approximation of an American option by a Bermudan option, with exercise at the
end of each timestep. We use this same idea for other types of controls. This gives a method which
has no timestep limitations due to stability, and does not require the solution of any nonlinear
iterations at each timestep. In this case the controls must be discretized, and an additional PDE
must be solved (at each timestep) for each discrete control. As such, this approach reduces a single
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complex nonlinear problem to a set of linear problems, with a nonlinear updating rule at the end
of each timestep.

The main results of this paper are summarized as follows:

• We show that many nonlinear option pricing problems can be posed as optimal control prob-
lems, in particular unequal borrowing/lending rates and stock borrowing fees.

• If the control is handled implicitly, then the control formulation allows us to easily check the
conditions required to ensure convergence of the discretization to the viscosity solution.

• The control formulation leads to natural Newton-like iteration schemes for the nonlinear
algebraic equations, which arise from an implicit treatment of the control.

• The control problem can also be reformulated as piecewise constant (in time) to avoid solving
nonlinear algebraic equations, at the expense of solving a number of linear problems at each
timestep.

• A combination of the implicit control and piecewise constant control can be used to obtain
robust and efficient methods.

We include numerical examples illustrating these ideas for a model with unequal borrow-
ing/lending rates and stock borrowing fees. We remark that, while it is standard in the PDE
literature to use a combination of forward and backward differencing to ensure monotonicity (and
hence implying that the error in the space-like direction is only first order), in practical finan-
cial applications, it is usually possible to use central differencing at most nodes, and still obtain
a monotone scheme. Our numerical examples illustrate that our schemes effectively have second
order convergence in most cases.

2 Preliminaries

Let V (S, t) be the value of a contingent claim written on asset S which follows the stochastic process

dS = µS dt + σS dZ, (2.1)

where µ is the drift rate, σ is volatility, and dZ is the increment of a Wiener process. There are
a number of financial situations where the value of a contingent claim is determined by solving an
optimal control problem.

Consider for example, the uncertain volatility model developed in [4, 30]. This provides a pricing
mechanism for cases where volatility is uncertain, but lies within a band, σ ∈ [σmin, σmax]. In this
case, the PDE which is used to determine the value of a contingent claim is determined by the two
extremal volatilities. For a short position the optimal control problem is given by

Vt + sup
Q∈Q̂

{
q2
1S

2

2
VSS + SVS − rV

}
= 0 (2.2)
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where Q = (q1) and Q̂ = ({σmin, σmax}) and r is the borrowing/lending rate. Replacing the sup
by an inf gives the corresponding pricing equation for a long position. A PDE of precisely the same
form is obtained for the Leland model of transaction costs [28].

A second example of an optimal control problem is the passport option on a trading account
[3, 43]. In this case the holder of a passport option is entitled to go long or short an underlying
asset with value S. At the expiry of the contract, the option holder can receive the accumulated
gain on the account W or walk away if W < 0. The Black-Scholes analysis involves construction of
a worst case hedging portfolio which gives an optimal control problem. If we set V = SU , where
V (S, t) is the value of the short position contract, then the fair market price for U is given by

Ut + sup
Q∈Q̂

{
+

σ2S2

2
(x− q1)2Uxx +

(
(r − γ − rc)q1 − (r − γ − rt)x

)
Ux − γU

}
= 0, (2.3)

with Q = (q1) and Q̂ = ([−1, 1]). Here γ is the dividend rate, rc is the cost of carry, rt is the
interest rate on the trading account and x = W

S with −∞ < x < ∞. We note that in this case the
control ranges over a continuous interval. However, when the payoff is convex then the controls
become Q̂ = ({−1,+1}).

A third, more recent, example of an optimal control problem occurs in pricing certain insurance
contracts in incomplete markets. One possible method for pricing such contracts is based on an
instantaneous Sharpe ratio [31, 11]. In [51], an example is discussed for the case of hedging with an
imperfectly correlated asset. Suppose the asset underlying the contract follows the process (2.1).
However, it is not possible to trade in S, rather only in the asset S′, which follows

dS′ = µ′S′ dt + σ′S′ dZ ′ with dZ dZ ′ = ρ dt . (2.4)

For a short position, the pricing PDE is then

Vt + sup
Q∈Q̂

{(
r′ + q1λσ

√
1− ρ2

)
SVS +

σ2S2

2
VSS − rV

}
= 0 , (2.5)

where Q = (q1) and Q̂ = ({−1,+1}). Here λ is the instantaneous Sharpe ratio and

r′ = µ− (µ′ − r)
σρ

σ′
. (2.6)

Replacing the sup by an inf in equation (2.5) gives the price for a long position.
While the previous three pricing PDEs are well known, we also include the following examples

of optimal control problems:
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Example 2.1 : Unequal Borrowing/Lending Rates
Consider the case where the cash borrowing rate (given by rb) and the lending rate (given by rl,
with rb ≥ rl) are not necessarily equal, a model discussed, for example, in [13, 2]. The price of an
option V is then given by the nonlinear PDE (a brief derivation is given in Appendix A):

Short Position: Vt +
σ2S2

2
VSS + ρ(V − SVS)(SVS − V ) = 0

Long Position: Vt +
σ2S2

2
VSS + ρ(SVS − V )(SVS − V ) = 0 , (2.7)

where

ρ(x) =
{

rl if x ≥ 0
rb if x < 0

. (2.8)

Notice that for the short position the nonlinear problem can be posed as

Vt + sup
Q∈Q̂

{
σ2S2

2
VSS + q1(SVS − V )

}
= 0 , (2.9)

where Q = (q1) and Q̂ = ({rl, rb}). As before, the price for a long position option is given by
replacing the sup by an inf in equation (2.9).

For a vanilla put, the bank account B = V − SVS is always positive. Thus q1 = rl in
equation (2.9) and the equation becomes linear. Similarly, for a vanilla call the bank account
B = V − SVS < 0, so that q1 = rb in equation (2.9) and the PDE again becomes linear.

At first sight, the formulation (2.9) appears to be unnecessarily complicated compared with
equation (2.7). However, we will demonstrate that using an optimal stochastic control formulation
results in considerable simplification of the analysis of the numerical algorithm used to solve problem
(2.9). As well, the control formulation permits use of a piecewise constant policy algorithm for
numerical solution of control problem (2.9), a method which is very straightforward to implement.

Example 2.2 : Stock Borrowing Fees
The borrowing/lending model in Example 2.1 can be extended to include stock borrowing fees. Such
fees are effectively paid to stock lenders when a hedger shorts a stock. The stock borrowing process
is described in [21]. In essence, the holder of a short position will not receive the rate rl on the
proceeds of the short sale, but rather rl − rf , where rf is the stock borrowing fee. Typically, rf can
be about 40 bps (.4%) [52]. The nonlinear pricing PDE in the case where it is assumed that retail
customers do not receive any interest on the proceeds of a short sale (i.e. rf = rl), is derived in
[13]. The pricing equation is (for a derivation of the option pricing PDE for the general case where
rf 6= rl see Appendix A):

Short Position: Vt +
σ2S2

2
VSS + H(VS) [ρ(V − SVS)(SVS − V )]

+ H(−VS) [(rl − rf )SVS − ρ(V )V ] = 0

Long Position: Vt +
σ2S2

2
VSS + H(−VS) [ρ(SVS − V )(SVS − V )]

+ H(VS) [(rl − rf )SVS − ρ(−V )V ] = 0 , (2.10)
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where ρ(x) is defined in equation (2.8), and

H(y) =
{

1 if y ≥ 0
0 if y < 0

.

For a short position we can pose our nonlinear PDE problem as the control problem

Vt + sup
Q∈Q̂

{
σ2S2

2
VSS + q3q1(SVS − V ) + (1− q3)[(rl − rf )SVS − q2V ]

}
= 0 , (2.11)

where Q = (q1, q2, q3) and Q̂ = ({rl, rb}, {rl, rb}, {0, 1}). The pricing equation for the long position
again only involves replacing sup by inf.

Remark 2.1 (Arbitrage Bands) The long and short prices in Examples 2.1 and 2.2 can be
considered to form an arbitrage band [13]. Any market price higher than the short price or lower
than the long price represents an arbitrage opportunity. No arbitrage opportunities exist for market
prices which lie between the long price and the short price.

Example 2.3 : American Options
Let V ∗ be the payoff of an American option. The price of an American option can be written as

min

−Vt −

{
σ2S2

2
VSS + rSVS − rV

}
, V − V ∗

 = 0 . (2.12)

We can also write this as a penalized control problem:

Vt + sup
µ∈{0,1}

{
σ2S2

2
VSS + rSVS − rV + µ

(V ∗ − V )
ε

}
= 0 , (2.13)

for ε � 1. For a discussion of the penalized method from an analytical point of view, see [1]. A
numerical algorithm based on the penalty method is described in [22].

Example 2.4 : American Options and Stock Borrowing Fees
An interesting case arises when the Stock Borrowing model in Example 2.2 with a long position, is
combined with American early exercise. This gives rise to the problem

min

−Vt − inf
Q∈Q̂

{
σ2S2

2
VSS + q3q1(SVS − V ) +(1− q3)[(rl − rf )SVS − q2V ]

}
, V ∗ − V

 = 0 ,

(2.14)

with Q = (q1, q2, q3), Q̂ = ({rl, rb}, {rl, rb}, {0, 1}) and where V ∗ is the option payoff. We can
formulate this as a penalty problem

Vt + sup
µ∈{0,1}

inf
Q∈Q̂

{
σ2S2

2
VSS + q3q1(SVS − V )+(1− q3)[(rl − rf )SVS − q2V ] + µ

(V ∗ − V )
ε

}
= 0.

(2.15)
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Note the interesting feature of the sup inf in equation (2.15). This type of problem is commonly
referred to as a stochastic game. The PDE in this case is referred to as the Hamilton-Jacobi-
Bellman-Isaacs equation (HJBI). In our case, it is obvious that we can interchange the inf sup in
equation (2.15), so that the Isaacs condition is satisfied, and we can expect a unique value.

All of the above examples can be described as HJB or HJBI equations. If we assume the
underlying process is a jump process, we would end up with a controlled partial integro differential
equation (PIDE). We will not discuss the PIDE case further in this paper, leaving this case for
future work.

We will also not specifically discuss singular or impulse control problems in this paper [35].
However, singular controls can be formulated as a penalized problem [19]. It is then straightforward
to use the methods described in this paper to solve the penalized formulation of a singular control.
Penalty methods can also be used for impulse control.

