
Numerical
Methods
for Engineers

Sixth Edition

Steven C. Chapra

Raymond P. Canale

707

25C H A P T E R 25

Runge-Kutta Methods

This chapter is devoted to solving ordinary differential equations of the form

dy

dx
= f(x, y)

In Chap. 1, we used a numerical method to solve such an equation for the velocity of the

falling parachutist. Recall that the method was of the general form

New value = old value + slope × step size

or, in mathematical terms,

yi+1 = yi + φh (25.1)

According to this equation, the slope estimate of φ is used to extrapolate from an old value

yi to a new value yi+1 over a distance h (Fig. 25.1). This formula can be applied step by step

to compute out into the future and, hence, trace out the trajectory of the solution.

FIGURE 25.1
Graphical depiction of a one-
step method.

y

x

Step size = h

Slope = �

xi xi + 1

yi + 1 = yi + �h

All one-step methods can be expressed in this general form, with the only difference

being the manner in which the slope is estimated. As in the falling parachutist problem, the

simplest approach is to use the differential equation to estimate the slope in the form of the

first derivative at xi. In other words, the slope at the beginning of the interval is taken as an

approximation of the average slope over the whole interval. This approach, called Euler’s

method, is discussed in the first part of this chapter. This is followed by other one-step

methods that employ alternative slope estimates that result in more accurate predictions.

All these techniques are generally called Runge-Kutta methods.

25.1 EULER’S METHOD

The first derivative provides a direct estimate of the slope at xi (Fig. 25.2):

φ = f(xi , yi)

where f (xi, yi) is the differential equation evaluated at xi and yi. This estimate can be sub-

stituted into Eq. (25.1):

yi+1 = yi + f(xi , yi)h (25.2)

This formula is referred to as Euler’s (or the Euler-Cauchy or the point-slope) method.

A new value of y is predicted using the slope (equal to the first derivative at the original

value of x) to extrapolate linearly over the step size h (Fig. 25.2).

EXAMPLE 25.1 Euler’s Method

Problem Statement. Use Euler’s method to numerically integrate Eq. (PT7.13):

dy

dx
= −2x3 + 12x2 − 20x + 8.5

708 RUNGE-KUTTA METHODS

FIGURE 25.2
Euler’s method.

y

xxi + 1

error

Predicted

True

xi

h

from x = 0 to x = 4 with a step size of 0.5. The initial condition at x = 0 is y = 1. Recall

that the exact solution is given by Eq. (PT7.16):

y = −0.5x4 + 4x3 − 10x2 + 8.5x + 1

Solution. Equation (25.2) can be used to implement Euler’s method:

y(0.5) = y(0) + f(0, 1)0.5

where y(0) = 1 and the slope estimate at x = 0 is

f(0, 1) = −2(0)3 + 12(0)2 − 20(0) + 8.5 = 8.5

Therefore,

y(0.5) = 1.0 + 8.5(0.5) = 5.25

The true solution at x = 0.5 is

y = −0.5(0.5)4 + 4(0.5)3 − 10(0.5)2 + 8.5(0.5) + 1 = 3.21875

Thus, the error is

Et = true − approximate = 3.21875 − 5.25 = −2.03125

or, expressed as percent relative error, εt = −63.1%. For the second step,

y(1) = y(0.5) + f(0.5, 5.25)0.5

= 5.25 + [−2(0.5)3 + 12(0.5)2 − 20(0.5) + 8.5]0.5

= 5.875

The true solution at x = 1.0 is 3.0, and therefore, the percent relative error is −95.8%. The

computation is repeated, and the results are compiled in Table 25.1 and Fig. 25.3. Note that,

25.1 EULER’S METHOD 709

TABLE 25.1 Comparison of true and approximate values of the integral of
y

′ = −2x3 + 12x2 − 20x + 8.5, with the initial condition that y = 1 at x = 0.
The approximate values were computed using Euler’s method with a step size
of 0.5. The local error refers to the error incurred over a single step. It is
calculated with a Taylor series expansion as in Example 25.2. The global
error is the total discrepancy due to past as well as present steps.

Percent Relative Error

x ytrue yEuler Global Local

0.0 1.00000 1.00000
0.5 3.21875 5.25000 −63.1 −63.1
1.0 3.00000 5.87500 −95.8 −28.0
1.5 2.21875 5.12500 131.0 −1.41
2.0 2.00000 4.50000 −125.0 20.5
2.5 2.71875 4.75000 −74.7 17.3
3.0 4.00000 5.87500 46.9 4.0
3.5 4.71875 7.12500 −51.0 −11.3
4.0 3.00000 7.00000 −133.3 −53.0

although the computation captures the general trend of the true solution, the error is con-

siderable. As discussed in the next section, this error can be reduced by using a smaller step

size.

The preceding example uses a simple polynomial for the differential equation to facil-

itate the error analyses that follow. Thus,

dy

dx
= f(x)

Obviously, a more general (and more common) case involves ODEs that depend on both x

and y,

dy

dx
= f(x, y)

As we progress through this part of the text, our examples will increasingly involve ODEs

that depend on both the independent and the dependent variables.

25.1.1 Error Analysis for Euler’s Method

The numerical solution of ODEs involves two types of error (recall Chaps. 3 and 4):

1. Truncation, or discretization, errors caused by the nature of the techniques employed to

approximate values of y.

710 RUNGE-KUTTA METHODS

FIGURE 25.3
Comparison of the true solution with a numerical solution using Euler’s method for the integral
of y � � �2x3

� 12x2
� 20x � 8.5 from x � 0 to x � 4 with a step size of 0.5. The initial

condition at x � 0 is y � 1.

y

4

0
x4

True solution

h = 0.5

20

2. Round-off errors caused by the limited numbers of significant digits that can be re-

tained by a computer.

The truncation errors are composed of two parts. The first is a local truncation error

that results from an application of the method in question over a single step. The second is

a propagated truncation error that results from the approximations produced during the

previous steps. The sum of the two is the total, or global truncation, error.

Insight into the magnitude and properties of the truncation error can be gained by de-

riving Euler’s method directly from the Taylor series expansion. To do this, realize that the

differential equation being integrated will be of the general form

y′ = f(x, y) (25.3)

where y′ = dy/dx and x and y are the independent and the dependent variables, respec-

tively. If the solution—that is, the function describing the behavior of y—has continuous

derivatives, it can be represented by a Taylor series expansion about a starting value (xi, yi),

as in [recall Eq. (4.7)]

yi+1 = yi + y′
i h +

y′′
i

2!
h2 + · · · +

y
(n)
i

n!
hn + Rn (25.4)

where h = xi+1 − xi and Rn = the remainder term, defined as

Rn =
y(n+1)(ξ)

(n + 1)!
hn+1

(25.5)

where ξ lies somewhere in the interval from xi to xi+1. An alternative form can be developed

by substituting Eq. (25.3) into Eqs. (25.4) and (25.5) to yield

yi+1 = yi + f(xi , yi)h +
f ′(xi , yi)

2!
h2 + · · · +

f (n−1)(xi , yi)

n!
hn + O(hn+1) (25.6)

where O(hn+1) specifies that the local truncation error is proportional to the step size raised

to the (n + 1)th power.

By comparing Eqs. (25.2) and (25.6), it can be seen that Euler’s method corresponds

to the Taylor series up to and including the term f (xi, yi)h. Additionally, the comparison

indicates that a truncation error occurs because we approximate the true solution using

a finite number of terms from the Taylor series. We thus truncate, or leave out, a part of

the true solution. For example, the truncation error in Euler’s method is attributable to the

remaining terms in the Taylor series expansion that were not included in Eq. (25.2).

Subtracting Eq. (25.2) from Eq. (25.6) yields

Et =
f ′(xi , yi)

2!
h2 + · · · + O(hn+1) (25.7)

where Et = the true local truncation error. For sufficiently small h, the errors in the terms

in Eq. (25.7) usually decrease as the order increases (recall Example 4.2 and the accompa-

nying discussion), and the result is often represented as

Ea =
f ′(xi , yi)

2!
h2

(25.8)

25.1 EULER’S METHOD 711

or

Ea = O(h2) (25.9)

where Ea = the approximate local truncation error.

EXAMPLE 25.2 Taylor Series Estimate for the Error of Euler’s Method

Problem Statement. Use Eq. (25.7) to estimate the error of the first step of Exam-

ple 25.1. Also use it to determine the error due to each higher-order term of the Taylor

series expansion.

Solution. Because we are dealing with a polynomial, we can use the Taylor series to ob-

tain exact estimates of the errors in Euler’s method. Equation (25.7) can be written as

Et =
f ′(xi , yi)

2!
h2 +

f ′′(xi , yi)

3!
h3 +

f (3)(xi , yi)

4!
h4

(E25.2.1)

where f ′(xi, yi) = the first derivative of the differential equation (that is, the second deriva-

tive of the solution). For the present case, this is

f ′(xi , yi) = −6x2 + 24x − 20 (E25.2.2)

and f ′′(xi, yi) is the second derivative of the ODE

f ′′(xi , yi) = −12x + 24 (E25.2.3)

and f (3)(xi, yi) is the third derivative of the ODE

f (3)(xi , yi) = −12 (E25.2.4)

We can omit additional terms (that is, fourth derivatives and higher) from Eq. (E25.2.1) be-

cause for this particular case they equal zero. It should be noted that for other functions (for

example, transcendental functions such as sinusoids or exponentials) this would not neces-

sarily be true, and higher-order terms would have nonzero values. However, for the present

case, Eqs. (E25.2.1) through (E25.2.4) completely define the truncation error for a single

application of Euler’s method.

For example, the error due to truncation of the second-order term can be calculated as

Et,2 =
−6(0.0)2 + 24(0.0) − 20

2
(0.5)2 = −2.5 (E25.2.5)

For the third-order term:

Et,3 =
−12(0.0) + 24

6
(0.5)3 = 0.5

and the fourth-order term:

Et,4 =
−12

24
(0.5)4 = −0.03125

These three results can be added to yield the total truncation error:

Et = Et,2 + Et,3 + Et,4 = −2.5 + 0.5 − 0.03125 = −2.03125

712 RUNGE-KUTTA METHODS

which is exactly the error that was incurred in the initial step of Example 25.1. Note how

Et,2 > Et,3 > Et,4 , which supports the approximation represented by Eq. (25.8).

As illustrated in Example 25.2, the Taylor series provides a means of quantifying the

error in Euler’s method. However, there are limitations associated with its use for this

purpose:

1. The Taylor series provides only an estimate of the local truncation error—that is, the

error created during a single step of the method. It does not provide a measure of

the propagated and, hence, the global truncation error. In Table 25.1, we have included

the local and global truncation errors for Example 25.1. The local error was computed

for each time step with Eq. (25.2) but using the true value of yi (the second column of

the table) to compute each yi+l rather than the approximate value (the third column), as

is done in the Euler method. As expected, the average absolute local truncation error

(25 percent) is less than the average global error (90 percent). The only reason that we

can make these exact error calculations is that we know the true value a priori. Such

would not be the case in an actual problem. Consequently, as discussed below, you

must usually apply techniques such as Euler’s method using a number of different step

sizes to obtain an indirect estimate of the errors involved.

2. As mentioned above, in actual problems we usually deal with functions that are more

complicated than simple polynomials. Consequently, the derivatives that are needed to

evaluate the Taylor series expansion would not always be easy to obtain.

Although these limitations preclude exact error analysis for most practical problems,

the Taylor series still provides valuable insight into the behavior of Euler’s method. Ac-

cording to Eq. (25.9), we see that the local error is proportional to the square of the step size

and the first derivative of the differential equation. It can also be demonstrated that the

global truncation error is O(h), that is, it is proportional to the step size (Carnahan et al.

1969). These observations lead to some useful conclusions:

1. The error can be reduced by decreasing the step size.

2. The method will provide error-free predictions if the underlying function (that is, the

solution of the differential equation) is linear, because for a straight line the second de-

rivative would be zero.

This latter conclusion makes intuitive sense because Euler’s method uses straight-line seg-

ments to approximate the solution. Hence, Euler’s method is referred to as a first-order

method.

It should also be noted that this general pattern holds for the higher-order one-step

methods described in the following pages. That is, an nth-order method will yield perfect

results if the underlying solution is an nth-order polynomial. Further, the local truncation

error will be O(hn+1) and the global error O(hn).

EXAMPLE 25.3 Effect of Reduced Step Size on Euler’s Method

Problem Statement. Repeat the computation of Example 25.1 but use a step size of

0.25.

25.1 EULER’S METHOD 713

Solution. The computation is repeated, and the results are compiled in Fig. 25.4a.

