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Super-Resolution

Julianne Chung∗ Eldad Haber† James Nagy‡

December 16, 2005

Abstract

The process of combining, via mathematical software tools, a set
of low resolution images into a single high resolution image is often
referred to as super-resolution. Algorithms for super-resolution in-
volve two key steps: registration and reconstruction. Most approaches
proposed in the literature decouple these steps, solving each indepen-
dently. This can be effective if there are very simple, linear displace-
ments between the low resolution images. However, for more complex,
nonlinear, nonuniform transformations, estimating the displacements
can be very difficult, leading to severe inaccuracies in the reconstructed
high resolution image. This paper presents a mathematical framework
and optimization algorithms that can be used to jointly estimate these
quantities. Efficient implementation details are considered, and nu-
merical experiments are provided to illustrate the effectiveness of our
approach.

∗Mathematics and Computer Science, Emory University, Atlanta, GA 30322.
jmchung@emory.edu.

†Mathematics and Computer Science, Emory University, Atlanta, GA 30322.
haber@mathcs.emory.edu. Research supported in part by the DOE under grant DE-
FG02-05ER25696, and the NSF under grant CCF-0427094.

‡Mathematics and Computer Science, Emory University, Atlanta, GA 30322.
nagy@mathcs.emory.edu. Research supported in part by the NSF under grant DMS-
05-11454 and by an Emory University Research Committee grant.

1



1 Introduction

Using images for analytic, diagnostic and other purposes is an integral part
of research in engineering, medicine, and the sciences. In most cases it is
desirable to have images with high spatial resolution. One approach to obtain
such images is to build sophisticated instrumentation having intrinsically
high resolution capabilities. In addition to being costly, other limitations are
difficult to overcome. For example, reducing the pixel sensor size decreases
the signal to noise ratio and also results in a build up of shot noise [18]. An
alternative, less expensive approach which has gained popularity in digital
imaging and video applications, is to use mathematical software tools to
combine the information given by a set of low resolution images into one high
resolution image. This process is commonly referred to as super-resolution
[12].

In order for super-resolution techniques to work, the multiple low reso-
lution images must contain different information of the same scene. This is
typically accomplished by capturing low resolution images of slightly shifted
versions of the scene, with the shifts occurring at sub-pixel distances. For
efficient implementation, algorithms often assume uniform, linear sub-pixel
shifts. Another approach that has been proposed is to use low resolution
images of a stationary scene, but where each image has different amounts of
defocus [6]. The idea of achieving super-resolution dates back to the early
1970s [1], but most substantial work on algorithms has been done more re-
cently; see for example [4, 5, 6, 14, 15, 19]. Recent overview papers on
super-resolution include [7, 18].

There are two main ingredients in standard super-resolution algorithms1.
First, one has to estimate the relative displacement or deformation of each
point in each image from each point of a reference image. Second, after
the displacements have been evaluated, a linear inverse problem (which is
equivalent to an image restoration problem) must be solved to obtain the
high resolution image. Most approaches proposed in the literature decouple
these steps. Decoupling makes sense if relative displacements are known a-
priori (possibly from a calibration process) or, if they can be estimated from
the low resolution images [4, 6, 7, 14, 15, 18]. For simple displacements,
such as linear uniform translation, this procedure can work well. However,

1By standard super-resolution we mean that low resolution images are captured of
slightly shifted scenes. An approach such as that suggested in [6] where the images are of
a stationary scene we refer to as non standard.
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for more complex, nonlinear, nonuniform transformations, estimating the
displacement on the coarse image can be very difficult. In particular, as we
illustrate in Section 4, because the estimation of displacements is done on
the coarse image, fine-scale details of the high resolution image are ignored,
which can lead to severe inaccuracies in the reconstructed image.

Clearly the registration and reconstruction parts of the problem are not
independent. It should be possible to obtain better results by considering a
coupled approach that jointly estimates the displacements and reconstructed
high resolution image. Although substantial work has been done in the devel-
opment of algorithms for the uncoupled super-resolution problem, relatively
little work has been done for the coupled problem, which requires solving a
nonlinear optimization problem. This can be very expensive to implement
unless one makes other simplifying assumptions; as pointed out in [7], several
difficulties related to the joint estimation task still remain largely open. Tom
and Katsaggelos [19] use a maximum likelihood formulation, and expectation
maximization algorithm (EM) to solve the joint estimation problem. They
implement the algorithm in the frequency domain, implying spatial invari-
ance, and hence linear uniform displacements. Cheeseman et al. [5] use the
maximum a-posteriori (MAP) framework, with very näıve numerical meth-
ods, such as the simplex algorithm to solve a least squares problem, and the
Jacobi algorithm to solve a system of linear equations. Hardie, Barnard and
Armstrong [10] also use a MAP framework. They consider only simple hor-
izontal and vertical displacements, and a numerical optimization approach
that alternates between the two sets of variables.