3 General Form for the Example Problems

All the methods described in this paper handle problems such Examples 2.1-2.4 along with passport
options, uncertain volatility models, and many other problems in finance. For concreteness, we will
make use of Examples 2.1 and 2.2 from the previous section.

As is typically the case with finance problems, we solve backwards in time from the expiry date
of the contract t = T to t = 0 by use of the variable τ = T − t. With a slight abuse of notation, we
now let V = V (S, τ) in the remainder of the paper. Set

LQV ≡ a(S, τ,Q)VSS + b(S, τ,Q)VS − c(S, τ,Q)V , (3.1)

where the control parameter Q is in general a vector, that is, Q = (q1, q2, . . .)′. We write our
problems in the general form

Vτ = sup
Q∈Q̂

{
LQV + d(S, τ,Q)

}
, (3.2)

or

Vτ = inf
Q∈Q̂

{
LQV + d(S, τ,Q)

}
. (3.3)

Here we include the d(S, τ,Q) term in equation (3.2) since it would be necessary for American
options.

As an example note that the coefficients for equation (3.2) with Examples 2.1 and 2.2 are

a(S, τ,Q) =
σ2S2

2

b(S, τ,Q)) =

{
Sq1 Example 2.1
S(q3q1 + (1− q3)(rl − rf )) Example 2.2

c(S, τ,Q) =

{
q1 Example 2.1
q3q1 + (1− q3)q2 Example 2.2

d(S, τ,Q) = 0 . (3.4)
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In the case of American options with payoff V ∗, the a(S, τ,Q) and b(S, τ,Q)) remain the same
while the other coefficients become

c(S, τ,Q) =

{
q1 + µ

ε Example 2.1
q3q1 + (1− q3)q2 + µ

ε Example 2.2

d(S, τ,Q) =
µ

ε
V ∗ (3.5)

with the new set of controls now including the addition of parameter µ ∈ {0, 1}.
We will assume in the following that a(S, τ,Q) ≥ 0, c(S, τ,Q) ≥ 0. In a financial context this

corresponds to non-negative interest rates and volatilities. In general it is useful for us to explicitly
separate the penalty term in equation (3.6) from the non-penalty terms. To be more specific, we
assume that

c(S, τ,Q) = ĉ(S, τ,Q) +
e(S, τ,Q)

ε

d((S, τ,Q) = d̂(S, τ,Q) +
e(S, τ,Q)f(S, τ)

ε
; ε � 1

(3.6)

and where ĉ(S, τ,Q), e(S, τ,Q), f(S, τ,Q) are all nonnegative.
If we have an additional set of controls P ∈ P̂ , and define

LQ,P V ≡ a(S, τ,Q, P )VSS + b(S, τ,Q, P )VS − c(S, τ,Q, P )V , (3.7)

then, with d = d(S, τ,Q, P ), the HJBI case becomes

Vτ = sup
Q∈Q̂

inf
P∈P̂

{
LQ,P V + d(S, τ,Q, P )

}
. (3.8)

For brevity in the following, we will only focus on the case with the sup in equation (3.2). All
the results in the following sections hold for the inf case as well. We will point out the special
problems that arise when considering the HJBI case (3.8).

3.1 Boundary Conditions

At τ = 0, we set V (S, 0) to the specified contract payoff. As S → 0, we assume

a(S, τ,Q) = 0 and b(S, τ,Q) ≥ 0 (3.9)

so that equation (3.2) reduces to the problem

Vτ = max
Q∈Q̂

{
b(0, τ, Q)VS − c(0, τ, Q)V + d(0, τ, Q)

}
. (3.10)

In order to ensure that classical solutions exist for the uncontrolled problem, we should have the
additional condition [34]

lim
S→0

( b(S, τ,Q)− aS(S, τ,Q) ) ≥ 0 (3.11)
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so that no boundary condition (other than equation (3.10)) is required at S = 0. For the CIR
model, the nonuniqueness of the classical solution when condition (3.11) is not satisfied is discussed
in [23].

As S → ∞, we normally use financial reasoning to determine the asymptotic form of the
solution. A typical assumption is that VSS ' 0 [50], so that

V ' B(τ)S + C(τ); S →∞ . (3.12)

We make the approximation that the optimal control Q is independent of time and S as S → ∞,
so that Q can be determined from the payoff as S →∞. This then leads to a set of ODEs to solve
for B(τ), C(τ) [50], with B(0), C(0) determined from the contract payoff. We will assume in the
following that the asymptotic form

V (Smax, τ) = B(τ)Smax + C(τ) (3.13)

is known.
For computational purposes, we solve problem (3.2) on

0 ≤ τ ≤ T and 0 ≤ S ≤ Smax , (3.14)

with condition (3.10) imposed at S = 0, and the condition (3.13) with B, C known functions
imposed at S = Smax. As pointed out in [7], we can expect any errors incurred by imposing
approximate boundary conditions at S = Smax to be small in areas of interest if Smax is sufficiently
large.

Assumption 3.1 (Properties of the HJB and HJBI PDE.) We make the assumption that
the coefficients a, b, c, d are continuous functions of (S, τ,Q), with a ≥ 0, and c ≥ 0 and that
a, b, ĉ, e, d̂, f (equation (3.6)) are bounded on 0 ≤ S ≤ Smax. Since we restrict ourselves to a finite
computational domain 0 ≤ S ≤ Smax, we avoid difficulties associated with coefficients that grow
with S as S → ∞. We also assume that the set of admissible controls Q̂ (for the HJB case) and
Q̂, P̂ (for the HJBI case) are compact (i.e. a closed, bounded interval). It follows from [16, 9]
that solutions to equation (3.4) along with the boundary conditions (3.10) and (3.13) satisfy the
strong comparison property, in the case that the penalty terms are zero. From [1], we know that the
penalized equation is also a good approximation to the viscosity solution. Comparison results for
the HJBI equation (under more general conditions than discussed in this paper) are given in [29].
Consequently, in all cases, we make the assumption that the strong comparison property holds, so
that a unique viscosity solution exists for equations (3.2), (3.3), and (3.8).

Remark 3.1 (Interpretation of the Strong Comparison Property) As noted in [17], in a
financial context, the strong comparison property simply states that if W (S, τ) and V (S, τ) are two
contingent claims, with W (S, 0) ≥ V (S, 0), then W (S, τ) ≥ V (S, τ) for all τ . We will verify that
the schemes developed in this paper satisfy a discrete version of the comparison principle.
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4 Discretization

In this section, we will introduce the basic discretization for the PDE in the general form (3.2),
and introduce the matrix notation to be used in the remainder of the this paper. We will discuss
the concept of a positive coefficient discretization, which will ensure convergence to the viscosity
solution. In addition, the positive coefficient property will allow us to prove convergence of iterative
schemes for solving the nonlinear discretized algebraic equations.

Define a grid {S0, S1, . . . , Sp} with Sp = Smax, and let V n
i be a discrete approximation to

V (Si, τ
n). Let V n = [V n

0 , . . . , V n
p ]′, and let (LQ

h V n)i denote the discrete form of the differential
operator (3.4) at node (Si, τ

n). The operator (3.4) can be discretized using forward, backward or
central differencing in the S direction to give

(LQ
h V n+1)i = αn+1

i (Q)V n+1
i−1 + βn+1

i (Q)V n+1
i+1 − (αn+1

i (Q) + βn+1
i (Q) + cn+1

i (Q))V n+1
i .(4.1)

Here αi, βi are defined in Appendix C.
It is important that central, forward or backward discretizations be used to ensure that (4.3) is

a positive coefficient discretization. To be more precise, this condition is

Condition 4.1 Positive Coefficient Condition

αn+1
i (Q) ≥ 0, βn+1

i (Q) ≥ 0, cn+1
i (Q) ≥ 0. i = 0, .., p− 1 ; ∀Q ∈ Q̂ . (4.2)

We will assume that all models have cn+1
i (Q) ≥ 0. Consequently, we choose central, forward or

backward differencing at each node to ensure that αn+1
i (Q), βn+1

i (Q) ≥ 0. Note that different
nodes can have different discretization schemes. If we use forward and backward differencing, then
the equation (C.3) guarantees a positive coefficient method. However, since this discretization is
only first order correct, it is desirable to use central differencing as much as possible (and yet still
obtain a positive coefficient method). This is discussed in detail in [49].

Equation (3.2) can now be discretized using fully implicit timestepping (θ = 0) or Crank-
Nicolson (θ = 1/2) along with the discretization (4.1) to give

V n+1
i − V n

i

∆τ
= (1− θ) sup

Qn+1∈Q̂

{
(LQn+1

h V n+1)i + dn+1
i

}
+ θ sup

Qn∈Q̂

{
(LQn

h V n)i + dn
i

}
. (4.3)

These discrete equations are highly nonlinear in general. We refer to methods which use an implicit
timestepping method where the control is handled implicitly as an implicit control method in the
following.

4.1 Order of Approximation

Set

(∆S)max = max
i

(Si+1 − Si) and (∆S)min = min
i

(Si+1 − Si)

and suppose φ(S, τ) is a smooth test function with bounded derivatives of all orders with respect
to (S, τ). If φn

i = φ(Si, τ
n), then using Taylor series expansions (and the discretization described
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in Appendix C) verifies that ∣∣∣(LQ
h φ)n

i − (LQφ)n
i

∣∣∣ = O((∆S)max) . (4.4)

For φ a smooth test function, using equations (4.4), (B.4), (and Taylor series expansions) also gives
the order of our discretization as∣∣∣∣∣(φτ )n+1

i − sup
Q∈Q̂

{
LQφ + d

}n+1

i
−

[
φn+1

i − φn
i

∆τ
− (1− θ) sup

Qn+1∈Q̂

{
(LQn+1

h φn+1)n+1
i + dn+1

i

}

− θ sup
Qn∈Q̂

{
(LQn

h φn+1)n+1
i + dn

i

} ] ∣∣∣∣∣
≤

∣∣∣∣∣(φτ )n+1
i −

φn+1
i − φn

i

∆τ

∣∣∣∣∣
+ sup

Q∈Q̂

∣∣∣∣∣{LQφ + d
}n+1

i
− (1− θ)

{
(LQ

h φn+1)n+1
i + dn+1

i

}
− θ

{
(LQ

h φn)n
i + dn

i

}∣∣∣∣∣
= O(∆τ) + O((∆S)max) + θ sup

Q∈Q̂

∣∣∣∣∣{LQφ + d
}n+1

i
−

{
(LQ

h φn)n
i + dn

i

}∣∣∣∣∣
= O(∆τ) + O((∆S)max). (4.5)

The last step follows since the coefficients of the PDE are assumed continuous functions of time.