Halving the step size reduces the absolute value of the average global error to 40 percent

and the absolute value of the local error to 6.4 percent. This is compared to global and local

errors for Example 25.1 of 90 percent and 24.8 percent, respectively. Thus, as expected, the

local error is quartered and the global error is halved.

Also, notice how the local error changes sign for intermediate values along the range.

This is due primarily to the fact that the first derivative of the differential equation is a

parabola that changes sign [recall Eq. (E25.2.2) and see Fig. 25.4b]. Because the local error

is proportional to this function, the net effect of the oscillation in sign is to keep the global

error from continuously growing as the calculation proceeds. Thus, from x = 0 to x = 1.25,

the local errors are all negative, and consequently, the global error increases over this

714 RUNGE-KUTTA METHODS

FIGURE 25.4
(a) Comparison of two numerical solutions with Euler’s method using step sizes of 0.5 and 0.25.
(b) Comparison of true and estimated local truncation error for the case where the step size is
0.5. Note that the “estimated” error is based on Eq. (E25.2.5).

y

4

0
x4

True solution

h = 0.5

h = 0.25

2

(a)

0

y

– 0.5

0
x42

True

Estimated

(b)

interval. In the intermediate section of the range, positive local errors begin to reduce the

global error. Near the end, the process is reversed and the global error again inflates. If the

local error continuously changes sign over the computation interval, the net effect is usu-

ally to reduce the global error. However, where the local errors are of the same sign, the nu-

merical solution may diverge farther and farther from the true solution as the computation

proceeds. Such results are said to be unstable.

The effect of further step-size reductions on the global truncation error of Euler’s

method is illustrated in Fig. 25.5. This plot shows the absolute percent relative error at

x = 5 as a function of step size for the problem we have been examining in Examples 25.1

through 25.3. Notice that even when h is reduced to 0.001, the error still exceeds 0.1 per-

cent. Because this step size corresponds to 5000 steps to proceed from x = 0 to x = 5, the

plot suggests that a first-order technique such as Euler’s method demands great computa-

tional effort to obtain acceptable error levels. Later in this chapter, we present higher-order

techniques that attain much better accuracy for the same computational effort. However, it

should be noted that, despite its inefficiency, the simplicity of Euler’s method makes it an

extremely attractive option for many engineering problems. Because it is very easy to pro-

gram, the technique is particularly useful for quick analyses. In the next section, a com-

puter algorithm for Euler’s method is developed.

25.1 EULER’S METHOD 715

FIGURE 25.5
Effect of step size on the global truncation error of Euler’s method for the integral of
y � � �2x3

� 12x2
� 20x � 8.5. The plot shows the absolute percent relative global error

at x � 5 as a function of step size.

1

10

100

0.1
0.1

Step size

A
b

s
o

lu
te

 p
e
rc

e
n

t
re

la
ti

v
e
 e

rr
o

r

0.01 0.0011

50

Steps

500 50005

25.1.2 Algorithm for Euler’s Method

Algorithms for one-step techniques such as Euler’s method are extremely simple to pro-

gram. As specified previously at the beginning of this chapter, all one-step methods have

the general form

New value = old value + slope × step size (25.10)

The only way in which the methods differ is in the calculation of the slope.

Suppose that you want to perform the simple calculation outlined in Table 25.1. That

is, you would like to use Euler’s method to integrate y′ = −2x3 + 12x2 − 20x + 8.5, with

the initial condition that y = 1 at x = 0. You would like to integrate out to x = 4 using a

step size of 0.5, and display all the results. A simple pseudocode to accomplish this task

could be written as in Fig. 25.6.

Although this program will “do the job” of duplicating the results of Table 25.1, it is

not very well designed. First, and foremost, it is not very modular. Although this is not very

important for such a small program, it would be critical if we desired to modify and im-

prove the algorithm.

Further, there are a number of issues related to the way we have set up the iterations.

For example, suppose that the step size were to be made very small to obtain better accu-

racy. In such cases, because every computed value is displayed, the number of output val-

ues might be very large. Further, the algorithm is predicated on the assumption that the

calculation interval is evenly divisible by the step size. Finally, the accumulation of x in the

line x = x + dx can be subject to quantizing errors of the sort previously discussed in

716 RUNGE-KUTTA METHODS

FIGURE 25.6
Pseudocode for a “dumb” version of Euler’s method.

‘set integration range

xi � 0

xf � 4

‘initialize variables

x � xi

y � 1

‘set step size and determine

‘number of calculation steps

dx � 0.5

nc � (xf � xi)/dx

‘output initial condition

PRINT x, y

‘loop to implement Euler’s method

‘and display results

DOFOR i � 1, nc

dydx � �2x3 �12x2 � 20x � 8.5

y � y � dydx � dx

x � x � dx

PRINT x, y

END DO

Sec. 3.4.1. For example, if dx were changed to 0.01 and standard IEEE floating point rep-

resentation were used (about seven significant digits), the result at the end of the calcula-

tion would be 3.999997 rather than 4. For dx = 0.001, it would be 3.999892!

A much more modular algorithm that avoids these difficulties is displayed in Fig. 25.7.

The algorithm does not output all calculated values. Rather, the user specifies an output in-

terval, xout, that dictates the interval at which calculated results are stored in arrays, xpm

and ypm. These values are stored in arrays so that they can be output in a variety of ways

after the computation is completed (for example, printed, graphed, or written to a file).

The Driver Program takes big output steps and calls an Integrator routine that takes

finer calculation steps. Note that the loops controlling both large and small steps exit

on logical conditions. Thus, the intervals do not have to be evenly divisible by the step

sizes.

The Integrator routine then calls an Euler routine that takes a single step with Euler’s

method. The Euler routine calls a Derivative routine that calculates the derivative value.

Whereas such modularization might seem like overkill for the present case, it will

greatly facilitate modifying the program in later sections. For example, although the pro-

gram in Fig. 25.7 is specifically designed to implement Euler’s method, the Euler module

is the only part that is method-specific. Thus, all that is required to apply this algorithm to

the other one-step methods is to modify this routine.

25.1 EULER’S METHOD 717

(a) Main or “Driver” Program

Assign values for

y � initial value dependent variable

xi � initial value independent variable

xf � final value independent variable

dx � calculation step size

xout � output interval

x � xi

m � 0

xpm � x

ypm � y

DO

xend � x � xout

IF (xend � xf) THEN xend � xf

h � dx

CALL Integrator (x, y, h, xend)

m � m � 1

xpm � x

ypm � y

IF (x � xf) EXIT

END DO

DISPLAY RESULTS

END

(b) Routine to Take One Output Step

SUB Integrator (x, y, h, xend)

DO

IF (xend � x 	 h) THEN h � xend � x

CALL Euler (x, y, h, ynew)

y � ynew

IF (x � xend) EXIT

END DO

END SUB

(c) Euler’s Method for a Single ODE

SUB Euler (x, y, h, ynew)

CALL Derivs(x, y, dydx)

ynew � y � dydx * h

x � x � h

END SUB

(d) Routine to Determine Derivative

SUB Derivs (x, y, dydx)

dydx � ...

END SUB

FIGURE 25.7
Pseudocode for an “improved” modular version of Euler’s method.

EXAMPLE 25.4 Solving ODEs with the Computer

Problem Statement. A computer program can be developed from the pseudocode in

Fig. 25.7. We can use this software to solve another problem associated with the falling

parachutist. You recall from Part One that our mathematical model for the velocity was

based on Newton’s second law in the form

dv

dt
= g −

c

m
v (E25.4.1)

This differential equation was solved both analytically (Example 1.1) and numerically

using Euler’s method (Example 1.2). These solutions were for the case where g = 9.8,

c = 12.5, m = 68.1, and v = 0 at t = 0.

The objective of the present example is to repeat these numerical computations em-

ploying a more complicated model for the velocity based on a more complete mathemati-

cal description of the drag force caused by wind resistance. This model is given by

dv

dt
= g −

c

m

[

v + a

(

v

vmax

)b
]

(E25.4.2)

where g, m, and c are the same as for Eq. (E25.4.1), and a, b, and vmax are empirical

constants, which for this case are equal to 8.3, 2.2, and 46, respectively. Note that this

model is more capable of accurately fitting empirical measurements of drag forces ver-

sus velocity than is the simple linear model of Example 1.1. However, this increased flex-

ibility is gained at the expense of evaluating three coefficients rather than one. Further-

more, the resulting mathematical model is more difficult to solve analytically. In this

case, Euler’s method provides a convenient alternative to obtain an approximate numerical

solution.

718 RUNGE-KUTTA METHODS

FIGURE 25.8
Graphical results for the solution of the nonlinear ODE [Eq. (E25.4.2)]. Notice that the plot also
shows the solution for the linear model [Eq. (E25.4.1)] for comparative purposes.

60

y

40

20

0
t15

Nonlinear

Linear

5 100

Solution. The results for both the linear and nonlinear model are displayed in Fig. 25.8

with an integration step size of 0.1 s. The plot in Fig. 25.8 also shows an overlay of the so-

lution of the linear model for comparison purposes.

The results of the two simulations indicate how increasing the complexity of the for-

mulation of the drag force affects the velocity of the parachutist. In this case, the terminal

velocity is lowered because of resistance caused by the higher-order terms in Eq. (E25.4.2).

Alternative models could be tested in a similar fashion. The combination of a computer-

generated solution makes this an easy and efficient task. This convenience should allow you

to devote more of your time to considering creative alternatives and holistic aspects of the

problem rather than to tedious manual computations.

25.1.3 Higher-Order Taylor Series Methods

One way to reduce the error of Euler’s method would be to include higher-order terms of

the Taylor series expansion in the solution. For example, including the second-order term

from Eq. (25.6) yields

yi+1 = yi + f(xi , yi)h +
f ′(xi , yi)

2!
h2

(25.11)

with a local truncation error of

Ea =
f ′′(xi , yi)

6
h3

Although the incorporation of higher-order terms is simple enough to implement for

polynomials, their inclusion is not so trivial when the ODE is more complicated. In partic-

ular, ODEs that are a function of both the dependent and independent variable require

chain-rule differentiation. For example, the first derivative of f(x, y) is

f ′(xi , yi) =
∂ f(x, y)

∂x
+

∂ f(x, y)

∂y

dy

dx

The second derivative is

f ′′(xi , yi) =
∂[∂ f/∂x + (∂ f/∂y)(dy/dx)]

∂x
+

∂[∂ f/∂x + (∂ f/∂y)(dy/dx)]

∂y

dy

dx

Higher-order derivatives become increasingly more complicated.

Consequently, as described in the following sections, alternative one-step methods

have been developed. These schemes are comparable in performance to the higher-order

Taylor-series approaches but require only the calculation of first derivatives.

25.2 IMPROVEMENTS OF EULER’S METHOD

A fundamental source of error in Euler’s method is that the derivative at the beginning of

the interval is assumed to apply across the entire interval. Two simple modifications are

available to help circumvent this shortcoming. As will be demonstrated in Sec. 25.3, both

modifications actually belong to a larger class of solution techniques called Runge-Kutta

25.2 IMPROVEMENTS OF EULER’S METHOD 719

methods. However, because they have a very straightforward graphical interpretation, we

will present them prior to their formal derivation as Runge-Kutta methods.

25.2.1 Heun’s Method

One method to improve the estimate of the slope involves the determination of two deriv-

atives for the interval—one at the initial point and another at the end point. The two

derivatives are then averaged to obtain an improved estimate of the slope for the entire in-

terval. This approach, called Heun’s method, is depicted graphically in Fig. 25.9.

Recall that in Euler’s method, the slope at the beginning of an interval

y′
i = f(xi , yi) (25.12)

is used to extrapolate linearly to yi+1:

y0
i+1 = yi + f(xi , yi)h (25.13)

For the standard Euler method we would stop at this point. However, in Heun’s method the

y0
i+1 calculated in Eq. (25.13) is not the final answer, but an intermediate prediction. This

is why we have distinguished it with a superscript 0. Equation (25.13) is called a predictor

720 RUNGE-KUTTA METHODS

FIGURE 25.9
Graphical depiction of Heun’s method. (a) Predictor and (b) corrector.

y

xxi + 1xi

(a)

Slope =
f (xi, yi)

Slope = f (xi + 1, y
0
i + 1)

y

xxi + 1xi

(b)

Slope =
f (xi, yi) + f (xi + 1, yi + 1)

2

0

equation. It provides an estimate of yi+1 that allows the calculation of an estimated slope at

the end of the interval:

y′
i+1 = f

(

xi+1, y0
i+1

)

(25.14)

Thus, the two slopes [Eqs. (25.12) and (25.14)] can be combined to obtain an average slope

for the interval:

ȳ′ =
y′

i + y′
i+1

2
=

f(xi , yi) + f
(

xi+1, y0
i+1

)

2

This average slope is then used to extrapolate linearly from yi to yi+l using Euler’s method:

yi+1 = yi +
f(xi , yi) + f

(

xi+1, y0
i+1

)

2
h

which is called a corrector equation.