In this paper we present a new mathematical framework that enables
us to couple the problem of estimating the displacements with the problem
of estimating the high resolution image. To solve the problem we consider
three approaches. The first is a completely coupled optimization algorithm
that uses a Gauss-Newton type method to estimate the two sets of unknown
parameters. In the second, partially coupled approach, we mathematically
eliminate one set of parameters to obtain a reduced cost functional. We again
use a Gauss-Newton type method for this optimization problem, which is a
slight modification of the methods proposed by Golub and Pereyra [?] for
separable nonlinear least squares problems, and is similar to the approach
used by Vogel, Chan and Plemmons [?] for phase diversity blind deconvo-
lution. The third, completely decoupled approach, uses the simple idea of
alternating between minimization of the two sets of variables, similar to the
approach used in [10]. We show how to implement these algorithms effi-
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ciently for the super-resolution problem with non-trivial displacements, and
that the coupled methods produce results superior to those of the decoupled
approaches.

This paper is organized as follows. In Section 2 we set up notation,
and provide a mathematical framework for super-resolution with arbitrary
displacements. In Section 3 we present the algorithms that enable us to
solve the resulting optimization problem. Finally, in Section 4 we provide
numerical experiments that demonstrate the advantages of our approach.

2 Mathematical Framework

In this section we describe a mathematical model of the super-resolution
problem. Assume that the true image scene can be represented as a piecewise
smooth function, f : R2 → R1. In most imaging applications it is not
possible to know f precisely, but instead we have only a discrete image of
pixel values. For high resolution, fine grid approximations, one might assume
that the pixel values of the discrete image are simply samples of the function,
f(x), where x = (x1, x2). In this case we use lexicographical ordering to define
a vector, f , containing these pixel values; that is,

f = [ fi ]
n

i=1

where fi = f(xi).
2 For low resolution, coarse grid approximations, a more

realistic model of the discrete image is given by the vector d,

d = [ di ]
m

i=1

where m < n, and

di =

∫

Ω

K(xi, y)f(y)dy . (1)

In this model di represents a discrete pixel value that is obtained by averag-
ing over a set of f(x) values. The averaging process is defined by the kernel,
K(x, y). Note that with this model we could also assume that K(x, y) ad-
ditionally models blurring, such as defocus, but for ease of presentation we
consider only the averaging involved in the discretization process.

2Note that each xi ∈ R2, so if we want to refer to specific components of xi we use the
notation xi = (xi,1, xi,2).
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A complete discrete model of the image formation process that relates a
coarse grid approximation of the image scene to a fine grid approximation can
be obtained by replacing the integration in (1) with a quadrature rule. Any
quadrature scheme can be used; typically something simple, like the midpoint
rule, is sufficient. However, in order that the quadrature approximation
results in a fine grid approximation of f , it is necessary to choose the number
of quadrature points, n, sufficiently larger than m, such as n = 2ℓm, where ℓ

is an integer greater than or equal to one. The result is a linear system

d = Kf ,

where f is a vector of length n representing the high resolution (fine grid
approximation) image, d is a vector of length m representing a low resolu-
tion (coarse grid approximation) image, and K is an m × n sparse matrix
approximating the averaging process.