Remark 4.1 (Second Order Error) We have expanded the Taylor series in equation (4.5) about
the point (Si, τ

n+1). If we expand about the point (Si, τ
n+1/2) (where τn+1/2 = (τn+1 + τn)/2 )

and assume that the PDE coefficients have bounded second derivatives with respect to time, then
for θ = 1/2, the time truncation error is O((∆τ)2). As well, if we assume that the grid in the S
direction is slowly varying, and that central weighting is used, then the error in the S direction will
be O((∆S)2max). In general, of course, these assumptions may not be justified. However, in many
cases in practice, we observe close to second order convergence at most nodes of interest if we use
Crank-Nicolson weighting.

We require our discretization to satisfy αn+1
i , βn+1

i ≥ 0 and so require a combination of for-
ward/backward/central differencing choices. Of course we would like to use central differencing as
much as possible, rather than forward/backward differencing (which are only first order correct)
(see the algorithm described in [20]). However this does imply that the discretization in Appendix
C is formally only first order accurate in (∆S)max due to the possibility of using forward/backward
differencing at some nodes, as well as the unequally spaced grid. In practice, forward/backward
differencing is usually only required at a small number of nodes, and usually the grid size is changed
smoothly near regions of interest. The example computations will show near quadratic convergence
as the mesh size is reduced.

From a practical standpoint, there are essentially two important cases.
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4.2 Q Independent Discretization

In some cases, we can preselect central, forward or backward differencing independent of the op-
timal control Qn+1

i , which ensures that the positive coefficient condition (4.2) is satisfied. In this
situation, the determination of the optimal control Qn+1

i , for given {V n+1
i , V n+1

i+1 , V n+1
i−1 } is usually

straightforward. As a result, we would expect that iterative solution of the nonlinear equations
(4.3) is at least feasible.

The following method is used to preselect the discretization method at each node [51]. We
process each node in turn, first testing to see if central differencing satisfies (4.2), for any Q ∈ Q̂. If
this is the case, then we use central differencing at this node, and proceed on to the next node. If
central differencing does not ensure a positive coefficient discretization, then forward and backward
differencing are tested. We remark that for the problems in Examples 2.1 and 2.2, as long as
rl− rf ≥ 0, then one of central or forward differencing will satisfy the positive coefficient condition,
for an arbitrary choice of grid, for any Q ∈ Q̂.

In some cases, Q independent discretization may not be possible for an arbitrary grid, but
can be achieved for small enough node spacing. Usually, the problem nodes are few in number,
and located near S → 0, that is, where the diffusion term is small. In this case, we can often
take an arbitrary grid, and insert a relatively small number of nodes, which will guarantee that Q
independent discretization will satisfy (4.2). An example of this node insertion algorithm is given
in [51].

4.3 Q Dependent Discretization

Unfortunately there are some situations where no matter how fine the grid, it may not be possible
to preselect the type of discretization at each node which will ensure that the positive coefficient
condition (4.2) is satisfied at each node for any Q ∈ Q̂. This is the case for passport options when
there are non-convex payoffs [37, 49]. In this case, the discretization at node i (central, forward
or backward) will depend on Qn+1

i . Of course, the optimal value of Qn+1
i will now depend on

the discretization. In addition, for given {V n+1
i , V n+1

i+1 , V n+1
i−1 }, determination of the optimal value

for Qn+1
i may not be straightforward. This follows since the discretized equations are continuous

functions of Q if forward and backward differencing only are used for the first order terms, but the
discrete equations will not, in general, be continuous functions of Q if central weighting is used as
much as possible. This issue is discussed in detail in [49]. In the following, we will not require that
the discrete equations be a continuous function of the control, to allow for the case described in
[49].

4.4 Matrix Form of the Discrete Equations

It will be convenient to use matrix notation for equations (4.3), coupled with boundary conditions
(3.10) and (3.13).

Let the boundary conditions at S = Smax and time τn be given by

Fn
p = B(τn)Smax + C(τn) , (4.6)
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where Sp = Smax and B(0), C(0) determined from the payoff. Set

V n = [V n
0 , V n

1 , . . . , V n
p ]′ and Q = [Q0, Q1, . . . , Qp]′ (4.7)

We can write the discrete operator (LQ
h V n)i as

(LQ
h V n)i = [A(Q)V n]i

=
[
αn

i (Q)V n
i−1 + βn

i (Q)V n
i+1 − (αn

i (Q) + βn
i (Q) + cn

i (Q))V n
i

]
; i < p. (4.8)

The first and last rows of A are modified as needed to handle the boundary conditions. The
boundary condition at S = 0 (equation (3.10)) is enforced by setting αi = 0, and using forward
differencing for the first order term at i = 0. For notational consistency, this is consistent with the
above if we define V n

−1 = 0. Let Fn = [0, . . . , 0, Fn
p ]′. The boundary condition at i = p is enforced

by setting the last row of A to be identically zero. With a slight abuse of notation, we denote this
last row as (An(Q))p ≡ 0. In the following, it will be understood that equations of type (4.8) hold
only for i < p, with (An(Q))p ≡ 0.

Let Dn(Q) be the vector with entries

[D(Q)]ni =
{

dn
i (Q) , i < p
0 , i = p.

Remark 4.2 (Matrix Supremum Notational Convention) In the following, we will denote

sup
Q∈Q̂

{[
An+1(Q)V n+1 + Dn+1(Q)

]
i

}
(4.9)

by

An+1(Qn+1)V n+1 + Dn+1(Qn+1) (4.10)

where Qn+1
i ∈ arg sup

Q∈Q̂

{[
An+1(Q)V n+1 + Dn+1(Q)

]
i

}
. (4.11)

If the local objective function is a continuous function of Q, then, since Q̂ is compact, the supremum
is simply the maximum value, and Qn+1 is the point where a maximum is attained. If the local
objective function is discontinuous, we interpret An+1(Qn+1) as the appropriate limiting value of
[An+1(Q)]i which generates the supremum, at the limit point Qn+1. A specific example of an
algorithm for computing this limit point is given for the case of maximizing the usage of central
weighting as much as possible in [49]. Note that Qn+1 is not necessarily unique.

The discrete equations (4.3) can be written as[
I − (1− θ)∆τAn+1(Qn+1)

]
V n+1 = [I + θ∆τAn(An)]V n + (1− θ)∆τDn+1(Qn+1)

+θ∆τDn(Qn) + (Fn+1 − Fn) ,

where Qn+1
i ∈ arg sup

Q∈Q̂

{[
An+1(Q)V n+1 + Dn+1(Q)

]
i

}
i = 0, . . . , p− 1.

(4.12)
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Here the term (Fn+1−Fn) enforces the boundary condition at S = Sp. Recall that Crank Nicolson
(θ = 1/2) or fully implicit (θ = 0) timestepping is used.

It will be convenient to define the following

(∆τ)max = max
n

(τn+1 − τn) and (∆τ)min = min
n

(τn+1 − τn)

where we assume that there are mesh size/timestep parameters hmin, hmax such that

(∆S)max = C1hmax, (∆τ)max = C2hmax,

(∆S)min = C3hmin, (∆τ)min = C4hmin (4.13)

with C1, C2, C3, C4 positive constants independent of h. We can then write the discrete equations
(4.3) or (4.12) at each node in the following form

Gn+1
i (hmax, V n+1

i , V n+1
i+1 , V n+1

i−1 , V n
i , V n

i+1, V
n
i−1) = 0

where

Gn+1
i ≡

V n+1
i − V n

i

∆τ
− (1− θ) sup

Qn+1∈Q̂

{(
An+1(Qn+1)V n+1 + Dn+1(Qn+1)

)
i

}
−

Fn+1
i − Fn

i

∆τ
− θ sup

Qn∈Q̂

{(
An(Qn)V n + Dn(Qn)

)
i

}
. (4.14)

To avoid longwinded notation, we shall occasionally write

Gn+1
i (hmax, V n+1

i , {V n+1
j }j 6=i, {V n

j }) ≡ Gn+1
i (hmax, V n+1

i , V n+1
i+1 , V n+1

i−1 , V n
i , V n

i+1, V
n
i−1) ,

(4.15)

where {V n+1
j }j 6=i is the set of values V n+1

j , j = 1, . . . , p, j 6= i, and {V n
j } is the set of values

V n
j , j = 1, . . . , p.

5 Convergence to the Viscosity Solution

In [38], examples were given in which seemingly reasonable discretizations of nonlinear option
pricing PDEs were unstable or converged to the incorrect solution. It is important to ensure that
we can generate discretizations which are guaranteed to converge to the viscosity solution [5, 18].
Assuming that equation (3.2) satisfies the strong comparison property [6, 9, 16], then, from [10, 5],
a numerical scheme converges to the viscosity solution if the method is consistent, stable (in the
l∞ norm) and monotone. To be precise, we define these terms.

Definition 5.1 (Stability) Discretization (4.14) is stable if

‖V n+1‖∞ ≤ C5 , (5.1)

for 0 ≤ n ≤ N , T = N∆τ , for (∆τ)min → 0, (∆S)min → 0, where C5 is independent of
(∆τ)min, (∆S)min.
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Definition 5.2 (Consistency) Scheme (4.14) is consistent if, for any smooth function φ, with
φn

i = φ(Si, τ
n), we have

lim
hmax→0

∣∣∣∣∣(φτ − sup
Q∈Q̂

{
LQφ + d

})n+1

i
−Gn+1

i (hmax, φn+1
i , φn+1

i+1 , φn+1
i−1 , φn

i , φn
i+1, φ

n
i−1)

∣∣∣∣∣ = 0 .

(5.2)

For the general case where the operator is degenerate, a more complicated definition of consistency
is required in order to handle boundary data [5]. In our case, the degeneracy occurs at S → 0, and
boundary condition (3.10) is simply the limit of equation (3.2) as S → 0. As such this problem
does not arise.

The most interesting requirement is monotonicity.

Definition 5.3 (Monotonicity) The discrete scheme (4.14) is monotone if for all εl
j ≥ 0 and i

Gn+1
i (hmax, V n+1

i , {V n+1
j + εn+1

j }j 6=i, {V n
j + εn

j }) ≤ Gn+1
i (hmax, V n+1

i , {V n+1
j }j 6=i, {V n

j }).
(5.3)

Stability and consistency are easily established.