The Heun method is a predictor-corrector approach. All the multistep methods to be

discussed subsequently in Chap. 26 are of this type. The Heun method is the only one-step

predictor-corrector method described in this book. As derived above, it can be expressed

concisely as

Predictor (Fig. 25.9a): y0
i+1 = yi + f(xi , yi)h (25.15)

Corrector (Fig. 25.9b): yi+1 = yi +
f(xi , yi) + f

(

xi+1, y0
i+1

)

2
h (25.16)

Note that because Eq. (25.16) has yi+l on both sides of the equal sign, it can be applied

in an iterative fashion. That is, an old estimate can be used repeatedly to provide an im-

proved estimate of yi+l. The process is depicted in Fig. 25.10. It should be understood that

25.2 IMPROVEMENTS OF EULER’S METHOD 721

FIGURE 25.10
Graphical representation of iterating the corrector of Heun’s method to obtain
an improved estimate.

f(x
i , y

i) +
f (x

i+
1 , y

i+
1)

y i
+ h

y i+
1

2

0

this iterative process does not necessarily converge on the true answer but will converge on

an estimate with a finite truncation error, as demonstrated in the following example.

As with similar iterative methods discussed in previous sections of the book, a termi-

nation criterion for convergence of the corrector is provided by [recall Eq. (3.5)]

|εa| =

∣

∣

∣

∣

∣

y
j

i+1 − y
j−1

i+1

y
j

i+1

∣

∣

∣

∣

∣

100% (25.17)

where y
j−1

i+1 and y
j

i+1 are the result from the prior and the present iteration of the corrector,

respectively.

EXAMPLE 25.5 Heun’s Method

Problem Statement. Use Heun’s method to integrate y′ = 4e0.8x − 0.5y from x = 0 to

x = 4 with a step size of 1. The initial condition at x = 0 is y = 2.

Solution. Before solving the problem numerically, we can use calculus to determine the

following analytical solution:

y =
4

1.3
(e0.8x − e−0.5x) + 2e−0.5x

(E25.5.1)

This formula can be used to generate the true solution values in Table 25.2.

First, the slope at (x0, y0) is calculated as

y′
0 = 4e0 − 0.5(2) = 3

This result is quite different from the actual average slope for the interval from 0 to 1.0,

which is equal to 4.1946, as calculated from the differential equation using Eq. (PT6.4).

The numerical solution is obtained by using the predictor [Eq. (25.15)] to obtain an es-

timate of y at 1.0:

y0
1 = 2 + 3(1) = 5

722 RUNGE-KUTTA METHODS

TABLE 25.2 Comparison of true and approximate values of the integral of y′ =
4e0.8x − 0.5y, with the initial condition that y = 2 at x = 0. The approximate
values were computed using the Heun method with a step size of 1. Two
cases, corresponding to different numbers of corrector iterations, are shown,
along with the absolute percent relative error.

Iterations of Heun’s Method

1 15

x y true yHeun |�t| (%) yHeun |�t| (%)

0 2.0000000 2.0000000 0.00 2.0000000 0.00
1 6.1946314 6.7010819 8.18 6.3608655 2.68
2 14.8439219 16.3197819 9.94 15.3022367 3.09
3 33.6771718 37.1992489 10.46 34.7432761 3.17
4 75.3389626 83.3377674 10.62 77.7350962 3.18

Note that this is the result that would be obtained by the standard Euler method. The true

value in Table 25.2 shows that it corresponds to a percent relative error of 19.3 percent.

Now, to improve the estimate for yi+1, we use the value y0
1 to predict the slope at the

end of the interval

y′
1 = f

(

x1, y0
1

)

= 4e0.8(1) − 0.5(5) = 6.402164

which can be combined with the initial slope to yield an average slope over the interval

from x = 0 to 1

y′ =
3 + 6.402164

2
= 4.701082

which is closer to the true average slope of 4.1946. This result can then be substituted into

the corrector [Eq. (25.16)] to give the prediction at x = 1

y1 = 2 + 4.701082(1) = 6.701082

which represents a percent relative error of −8.18 percent. Thus, the Heun method without

iteration of the corrector reduces the absolute value of the error by a factor of 2.4 as com-

pared with Euler’s method.

Now this estimate can be used to refine or correct the prediction of y1 by substituting

the new result back into the right-hand side of Eq. (25.16):

y1 = 2 +
[

3 + 4e0.8(1) − 0.5(6.701082)
]

2
1 = 6.275811

which represents an absolute percent relative error of 1.31 percent. This result, in turn, can

be substituted back into Eq. (25.16) to further correct:

y1 = 2 +
[

3 + 4e0.8(1) − 0.5(6.275811)
]

2
1 = 6.382129

which represents an |εt | of 3.03%. Notice how the errors sometimes grow as the iterations

proceed. Such increases can occur, especially for large step sizes, and they prevent us from

drawing the general conclusion that an additional iteration will always improve the result.

However, for a sufficiently small step size, the iterations should eventually converge on a

single value. For our case, 6.360865, which represents a relative error of 2.68 percent, is

attained after 15 iterations. Table 25.2 shows results for the remainder of the computation

using the method with 1 and 15 iterations per step.

In the previous example, the derivative is a function of both the dependent variable y

and the independent variable x. For cases such as polynomials, where the ODE is solely a

function of the independent variable, the predictor step [Eq. (25.16)] is not required and the

corrector is applied only once for each iteration. For such cases, the technique is expressed

concisely as

yi+1 = yi +
f(xi) + f(xi+1)

2
h (25.18)

25.2 IMPROVEMENTS OF EULER’S METHOD 723

Notice the similarity between the right-hand side of Eq. (25.18) and the trapezoidal rule

[Eq. (21.3)]. The connection between the two methods can be formally demonstrated by

starting with the ordinary differential equation

dy

dx
= f(x)

This equation can be solved for y by integration:

∫ yi+1

yi

dy =
∫ xi+1

xi

f(x) dx (25.19)

which yields

yi+1 − yi =
∫ xi+1

xi

f(x) dx (25.20)

or

yi+1 = yi +
∫ xi+1

xi

f(x) dx (25.21)

Now, recall from Chap. 21 that the trapezoidal rule [Eq. (21.3)] is defined as
∫ xi+1

xi

f(x) dx ∼=
f(xi) + f(xi+1)

2
h (25.22)

where h = xi+1 − xi . Substituting Eq. (25.22) into Eq. (25.21) yields

yi+1 = yi +
f(xi) + f(xi+1)

2
h (25.23)

which is equivalent to Eq. (25.18).

Because Eq. (25.23) is a direct expression of the trapezoidal rule, the local truncation

error is given by [recall Eq. (21.6)]

Et = −
f ′′(ξ)

12
h3

(25.24)

where ξ is between xi and xi+l. Thus, the method is second order because the second deriva-

tive of the ODE is zero when the true solution is a quadratic. In addition, the local and global

errors are O(h3) and O(h2), respectively. Therefore, decreasing the step size decreases the

error at a faster rate than for Euler’s method. Figure 25.11, which shows the result of using

Heun’s method to solve the polynomial from Example 25.1 demonstrates this behavior.

25.2.2 The Midpoint (or Improved Polygon) Method

Figure 25.12 illustrates another simple modification of Euler’s method. Called the mid-

point method (or the improved polygon or the modified Euler), this technique uses Euler’s

method to predict a value of y at the midpoint of the interval (Fig. 25.12a):

yi+1/2 = yi + f(xi , yi)
h

2
(25.25)

724 RUNGE-KUTTA METHODS

25.2 IMPROVEMENTS OF EULER’S METHOD 725

FIGURE 25.11
Comparison of the true solution
with a numerical solution using
Euler’s and Heun’s methods for
the integral of y� � �2x3

�

12x2
� 20x � 8.5.

y

5

x

True solution

Euler’s method

Heun’s method

3

FIGURE 25.12
Graphical depiction of the
midpoint method.
(a) Eq. (25.25) and
(b) Eq. (25.27).

y

xxi + 1xi

y Slope = f (xi + 1/2, yi + 1/2)

xxi + 1/2xi

(b)

(a)

Slope = f (xi + 1/2, yi + 1/2)

Then, this predicted value is used to calculate a slope at the midpoint:

y′
i+1/2 = f(xi+1/2, yi+1/2) (25.26)

which is assumed to represent a valid approximation of the average slope for the entire in-

terval. This slope is then used to extrapolate linearly from xi to xi+l (Fig. 25.12b):

yi+1 = yi + f(xi+1/2, yi+1/2)h (25.27)

Observe that because yi+l is not on both sides, the corrector [Eq. (25.27)] cannot be applied

iteratively to improve the solution.

As in the previous section, this approach can also be linked to Newton-Cotes integra-

tion formulas. Recall from Table 21.4, that the simplest Newton-Cotes open integration

formula, which is called the midpoint method, can be represented as
∫ b

a

f(x) dx ∼= (b − a) f(x1)

where x1 is the midpoint of the interval (a, b). Using the nomenclature for the present case,

it can be expressed as
∫ xi+1

xi

f(x) dx ∼= h f(xi+1/2)

Substitution of this formula into Eq. (25.21) yields Eq. (25.27). Thus, just as the Heun

method can be called the trapezoidal rule, the midpoint method gets its name from the

underlying integration formula upon which it is based.

The midpoint method is superior to Euler’s method because it utilizes a slope estimate

at the midpoint of the prediction interval. Recall from our discussion of numerical differ-

entiation in Sec. 4.1.3 that centered finite divided differences are better approximations of

derivatives than either forward or backward versions. In the same sense, a centered ap-

proximation such as Eq. (25.26) has a local truncation error of O(h2) in comparison with

the forward approximation of Euler’s method, which has an error of O(h). Consequently,

the local and global errors of the midpoint method are O(h3) and O(h2), respectively.

25.2.3 Computer Algorithms for Heun and Midpoint Methods

Both the Heun method with a single corrector and the midpoint method can be easily pro-

grammed using the general structure depicted in Fig. 25.7. As in Fig. 25.13a and b, simple

routines can be written to take the place of the Euler routine in Fig. 25.7.

However, when the iterative version of the Heun method is to be implemented, the

modifications are a bit more involved (although they are still localized within a single mod-

ule). We have developed pseudocode for this purpose in Fig. 25.13c. This algorithm can be

combined with Fig. 25.7 to develop software for the iterative Heun method.

25.2.4 Summary

By tinkering with Euler’s method, we have derived two new second-order techniques.

Even though these versions require more computational effort to determine the slope,

the accompanying reduction in error will allow us to conclude in a subsequent section

726 RUNGE-KUTTA METHODS

(Sec. 25.3.4) that the improved accuracy is usually worth the effort. Although there are cer-

tain cases where easily programmable techniques such as Euler’s method can be applied to

advantage, the Heun and midpoint methods are generally superior and should be imple-

mented if they are consistent with the problem objectives.

As noted at the beginning of this section, the Heun (without iterations), the midpoint

method, and in fact, the Euler technique itself are versions of a broader class of one-step

approaches called Runge-Kutta methods. We now turn to a formal derivation of these

techniques.

25.3 RUNGE-KUTTA METHODS

Runge-Kutta (RK) methods achieve the accuracy of a Taylor series approach without re-

quiring the calculation of higher derivatives. Many variations exist but all can be cast in the

generalized form of Eq. (25.1):

yi+1 = yi + φ(xi , yi , h)h (25.28)

where φ(xi, yi, h) is called an increment function, which can be interpreted as a representa-

tive slope over the interval. The increment function can be written in general form as

φ = a1k1 + a2k2 + · · · + ankn (25.29)

25.3 RUNGE-KUTTA METHODS 727

(a) Simple Heun without Corrector

SUB Heun (x, y, h, ynew)

CALL Derivs (x, y, dy1dx)

ye � y � dy1dx � h

CALL Derivs(x � h, ye, dy2dx)

Slope � (dy1dx � dy2dx)�2
ynew � y � Slope � h

x � x � h

END SUB

(b) Midpoint Method

SUB Midpoint (x, y, h, ynew)

CALL Derivs(x, y, dydx)

ym � y � dydx � h�2
CALL Derivs (x � h�2, ym, dymdx)
ynew � y � dymdx � h

x � x � h

END SUB

(c) Heun with Corrector

SUB HeunIter (x, y, h, ynew)

es � 0.01

maxit � 20

CALL Derivs(x, y, dy1dx)

ye � y � dy1dx � h

iter � 0

DO

yeold � ye

CALL Derivs(x � h, ye, dy2dx)

slope � (dy1dx � dy2dx)�2
ye � y � slope � h

iter � iter � 1

ea � � � 100%
IF (ea
 es OR iter � maxit) EXIT

END DO

ynew � ye

x � x � h

END SUB

ye � yeold
��

ye

FIGURE 25.13
Pseudocode to implement the (a) simple Heun, (b) midpoint, and (c) iterative Heun methods.

where the a’s are constants and the k’s are

k1 = f(xi , yi) (25.29a)

k2 = f(xi + p1h, yi + q11k1h) (25.29b)

k3 = f(xi + p2h, yi + q21k1h + q22k2h) (25.29c)

.