In a super-resolution problem we must collect a set of discrete images,
typically with a fixed (low) resolution. Each observation must provide dif-
ferent information about the true image scene, which can be accomplished,
for example, by viewing the scene from different locations, or, equivalently,
by moving the objects in the scene before collecting the image data. To de-
scribe this mathematically, let f(x) represent a particular true image scene.
Then we can represent movements, or deformations of f(x) through a set of
displacements, uj(x) = [uj,1, uj,2]

⊤; that is, a deformed image scene, fj(x) is
given by

fj(x) = f(x + uj(x)) , j = 1, . . . , k. (2)

Assume that the goal is to compute f , which is the vector that represents the
fine grid discretization of the true scene, f(x). We would like to write vectors
fj, which are the discrete versions of fj(x), in terms of f . The difficulty is
that we cannot assume that fj(xi) = f(xi + uj(xi)) falls precisely on one of
the discrete pixel values given by the vectors f , and so we must approximate
the value. To do this we use bilinear interpolation, which connects any point,
f(xi +uj), on the displaced image to four pixel values in the reference image
that surround it. Specifically, suppose fNE, fNW , fSE, fSW are four pixel
values that surround f(xi + uj), as illustrated in Figure 1. Then, assuming
without loss of generality a grid size of 1, the interpolated point is written as

f(xi + uj) = (1 − uj,1)(1 − uj,2)f
NW + uj,1(1 − uj,2)f

NE + (3)

(1 − uj,1)uj,2f
SW + uj,1uj,2f

SE.
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Figure 1: An illustration of bilinear interpolation. Here the corners fNW ,
fNE, fSW and fSE represent given discrete pixel values, and f(xi + uj) is a
value that must be approximated.

With this notation, we can write the interpolation operation in matrix nota-
tion

fj ≈ S(uj)f (4)

where S(uj) is a sparse n × n matrix (to simplify notation, we often write
Sj ≡ S(uj)). The nonzero elements of Sj are the interpolation weights; that
is, the bilinear products of uj,1 and uj,2.

Combining the discretizations of the kernel and the discretization of the
deformation process we obtain the following discrete set of nonlinear equa-
tions for the low resolution images

dj = KSjf , j = 1, . . . , k. (5)

Thus, the general model we use to relate the desired high resolution image,
f , to the observed low resolution images, dj, is given by

d = (I ⊗ K)S(u)f + η (6)
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where

d =







d1
...

dk






, I ⊗ K =







K
. . .

K






, S(u) =







S1
...

Sk






,

and η is a vector representing unknown errors in the observed data, such as
discretization errors and noise.

Our goal is to reconstruct the discrete high resolution image f . It is
obvious that if the displacement fields uj(x) are known then we obtain a
linear problem. Nevertheless, in many cases the displacement is unknown
and therefore one needs to evaluate the displacements and the high resolution
image. It should be clear from the above equation that the two are tightly
coupled. Indeed, note that even if S(u) is linear with respect to u the mixed
derivative ∂2d

∂u∂f
does not vanish. Thus we see that two problems need to

be solved in order to obtain f from d. First, registration of the various
low resolution images is needed in order to find the displacements, then the
image restoration, or deblurring problem given in equation (5) needs to be
solved. Each of these problems, considered independently, is known to be ill-
posed [9, 11], and thus regularization is needed in order to obtain meaningful
solutions.

To regularize the registration process, there are two main approaches.
First, elastic potential or fluid registration are often used to regularize highly
deformable image registration problems [13]. Second, it is possible to use a
parametric approach and to assume that the displacements can be spanned
by a small subspace of known vectors. While the former approach is more
general, it is much more complex and requires special care. Therefore, in this
paper, we have assumed that the displacement can be spanned by a small set
of known vectors (we address extensions to more complex displacement fields
in the summary). We set uj(x) to be a set of affine linear transformations,
which allows for rotation, translation, scaling and shear. Thus, we assume
that our deformation field at pixel j has the form

uj(x) =

(

uj,1

uj,2

)

=

(

γj,1 γj,2

γj,4 γj,5

)(

x1

x2

)

+

(

γj,3

γj,6

)

, (7)

and thus

uj(xi) =

(

uj,1

uj,2

)

=

(

γj,1 γj,2

γj,4 γj,5

)(

xi,1

xi,2

)

+

(

γj,3

γj,6

)

. (8)
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The parameters γj,1, γj,2, . . . , γj,6 are shared by all pixels in the jth de-
formed image. Therefore, if we define coordinate vectors

x1 =











x1,1

x2,1
...

xn,1











and x2 =











x1,2

x2,2
...

xn,2











then we can represent corresponding deformation vectors as

uj =

[

uj,1

uj,2

]

=

[

x1 x2 e

x1 x2 e

]







γj,1
...

γj,6






= Pγj (9)

where e is the vector of all ones. Thus we see that the dependence of the
interpolation matrices, Sj, on uj(x) has been reduced to a dependence on
only six parameters given by the vector γj. We use this relationship in the
next section as we explore numerical optimization techniques to solve the
super-resolution problem.