Lemma 5.1 (Stability) If the discretization (4.14) satisfies the positive coefficient condition (4.2),
and boundary conditions are imposed at S = 0 and S = Smax, as in equation (3.10) and (3.13),
then the scheme (4.12) satisfies (for Smax fixed, and recalling the definitions of d̂, f in equation
(3.6))

‖V n‖∞ ≤ max(‖V 0‖∞ + C6, C7, C8) (5.4)

where C6 = T maxi,n |d̂n
i |, C7 = maxi,n |Fn

i |, and C8 = maxi,n fn
i provided that

∆τ θ (αn
i + βn

i + cn
i ) ≤ 1 ; ∀i . (5.5)

Proof . For the fully implicit case (θ = 0), the discrete equations are, for i < p,

V n+1
i = V n

i −∆τ
(
αn+1

i + βn+1
i + ĉn+1

i +
en+1
i

ε

)
V n+1

i

+∆ταn+1
i V n+1

i−1 + ∆τβn+1
i V n+1

i+1 + ∆τ d̂n+1
i +

en+1
i ∆τ fn+1

i

ε
(5.6)

and V n+1
p = Fn+1

p when i = p. To avoid notational clutter, we have suppressed the Q dependence
in equations (5.6). It will be understood that the coefficients are the limiting values at the optimal
Q. From equation (5.6), we obtain

|V n+1
i |

(
1 + ∆τ(αn+1

i + βn+1
i + ĉn+1

i +
en+1
i

ε
)
)
≤ ‖V n‖∞ + ‖V n+1‖∞∆τ(αn+1

i + βn+1
i )

+
en+1
i ∆τfn+1

i

ε
+ ∆τ |d̂n+1

i | . (5.7)
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If ‖V n+1‖∞ = |V n+1
j |, j < p, then equation (5.7) gives

‖V n+1‖∞
(
1 + ∆τ ĉn+1

j + ∆τ
en+1
j

ε

)
≤ ‖V n‖∞ +

en+1
j ∆τfn+1

j

ε
+ ∆τ |d̂n+1

j | , (5.8)

or, letting fn+1
max = maxj fn+1

j and d̂n+1
max = maxj |d̂n+1

j |, we obtain

‖V n+1‖∞ ≤ max(‖V n‖∞, fn+1
max) + ∆τ d̂n+1

max . (5.9)

If j = p then ‖V n+1‖∞ = |V n+1
p | and so equation V n+1

p = Fn+1
p gives

‖V n+1‖∞ = |Fn+1
p | . (5.10)

Combining equations (5.9) and (5.10) gives

‖V n+1‖∞ ≤ max(‖V n‖∞, fn+1
max, |Fn+1

p |) + ∆τ d̂n+1
max , (5.11)

which then results in equation (5.4). A similar series of steps for θ > 0 shows that the discretization
is stable provided condition (5.5) holds. �

Lemma 5.2 (Consistency) If the discrete equation coefficients are as given in Appendix C, then
the discrete scheme (4.14) is consistent as defined in Definition 5.2.

Proof . This follows from equation (4.5). �

The fact that a discretization of a control problem which satisfies the positive coefficient condi-
tion (4.2) results in a monotone scheme was noted in [8]. This result holds for both Q dependent
and Q independent discretizations (see Sections 4.2 and 4.3). It is instructive to include a proof of
this result, since it illustrates the importance of maximizing/minimizing the discretized equations.

Lemma 5.3 (Monotonicity) If the discretization (4.14) satisfies the positive coefficient condition
(4.2), boundary conditions are imposed at S = 0 and S = Smax, as in equation (3.10) and (3.13),
and the stability condition (5.5) is satisfied, then discretization (4.14) is monotone as defined in
Definition 5.3.

Proof . Consider the fully implicit case (θ = 0 in equation (4.14)). For i = p, the Lemma is
trivially true. For i < p, we write equation (4.14) out in component form

Gn+1
i (h, V n+1

i , V n+1
i+1 , V n+1

i−1 , V n
i )

=
V n+1

i − V n
i

∆τ
+ inf

Qn+1∈Q̂

{
(αn+1

i (Q) + βn+1
i (Q) + cn+1

i (Q))V n+1
i

− αn+1
i (Q)V n+1

i−1 − βn+1
i (Q)V n+1

i+1 − dn+1
i (Q)

}
.

(5.12)
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For ε ≥ 0, we have

Gn+1
i (h, V n+1

i , V n+1
i+1 + ε, V n+1

i−1 , V n
i )−Gn+1

i (h, V n+1
i , V n+1

i+1 , V n+1
i−1 , V n

i )

= inf
Q∈Q̂

{
(αn+1

i (Q) + βn+1
i (Q) + cn+1

i (Q))V n+1
i − αn+1

i (Q)V n+1
i−1 − βn+1

i (Q)V n+1
i+1 − βn+1

i (Q)ε− dn+1
i (Q)

}
− inf

Q∗∈Q̂

{
(αn+1

i (Q∗) + βn+1
i (Q∗) + cn+1

i (Q∗))V n+1
i − αn+1

i (Q∗)V n+1
i−1 − βn+1

i (Q∗)V n+1
i+1 − dn+1

i (Q∗)
}

≤ sup
Q∈Q̂

{
−βn+1

i (Q)ε
}

= −ε inf
Q∈Q̂

{
βn+1

i (Q)
}
≤ 0 , (5.13)

which follows from equation (B.2) and the fact that βn+1
i (Q) ≥ 0. Similarly (θ = 0),

Gn+1
i (h, V n+1

i , V n+1
i+1 , V n+1

i−1 + ε, V n
i ) − Gn+1

i (h, V n+1
i , V n+1

i+1 , V n+1
i−1 , V n

i ) ≤ 0. (5.14)

It is obvious from equation (5.12) that (θ = 0)

Gn+1
i (h, V n+1

i , V n+1
i+1 , V n+1

i−1 , V n
i + ε) − Gn+1

i (h, V n+1
i , V n+1

i+1 , V n+1
i−1 , V n

i ) ≤ 0. (5.15)

Finally, for the general case with θ 6= 0, a similar argument verifies that property (5.3) holds,
as long as the stability condition

∆τ θ
(
αn(Q) + βn

i (Q) + cn
i (Q)

)
≤ 1 ; ∀i ,∀Q ∈ Q̂ , (5.16)

is satisfied. �

Remark 5.1 (Extension to Other Cases) Using properties (B.3), (B.6), we can replace the
sup in equation (5.13) by an inf, or a sup inf (with two control variables Q,P as in equation (3.8))
and the discretization is monotone for these cases as well.

Theorem 5.1 (Convergence to the Viscosity Solution) Provided that the original HJB sat-
isfies Assumption 3.1 and discretization (4.12) satisfies all the conditions required for Lemmas 5.1,
5.2, 5.3, then scheme (4.12) converges to the viscosity solution of equation (3.2).

Proof . This follows directly from the results in [10, 5]. �

It is also useful to note that [I − (1− θ)An(Qn)] is an M-matrix [47].

Remark 5.2 (Properties of M-Matrices) An M-matrix B has the properties that B−1 ≥ 0 and
diag(B−1) > 0.

Lemma 5.4 (M-matrix) If the positive coefficient condition (4.1) is satisfied, and boundary con-
ditions (3.10,3.13) are imposed at S = 0, Smax, then [I − (1− θ)∆τAn] is an M-matrix.

Proof . Condition (4.1) implies that αn
i , βn

i , cn
i in equation (4.8) are non-negative. Hence

[I − (1− θ)∆τAn] has positive diagonals, non-positive offdiagonals, and is diagonally dominant,
so it is an M-matrix [47]. �
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5.1 Discrete Comparison Property

It is interesting to verify that the discrete equations satisfy a discrete version of the Comparison
Property (see Remark 3.1). Consider any two contingent claims W (S, τ), V (S, τ). If V (S, 0) ≥
W (S, 0), then by no arbitrage V (S, τ) ≥ W (S, τ). It is clearly desirable that discrete solutions of
the pricing PDEs also have these discrete arbitrage inequalities.

Theorem 5.2 (Discrete Arbitrage Inequality) Suppose

(a) the discretization (4.8) satisfies the positive coefficient condition (4.2),

(b) boundary conditions are imposed at S = 0 and S = Smax, as in equation (3.10) and (3.13),
with boundary condition vector Fn = [0, . . . , Fn

p ]′,

(c) fully implicit timestepping is used.

If Wn and V n are two discrete solutions to equation (4.12), with V n ≥ Wn, with boundary condition
vectors Fn+1

V ≥ Fn+1
W , then V n+1 ≥ Wn+1.

Proof . In the case of fully implicit timestepping, equation (4.12) becomes

V n+1 = V n + ∆τ sup
Q∗∈Q̂

{
An+1(Q∗)V n+1 + Dn+1(Q∗)

}
+ (Fn+1

V − Fn
V ) (5.17)

Wn+1 = Wn + ∆τ sup
Q′∈Q̂

{
An+1(Q′)Wn+1 + Dn+1(Q′)

}
+ (Fn+1

W − Fn
W ) (5.18)

Subtracting equation (5.18) from equation (5.17), and using equation (B.2), gives

(V n+1 −Wn+1) = (V n −Wn) + ∆τ sup
Q∗∈Q̂

{
An+1(Q∗)V n+1 + Dn+1(Q∗)

}
−∆τ sup

Q′∈Q̂

{
An+1(Q′)Wn+1 + Dn+1(Q′)

}
+ (Fn+1

V − Fn
V )− (Fn+1

W − Fn
W )

≥ (V n −Wn) + (Fn+1
V − Fn

V )− (Fn+1
W − Fn

W )

+∆τ inf
Q∈Q̂

{
An+1(Q)(V n+1 −Wn+1)

}
. (5.19)

Let Q̄ ∈ arg infQ∈Q̂

{
An+1(Q)(V n+1 −Wn+1)

}
, so that equation (5.19) becomes

[I −∆τAn+1(Q̄)](V n+1 −Wn+1) ≥ (V n −Wn) + (Fn+1
V − Fn

V )− (Fn+1
W − Fn

W ) . (5.20)

By assumption (V n −Wn) + (Fn+1
V − Fn

V )− (Fn+1
W − Fn

W ) ≥ 0 (recall that FV , FW are identically
zero except at i = p where (FV )n

p = (V n)p, (FW )n
p = (Wn)p). Since [I − ∆τAn+1(Q̄)] is an M

matrix (from Lemma 5.4), we have that

(V n+1 −Wn+1) ≥ 0 . (5.21)

�
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6 Solution of Algebraic Discrete Equations

Although we have established that discretization (4.12) is consistent, stable and monotone, it is not
obvious that this is a practical scheme, since the implicit timestepping method requires solution
of highly nonlinear algebraic equations at each timestep. In this section we give two methods for
solving these algebraic equations - one a relaxation scheme and the second a Newton-like (Policy)
iteration.