.

.

kn = f(xi + pn−1h, yi + qn−1,1k1h + qn−1,2k2h + · · · + qn−1,n−1kn−1h) (25.29d)

where the p’s and q’s are constants. Notice that the k’s are recurrence relationships. That is,

k1 appears in the equation for k2, which appears in the equation for k3, and so forth. Because

each k is a functional evaluation, this recurrence makes RK methods efficient for computer

calculations.

Various types of Runge-Kutta methods can be devised by employing different num-

bers of terms in the increment function as specified by n. Note that the first-order RK

method with n = 1 is, in fact, Euler’s method. Once n is chosen, values for the a’s, p’s,

and q’s are evaluated by setting Eq. (25.28) equal to terms in a Taylor series expansion

(Box 25.1). Thus, at least for the lower-order versions, the number of terms, n, usually rep-

resents the order of the approach. For example, in the next section, second-order RK meth-

ods use an increment function with two terms (n = 2). These second-order methods will be

exact if the solution to the differential equation is quadratic. In addition, because terms with

h3 and higher are dropped during the derivation, the local truncation error is O(h3) and

the global error is O(h2). In subsequent sections, the third- and fourth-order RK methods

(n = 3 and 4, respectively) are developed. For these cases, the global truncation errors are

O(h3) and O(h4), respectively.

25.3.1 Second-Order Runge-Kutta Methods

The second-order version of Eq. (25.28) is

yi+1 = yi + (a1k1 + a2k2)h (25.30)

where

k1 = f(xi , yi) (25.30a)

k2 = f(xi + p1h, yi + q11k1h) (25.30b)

As described in Box 25.1, values for al, a2, p1, and q11 are evaluated by setting Eq. (25.30)

equal to a Taylor series expansion to the second-order term. By doing this, we derive three

equations to evaluate the four unknown constants. The three equations are

a1 + a2 = 1 (25.31)

a2 p1 =
1

2
(25.32)

a2q11 =
1

2
(25.33)

728 RUNGE-KUTTA METHODS

Because we have three equations with four unknowns, we must assume a value of one

of the unknowns to determine the other three. Suppose that we specify a value for a2. Then

Eqs. (25.31) through (25.33) can be solved simultaneously for

a1 = 1 − a2 (25.34)

p1 = q11 =
1

2a2

(25.35)

25.3 RUNGE-KUTTA METHODS 729

Box 25.1 Derivation of the Second-Order Runge-Kutta Methods

The second-order version of Eq. (25.28) is

yi+1 = yi + (a1k1 + a2k2)h (B25.1.1)

where

k1 = f(xi, yi) (B25.1.2)

and

k2 = f(xi + p1h, yi + q11 k1h) (B25.1.3)

To use Eq. (B25.1.1) we have to determine values for the con-

stants a1, a2, p1, and q11. To do this, we recall that the second-order

Taylor series for yi+1 in terms of yi and f (xi, yi) is written as

[Eq. (25.11)]

yi+1 = yi + f(xi, yi)h +
f ′(xi, yi)

2!
h2

(B25.1.4)

where f
′
(xi, yi) must be determined by chain-rule differentiation

(Sec. 25.1.3):

f ′(xi, yi) =
∂ f(x, y)

∂x
+

∂ f(x, y)

∂y

dy

dx
(B25.1.5)

Substituting Eq. (B25.1.5) into (B25.1.4) gives

yi+1 = yi + f(xi, yi)h +
(

∂ f

∂x
+

∂ f

∂y

dy

dx

)

h2

2!
(B25.1.6)

The basic strategy underlying Runge-Kutta methods is to use alge-

braic manipulations to solve for values of a1, a2, p1, and q11 that

make Eqs. (B25.1.1) and (B25.1.6) equivalent.

To do this, we first use a Taylor series to expand Eq. (25.1.3).

The Taylor series for a two-variable function is defined as [recall

Eq. (4.26)]

g(x + r, y + s) = g(x, y) + r
∂g

∂x
+ s

∂g

∂y
+ · · ·

Applying this method to expand Eq. (B25.1.3) gives

f(xi + p1h, yi + q11 k1h) = f(xi, yi) + p1h
∂ f

∂x

+ q11 k1h
∂ f

∂y
+ O(h2)

This result can be substituted along with Eq. (B25.1.2) into

Eq. (B25.1.1) to yield

yi+1 = yi + a1h f(xi, yi) + a2h f(xi, yi) + a2 p1h2 ∂ f

∂x

+ a2q11 h2 f(xi, yi)
∂ f

∂y
+ O(h3)

or, by collecting terms,

yi+1 = yi + [a1 f(xi , yi) + a2 f(xi , yi)]h

+
[

a2 p1

∂ f

∂x
+ a2q11 f(xi , yi)

∂ f

∂y

]

h2 + O(h3)

(B25.1.7)

Now, comparing like terms in Eqs. (B25.1.6) and (B25.1.7), we de-

termine that for the two equations to be equivalent, the following

must hold:

a1 + a2 = 1

a2 p1 =
1

2

a2q11 =
1

2

These three simultaneous equations contain the four unknown con-

stants. Because there is one more unknown than the number of

equations, there is no unique set of constants that satisfy the equa-

tions. However, by assuming a value for one of the constants, we

can determine the other three. Consequently, there is a family of

second-order methods rather than a single version.

Because we can choose an infinite number of values for a2, there are an infinite num-

ber of second-order RK methods. Every version would yield exactly the same results if the

solution to the ODE were quadratic, linear, or a constant. However, they yield different re-

sults when (as is typically the case) the solution is more complicated. We present three of

the most commonly used and preferred versions:

Heun Method with a Single Corrector (a2 = 1/2). If a2 is assumed to be 1/2,

Eqs. (25.34) and (25.35) can be solved for a1 = 1/2 and pl = q11 = 1. These parameters,

when substituted into Eq. (25.30), yield

yi+1 = yi +
(

1

2
k1 +

1

2
k2

)

h (25.36)

where

k1 = f(xi , yi) (25.36a)

k2 = f(xi + h, yi + k1h) (25.36b)

Note that k1 is the slope at the beginning of the interval and k2 is the slope at the end of the

interval. Consequently, this second-order Runge-Kutta method is actually Heun’s tech-

nique without iteration.

The Midpoint Method (a2 = 1). If a2 is assumed to be 1, then a1 = 0, p1 = q11 = 1/2,

and Eq. (25.30) becomes

yi+1 = yi + k2h (25.37)

where

k1 = f(xi , yi) (25.37a)

k2 = f

(

xi +
1

2
h, yi +

1

2
k1h

)

(25.37b)

This is the midpoint method.

Ralston’s Method (a2 = 2/3). Ralston (1962) and Ralston and Rabinowitz (1978)

determined that choosing a2 = 2/3 provides a minimum bound on the truncation error for

the second-order RK algorithms. For this version, a1 = 1/3 and p1 = q11 = 3/4 and yields

yi+1 = yi +
(

1

3
k1 +

2

3
k2

)

h (25.38)

where

k1 = f(xi , yi) (25.38a)

k2 = f

(

xi +
3

4
h, yi +

3

4
k1h

)

(25.38b)

730 RUNGE-KUTTA METHODS

EXAMPLE 25.6 Comparison of Various Second-Order RK Schemes

Problem Statement. Use the midpoint method [Eq. (25.37)] and Ralston’s method

[Eq. (25.38)] to numerically integrate Eq. (PT7.13)

f(x, y) = −2x3 + 12x2 − 20x + 8.5

from x = 0 to x = 4 using a step size of 0.5. The initial condition at x = 0 is y = 1. Com-

pare the results with the values obtained using another second-order RK algorithm, that is,

the Heun method without corrector iteration (Table 25.3).

Solution. The first step in the midpoint method is to use Eq. (25.37a) to compute

k1 = −2(0)3 + 12(0)2 − 20(0) + 8.5 = 8.5

However, because the ODE is a function of x only, this result has no bearing on the second

step—the use of Eq. (25.37b) to compute

k2 = −2(0.25)3 + 12(0.25)2 − 20(0.25) + 8.5 = 4.21875

Notice that this estimate of the slope is much closer to the average value for the interval

(4.4375) than the slope at the beginning of the interval (8.5) that would have been used for

Euler’s approach. The slope at the midpoint can then be substituted into Eq. (25.37) to

predict

y(0.5) = 1 + 4.21875(0.5) = 3.109375 εt = 3.4%

The computation is repeated, and the results are summarized in Fig. 25.14 and Table 25.3.

25.3 RUNGE-KUTTA METHODS 731

FIGURE 25.14
Comparison of the true solution with numerical solutions using three second-order RK methods
and Euler’s method.

y

4

0
x420

Analytical
Euler
Heun
Midpoint
Ralston

For Ralston’s method, k1 for the first interval also equals 8.5 and [Eq. (25.38b)]

k2 = −2(0.375)3 + 12(0.375)2 − 20(0.375) + 8.5 = 2.58203125

The average slope is computed by

φ =
1

3
(8.5) +

2

3
(2.58203125) = 4.5546875

which can be used to predict

y(0.5) = 1 + 4.5546875(0.5) = 3.27734375 εt = −1.82%

The computation is repeated, and the results are summarized in Fig. 25.14 and Table 25.3.

Notice how all the second-order RK methods are superior to Euler’s method.

25.3.2 Third-Order Runge-Kutta Methods

For n = 3, a derivation similar to the one for the second-order method can be performed.

The result of this derivation is six equations with eight unknowns. Therefore, values for

two of the unknowns must be specified a priori in order to determine the remaining parame-

ters. One common version that results is

yi+1 = yi +
1

6
(k1 + 4k2 + k3)h (25.39)

where

k1 = f(xi , yi) (25.39a)

732 RUNGE-KUTTA METHODS

TABLE 25.3 Comparison of true and approximate values of the integral of
y

′ = −2x3 + 12x2 − 20x + 8.5, with the initial condition that y = 1 at x = 0.
The approximate values were computed using three versions of second-order
RK methods with a step size of 0.5.

Second-Order
Heun Midpoint Ralston RK

x y true y |�t| (%) y |�t| (%) y |�t| (%)

0.0 1.00000 1.00000 0 1.00000 0 1.00000 0
0.5 3.21875 3.43750 6.8 3.109375 3.4 3.277344 1.8
1.0 3.00000 3.37500 12.5 2.81250 6.3 3.101563 3.4
1.5 2.21875 2.68750 21.1 1.984375 10.6 2.347656 5.8
2.0 2.00000 2.50000 25.0 1.75 12.5 2.140625 7.0
2.5 2.71875 3.18750 17.2 2.484375 8.6 2.855469 5.0
3.0 4.00000 4.37500 9.4 3.81250 4.7 4.117188 2.9
3.5 4.71875 4.93750 4.6 4.609375 2.3 4.800781 1.7
4.0 3.00000 3.00000 0 3 0 3.031250 1.0

k2 = f

(

xi +
1

2
h, yi +

1

2
k1h

)

(25.39b)

k3 = f(xi + h, yi − k1h + 2k2h) (25.39c)

Note that if the derivative is a function of x only, this third-order method reduces to

Simpson’s 1/3 rule. Ralston (1962) and Ralston and Rabinowitz (1978) have developed an

alternative version that provides a minimum bound on the truncation error. In any case, the

third-order RK methods have local and global errors of O(h4) and O(h3), respectively, and

yield exact results when the solution is a cubic. When dealing with polynomials, Eq. (25.39)

will also be exact when the differential equation is cubic and the solution is quartic. This is

because Simpson’s 1/3 rule provides exact integral estimates for cubics (recall Box 21.3).