3 Solution through Optimization

In order to solve the inverse problem we consider a Tikhonov-like framework
where the solution is obtained by minimizing a functional of the form

min
f ,γ

1,...,ℓ

1

2

k
∑

j=1

‖KSjf − dj‖
2 + αR(f) (10)

where Sj ≡ S(uj) = S(Pγj) is the interpolation matrix that depends on γj,
R(f) is a regularization operator, and α is a regularization parameter. For
simplicity, in this work we consider only quadratic regularization operators
of the form

R(f) =
1

2
‖L f‖2, (11)

where L is a matrix representing a discrete differentiation operator. However,
other regularization methods that allow for discontinuities, such as the Huber
approach [2], can easily be accommodated within our framework.
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To solve the optimization problem we need to compute derivatives. Con-
sider first the term

φ =
1

2
‖KSjf − dj‖

2.

Differentiating with respect to f is straightforward, and gives

∂φ

∂f
= S⊤

j K⊤(KSjf − dj). (12)

Differentiating with respect to γj is not trivial. First notice, using the inter-
polation formula (3), we have

∂f(xi + uj)

∂uj,1

= (1 − uj,2)(f
NE − fNW ) + uj,2(f

SE − fSW ), (13a)

and

∂f(xi + uj)

∂uj,2

= (1 − uj,1)(f
SW − fNW ) + uj,1(f

SE − fNE). (13b)

Observe that the expressions given in (13) are equivalent to a simple dis-
cretization of the gradient of the image, assuming it is a piecewise linear
function. We therefore define the Jacobian of the image with respect to the
displacements uj(x) as

Gj ≡ G(uj) ≡
∂fj

∂uj

=
∂[Sjf ]

∂uj

. (14)

Using the chain rule, we obtain an expression for the partial derivatives of φ

with respect to γj:

∂φ

∂γj

= P⊤G⊤

j K⊤(KSjf − dj). (15)

Using the partial derivatives (12) and (15), we obtain the Euler Lagrange
equations which are the necessary conditions for a minimum of (10):

g1 =
∑

j

S⊤

j K⊤(KSjf − dj) + αRf = 0 (16a)

g2,j = P⊤G⊤

j K⊤(KSjf − dj) = 0, j = 1, 2, . . . , k, (16b)

where Rf =
∂R(f)

∂f
, and again we emphasize that Gj ≡ G(uj) = G(Pγj)

and Sj ≡ S(uj) = S(Pγj). The equations given in (16) represent a nonlinear
system in f and γj. There are many options to solve such a system; in the
following subsections we discuss three possible approaches.
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3.1 The fully coupled approach

First, we consider using the Gauss-Newton method to solve for f and γ

simultaneously. First we must linearize the system (16) to obtain an approx-
imation of the Hessian

H :=

















k
∑

j=1

S⊤

j K⊤KSj + αRff B1 · · · Bk

B⊤

1 P⊤G⊤

1 K⊤KG1P
...

. . .

B⊤

k P⊤G⊤

k K⊤KGkP

















(17)

where Sj = S(Pγj), Rff =
∂2R(f)

∂f2
, and

Bj =
∂

∂γ

(

S(Pγ(j))⊤K⊤(KS(Pγ(j))f)
)

which is computed similar to the other derivatives.
In the Gauss-Newton iteration we solve the system

H

(

δf

δγ

)

= −

(

g1

g2

)

(18)

for the perturbations δγ and δf , where g⊤

2 =
[

g⊤

2,1 · · · g⊤

2,k

]

, and g1 and
g2,j are given, respectively, in equations (16a) and (16b).

The matrix H is typically very large, but it is also sparse, so we can use
a preconditioned conjugate gradient method to solve (18). To further reduce
the load at each iteration we can also use an inexact Gauss-Newton method
[16] where the system (18) is solved only to a very rough tolerance. The
approach is summarized in Algorithm 1.

There are a few difficulties when using the Gauss-Newton method on this
fully coupled problem. First, we do not take algorithmic advantage of the
fact that the problem is strongly convex in f . Thus, we may use very small
steps due to the nonlinearity induced by γ. Moreover, the solution of the
linear system can be rather expensive since it is difficult to find effective
preconditioners for the coupled linear system. We therefore look at two
alternative approaches.