6.1 A Relaxation Scheme

Writing out equation (4.12) in component form gives (for each i < p)

V n+1
i = (1− θ)∆τ sup

Q∈Q̂

{
αn+1

i (Q)V n+1
i−1 + βn+1

i (Q)V n+1
i+1

−(αn+1
i (Q) + βn+1

i (Q) + cn+1
i (Q))V n+1

i + dn+1
i (Q)

}
+ gn

i

(6.1)

where gn
i = V n

i +θ∆τ
[
AnV n + Dn

]
i
. Rearranging equation (6.1) and noting that αn+1

i , βn+1
i , cn+1

i

are all nonnegative, we obtain

V n+1
i = sup

Q∈Q̂

(1− θ)∆τ
αn+1

i (Q)V n+1
i−1 + βn+1

i (Q)V n+1
i+1 + dn+1

i (Q)

(1 + (1− θ)∆τ)(αn+1
i (Q) + βn+1

i (Q) + cn+1
i (Q))

+
gn
i

(1 + (1− θ)∆τ)(αn+1
i (Q) + βn+1

i (Q) + cn+1
i (Q))

}
. (6.2)

Let V̂ k+1 be the (k + 1) estimate for V n+1. Equation (6.2) can then be used as a basis for the
relaxation scheme

V̂ k+1
i = sup

Q∈Q̂

(1− θ)∆τ
αn+1

i (Q)V̂ k
i−1 + βn+1

i (Q)V̂ k
i+1 + dn+1

i (Q)

(1 + (1− θ)∆τ)(αn+1
i (Q) + βn+1

i (Q) + cn+1
i (Q))

+
gn
i

(1 + (1− θ)∆τ)(ᾱk
i + β̄k

i + c̄k
i )

}
. (6.3)

This leads us to a constructive proof for the existence of a unique solution for the discretized
equations.

Theorem 6.1 (Convergence of Relaxation) Suppose that

(a) the discretization (4.8) satisfies the positive coefficient condition (4.2),

(b) boundary conditions are imposed at S = 0 and S = Smax, as in equation (3.10) and (3.13).
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Then a unique solution of the nonlinear equations (6.1) exists. Furthermore, the iteration scheme
(6.3) is globally convergent for any initial estimate.

Proof . Writing equation (6.3) for iteration k, and using equation (B.4) gives∥∥∥V̂ k+1 − V̂ k
∥∥∥
∞

≤ γ
∥∥∥V̂ k − V̂ k−1

∥∥∥
∞

γ = max
i

sup
Q∈Q̂

{
(1− θ∆τ)[αn+1

i (Q) + βn+1
i (Q)]

1 + (1− θ∆τ)[αn+1
i (Q) + βn+1

i (Q) + cn+1
i (Q)]

}
. (6.4)

Since αn
i (Q), βn

i (Q), cn
i (Q) are nonnegative for all Q ∈ Q̂, we have that γ < 1. Thus the scheme

(6.3) is a contraction and converges to the unique solution of the discretized algebraic equations.
�

Remark 6.1 (Existence of solution: HJBI case) The above argument can be repeated if we
replace the sup in equation (6.3) by an inf or a sup inf. Hence, in all cases (HJB, or HJBI), the
scheme (6.3) is a contraction. Although the solution V n+1 is unique, the control may not be unique.

Unfortunately, this relaxation scheme is not very useful in practice. To see this consider the
trivial case where Q is constant. In this situation, scheme (6.3) is simply a relaxation method for
the solution of a discretized parabolic PDE. Recalling the definition of the discretization parameter
hmin in equation (4.13), this implies that the error reduction in each iteration of scheme (6.3) is

γ ' 1
1 + O(hmin)

(6.5)

which is very poor as hmin → 0.

Remark 6.2 (Markov Chains) Consider equation (6.2) and, for simplicity, let θ = 0. Then
write

V n+1
i = sup

Qn+1
i ∈Q̂

{
Pn+1

i,i−1V
n+1
i−1 + Pn+1

i,i+1V
n+1
i+1 + Un+1

i

}
where

Pn+1
i,i−1 =

∆ταn+1
i

ωi
, Pn+1

i,i+1 =
∆τβn+1

i

ωi
and Un+1

i =
gn
i + ∆τdn+1

i

ωi
(6.6)

with ωi = (1 + ∆τ)(αn+1
i + βn+1

i + cn+1
i ). Since 0 ≤ Pi,j ≤ 1 and

∑
j Pi,j < 1, we can identify the

Pi,j as discounted risk neutral transition probabilities. Hence, at each timestep, we can consider
equation (6.6) as the solution of an infinite horizon controlled Markov chain [27]. We will refer
to equation (6.6) as the Markov chain form of the discretized equations. Note that the Markov
chain form necessarily puts some terms involving the control parameter in the denominator of the
probabilities Pi,j. This can cause some complications, and various methods have been suggested to
remedy this problem [27]. However, this rearrangement is somewhat unnatural from the PDE point
of view.
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Remark 6.3 (Value Iteration) We can view the iteration (6.3) as similar to the familiar value
iteration in stochastic control [27]. In this context, the problem is usually formulated as a discrete
Markov chain, as in Remark 6.2.

6.2 Policy Iteration

It would seem desirable to have a scheme which converged in one iteration if Q is constant. This
leads us to the following iterative scheme.

Policy Iteration

Let (V n+1)0 = V n

Let V̂ k = (V n+1)k

For k = 0, 1, 2, . . . until convergence
Solve[
I − (1− θ)∆τAn+1(Qk)

]
V̂ k+1 = [I + θ∆τAn(Qn)]V n + (Fn+1 − Fn)

+ (1− θ)∆τDn+1(Qk) + θ∆τDn

Qk
i ∈ arg sup

Q∈Q̂

{[
An+1(Q)V̂ k + Dn+1(Q)

]
i

}

If (k > 0) and

max
i

∣∣∣V̂ k+1
i − V̂ k

i

∣∣∣
max

(
scale,

∣∣∣V̂ k+1
i

∣∣∣) < tolerance

 then quit

EndFor

(6.7)

The term scale in scheme (6.7) is used to ensure that unrealistic levels of accuracy are not
required when the value is very small. Typically, scale = 1 for options priced in dollars.

Some manipulation of algorithm (6.7) results in[
I − (1− θ)∆τAn+1(Qk)

]
(V̂ k+1 − V̂ k) = (1− θ)∆τ

[
(An+1(Qk)V̂ k + Dn+1(Qk))

−(An+1(Qk−1)V̂ k + Dn+1(Qk−1))
]
. (6.8)

We can also write equation (6.8) as[
I − (1− θ)∆τAn+1(Qk)

]
(V̂ k+1 − V̂ k) = −Rk , (6.9)

where the residual R vector is

Rk = V̂ k − V n −
[
(1− θ)∆τ

(
An+1(Qk)V̂ k + Dn+1(Qk)

)
+ Hn

]
(6.10)
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with

Hn = θ∆τ
(
An(Qn)V n + Dn

)
+ (Fn+1 − Fn) . (6.11)

In order to prove the convergence of Algorithm (6.7), we first need an intermediate result.

Lemma 6.1 (Sign of RHS of Equation (6.8)) If An+1(Qk)V̂ k is given by equation (4.8), with
the control parameter determined by

Qk
i ∈ arg sup

Q∈Q̂

{[
An+1(Q)V̂ k + Dn+1(Q)

]
i

}
, (6.12)

then every element of the right hand side of equation (6.8) is nonnegative, that is,[
(An+1(Qk)V̂ k + Dn+1(Qk))− (An+1(Qk−1)V̂ k + Dn+1(Qk−1))

]
i
≥ 0 . (6.13)

Proof . Recall that Qk is selected so that

An+1(Qk)V̂ k + Dn+1(Qk) = sup
Q∈Q̂

{
An+1(Q)V̂ k + Dn+1(Q)

}
. (6.14)

for given V̂ k. Hence, any other choice of coefficients, for example

An+1(Qk−1)V̂ k + Dn+1(Qk−1) (6.15)

cannot exceed equation (6.14). �

It is now easy to show that iteration (6.7) always converges.

Theorem 6.2 (Convergence of Iteration (6.7)) Provided that the conditions required for
Lemmas 6.1 and 5.4 are satisfied, then the nonlinear iteration (6.7) converges to the unique solution
of equation (4.12) for any initial iterate V̂ 0. Moreover, the iterates converge monotonically.

Proof . Given Lemmas 6.1 and 5.4, the proof of this result is similar to the proof of convergence
given in [38]. We give a brief outline of the steps in this proof, and refer readers to [38] for details.
A straightforward maximum analysis of scheme (6.7) can be used to bound ‖V̂ k‖∞ independent
of iteration k. From Lemma 6.1, we have that the right hand side of equation (6.8) is non-
negative. Noting that

[
I − (1− θ)∆τAn+1(Qk)

]
is an M-matrix (from Lemma 5.4) and hence[

I − (1− θ)∆τAn+1(Qk)
]−1 ≥ 0, it is easily seen that the iterates form a bounded non-decreasing

sequence. In addition, if V̂ k+1 = V̂ k the residual is zero. Hence the iteration converges to a
solution. It follows from the M-matrix property of

[
I − (1− θ)∆τAn+1(Qk)

]
that the solution is

unique.
The above proof can be repeated with the sup replaced by inf in equation (6.7). �
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Remark 6.4 (Q Dependent Discretizations) Note that we obtain convergence for the case of
Q− dependent discretizations, even if the discrete equations, regarded as a function of the control
Q, are discontinuous. This is discussed in [49].

Remark 6.5 (Policy Iteration) Iteration (6.7) is essentially the well known policy iteration in
stochastic control [42]. It differs slightly in that we do not use the Markov chain rearrangement of
the discrete equations, as in equation (6.6). Hence, the iteration sequence will be different than the
classical policy iteration (a different local control problem is solved at each node), but the convergence
result is the same. Since we do not rearrange the discrete equations into the Markov chain form,
we do not have the difficulties associated with control parameters appearing in the denominator of
the discrete equations, as discussed in Remark 6.2.