25.3.3 Fourth-Order Runge-Kutta Methods

The most popular RK methods are fourth order. As with the second-order approaches, there

are an infinite number of versions. The following is the most commonly used form, and we

therefore call it the classical fourth-order RK method:

yi+1 = yi +
1

6
(k1 + 2k2 + 2k3 + k4)h (25.40)

where

k1 = f(xi , yi) (25.40a)

k2 = f

(

xi +
1

2
h, yi +

1

2
k1h

)

(25.40b)

25.3 RUNGE-KUTTA METHODS 733

FIGURE 25.15
Graphical depiction of the slope estimates comprising the fourth-order RK method.

y

xxi+1/2

h

xi

k2

k1

k3

k3

k2

k1

k4

xi+1

�

k3 = f

(

xi +
1

2
h, yi +

1

2
k2h

)

(25.40c)

k4 = f(xi + h, yi + k3h) (25.40d)

Notice that for ODEs that are a function of x alone, the classical fourth-order RK

method is similar to Simpson’s 1/3 rule. In addition, the fourth-order RK method is simi-

lar to the Heun approach in that multiple estimates of the slope are developed in order to

come up with an improved average slope for the interval. As depicted in Fig. 25.15, each

of the k’s represents a slope. Equation (25.40) then represents a weighted average of these

to arrive at the improved slope.

EXAMPLE 25.7 Classical Fourth-Order RK Method

Problem Statement.

(a) Use the classical fourth-order RK method [Eq. (25.40)] to integrate

f(x, y) = −2x3 + 12x2 − 20x + 8.5

using a step size of h = 0.5 and an initial condition of y = 1 at x = 0.

(b) Similarly, integrate

f(x, y) = 4e0.8x − 0.5y

using h = 0.5 with y(0) = 2 from x = 0 to 0.5.

Solution.

(a) Equations (25.40a) through (25.40d) are used to compute k1 = 8.5, k2 = 4.21875, k3 =
4.21875 and k4 = 1.25, which are substituted into Eq. (25.40) to yield

y(0.5) = 1 +
{

1

6
[8.5 + 2(4.21875) + 2(4.21875) + 1.25]

}

0.5

= 3.21875

which is exact. Thus, because the true solution is a quartic [Eq. (PT7.16)], the fourth-

order method gives an exact result.

(b) For this case, the slope at the beginning of the interval is computed as

k1 = f(0, 2) = 4e0.8(0) − 0.5(2) = 3

This value is used to compute a value of y and a slope at the midpoint,

y(0.25) = 2 + 3(0.25) = 2.75

k2 = f(0.25, 2.75) = 4e0.8(0.25) − 0.5(2.75) = 3.510611

This slope in turn is used to compute another value of y and another slope at the

midpoint,

y(0.25) = 2 + 3.510611(0.25) = 2.877653

k3 = f(0.25, 2.877653) = 4e0.8(0.25) − 0.5(2.877653) = 3.446785

Next, this slope is used to compute a value of y and a slope at the end of the interval,

y(0.5) = 2 + 3.071785(0.5) = 3.723392

k4 = f(0.5, 3.723392) = 4e0.8(0.5) − 0.5(3.723392) = 4.105603

734 RUNGE-KUTTA METHODS

25.3 RUNGE-KUTTA METHODS 735

Finally, the four slope estimates are combined to yield an average slope. This average

slope is then used to make the final prediction at the end of the interval.

φ =
1

6
[3 + 2(3.510611) + 2(3.446785) + 4.105603] = 3.503399

y(0.5) = 2 + 3.503399(0.5) = 3.751699

which compares favorably with the true solution of 3.751521.

25.3.4 Higher-Order Runge-Kutta Methods

Where more accurate results are required, Butcher’s (1964) fifth-order RK method is

recommended:

yi+1 = yi +
1

90
(7k1 + 32k3 + 12k4 + 32k5 + 7k6)h (25.41)

where

k1 = f(xi , yi) (25.41a)

k2 = f

(

xi +
1

4
h, yi +

1

4
k1h

)

(25.41b)

k3 = f

(

xi +
1

4
h, yi +

1

8
k1h +

1

8
k2h

)

(25.41c)

k4 = f

(

xi +
1

2
h, yi −

1

2
k2h + k3h

)

(25.41d)

k5 = f

(

xi +
3

4
h, yi +

3

16
k1h +

9

16
k4h

)

(25.41e)

k6 = f

(

xi + h, yi −
3

7
k1h +

2

7
k2h +

12

7
k3h −

12

7
k4h +

8

7
k5h

)

(25.41f)

Note the similarity between Butcher’s method and Boole’s Rule in Table 21.2. Higher-

order RK formulas such as Butcher’s method are available, but in general, beyond fourth-

order methods the gain in accuracy is offset by the added computational effort and

complexity.

EXAMPLE 25.8 Comparison of Runge-Kutta Methods

Problem Statement. Use first- through fifth-order RK methods to solve

f(x, y) = 4e0.8x − 0.5y

with y(0) = 2 from x = 0 to x = 4 with various step sizes. Compare the accuracy of the var-

ious methods for the result at x = 4 based on the exact answer of y(4) = 75.33896.

Solution. The computation is performed using Euler’s, the noniterative Heun, the third-

order RK [Eq. (25.39)], the classical fourth-order RK, and Butcher’s fifth-order RK

methods. The results are presented in Fig. 25.16, where we have plotted the absolute value

of the percent relative error versus the computational effort. This latter quantity is equiva-

lent to the number of function evaluations required to attain the result, as in

Effort = n f

b − a

h
(E25.8.1)

where nf = the number of function evaluations involved in the particular RK computation.

For orders ≤ 4, nf is equal to the order of the method. However, note that Butcher’s fifth-

order technique requires six function evaluations [Eq. (25.41a) through (25.41f)]. The

quantity (b − a)/h is the total integration interval divided by the step size—that is, it is

the number of applications of the RK technique required to obtain the result. Thus, because

the function evaluations are usually the primary time-consuming steps, Eq. (E25.8.1) pro-

vides a rough measure of the run time required to attain the answer.

Inspection of Fig. 25.16 leads to a number of conclusions: first, that the higher-order

methods attain better accuracy for the same computational effort and, second, that the gain

in accuracy for the additional effort tends to diminish after a point. (Notice that the curves

drop rapidly at first and then tend to level off.)

Example 25.8 and Fig. 25.16 might lead one to conclude that higher-order RK tech-

niques are always the preferred methods. However, other factors such as programming

736 RUNGE-KUTTA METHODS

FIGURE 25.16
Comparison of percent relative error versus computational effort for first- through fifth-order
RK methods.

100

1

10– 2

10– 4

10– 6

Euler

Heun

RK–3d

RK–4th

Butcher

Effort
P

e
rc

e
n

t
re

la
ti

v
e
 e

rr
o

r

25.4 SYSTEMS OF EQUATIONS 737

costs and the accuracy requirements of the problem also must be considered when choos-

ing a solution technique. Such trade-offs will be explored in detail in the engineering

applications in Chap. 28 and in the epilogue for Part Seven.

25.3.5 Computer Algorithms for Runge-Kutta Methods

As with all the methods covered in this chapter, the RK techniques fit nicely into the gen-

eral algorithm embodied in Fig. 25.7. Figure 25.17 presents pseudocode to determine the

slope of the classic fourth-order RK method [Eq. (25.40)]. Subroutines to compute slopes

for all the other versions can be easily programmed in a similar fashion.

25.4 SYSTEMS OF EQUATIONS

Many practical problems in engineering and science require the solution of a system of si-

multaneous ordinary differential equations rather than a single equation. Such systems may

be represented generally as

dy1

dx
= f1(x, y1, y2, . . . , yn)

dy2

dx
= f2(x, y1, y2, . . . , yn)

.

.

.

dyn

dx
= fn(x, y1, y2, . . . , yn) (25.42)

The solution of such a system requires that n initial conditions be known at the starting

value of x.

FIGURE 25.17
Pseudocode to determine a single step of the fourth-order RK method.

SUB RK4 (x, y, h, ynew)

CALL Derivs(x, y, k1)

ym � y � k1 � h�2
CALL Derivs(x � h�2, ym, k2)
ym � y � k2 � h�2
CALL Derivs(x � h�2, ym, k3)
ye � y � k3 � h

CALL Derivs(x � h, ye, k4)

slope � (k1 � 2(k2 � k3) � k4)�6
ynew � y � slope � h

x � x � h

END SUB

25.4.1 Euler’s Method

All the methods discussed in this chapter for single equations can be extended to the sys-

tem shown above. Engineering applications can involve thousands of simultaneous equa-

tions. In each case, the procedure for solving a system of equations simply involves apply-

ing the one-step technique for every equation at each step before proceeding to the next

step. This is best illustrated by the following example for the simple Euler’s method.

EXAMPLE 25.9 Solving Systems of ODEs Using Euler’s Method

Problem Statement. Solve the following set of differential equations using Euler’s

method, assuming that at x = 0, y1 = 4, and y2 = 6. Integrate to x = 2 with a step size

of 0.5.

dy1

dx
= −0.5y1

dy2

dx
= 4 − 0.3y2 − 0.1y1

Solution. Euler’s method is implemented for each variable as in Eq. (25.2):

y1(0.5) = 4 + [−0.5(4)]0.5 = 3

y2(0.5) = 6 + [4 − 0.3(6) − 0.1(4)]0.5 = 6.9

Note that y1(0) = 4 is used in the second equation rather than the y1(0.5) = 3 computed

with the first equation. Proceeding in a like manner gives

x y1 y2

0 4 6
0.5 3 6.9
1.0 2.25 7.715
1.5 1.6875 8.44525
2.0 1.265625 9.094087

25.4.2 Runge-Kutta Methods

Note that any of the higher-order RK methods in this chapter can be applied to systems of

equations. However, care must be taken in determining the slopes. Figure 25.15 is helpful

in visualizing the proper way to do this for the fourth-order method. That is, we first de-

velop slopes for all variables at the initial value. These slopes (a set of k1’s) are then used

to make predictions of the dependent variable at the midpoint of the interval. These mid-

point values are in turn used to compute a set of slopes at the midpoint (the k2’s). These new

slopes are then taken back to the starting point to make another set of midpoint predictions

that lead to new slope predictions at the midpoint (the k3’s). These are then employed to

make predictions at the end of the interval that are used to develop slopes at the end of the

interval (the k4’s). Finally, the k’s are combined into a set of increment functions [as in

Eq. (25.40)] and brought back to the beginning to make the final prediction. The following

example illustrates the approach.

738 RUNGE-KUTTA METHODS

EXAMPLE 25.10 Solving Systems of ODEs Using the Fourth-Order RK Method

Problem Statement. Use the fourth-order RK method to solve the ODEs from Exam-

ple 25.9.

Solution. First, we must solve for all the slopes at the beginning of the interval:

k1,1 = f1(0, 4, 6) = −0.5(4) = −2

k1,2 = f2(0, 4, 6) = 4 − 0.3(6) − 0.1(4) = 1.8

where ki, j is the ith value of k for the jth dependent variable. Next, we must calculate the

first values of y1 and y2 at the midpoint:

y1 + k1,1

h

2
= 4 + (−2)

0.5

2
= 3.5

y2 + k1,2

h

2
= 6 + (1.8)

0.5

2
= 6.45

which can be used to compute the first set of midpoint slopes,

k2,1 = f1(0.25, 3.5, 6.45) = −1.75

k2,2 = f2(0.25, 3.5, 6.45) = 1.715

These are used to determine the second set of midpoint predictions,

y1 + k2,1

h

2
= 4 + (−1.75)

0.5

2
= 3.5625

y2 + k2,2

h

2
= 6 + (1.715)

0.5

2
= 6.42875

which can be used to compute the second set of midpoint slopes,

k3,1 = f1(0.25, 3.5625, 6.42875) = −1.78125

k3,2 = f2(0.25, 3.5625, 6.42875) = 1.715125

These are used to determine the predictions at the end of the interval

y1 + k3,1h = 4 + (−1.78125)(0.5) = 3.109375

y2 + k3,2h = 6 + (1.715125)(0.5) = 6.857563

which can be used to compute the endpoint slopes,

k4,1 = f1(0.5, 3.109375, 6.857563) = −1.554688

k4,2 = f2(0.5, 3.109375, 6.857563) = 1.631794

The values of k can then be used to compute [Eq. (25.40)]:

y1(0.5) = 4 +
1

6
[−2 + 2(−1.75 − 1.78125) − 1.554688]0.5 = 3.115234

y2(0.5) = 6 +
1

6
[1.8 + 2(1.715 + 1.715125) + 1.631794]0.5 = 6.857670

25.4 SYSTEMS OF EQUATIONS 739

Proceeding in a like manner for the remaining steps yields

x y1 y2

0 4 6
0.5 3.115234 6.857670
1.0 2.426171 7.632106
1.5 1.889523 8.326886
2.0 1.471577 8.946865

25.4.3 Computer Algorithm for Solving Systems of ODEs

The computer code for solving a single ODE with Euler’s method (Fig. 25.7) can be easily

extended to systems of equations. The modifications include:

1. Inputting the number of equations, n.

2. Inputting the initial values for each of the n dependent variables.

3. Modifying the algorithm so that it computes slopes for each of the dependent variables.

4. Including additional equations to compute derivative values for each of the ODEs.

5. Including loops to compute a new value for each dependent variable.

Such an algorithm is outlined in Fig. 25.18 for the fourth-order RK method. Notice

how similar it is in structure and organization to Fig. 25.7. Most of the differences relate to

the fact that

1. There are n equations.

2. The added detail of the fourth-order RK method.

EXAMPLE 25.11 Solving Systems of ODEs with the Computer

Problem Statement. A computer program to implement the fourth-order RK method for

systems can be easily developed based on Fig. 25.18. Such software makes it convenient to

compare different models of a physical system. For example, a linear model for a swinging

pendulum is given by [recall Eq. (PT7.11)]

dy1

dx
= y2

dy2

dx
= −16.1y1

where y1 and y2 = angular displacement and velocity. A nonlinear model of the same sys-

tem is [recall Eq. (PT7.9)]

dy3

dx
= y4

dy4

dx
= −16.1 sin(y3)

where y3 and y4 = angular displacement and velocity for the nonlinear case. Solve these

systems for two cases: (a) a small initial displacement (y1 = y3 = 0.1 radians; y2 = y4 = 0)

and (b) a large displacement (y1 = y3 = π/4 = 0.785398 radians; y2 = y4 = 0).