10



Algorithm 1 Inexact Gauss-Newton method for Super Resolution

initialize {γ, f} and the regularization parameter α

while true do

• compute g1 and g2 (equation (16)) and the Hessian H (equation (17))
• approximately solve the linear system (18)
• use a weak line search to accept/reject step
• test for termination

end while

3.2 The partially coupled approach

For quadratic regularization operators one can obtain a highly efficient algo-
rithm by noting that equation (16a) is linear with respect to f . In this case
it is possible to eliminate f from the first equation by solving the system

(

k
∑

j=1

S⊤

j K⊤KSj + αL⊤L

)

f =
∑

j

S⊤

j K⊤dj. (19)

This yields a high resolution image f(γ). Substituting f(γ) into (16b) we
obtain a set of equations that depends only on γ,

P⊤G⊤

j K⊤(KSjf(γ) − dj) = 0, j = 1, 2, . . . , k. (20)

It is easy to verify that this approach is a slight modification of the method
proposed by Golub and Pereyra [?], and is similar to the scheme used by
Vogel, Chan and Plemmons [?] for a problem arising in phase diversity blind
deconvolution. In fact, it is easy to verify that equation (20) is the gradient
of the reduced cost functional

φred(γ) =
1

2
‖

k
∑

j=1

KSjf(γ) − dj‖
2, (21)

where f(γ) is the solution of the linear problem given in equation (19). Fur-
thermore, it is easily verified that the Jacobian is given by

J(γ) =







J1(γ)
. . .

Jk(γ)






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where

J j(γ) =
∂(KSjf(γ))

∂γj

= KGjP . (22)

Using the above observation we are able to use the Gauss-Newton method
to minimize (21). The evaluation of the function φred and its derivatives
involves the solution of the linear system (19). Note that this approach
decouples the problem into solving a large sparse linear system for f and J ,
and solving a small nonlinear optimization problem with respect to γ. Since
J can be easily evaluated given f the cost of every Gauss-Newton step for
γ is negligible compared with the computation of f . Furthermore, as we
demonstrate in our numerical experiments, given a reasonable initial guess,
the method converges in very few iterations.

3.3 The decoupled approach

In the case of nonlinear regularization the above decoupling may not be
practical. In this case, we consider the simple idea of alternating between the
minimization with respect to f and with respect to γ. This approach, which
is referred to as coordinate descent in the optimization literature [16], has
been used for super-resolution problems by Hardie, Barnard and Armstrong
[10] within a MAP framework.

For our problem, we decouple the nonlinear system (16) in the obvious
way. That is, we first assume that at iteration ℓ we have a guess for the fine
scale, high resolution image, f (ℓ). We can then solve the system g2(f

(ℓ), γ) =
0 which yields k separate registration problems, which we solve to obtain
γ

(ℓ)
j j = 1, . . . , k. Next, given the updated γ

(ℓ)
j , we can solve the system

g1(f , γ
(ℓ)) = 0 and proceed in an alternating fashion. Thus we can write the

solution process as

(S
(ℓ−1)
j )⊤K⊤(KS

(ℓ−1)
j f (ℓ) − dj) + αRf (f

(ℓ)) = 0 (23a)

P⊤G⊤

j K⊤(KS(Pγ
(ℓ)
j )f (ℓ) − dj) = 0 j = 1, . . . , k (23b)

The advantage of this process is that we can use standard algorithms for
image deblurring as well as standard algorithms for image registration. The
difficulty, as is well known with coordinate descent type methods, is that it is
not clear what are the practical convergence properties of the method. More-
over, if the method does converge, it will typically be very slow, especially
for tightly coupled variables [16].
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4 Numerical examples

In this section we demonstrate that the coupled algorithms can be superior to
uncoupled approaches for the super-resolution problem. For the numerical
tests reported in this section, we use a magnetic resonance (MR) image,
which is available in Matlab. The original high resolution image with 1282

pixels, together with three low resolution images of 322 pixels, is shown in
Figure 2.

(a) (b)

(c) (d)

Figure 2: The high resolution image is shown in (a), and three selected low
resolution images are shown in (b-d).

We assume that we have 32 low resolution images which are generated
by a sequence of rotations and translations of the original image. For the
reconstruction we choose quadratic regularization with L a discretization of
the gradient operator. Since the regularization is quadratic we have used
only the partially coupled approach and the decoupled approach described
in Section 3. For each algorithm we compare the reconstructed image with
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the result obtained by the standard approach of doing just one registration
and one image reconstruction step. All computations were done in Matlab,
using IEEE double precision arithmetic.