Remark 6.6 (Equivalence of Iteration (6.7) and Newton Iteration) Suppose that that there
is a single control at each node Qi, and that the sup control is unconstrained. Then, from equation
(6.10), assuming that the discrete equations are differentiable, we have

∂Rk
i

∂V̂ k
j

=
∂Rk

i

∂Qk
i

∂Qi

∂V̂ k
j

+
(
δij − (1− θ)∆τAn+1

ij (Qk)
)

. (6.16)

But

∂Rk
i

∂Qk
i

= 0 (6.17)

since Qk
i is locally optimal. Hence the iteration[

I − (1− θ)∆τAk
]
(V̂ k+1 − V̂ k) = −Rk , (6.18)

which is equivalent to iteration (6.7), is a Newton iteration. Of course, in general the coefficients
may not be differentiable, and the control parameters are constrained. Nevertheless, as discussed in
[40, 39, 42], we may view iteration (6.7) as a Newton-like iteration (quadratic convergence when
close to solution).

Remark 6.7 (Policy Iteration: HJBI Equation) For the case of the HJBI equation (problems
with a sup inf, equation (3.8)), it is not clear when iteration (6.7) can be expected to converge. The
convergence argument breaks down in this case, since we cannot expect Lemma 6.1 to hold. However,
as discussed in [36], we can also interpret policy iteration as a form of Newton-like iteration, for
the case of a finite set of controls. In this case, we can expect convergence, even for the stochastic
game case, if the initial estimate is sufficiently close to the solution.

7 Piecewise Constant Policies

The relaxation scheme (also known as value iteration) (6.3) from the previous section is globally
convergent to the unique solution of the discretized equations for both HJB and HJBI equations.
However, the convergence rate becomes unacceptably slow as the grid size is reduced.
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The policy iteration scheme (6.7) is globally convergent but only for HJB equations. Since this
method can be regarded as a Newton-like iteration, convergence will typically be very rapid if the
initial estimate is sufficiently close to the solution. In typical option pricing problems, where we
have the solution from the previous timestep as the initial guess, convergence generally occurs in
2− 3 iterations if six digit accuracy is specified.

Unfortunately, there are examples where the convergence rates can be slow. In [42], an example
with discrete controls is constructed whereby the iteration (beginning from the zero state), takes
R − 1 steps, where R is the number of states (which would correspond to nodes in our case). In
some cases, it may also be a nontrivial problem to solve the local control problem (6.12). This may
be especially difficult if jump processes are modelled, which results in a controlled partial integro-
differential equation (PIDE) [24]. In addition, the policy iteration scheme does not guarantee global
convergence of (6.7) for HJBI equations. Indeed there are pathological cases where policy iteration
does not converge for these problems (c.f. [48]). This has led to the development of several variants
of Newton iteration which attempt to ensure global convergence for these problems [45, 14, 46].

In this section we consider an alternate timestepping method, one which is guaranteed to con-
verge to the viscosity solution, does not have timestep sizes linked to the mesh size (which precludes
explicit methods), and does not require solution of nonlinear equations at each step.

7.1 An Informal Approach

The basic idea behind the piecewise constant policy approximation is intuitively appealing. Suppose
an agent is allowed to make changes in the control only at discrete forward times ti, i = 1, . . . , L. We
will also assume that the agent can choose from only a finite number of controls, that is, all possible
control choices can be enumerated Qm,m = 1, . . . ,mmax (for example mmax = 2 in Example 2.1
and mmax = 8 in Example 2.2 - double if we are looking at American options). In the case that the
control variables are continuous, we approximate the control by a finite set of piecewise constant
policies.

Let τ i = T − ti and Vm be the solution to

(Vm)τ = LQmVm + d(Qm) , (7.1)

where LQm
denotes the operator (3.1) for a fixed value of Qm. In other words, Vm is the solution

to the optimal control problem with the trivial constant policy Qm. At t = T, τ = 0, we set

Vm(S, 0) = Option Payoff ; ∀m . (7.2)

Now suppose the agent is at t = tL, the last decision time before the contract expiry at t = T . In
order to determine the optimal policy at τ = T − tL = τL, the agent examines all possible choices
of the the policy, and chooses the policy which maximizes the value of the contract. This is simply
done by solving

(Vm)τ = LQmVm + dm with dm = d(Qm, S, τ) , (7.3)

from τ = 0 to τ = τL for all m = 1, . . . ,mmax. The optimal value is then determined simply from

V opt(S, τL) = max
m

Vm(S, τL) . (7.4)
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We then set

Vm(S, τL + ε) = V opt(S, τL) ; ε > 0, ε � 1 ; ∀m , (7.5)

and repeat the above procedure at τ = τL−1, and so on. If the times between decision dates ti are
small, and we have used a large enough sample of the policy space Q, then this should be a good
approximation to the original control problem (3.2).

7.2 A Formal Approach

More precisely, consider the following algorithm. For simplicity, we consider only fully implicit
timestepping.

Piecewise Constant Policy Timestepping

V 0 = Option Payoff
For n = 0, . . . , // Timestep Loop

Vn
i,m = V n

i ; i = 1, . . . , p m = 1, . . . ,mmax

For m = 1, . . . ,mmax

Solve

(I −∆τAn+1(Qm))Vn+1/2
m = Vn

m + ∆τDn+1(Qm)
EndFor

V n+1
i = max

j
Vn+1/2

i,j ; i = 1, . . . , p− 1

V n+1
p = Fn+1

p

EndFor // End Timestep Loop

(7.6)

Note that we have used a slightly different time discretization here compared with equation (4.12),
with the boundary condition updated explicitly.

We will now verify that that this scheme satisfies the sufficient conditions for convergence.

Lemma 7.1 (Stability of Scheme (7.6)) If the discretization (4.8) satisfies the same conditions
as for Lemma 5.1, then the same stability result (Lemma 5.1) holds for piecewise constant policy
timestepping.

Proof . This follows using the same maximum analysis as used in the proof of Lemma 5.1. �

Showing consistency is a more challenging problem. In order to determine if the consistency
condition (5.2) is satisfied, we need to eliminate Vn+1/2

m from equation (7.6). Let

Vn+1/2
m = Hm(V n)

=
[
I −∆τAn+1(Qm)

]−1 [
V n + ∆τDn+1(Qm)

]
. (7.7)
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Eliminating Vn+1/2
m in equation (7.6) gives

V n+1
i = max

j
([Hj(V n)]i) (7.8)

or equivalently

Gn+1
i (h, V n+1

i , {V n
j }) =


V n+1

i −maxj([Hj(V
n)]i)

∆τ , i < p ,

V n+1
p − Fn+1

p , i = p .

(7.9)

It turns out to be non-trivial to show consistency. In [8], mollification techniques are used to
show consistency for the case where the PDE coefficients are time independent. In [44], a complex
argument is used to show consistency for first order problems.

In fact, we can avoid this difficulty by noting that in [25], convergence of the piecewise constant
policy method is proven using probabilistic methods, in the context of the dynamic programming
principle. The probabilistic solution is the viscosity solution of the related HJB equation. In
addition, in [25], it is shown that the constant control diffusion operator is consistent (over small
timesteps) with the dynamic programming operator for fixed control (Lemma 5.10 in [25]). Hence,
if our discrete diffusion operator is consistent with equation (7.1), then it is also consistent with
the dynamic programming operator (for fixed controls). Thus we can regard a discretization of
equation (7.1) as a discretization of the dynamic programming operator, and we know from [25]
that the piecewise constant policy algorithm (using the dynamic programming operator) converges
to the viscosity solution.

This leads us to the following definition of consistency for piecewise constant policy methods.

Definition 7.1 (Consistency Requirement for Piecewise Constant Policy Schemes [25, 26])
Given a smooth function φ, then consistency is defined as

lim
h→0

∣∣∣∣φn+1
i − φn

i

∆τ
−

[
An+1(Qm)φn+1 + ∆τDn+1(Qm)

]
i
−

[
φτ − LQm

φ− d(Qm)
]n+1

i

∣∣∣∣ = 0 (7.10)

for all fixed Qm where (∆S)max = C1h, ∆τ = C2h and C1, C2 are independent of h.

Lemma 7.2 (Consistency for Piecewise Constant Policy Schemes (7.6)) Discretization (7.6),
where LQm

is given by equation (4.1), satisfies the consistency requirement given in Definition 7.1.

Proof . This follows from equation (4.5). �

Lemma 7.3 (Monotonicity of Scheme (7.6)) If the discretization (4.8) satisfies the positive
coefficient condition (4.2), with boundary conditions at S = 0 and S = Smax, as in equation (3.10)
and (3.13), then discretization (7.6) is monotone as defined in Definition 5.3.

Proof . Recall that

Gn+1
i (h, V n+1

i , {V n
j }) =

V n+1
i −maxm([Hm(V n))]i

∆τ
. (7.11)
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and

[Hm(V n))]i =

[[
I −∆τAn+1(Qm)

]−1 [
V n + ∆τDn+1(Qm)

]]
i

. (7.12)

Since [I−∆τAn+1(Qm)] is an M matrix (from Lemma 5.4), we have that [I−∆τAn+1(Qm)]−1 ≥ 0,
and so

Gn+1
i (h, V n+1

i , {V n
j + εn

j }) − Gn+1
i (h, V n+1

i , {V n
j }) ≤ 0 . (7.13)

�

Finally, we state our convergence result for scheme (7.6).

Theorem 7.1 (Convergence to the Viscosity Solution of Method (7.6)) Provided that the
original HJB satisfies Assumption 3.1 and discretization (4.12) satisfies all the conditions required
for Lemmas 7.1, 7.2, 7.3, then scheme (7.6) converges to the viscosity solution of equation (3.2).

Proof . This follows directly from the results in [25]. �

8 Numerical Examples

In this section, we will use the discretization methods discussed in Section 4. We will use both
the implicit control method (Section 4) and the piecewise constant control timestepping method
(Section 7). These algorithms will be demonstrated on two problems: unequal borrowing and
lending rates, and stock borrowing fees.

8.1 Unequal Borrowing Lending Rates

8.1.1 Implicit Control

Table 1 shows the data used for the unequal borrowing/lending example described in Section 2.1.
The payoff is assumed to be a European straddle

Straddle Payoff = max(S −K, 0) + max(K − S, 0) . (8.1)

Table 2 shows the results of a convergence study for the this problem. We include a test of
Crank-Nicolson timestepping, even though the timesteps violate the monotonicity condition (5.5).
In this example, we can only prove that the fully implicit method converges to the viscosity solution.
However, in this case, the Crank-Nicolson examples also converge to the viscosity solution. The
Crank Nicolson timestepping incorporates the modification suggested in [41], to improve conver-
gence for non-smooth payoffs. As noted previously, use of a method which violates the monotonicity
conditions cannot be recommended in general [38].