740 RUNGE-KUTTA METHODS

25.4 SYSTEMS OF EQUATIONS 741

FIGURE 25.18
Pseudocode for the fourth-order RK method for systems.

(a) Main or “Driver” Program

Assign values for

n � number of equations

yi � initial values of n dependent

variables

xi � initial value independent

variable

xf � final value independent variable

dx � calculation step size

xout � output interval

x � xi

m � 0

xpm � x

DOFOR i � 1, n

ypi,m � yii
yi � yii

END DO

DO

xend � x � xout

IF (xend � xf) THEN xend � xf

h � dx

CALL Integrator (x, y, n, h, xend)

m � m � 1

xpm � x

DOFOR i � 1, n

ypi,m � yi
END DO

IF (x � xf) EXIT

END DO

DISPLAY RESULTS

END

(b) Routine to Take One Output Step

SUB Integrator (x, y, n, h, xend)

DO

IF (xend � x 	 h) THEN h � xend � x

CALL RK4 (x, y, n, h)

IF (x � xend) EXIT

END DO

END SUB

(c) Fourth-Order RK Method for a System
of ODEs

SUB RK4 (x, y, n, h)

CALL Derivs (x, y, k1)

DOFOR i � 1, n

ymi � yi � k1i * h / 2

END DO

CALL Derivs (x � h / 2, ym, k2)

DOFOR i � 1, n

ymi � yi � k2i * h / 2

END DO

CALL Derivs (x � h / 2, ym, k3)

DOFOR i � 1, n

yei � yi � k3i * h

END DO

CALL Derivs (x � h, ye, k4)

DOFOR i � 1, n

slopei � (k1i � 2*(k2i�k3i)�k4i)/6

yi � yi � slopei * h

END DO

x � x � h

END SUB

(d) Routine to Determine Derivatives

SUB Derivs (x, y, dy)

dy1 � ...

dy2 � ...

END SUB

Solution.

(a) The calculated results for the linear and nonlinear models are almost identical

(Fig. 25.19a). This is as expected because when the initial displacement is small,

sin (θ) ∼= θ .

(b) When the initial displacement is π/4 = 0.785398, the solutions are much different and

the difference is magnified as time becomes larger and larger (Fig. 25.19b). This is

expected because the assumption that sin (θ) = θ is poor when theta is large.

25.5 ADAPTIVE RUNGE-KUTTA METHODS

To this point, we have presented methods for solving ODEs that employ a constant step

size. For a significant number of problems, this can represent a serious limitation. For

example, suppose that we are integrating an ODE with a solution of the type depicted in

Fig. 25.20. For most of the range, the solution changes gradually. Such behavior suggests

that a fairly large step size could be employed to obtain adequate results. However, for a lo-

calized region from x = 1.75 to x = 2.25, the solution undergoes an abrupt change. The

practical consequence of dealing with such functions is that a very small step size would be

required to accurately capture the impulsive behavior. If a constant step-size algorithm

were employed, the smaller step size required for the region of abrupt change would have

to be applied to the entire computation. As a consequence, a much smaller step size than

necessary—and, therefore, many more calculations—would be wasted on the regions of

gradual change.

742 RUNGE-KUTTA METHODS

FIGURE 25.19
Solutions obtained with a computer program for the fourth-order RK method. The plots represent
solutions for both linear and nonlinear pendulums with (a) small and (b) large initial
displacements.

4

2

0y

0 2 31

x

– 4

– 2

4

y2 y4

y3

y1

4

2

0y

0 321

x

– 4

– 2

4

y1, y3

y2, y4

(a) (b)

Algorithms that automatically adjust the step size can avoid such overkill and hence be

of great advantage. Because they “adapt” to the solution’s trajectory, they are said to have

adaptive step-size control. Implementation of such approaches requires that an estimate of

the local truncation error be obtained at each step. This error estimate can then serve as a

basis for either lengthening or decreasing the step size.

Before proceeding, we should mention that aside from solving ODEs, the methods de-

scribed in this chapter can also be used to evaluate definite integrals. As mentioned previ-

ously in the introduction to Part Six, the evaluation of the integral

I =
∫ b

a

f(x) dx

is equivalent to solving the differential equation

dy

dx
= f(x)

for y(b) given the initial condition y(a) = 0. Thus, the following techniques can be em-

ployed to efficiently evaluate definite integrals involving functions that are generally

smooth but exhibit regions of abrupt change.

There are two primary approaches to incorporate adaptive step-size control into one-

step methods. In the first, the error is estimated as the difference between two predic-

tions using the same-order RK method but with different step sizes. In the second, the local

25.5 ADAPTIVE RUNGE-KUTTA METHODS 743

FIGURE 25.20
An example of a solution of an ODE that exhibits an abrupt change. Automatic step-size
adjustment has great advantages for such cases.

1

0 1 2 3

y

x

truncation error is estimated as the difference between two predictions using different-

order RK methods.

25.5.1 Adaptive RK or Step-Halving Method

Step halving (also called adaptive RK) involves taking each step twice, once as a full step

and independently as two half steps. The difference in the two results represents an esti-

mate of the local truncation error. If y1 designates the single-step prediction and y2 desig-

nates the prediction using the two half steps, the error � can be represented as

� = y2 − y1 (25.43)

In addition to providing a criterion for step-size control, Eq. (25.43) can also be used to cor-

rect the y2 prediction. For the fourth-order RK version, the correction is

y2 ← y2 +
�

15
(25.44)

This estimate is fifth-order accurate.

EXAMPLE 25.12 Adaptive Fourth-Order RK Method

Problem Statement. Use the adaptive fourth-order RK method to integrate y ′ = 4e0.8x −
0.5y from x = 0 to 2 using h = 2 and an initial condition of y(0) = 2. This is the same dif-

ferential equation that was solved previously in Example 25.5. Recall that the true solu-

tions is y(2) = 14.84392.

Solution. The single prediction with a step of h is computed as

y(2) = 2 +
1

6
[3 + 2(6.40216 + 4.70108) + 14.11105]2 = 15.10584

The two half-step predictions are

y(1) = 2 +
1

6
[3 + 2(4.21730 + 3.91297) + 5.945681]1 = 6.20104

and

y(2) = 6.20104 +
1

6
[5.80164 + 2(8.72954 + 7.99756) + 12.71283]1 = 14.86249

Therefore, the approximate error is

Ea =
14.86249 − 15.10584

15
= −0.01622

which compares favorably with the true error of

Et = 14.84392 − 14.86249 = −0.01857

The error estimate can also be used to correct the prediction

y(2) = 14.86249 − 0.01622 = 14.84627

which has an Et = −0.00235.

744 RUNGE-KUTTA METHODS

25.5.2 Runge-Kutta Fehlberg

Aside from step halving as a strategy to adjust step size, an alternative approach for

obtaining an error estimate involves computing two RK predictions of different order.

The results can then be subtracted to obtain an estimate of the local truncation error. One

shortcoming of this approach is that it greatly increases the computational overhead. For

example, a fourth- and fifth-order prediction amount to a total of 10 function evaluations

per step. The Runge-Kutta Fehlberg or embedded RK method cleverly circumvents this

problem by using a fifth-order RK method that employs the function evaluations from the

accompanying fourth-order RK method. Thus, the approach yields the error estimate on the

basis of only six function evaluations!

For the present case, we use the following fourth-order estimate

yi+1 = yi +
(

37

378
k1 +

250

621
k3 +

125

594
k4 +

512

1771
k6

)

h (25.45)

along with the fifth-order formula:

yi+1 = yi +
(

2825

27,648
k1 +

18,575

48,384
k3 +

13,525

55,296
k4 +

277

14,336
k5 +

1

4
k6

)

h (25.46)

where

k1 = f(xi , yi)

k2 = f

(

xi +
1

5
h, yi +

1

5
k1h

)

k3 = f

(

xi +
3

10
h, yi +

3

40
k1h +

9

40
k2h

)

k4 = f

(

xi +
3

5
h, yi +

3

10
k1h −

9

10
k2h +

6

5
k3h

)

k5 = f

(

xi + h, yi −
11

54
k1h +

5

2
k2h −

70

27
k3h +

35

27
k4h

)

k6 = f

(

xi +
7

8
h, yi +

1631

55,296
k1h +

175

512
k2h +

575

13,824
k3h +

44,275

110,592
k4h

+
253

4096
k5h

)

Thus, the ODE can be solved with Eq. (25.46) and the error estimated as the difference of

the fifth- and fourth-order estimates. It should be noted that the particular coefficients used

above were developed by Cash and Karp (1990). Therefore, it is sometimes called the

Cash-Karp RK method.

EXAMPLE 25.13 Runge-Kutta Fehlberg Method

Problem Statement. Use the Cash-Karp version of the Runge-Kutta Fehlberg approach

to perform the same calculation as in Example 25.12 from x = 0 to 2 using h = 2.

25.5 ADAPTIVE RUNGE-KUTTA METHODS 745

Solution. The calculation of the k’s can be summarized in the following table:

x y f(x, y)

k1 0 2 3
k2 0.4 3.2 3.908511
k3 0.6 4.20883 4.359883
k4 1.2 7.228398 6.832587
k5 2 15.42765 12.09831
k6 1.75 12.17686 10.13237

These can then be used to compute the fourth-order prediction

y1 = 2 +
(

37

378
3 +

250

621
4.359883 +

125

594
6.832587 +

512

1771
10.13237

)

2 = 14.83192

along with a fifth-order formula:

y1 = 2 +
(

2825

27,648
3 +

18,575

48,384
4.359883 +

13,525

55,296
6.832587

+
277

14,336
12.09831 +

1

4
10.13237

)

2 = 14.83677

The error estimate is obtained by subtracting these two equations to give

Ea = 14.83677 − 14.83192 = 0.004842

25.5.3 Step-Size Control

Now that we have developed ways to estimate the local truncation error, it can be used to

adjust the step size. In general, the strategy is to increase the step size if the error is too

small and decrease it if the error is too large. Press et al. (1992) have suggested the follow-

ing criterion to accomplish this:

hnew = hpresent

∣

∣

∣

∣

�new

�present

∣

∣

∣

∣

α

(25.47)

where hpresent and hnew = the present and the new step sizes, respectively, �present = the

computed present accuracy, �new = the desired accuracy, and α = a constant power that is

equal to 0.2 when the step size is increased (that is, when �present ≤ �new) and 0.25 when

the step size is decreased (�present > �new).

The key parameter in Eq. (25.47) is obviously �new because it is your vehicle for spec-

ifying the desired accuracy. One way to do this would be to relate �new to a relative error

level. Although this works well when only positive values occur, it can cause problems for

solutions that pass through zero. For example, you might be simulating an oscillating func-

tion that repeatedly passes through zero but is bounded by maximum absolute values. For

such a case, you might want these maximum values to figure in the desired accuracy.

746 RUNGE-KUTTA METHODS

A more general way to handle such cases is to determine �new as

�new = εyscale

where ε = an overall tolerance level. Your choice of yscale will then determine how the error

is scaled. For example, if yscale = y, the accuracy will be couched in terms of fractional rel-

ative errors. If you are dealing with a case where you desire constant errors relative to a

prescribed maximum bound, set yscale equal to that bound. A trick suggested by Press et al.

(1992) to obtain the constant relative errors except very near zero crossings is

yscale = |y| +
∣

∣

∣

∣

h
dy

dx

∣

∣

∣

∣

This is the version we will use in our algorithm.