4.1 Partially coupled approach

Here we consider the method described in subsection 3.2. We use two values
of the regularization parameter. In order to obtain an initial guess for γj

we solve the registration problem using the coarse images. The optimization
problem is considered to converge when the relative gradient is smaller than
10−1 or when the displacement is smaller than half a pixel of the fine grid.

The images of the partially coupled approach and the standard uncou-
pled approach are presented in Figure 3. There is a noticeable difference
between the computed reconstructions. In particular, many of the artifacts
which can be seen in the standard approach do not appear when using the
partially coupled method, even though we have used a very simple regular-
ization functional.

A remarkable improvement can be observed when comparing the true
displacements with the recovered ones. We define the relative error as

∆γ =
‖γest − γtrue‖

‖γtrue‖

The initial relative difference between the true displacement and the coarse
grid displacement is 0.5561. After our code completes its run, the difference is
0.0856 for α = 10−1 and 0.0855 for α = 10−2. This implies that our algorithm
manages to obtain registration parameters which are roughly 4 times more
accurate compared with the standard approach. Although we demonstrate
marked improvement in the images, any reconstruction technique could ben-
efit from such improvement. Additional information summarizing the con-
vergence behavior of the algorithm is given in Table 1.

4.2 Decoupled approach

In order to understand how well the partially coupled approach performs
for super-resolution type problems, we want to compare its performance to
that of the decoupled approach described in subsection 3.3. Here we employ
a coordinate descent type optimization method for the same problem as
described above, with the regularization parameter set to 10−1. Notice that
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(a) (b)

(c) (d)

Figure 3: Comparison between the partially coupled and standard approach.
The image shown in (a) used the partially coupled approach with α = 10−1,
the image in (b) used the partially coupled approach with α = 10−2. In (c)
we used the standard approach α = 10−1, and in (d) we used the standard
approach α = 10−2.
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iteration rel objective rel gradient ∆γ

α = 10−1

0 1.0000 1.0000 0.5561
1 0.7931 0.5645 0.3231
2 0.7160 0.3578 0.1884
3 0.6854 0.2464 0.1185
4 0.6749 0.1630 0.0926
5 0.6712 0.1031 0.0856

α = 10−2

0 1.0000 1.0000 0.5561
1 0.5689 0.5997 0.3531
2 0.3917 0.3748 0.2269
3 0.3112 0.3004 0.1480
4 0.2746 0.2210 0.1076
5 0.2598 0.1579 0.0911
6 0.2535 0.1058 0.0855

Table 1: Convergence of iterations for the partially coupled approach.

to ensure minimization of the objective function, we must implement a basic
line search method after solving each of the systems, equation (23a) and
equation (23b).

Convergence information of this algorithm is given in Table 2. Our nu-
merical experiments show that this method is successful in decreasing the
relative value of the objective function with each successive iteration; how-
ever, as expected, the convergence is much slower than that of the partially
coupled approach. More specifically, the accuracy of the registration para-
meters at 30 iterations of the decoupled approach (further iterations produce
essentially no additional accuracy) compares to that attained with only 1
iteration of the partially coupled approach.

Recall that the difficulty of these coordinate descent type algorithms is
that practical convergence properties are uncertain. We found that with
smaller regularization parameters, such as α = 10−2, the decoupled approach
was ineffective. In particular, the iterations show very little improvement to
the image and to the registration parameters.
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iteration rel objective ∆γ

α = 10−1

0 1.000 0.5561
1 0.9834 0.5414
2 0.9741 0.5294
3 0.9578 0.5186
4 0.9247 0.4984
5 0.8833 0.4324
30 0.7465 0.3612

Table 2: Convergence of iterations for the decoupled approach.

5 Concluding Remarks

In this paper we have explored a new class of coupled optimization algorithms
for super-resolution, which jointly treats the registration and deblurring parts
of the problem. We have used Newton type methods and demonstrated that
our approach is able to better estimate the registration parameters which in
turn yields improved reconstructed images.

There are numerous points to explore in future work. First, we would
like to extend our approach to different deformation models. Second, we
would like to explore various techniques that can potentially produce better
reconstructed images. For example, we could use different semi-norms such
as Huber style regularizers and add nonnegativity constraints.
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