Note that the total number of nonlinear iterations is always twice the number of timesteps,
which is the minimum possible in Algorithm 6.7. This indicates that the nonlinearity is not too
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Parameter Value
σ .30
T 1.0 years
rb .05
rl .03
K 100
Convergence Tolerance tol (Algorithm 6.7) 10−6

Table 1: Unequal borrowing/lending rate example (Section 2.1).

Nodes Timesteps Nonlinear iterations Option value Change Ratio
Fully Implicit: Short

101 100 200 24.02047
201 200 400 24.05001 .02954
401 400 800 24.06137 .01136 2.6
801 800 1600 24.06617 .00480 2.4

Crank-Nicolson: Short
101 100 200 24.0512
201 200 400 24.06554 .01432
401 400 800 24.06917 .00363 3.9
801 800 1600 24.07008 .00091 4.0

Fully Implicit: Long
101 100 200 23.05854
201 200 400 23.08880 .03026
401 400 800 23.10029 .01141 2.7
801 800 1600 23.10511 .00481 2.4

Crank-Nicolson: Long
101 100 200 23.08893
201 200 400 23.10414 .01525
401 400 800 23.10800 .00386 4.0
801 800 1600 23.10897 .00097 4.0

Table 2: Convergence for fully implicit and Crank-Nicolson timestepping using the implicit control
method (Section 4) and the discrete equations solved using the policy iteration method (6.7). Unequal
borrowing/lending rate example as in Section 2.1. Crank Nicolson incorporates the modification
suggested in [41]. Input parameters are given in Table 1. Straddle payoff (8.1), option values
reported at S = 100, t = 0.
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Nodes Timesteps Option value Change Ratio
Fully Implicit: Short

101 100 24.01163
201 200 24.04550 .03387
401 400 24.05908 .01358 2.5
801 800 24.06502 .00594 2.3

Crank-Nicolson: Short
101 100 24.04652
201 200 24.06318 .01666
401 400 24.06799 .00481 3.5
801 800 24.06949 .00150 3.2

Fully Implicit: Long
101 100 23.06752
201 200 23.09338 .02586
401 400 23.10261 .00923 2.8
801 800 23.10628 .00366 2.5

Crank-Nicolson: Long
101 100 23.09371
201 200 23.10653 .01282
401 400 23.10919 .00266 4.8
801 800 23.10957 .00038 7.0

Table 3: Convergence for fully implicit and Crank-Nicolson timestepping using the piecewise con-
stant policy method (Section 7) with timestepping scheme (7.6). Unequal borrowing/lending rate
example as in Section 2.1. Crank Nicolson incorporates the modification suggested in [41]. Input
parameters are given in Table 1. Straddle payoff (8.1), option values reported at S = 100, t = 0.

severe. This seems to be typical of HJB problems in finance, which often have bang-bang type
optimal controls. The same behavior was noted in [3, 22, 38]. In contrast to the numerical results
in [38] for uncertain volatility models, we seem to obtain smooth second order convergence for the
Crank-Nicolson case.

8.1.2 Piecewise Constant Policy

Table 3 gives the results for a convergence study of the same problem, using the piecewise constant
policy timestepping of Section 7. At each timestep, we solve two problems with constant controls
{rl, rb}, and use Algorithm (7.6) to advance the solution.

Again, both fully implicit and Crank-Nicolson methods converge to the viscosity solution, al-
though convergence can only be proved for the fully implicit method. In this case, however, the
convergence of Crank-Nicolson is somewhat erratic. However, this is not unexpected, since the
application of the max operation at the end of each timestep in Algorithm 7.6 can be expected to
generate non-smoothness, which is known to be a problem with Crank-Nicolson.

Figure 1 shows the option value for the short and long case, for the unequal borrowing/lending
problem. Figure 2 includes the results for the case where rl = rb = .03 and rl = rb = .05. Note
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Figure 1: The option value for a straddle, data in Table 1.

that the long/short solutions to equation (2.7) are outside the envelop of solutions with constant
rl = rb set to the maximum and minimum extreme values. Figure 2 clearly illustrates the nonlinear
nature of equation (2.7).

8.2 Stock Borrowing Fees

Table 4 shows the data used for the stock borrowing fee problem described in Section 2.2. Note
that all the data is the same as in Table 1, with the exception that we have specified rf . A straddle
payoff (8.1) was also specified.

8.2.1 European Case

Tables 5 and 6 show the results for a convergence study of this problem, using both the implicit
control method (Section 4) and piecewise constant policy timestepping (Section 7). In the case of
the piecewise constant policy, since V ≥ 0 in this case (see equation (2.11)), q2 = rl if short, and
q2 = rb if long, so that we only need to solve for the four possible combinations of constant controls
q1 = {rl, rb}, q1 = {0, 1} at each timestep.

In all cases, Crank-Nicolson timestepping converges to the viscosity solution. As well, for the
implicit control case, the number of iterations required for Algorithm 6.7 is the minimum possible.
Again, Crank-Nicolson convergence is erratic for the piecewise constant policy method.
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Figure 2: The option value for a straddle, data in Table 1. Also shown are the option values for
rl = rb = .05 and rl = rb = .03. Note that for constant interest rates, the value of the straddle at
S = K = 100 is very insensitive to changes in interest rate.

Parameter Value
σ .30
T 1.0 years
rb .05
rl .03
rf .004
K 100
Convergence Tolerance tol (Algorithm 6.7) 10−6

Penalty term ε (equation 2.15) 10−6∆τ0

∆τ0 Initial timestep, coarse grid

Table 4: Stock Borrowing fee (Section 2.2) example.
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Nodes Timesteps Nonlinear iterations Option value Change Ratio
Fully Implicit: Short

101 100 200 24.08463
201 200 400 24.11412 .02950
401 400 800 24.12549 .01137 2.6
801 800 1600 24.1300 .00451 2.5

Crank-Nicolson: Short
101 100 200 24.11552
201 200 400 24.12972 .01420
401 400 800 24.13333 .00361 3.9
801 800 1600 24.13423 .00090 4.0

Fully Implicit: Long
101 100 200 22.63266
201 200 400 22.66339 .03073
401 400 800 22.67514 .01175 2.6
801 800 1600 22.68009 .00495 2.4

Crank-Nicolson: Long
101 100 200 22.66412
201 200 400 22.67927 .01515
401 400 800 22.68312 .00385 3.9
801 800 1600 22.68408 .00096 4.0

Table 5: Convergence for fully implicit and Crank-Nicolson timestepping using the implicit control
method (Section 4) and the discrete equations solved using the policy iteration (6.7). Stock borrowing
fee example as described in Section 2.2. Crank Nicolson incorporates the modification suggested in
[41]. Input parameters are given in Table 4. Straddle payoff (8.1), option values reported at S = 100,
t = 0.

32



Nodes Timesteps Option value Change Ratio
Fully Implicit: Short

101 100 24.07437
201 200 24.10889 .03452
401 400 24.12284 .01395 2.5
801 800 24.12896 .00612 2.3

Crank-Nicolson: Short
101 100 24.11006
201 200 24.12699 .01693
401 400 24.13196 .00497 3.4
801 800 24.13350 .00154 3.2

Fully Implicit: Long
101 100 22.64142
201 200 22.66787 .02645
401 400 22.67741 .00954 2.8
801 800 22.68123 .00382 2.5

Crank-Nicolson: Long
101 100 22.66884
201 200 22.68163 .01279
401 400 22.68430 .00267 4.8
801 800 22.68467 .00037 7.2

Table 6: Convergence for fully implicit and Crank-Nicolson timestepping using the piecewise con-
stant policy method (Section 7) with timestepping scheme (7.6). Crank Nicolson incorporates the
modification suggested in [41]. Stock borrowing fee example as described in Section 2.2. Input
parameters are given in Table 4. Straddle payoff (8.1), option values reported at S = 100, t = 0.
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Nodes Timesteps Nonlinear iterations Option value Change Ratio
Fully Implicit: Long

101 100 219 23.01909
201 200 440 23.05586 .03677
401 400 879 23.07092 .01506 2.4
801 800 1707 23.07761 .00669 2.3

Table 7: Convergence for fully implicit timestepping using implicit controls. (Section 4) and the
discrete equations solved using the policy iteration method (6.7). Stock borrowing fee example, with
American early exercise, as described in Section 2.4 (HJBI equation). Input parameters are given
in Table 4. Straddle payoff (8.1), option values reported at S = 100, t = 0.

8.2.2 American Case: HJBI Equation

In the following sections, we will consider a long position with stock borrowing fees, and American
early exercise. This corresponds to the HJBI equation (stochastic game) given in Example 2.4 from
Section 2.

8.2.3 HJBI Example: Implicit Control

Table 7 shows a convergence study for the long borrowing fee example, with an American early
exercise feature, using implicit controls. In this case, we have no proof that the iterative Algorithm
6.7 is globally convergent, although as discussed in Remark 6.7, we can expect convergence for
bang-bang controls if the timestep is sufficiently small (a good estimate of the solution from the
previous timestep).

8.2.4 HJBI Example: Piecewise Constant Controls

Table 8 shows a convergence study of the solution to the HJBI problem, but this time we evaluate
the American constraint in explicit fashion at the end of each timestep. This corresponds to using
implicit controls for the inf control in equation (2.15), and a piecewise constant policy for the
sup control. This, of course, corresponds to the standard Bermudan approximation of American
options in finance. Comparing Tables 7 and 8, we see that the explicit evaluation of the American
constraint is slightly less work than the implicit control approach, and the convergence appears to
be similar. Note that using the explicit American constraint results in a method where the iteration
(6.7) is guaranteed to converge.

Table 9 shows the results for the same American problem, this time using piecewise constant pol-
icy for the inf controls in equation (2.15). This means that we solve four separate one-dimensional
problems at each timestep, one for each possible control combination. Within each constant control
problem, the American constraint is handled implicitly.

Table 10 shows a convergence study using piecewise constant policy timestepping for all the
controls, i.e. four problems are solved for each possible inf control combination, and the American
constraint is applied explicitly. The results are very similar to those in Table 9. Note that in
this case, each timestep requires the solution of four one-dimensional linear PDEs. If we define a
unit of work as the work required for a single one-dimensional PDE solve, or for one iteration of a
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Nodes Timesteps Nonlinear iterations Option value Change Ratio
Fully Implicit: Long

101 100 200 23.01051
201 200 400 23.05119 .04068
401 400 800 23.06842 .01723 2.4
801 800 1600 23.07632 .00790 2.2

Table 8: Convergence for fully implicit timestepping using an explicit evaluation of the American
constraint. (Section 4) and the discrete equations solved using the policy iteration method (6.7).
Stock borrowing fee example as described in Section 2.4 (HJBI equation). Input parameters are
given in Table 4. Straddle payoff (8.1), option values reported at S = 100, t = 0. American early
exercise.