25.5.4 Computer Algorithm

Figures 25.21 and 25.22 outline pseudocode to implement the Cash-Karp version of the

Runge-Kutta Fehlberg algorithm. This algorithm is patterned after a more detailed imple-

mentation by Press et al. (1992) for systems of ODEs.

Figure 25.21 implements a single step of the Cash-Karp routine (that is Eqs. 25.45 and

25.46). Figure 25.22 outlines a general driver program along with a subroutine that actu-

ally adapts the step size.

25.5 ADAPTIVE RUNGE-KUTTA METHODS 747

FIGURE 25.21
Pseudocode for a single step of the Cash-Karp RK method.

SUBROUTINE RKkc (y,dy,x,h,yout,yerr)

PARAMETER (a2�0.2,a3�0.3,a4�0.6,a5�1.,a6�0.875,

b21�0.2,b31�3.�40.,b32�9.�40.,b41�0.3,b42��0.9,

b43�1.2,b51��11.�54.,b52�2.5,b53��70.�27.,
b54�35.�27.,b61�1631.�55296.,b62�175.�512.,
b63�575.�13824.,b64�44275.�110592.,b65�253.�4096.,
c1�37.�378.,c3�250.�621.,c4�125.�594.,
c6�512.�1771.,dc1�c1�2825.�27648.,
dc3�c3�18575.�48384.,dc4�c4�13525.�55296.,
dc5��277.�14336.,dc6�c6�0.25)

ytemp�y�b21*h*dy

CALL Derivs (x�a2*h,ytemp,k2)

ytemp�y�h*(b31*dy�b32*k2)

CALL Derivs(x�a3*h,ytemp,k3)

ytemp�y�h*(b41*dy�b42*k2�b43*k3)

CALL Derivs(x�a4*h,ytemp,k4)

ytemp�y�h*(b51*dy�b52*k2�b53*k3�b54*k4)

CALL Derivs(x�a5*h,ytemp,k5)

ytemp�y�h*(b61*dy�b62*k2�b63*k3�b64*k4�b65*k5)

CALL Derivs(x�a6*h,ytemp,k6)

yout�y�h*(c1*dy�c3*k3�c4*k4�c6*k6)

yerr�h*(dc1*dy�dc3*k3�dc4*k4�dc5*k5�dc6*k6)

END RKkc

EXAMPLE 25.14 Computer Application of an Adaptive Fourth-Order RK Scheme

Problem Statement. The adaptive RK method is well-suited for the following ordinary

differential equation

dy

dx
+ 0.6y = 10e−(x−2)2/[2(0.075)2]

(E25.14.1)

Notice for the initial condition, y(0) = 0.5, the general solution is

y = 0.5e−0.6x
(E25.14.2)

which is a smooth curve that gradually approaches zero as x increases. In contrast, the par-

ticular solution undergoes an abrupt transition in the vicinity of x = 2 due to the nature of

the forcing function (Fig. 25.23a). Use a standard fourth-order RK scheme to solve

Eq. (E25.14.1) from x = 0 to 4. Then employ the adaptive scheme described in this section

to perform the same computation.

Solution. First, the classical fourth-order scheme is used to compute the solid curve in

Fig. 25.23b. For this computation, a step size of 0.1 is used so that 4/(0.1) = 40 applica-

tions of the technique are made. Then, the calculation is repeated with a step size of 0.05

for a total of 80 applications. The major discrepancy between the two results occurs in the

region from 1.8 to 2.0. The magnitude of the discrepancy is about 0.1 to 0.2 percent.

748 RUNGE-KUTTA METHODS

FIGURE 25.22
Pseudocode for a (a) driver program and an (b) adaptive step routine to solve a single ODE.

(a) Driver Program

INPUT xi, xf, yi

maxstep�100

hi�.5; tiny � 1.� 10�30

eps�0.00005

print *, xi,yi

x�xi

y�yi

h�hi

istep�0

DO

IF (istep � maxstep AND x
 xf) EXIT

istep�istep�1

CALL Derivs(x,y,dy)

yscal�ABS(y)�ABS(h*dy)�tiny

IF (x�h�xf) THEN h�xf�x

CALL Adapt (x,y,dy,h,yscal,eps,hnxt)

PRINT x,y

h�hnxt

END DO

END

(b) Adaptive Step Routine

SUB Adapt (x,y,dy,htry,yscal,eps,hnxt)

PARAMETER (safety�0.9,econ�1.89e�4)

h�htry

DO

CALL RKkc(y,dy,x,h,ytemp,yerr)

emax�abs(yerr/yscal/eps)

IF emax
 1 EXIT

htemp�safety*h*emax
�0.25

h�max(abs(htemp),0.25*abs(h))

xnew�x�h

IF xnew � x THEN pause

END DO

IF emax � econ THEN

hnxt�safety*emax
�.2
*h

ELSE

hnxt�4.*h

END IF

x�x�h

y�ytemp

END Adapt

Next, the algorithm in Figs. 25.21 and 25.22 is developed into a computer program and

used to solve the same problem. An initial step size of 0.5 and an ε = 0.00005 were chosen.

The results were superimposed on Fig. 25.23b. Notice how large steps are taken in the

regions of gradual change. Then, in the vicinity of x = 2, the steps are decreased to ac-

commodate the abrupt nature of the forcing function.

The utility of an adaptive integration scheme obviously depends on the nature of the

functions being modeled. It is particularly advantageous for those solutions with long

smooth stretches and short regions of abrupt change. In addition, it has utility in those sit-

uations where the correct step size is not known a priori. For these cases, an adaptive rou-

tine will “feel” its way through the solution while keeping the results within the desired tol-

erance. Thus, it will tiptoe through the regions of abrupt change and step out briskly when

the variations become more gradual.

25.5 ADAPTIVE RUNGE-KUTTA METHODS 749

FIGURE 25.23
(a) A bell-shaped forcing function that induces an abrupt change in the solution of an ODE
[Eq. (E25.14.1)]. (b) The solution. The points indicate the predictions of an adaptive
step-size routine.

0

1

2

0 2 4 x

(b)

0

5

10

0 2 4 x

(a)

25.1 Solve the following initial value problem over the interval from

t = 0 to 2 where y(0) = 1. Display all your results on the same graph.

dy

dt
= yt3 − 1.5y

(a) Analytically.

(b) Euler’s method with h = 0.5 and 0.25.

(c) Midpoint method with h = 0.5.

(d) Fourth-order RK method with h = 0.5.

25.2 Solve the following problem over the interval from x = 0 to 1

using a step size of 0.25 where y(0) = 1. Display all your results on

the same graph.

dy

dx
= (1 + 2x)

√
y

(a) Analytically.

(b) Euler’s method.

(c) Heun’s method without the corrector.

(d) Ralston’s method.

(e) Fourth-order RK method.

25.3 Use the (a) Euler and (b) Heun (without iteration) methods to

solve

d2 y

dt2
− t + y = 0

where y(0) = 2 and y�(0) = 0. Solve from x = 0 to 4 using h = 0.1.

Compare the methods by plotting the solutions.

25.4 Solve the following problem with the fourth-order RK method:

d2 y

dx2
+ 0.5

dy

dx
+ 7y = 0

where y(0) = 4 and y�(0) = 0. Solve from x = 0 to 5 with h = 0.5.

Plot your results.

25.5 Solve from t = 0 to 3 with h = 0.1 using (a) Heun (without

corrector) and (b) Ralston’s 2nd-order RK method:

dy

dt
= y sin3(t) y(0) = 1

25.6 Solve the following problem numerically from t = 0 to 3:

dy

dt
= −y + t2 y(0) = 1

Use the third-order RK method with a step size of 0.5.

25.7 Use (a) Euler’s and (b) the fourth-order RK method to solve

dy

dx
= −2y + 4e−x

dz

dx
= −

yz2

3

over the range x = 0 to 1 using a step size of 0.2 with y(0) = 2 and

z(0) = 4.

25.8 Compute the first step of Example 25.14 using the adaptive

fourth-order RK method with h = 0.5. Verify whether step-size

adjustment is in order.

25.9 If ε = 0.001, determine whether step size adjustment is

required for Example 25.12.

25.10 Use the RK-Fehlberg approach to perform the same calcula-

tion as in Example 25.12 from x = 0 to 1 with h = 1.

25.11 Write a computer program based on Fig. 25.7. Among other

things, place documentation statements throughout the program to

identify what each section is intended to accomplish.

25.12 Test the program you developed in Prob. 25.11 by duplicat-

ing the computations from Examples 25.1 and 25.4.

25.13 Develop a user-friendly program for the Heun method with

an iterative corrector. Test the program by duplicating the results in

Table 25.2.

25.14 Develop a user-friendly computer program for the classical

fourth-order RK method. Test the program by duplicating Exam-

ple 25.7.

25.15 Develop a user-friendly computer program for systems of

equations using the fourth-order RK method. Use this program to

duplicate the computation in Example 25.10.

25.16 The motion of a damped spring-mass system (Fig. P25.16)

is described by the following ordinary differential equation:

m
d2x

dt2
+ c

dx

dt
+ kx = 0

where x = displacement from equilibrium position (m), t = time

(s), m = 20-kg mass, and c = the damping coefficient (N · s/m).

The damping coefficient c takes on three values of 5 (under-

damped), 40 (critically damped), and 200 (overdamped). The

spring constant k = 20 N/m. The initial velocity is zero, and the ini-

tial displacement x = 1 m. Solve this equation using a numerical

method over the time period 0 ≤ t ≤ 15 s. Plot the displacement

versus time for each of the three values of the damping coefficient

on the same curve.

750 RUNGE-KUTTA METHODS

PROBLEMS

Figure P25.16

k

c

x

m

25.17 If water is drained from a vertical cylindrical tank by open-

ing a valve at the base, the water will flow fast when the tank is full

and slow down as it continues to drain. As it turns out, the rate at

which the water level drops is:

dy

dt
= −k

√
y

where k is a constant depending on the shape of the hole and the

cross-sectional area of the tank and drain hole. The depth of the

water y is measured in meters and the time t in minutes. If k = 0.06,

determine how long it takes the tank to drain if the fluid level is ini-

tially 3 m. Solve by applying Euler’s equation and writing a com-

puter program or using Excel. Use a step of 0.5 minutes.

25.18 The following is an initial value, second-order differential

equation:

d2x

dt2
+ (5x)

dx

dt
+ (x + 7) sin(ωt) = 0

where

dx

dt
(0) = 1.5 and x(0) = 6

Note that ω = 1. Decompose the equation into two first-order dif-

ferential equations. After the decomposition, solve the system from

t = 0 to 15 and plot the results.

25.19 Assuming that drag is proportional to the square of velocity,

we can model the velocity of a falling object like a parachutist with

the following differential equation:

dv

dt
= g −

cd

m
v2

where v is velocity (m/s), t = time (s), g is the acceleration due to

gravity (9.81 m/s2), cd = a second-order drag coefficient (kg/m),

and m = mass (kg). Solve for the velocity and distance fallen by a

90-kg object with a drag coefficient of 0.225 kg/m. If the initial

height is 1 km, determine when it hits the ground. Obtain your so-

lution with (a) Euler’s method and (b) the fourth-order RK method.

25.20 A spherical tank has a circular orifice in its bottom through

which the liquid flows out (Fig. P25.20). The flow rate through the

hole can be estimated as

Qout = CA
√

2gH

where Qout = outflow (m3/s), C = an empirically-derived coeffi-

cient, A = the area of the orifice (m2), g = the gravitational constant

(= 9.81 m/s2), and H = the depth of liquid in the tank. Use one of

the numerical methods described in this chapter to determine how

long it will take for the water to flow out of a 3-m diameter tank

with an initial height of 2.75 m. Note that the orifice has a diameter

of 3 cm and C = 0.55.

25.21 The logistic model is used to simulate population as in

dp

dt
= kgm (1 − p/pmax)p

where p = population, kgm = the maximum growth rate under un-

limited conditions, and pmax = the carrying capacity. Simulate the

world’s population from 1950 to 2000 using one of the numerical

methods described in this chapter. Employ the following initial

conditions and parameter values for your simulation: p0 (in 1950) =
2555 million people, kgm = 0.026/yr, and pmax = 12,000 million

people. Have the function generate output corresponding to the

dates for the following measured population data. Develop a plot of

your simulation along with the data.

t 1950 1960 1970 1980 1990 2000

p 2555 3040 3708 4454 5276 6079

25.22 Suppose that a projectile is launched upward from the

earth’s surface. Assume that the only force acting on the object is

the downward force of gravity. Under these conditions, a force bal-

ance can be used to derive,

dv

dt
= −g(0)

R2

(R + x)2

where v = upward velocity (m/s), t = time (s), x = altitude (m)

measured upwards from the earth’s surface, g(0) = the gravita-

tional acceleration at the earth’s surface (∼= 9.81 m/s2), and R = the

earth’s radius (∼= 6.37 × 106 m). Recognizing that dx/dt = v, use

Euler’s method to determine the maximum height that would be

obtained if v(t = 0) = 1400 m/s.