Nodes Timesteps Nonlinear iterations Option value Change Ratio
Fully Implicit: Long

101 100 1233 23.02816
201 200 2536 23.06049 .03233
401 400 5209 23.07326 .01277 2.5
801 800 10737 23.07882 .00556 2.3

Table 9: Convergence for fully implicit timestepping using an implicit evaluation of the American
constraint, using the piecewise constant policy method (Section 7) with timestepping scheme (7.6).
Stock borrowing fee example, American early exercise, as described in Section 2.4 (HJBI equation).
Input parameters are given in Table 4. Straddle payoff (8.1), option values reported at S = 100,
t = 0. Note that the number of iterations is the total number for all four problems solved each
timestep. American constraint handled implicitly.
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Nodes Timesteps Option value Change Ratio
Fully Implicit: Long

101 100 23.01958
201 200 23.05582 .03624
401 400 23.07077 .01495 2.4
801 800 23.07751 .00674 2.2

Table 10: Convergence for fully implicit timestepping using an explicit evaluation of the American
constraint, using the piecewise constant policy method (Section 7) with timestepping scheme (7.6).
Stock borrowing fee example, American early exercise, as described in Section 2.4 (HJBI equation).
Input parameters are given in Table 4. Straddle payoff (8.1), option values reported at S = 100,
t = 0. Note in this case, each timestep requires the solution of four one-dimensional linear PDEs.
American constraint handled explicitly.

one-dimensional PDE in a nonlinear iteration, then the piecewise constant policy method in Table
10 requires about twice the work of the implicit control method in Table 7.

From a practical point of view, the application of piecewise constant policies may be worrisome,
since we typically need to compute the first and second derivatives (w.r.t. S) in financial appli-
cations. Imposing max,min constraints at the end of each timestep might be expected to cause
non-smoothness in the solution, which is magnified by computing the derivatives. In Figure 3 we
show the solution gamma (VSS at τ = T ), for the borrow fee example, with American early ex-
ercise. We use the complete piecewise constant policy method here (including explicit American
constraint), which is expected to be a worst case for computing VSS . Figure 3 shows that gamma
is certainly smooth enough for any practical hedging application.

As noted in the discussion after Remark 6.7, there exist examples of nonconvergence of policy
type iteration schemes for HJBI equations. In our experience, we have never seen this occur for
time dependent option pricing problems. However, we have seen very slow convergence.

Remark 8.1 (Choice of Scheme) Although we have not seen seen cases where the policy type
iteration schemes fail for HJBI equations in option pricing, it is likely prudent to use a piecewise
constant policy approximation scheme for at least some of the controls, so that the implicit control
problem reduces to a sup or inf control. In this way, we are guaranteed convergence of the iteration
method.

However, we still may seek to use the piecewise constant policy method to further reduce the
number of controls solved implicitly. Solution of the local control problem may be quite difficult, as
in the example of a controlled PIDE, which would arise when modelling jump processes.

We have shown that it is straightforward to approximate some of the controls by piecewise con-
stants, and other controls can be solved implicitly. Since the piecewise constant approximation
generally requires solution of an additional linear PDE for each discretized control, it is advanta-
geous to make a judicious choice for which controls should use the piecewise constant approximation.
In particular, it may be advantageous to use an implicit control approach for continuous controls,
and a piecewise constant approach for discrete controls.
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Figure 3: Gamma (VSS) for a straddle. Stock borrowing fee example as described in Section
2.2, long position with American early exercise. Input parameters are given in Table 4. Explicit
evaluation of American constraint and piecewise constant policy timestepping (Section 7).

9 Conclusion

In this paper, we have studied the solution of optimal control problems in option pricing. We
discretize the control problem directly, and do not to attempt to simplify the problem by analytically
determining the optimal control. It turns out to be straightforward to analyze the discrete control
problem in order to ensure that the discretization method is consistent, stable and monotone, and
hence guarantee convergence to the viscosity solution. The control formulation also allows us to
use a Newton-like iteration scheme to solve the implicit control discretized equations. For the HJB
equation, global convergence of the policy (Newton-type) iteration is guaranteed.

In some cases, it may be difficult to solve the local control problems at each node. As well, in the
case of HJBI equations, convergence of the policy type iteration scheme is not ensured. Although
we can use a relaxation method in this situation, convergence is typically slow. In these cases, it
may be advantageous to use a piecewise constant policy approximation. This reduces a complex
nonlinear PDE to a set of linear PDEs at each timestep.

We note that all the proofs and methods described above can be trivially extended to higher
dimensional problems, provided that we can discretize the operator

ndim∑
i=1

ndim∑
j=1

ai,j
∂2

∂xixj
(9.1)

so that the discrete equations yield a negative M matrix. In some special cases [33], it is possible
to use a specific grid spacing which ensures that the discrete equations give rise to an M matrix.
In other cases, it may be possible to rotate the grid so as to eliminate the cross-derivative term. In
general, however, the situation is not satisfactory, and this is the subject of ongoing research. In
any case, the major difficulty reduces to the classical problem of constructing a positive coefficient
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discretization of operator (9.1) [53].
In the future, we plan to investigate cases where the when the underlying process is a jump

process, which would result in a controlled partial integro differential equation (PIDE) rather than
a PDE.

Appendices

A Derivation of the Nonlinear PDEs

In this appendix, we give a brief derivation of the nonlinear option pricing PDEs for the cases of
unequal borrowing and lending rates, as well as the case with stock borrowing fees.

A.1 Unequal Borrowing and Lending Rates

Consider a short position in the contingent claim with value V (S, t). Consider the portfolio

Π = −V + αS (A.1)

where α is number of shares held long. The above portfolio is augmented (as usual) with the bank
account B, so that at any instant

ΠT = Π + B = 0 (A.2)

so that B = V − αS. If ΠT is riskless, then

dΠT = dΠ + dB = dΠ + ρ(B)B dt = 0 , (A.3)

where ρ(x) is defined in equation (2.8). Note that we have included the effect of different borrowing
and lending rates in equation (A.3), since the rate earned/paid on the bank account will depend
on the sign of B.

Assuming the process (2.1), eliminating risk by setting α = VS , and using Ito’s Lemma, then
for a short position we obtain (from equations (A.3))

Vt +
σ2S2

2
VSS + ρ(V − SVS)(SVS − V ) = 0 . (A.4)

A similar argument for the long case gives the result in equation (2.7).

A.2 Stock Borrowing Fees

Although a fairly complex sequence of transactions takes place when stock is borrowed in order to
go short [21], the end result is that the holder of the short position will not receive the rate rl on
the proceeds of the short sale, but rather effectively receives rl − rf , where rf is the borrow fee.
Typically, rf can be about 40 bps (.4%) [52].

Consider a short position in the claim, and define ΠT , Π, B as in Appendix A.1. If ΠT is
riskless, then we have

dΠ + dB = 0 . (A.5)
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Now, we have to distinguish between the two cases: α = VS > 0, and α = VS < 0. If VS < 0 (a
short position in the underlying), we have

dB = (ρ(V )V − (rl − rf )SVS) dt , (A.6)

where ρ(x) is defined in equation (2.8). On the other hand, if VS > 0 (a long position in the
underlying), then

dB = ρ(V − SVS)(V − SVS) dt . (A.7)

Assuming the process (2.1), eliminating risk by setting α = VS , and using Ito’s Lemma, then from
equations (A.5-A.7) we obtain for a short position

Vt +
σ2S2

2
VSS + H(VS) [ρ(V − SVS)(SVS − V )] + H(−VS) [(rl − rf )SVS − ρ(V )V ] = 0 , (A.8)

with H(x) defined in equation (2.11). A similar argument for the long case gives the result in
equation (2.10).

B Some Useful Properties

We gather in this Appendix some convenient properties which we will reference in the main text.
Suppose X(x), Y (x) are functions defined for some set of points x ∈ D1. Then

sup
x

X(x)− sup
y

Y (y) ≤ sup
x

(X(x)− Y (x)) ,

inf
x

X(x)− inf
y

Y (y) ≥ inf
x

(X(x)− Y (x)) , (B.1)

from which we can deduce

inf
x

(X(x)− Y (x)) ≤ sup
x

X(x)− sup
y

Y (y) ≤ sup
x

(X(x)− Y (x)) (B.2)

inf
x

(X(x)− Y (x)) ≤ inf
x

X(x)− inf
y

Y (y) ≤ sup
x

(X(x)− Y (x)) (B.3)

and ∣∣∣∣sup
x

X(x)− sup
y

Y (y)
∣∣∣∣ ≤ sup

x
|(X(x)− Y (x)| (B.4)∣∣∣∣inf

x
X(x)− inf

y
Y (y)

∣∣∣∣ ≤ sup
x
|X(x)− Y (x)| . (B.5)

Also from the above that, if X(x, y), Y (x, y) are functions defined for the points (x, y) ∈ D2, then

inf
x

inf
y

(X(x, y)− Y (x, y)) ≤ inf
x

sup
y

X(x, y)− inf
w

sup
z

Y (w, z) ≤ sup
x

sup
y

(X(x, y)− Y (x, y))

(B.6)∣∣∣∣inf
x

sup
y

X(x, y)− inf
w

sup
z

Y (w, z)
∣∣∣∣ ≤ sup

x
sup

y
|X(x, y)− Y (x, y)| , (B.7)

which also hold if the inf sup is replaced by sup inf in equations (B.6-B.7).
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C Discrete Equation Coefficients

Let Qn
i denote the vector of optimal controls at node i, time level n and set

an+1
i = a(Si, τ

n, Qn
i ), bn+1

i = b(Si, τ
n, , Qn

i ), cn+1
i = c(Si, τ

n, Qn
i ) . (C.1)

Then, we can use central, forward or backward differencing at any node.
Central Differencing:

αn
i,central =

[
2an

i

(Si − Si−1)(Si+1 − Si−1)
− bn

i

Si+1 − Si−1

]
βn

i,central =
[

2an
i

(Si+1 − Si)(Si+1 − Si−1)
+

bn
i

Si+1 − Si−1

]
. (C.2)

Forward/backward Differencing: (bn
i > 0/ bn

i < 0)

αn
i,forward/backward =

[
2an

i

(Si − Si−1)(Si+1 − Si−1)
+ max(0,

−bn
i

Si − Si−1
)
]

βn
i,forward/backward =

[
2an

i

(Si+1 − Si)(Si+1 − Si−1)
+ max(0,

bn
i

Si+1 − Si
)
]

. (C.3)
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