25.23 The following function exhibits both flat and steep regions

over a relatively short x region:

f (x) =
1

(x − 0.3)2 + 0.01
+

1

(x − 0.9)2 + 0.04
− 6

Determine the value of the definite integral of this function be-

tween x = 0 and 1 using an adaptive RK method.

PROBLEMS 751

Figure P25.20
A spherical tank.

H

r

	Cover Page

	Title Page
	Copyright Page
	Dedication

	Contents

	Preface

	Guided Tour

	About the Authors

	PART ONE: MODELING, COMPUTERS, AND ERROR ANALYSIS
	PT1.1 Motivation
	PT1.2 Mathematical Background
	PT1.3 Orientation
	CHAPTER 1: Mathematical Modeling and Engineering Problem Solving
	1.1 A Simple Mathematical Model
	1.2 Conservation Laws and Engineering
	Problems

	CHAPTER 2: Programming and Software
	2.1 Packages and Programming
	2.2 Structured Programming
	2.3 Modular Programming
	2.4 Excel
	2.5 MATLAB
	2.6 Mathcad
	2.7 Other Languages and Libraries
	Problems

	CHAPTER 3: Approximations and Round-Off Errors
	3.1 Significant Figures
	3.2 Accuracy and Precision
	3.3 Error Definitions
	3.4 Round-Off Errors
	Problems

	CHAPTER 4: Truncation Errors and the Taylor Series
	4.1 The Taylor Series
	4.2 Error Propagation
	4.3 Total Numerical Error
	4.4 Blunders, Formulation Errors, and Data Uncertainty
	Problems

	EPILOGUE: PART ONE

	PT1.4 Trade-Offs
	PT1.5 Important Relationships and Formulas
	PT1.6 Advanced Methods and Additional References

	PART TWO: ROOTS OF EQUATIONS
	PT2.1 Motivation
	PT2.2 Mathematical Background
	PT2.3 Orientation
	CHAPTER 5: Bracketing Methods
	5.1 Graphical Methods
	5.2 The Bisection Method
	5.3 The False-Position Method
	5.4 Incremental Searches and Determining Initial Guesses
	Problems

	CHAPTER 6: Open Methods
	6.1 Simple Fixed-Point Iteration
	6.2 The Newton-Raphson Method
	6.3 The Secant Method
	6.4 Brent’s Method
	6.5 Multiple Roots
	6.6 Systems of Nonlinear Equations
	Problems

	CHAPTER 7: Roots of Polynomials
	7.1 Polynomials in Engineering and Science
	7.2 Computing with Polynomials
	7.3 Conventional Methods
	7.4 Müller’s Method
	7.5 Bairstow’s Method
	7.6 Other Methods
	7.7 Root Location with Software Packages
	Problems

	CHAPTER 8: Case Studies: Roots of Equations
	8.1 Ideal and Nonideal Gas Laws (Chemical/Bio Engineering)
	8.2 Greenhouse Gases and Rainwater (Civil/Environmental Engineering)
	8.3 Design of an Electric Circuit (Electrical Engineering)
	8.4 Pipe Friction (Mechanical/Aerospace Engineering)
	Problems

	EPILOGUE: PART TWO
	PT2.4 Trade-Offs
	PT2.5 Important Relationships and Formulas
	PT2.6 Advanced Methods and Additional References

	PART THREE: LINEAR ALGEBRAIC EQUATIONS
	PT3.1 Motivation
	PT3.2 Mathematical Background
	PT3.3 Orientation
	CHAPTER 9: Gauss Elimination
	9.1 Solving Small Numbers of Equations
	9.2 Naive Gauss Elimination
	9.3 Pitfalls of Elimination Methods
	9.4 Techniques for Improving Solutions
	9.5 Complex Systems
	9.6 Nonlinear Systems of Equations
	9.7 Gauss-Jordan
	9.8 Summary
	Problems

	CHAPTER 10: LU Decomposition and Matrix Inversion
	10.1 LU Decomposition
	10.2 The Matrix Inverse
	10.3 Error Analysis and System Condition
	Problems

	CHAPTER 11: Special Matrices and Gauss-Seidel
	11.1 Special Matrices
	11.2 Gauss-Seidel
	11.3 Linear Algebraic Equations with Software Packages
	Problems

	CHAPTER 12: Case Studies: Linear Algebraic Equations
	12.1 Steady-State Analysis of a System of Reactors (Chemical/Bio Engineering)
	12.2 Analysis of a Statically Determinate Truss (Civil/Environmental Engineering)
	12.3 Currents and Voltages in Resistor Circuits (Electrical Engineering)
	12.4 Spring-Mass Systems (Mechanical/Aerospace Engineering)
	Problems

	EPILOGUE: PART THREE
	PT3.4 Trade-Offs
	PT3.5 Important Relationships and Formulas
	PT3.6 Advanced Methods and Additional References

	PART FOUR: OPTIMIZATION
	PT4.1 Motivation
	PT4.2 Mathematical Background
	PT4.3 Orientation
	CHAPTER 13: One-Dimensional Unconstrained Optimization
	13.1 Golden-Section Search
	13.2 Parabolic Interpolation
	13.3 Newton’s Method
	13.4 Brent’s Method
	Problems

	CHAPTER 14: Multidimensional Unconstrained Optimization
	14.1 Direct Methods
	14.2 Gradient Methods
	Problems

	CHAPTER 15: Constrained Optimization
	15.1 Linear Programming
	15.2 Nonlinear Constrained Optimization
	15.3 Optimization with Software Packages
	Problems

	CHAPTER 16: Case Studies: Optimization
	16.1 Least-Cost Design of a Tank (Chemical/Bio Engineering)
	16.2 Least-Cost Treatment of Wastewater (Civil/Environmental Engineering)
	16.3 Maximum Power Transfer for a Circuit (Electrical Engineering)
	16.4 Equilibrium and Minimum Potential Energy (Mechanical/Aerospace Engineering)
	Problems

	EPILOGUE: PART FOUR
	PT4.4 Trade-Offs
	PT4.5 Additional References

	PART FIVE: CURVE FITTING
	PT5.1 Motivation
	PT5.2 Mathematical Background
	PT5.3 Orientation
	CHAPTER 17: Least-Squares Regression
	17.1 Linear Regression
	17.2 Polynomial Regression
	17.3 Multiple Linear Regression
	17.4 General Linear Least Squares
	17.5 Nonlinear Regression
	Problems

	CHAPTER 18: Interpolation
	18.1 Newton’s Divided-Difference Interpolating Polynomials
	18.2 Lagrange Interpolating Polynomials
	18.3 Coefficients of an Interpolating Polynomial
	18.4 Inverse Interpolation
	18.5 Additional Comments
	18.6 Spline Interpolation
	18.7 Multidimensional Interpolation
	Problems

	CHAPTER 19: Fourier Approximation
	19.1 Curve Fitting with Sinusoidal Functions
	19.2 Continuous Fourier Series
	19.3 Frequency and Time Domains
	19.4 Fourier Integral and Transform
	19.5 Discrete Fourier Transform (DFT)
	19.6 Fast Fourier Transform (FFT)
	19.7 The Power Spectrum
	19.8 Curve Fitting with Software Packages
	Problems

	CHAPTER 20: Case Studies: Curve Fitting
	20.1 Linear Regression and Population Models (Chemical/Bio Engineering)
	20.2 Use of Splines to Estimate Heat Transfer (Civil/Environmental Engineering)
	20.3 Fourier Analysis (Electrical Engineering)
	20.4 Analysis of Experimental Data (Mechanical/Aerospace Engineering)
	Problems

	EPILOGUE: PART FIVE
	PT5.4 Trade-Offs
	PT5.5 Important Relationships and Formulas
	PT5.6 Advanced Methods and Additional References

	PART SIX: NUMERICAL DIFFERENTIATION AND INTEGRATION
	PT6.1 Motivation
	PT6.2 Mathematical Background
	PT6.3 Orientation
	CHAPTER 21: Newton-Cotes Integration Formulas
	21.1 The Trapezoidal Rule
	21.2 Simpson’s Rules
	21.3 Integration with Unequal Segments
	21.4 Open Integration Formulas
	21.5 Multiple Integrals
	Problems

	CHAPTER 22: Integration of Equations
	22.1 Newton-Cotes Algorithms for Equations
	22.2 Romberg Integration
	22.3 Adaptive Quadrature
	22.4 Gauss Quadrature
	22.5 Improper Integrals
	Problems

	CHAPTER 23: Numerical Differentiation
	23.1 High-Accuracy Differentiation Formulas
	23.2 Richardson Extrapolation
	23.3 Derivatives of Unequally Spaced Data
	23.4 Derivatives and Integrals for Data with Errors
	23.5 Partial Derivatives
	23.6 Numerical Integration/Differentiation with Software Packages
	Problems

	CHAPTER 24: Case Studies: Numerical Integration and Differentiation
	24.1 Integration to Determine the Total Quantity of Heat (Chemical/Bio Engineering)
	24.2 Effective Force on the Mast of a Racing Sailboat (Civil/Environmental Engineering)
	24.3 Root-Mean-Square Current by Numerical Integration (Electrical Engineering)
	24.4 Numerical Integration to Compute Work (Mechanical/Aerospace Engineering)
	Problems

	EPILOGUE: PART SIX
	PT6.4 Trade-Offs
	PT6.5 Important Relationships and Formulas
	PT6.6 Advanced Methods and Additional References

	PART SEVEN: ORDINARY DIFFERENTIAL EQUATIONS
	PT7.1 Motivation
	PT7.2 Mathematical Background
	PT7.3 Orientation
	CHAPTER 25: Runge-Kutta Methods
	25.1 Euler’s Method
	25.2 Improvements of Euler’s Method
	25.3 Runge-Kutta Methods
	25.4 Systems of Equations
	25.5 Adaptive Runge-Kutta Methods
	Problems

	CHAPTER 26: Stiffness and Multistep Methods
	26.1 Stiffness
	26.2 Multistep Methods
	Problems

	CHAPTER 27: Boundary-Value and Eigenvalue Problems
	27.1 General Methods for Boundary-Value Problems
	27.2 Eigenvalue Problems
	27.3 Odes and Eigenvalues with Software Packages
	Problems

	CHAPTER 28: Case Studies: Ordinary Differential Equations
	28.1 Using ODEs to Analyze the Transient Response of a Reactor (Chemical/Bio Engineering)
	28.2 Predator-Prey Models and Chaos (Civil/Environmental Engineering)
	28.3 Simulating Transient Current for an Electric Circuit (Electrical Engineering)
	28.4 The Swinging Pendulum (Mechanical/Aerospace Engineering)
	Problems

	EPILOGUE: PART SEVEN
	PT7.4 Trade-Offs
	PT7.5 Important Relationships and Formulas
	PT7.6 Advanced Methods and Additional References

	PART EIGHT: PARTIAL DIFFERENTIAL EQUATIONS
	PT8.1 Motivation
	PT8.2 Orientation
	CHAPTER 29: Finite Difference: Elliptic Equations
	29.1 The Laplace Equation
	29.2 Solution Technique
	29.3 Boundary Conditions
	29.4 The Control-Volume Approach
	29.5 Software to Solve Elliptic Equations
	Problems

	CHAPTER 30: Finite Difference: Parabolic Equations
	30.1 The Heat-Conduction Equation
	30.2 Explicit Methods
	30.3 A Simple Implicit Method
	30.4 The Crank-Nicolson Method
	30.5 Parabolic Equations in Two Spatial Dimensions
	Problems

	CHAPTER 31: Finite-Element Method
	31.1 The General Approach
	31.2 Finite-Element Application in One Dimension
	31.3 Two-Dimensional Problems
	31.4 Solving PDEs with Software Packages
	Problems

	CHAPTER 32: Case Studies: Partial Differential Equations
	32.1 One-Dimensional Mass Balance of a Reactor (Chemical/Bio Engineering)
	32.2 Deflections of a Plate (Civil/Environmental Engineering)
	32.3 Two-Dimensional Electrostatic Field Problems (Electrical Engineering)
	32.4 Finite-Element Solution of a Series of Springs (Mechanical/Aerospace Engineering)
	Problems

	EPILOGUE: PART EIGHT
	PT8.3 Trade-Offs
	PT8.4 Important Relationships and Formulas
	PT8.5 Advanced Methods and Additional References

	APPENDIX A: THE FOURIER SERIES
	APPENDIX B: GETTING STARTED WITH MATLAB
	APPENDIX C: GETTING STARTED WITH MATHCAD
	BIBLIOGRAPHY
	INDEX

