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1. Introduction

Spherical harmonics are closely associated with the basic theory of

gravitational and magnetic fields, such as those of the Earth and planets;

for this reason they are important both in geodesy and in Earth and planetary

physics.

The present work considers the numerical aspects of the reduction of global

data sets to spherical harmonic coefficients, so the emphasis has been laid on tl-e
algorithms for this purpose. The procedures for harmonic analysis (and synthesis

given here are general enough to be used in the study of magnetic or electric fields,

but most conclusions regarding their accuracy are restricted to the gravity field

of our planet and to fields with the same power spectrum. The accuracy of these

methods cannot be separated from the type of signal being used.

Modern instrumentation has provided scientists and engineers with vast
amounts of information, and modern computers have made the processing of it

possible, and even routine, thanks to constant improvements in both hardware

and software. In the mid sixties, those branches of applied mathematics, physics,

and engineering concerned with the sifting of data, or with the study of very I.arge

regular structures, were greatly affected by the advent of the Fast Fourier Trans-

form (FFT). In spite of the fact that spherical harmonics are members of the

family of Fourier transforms, closely related to two dimensional Fourier series.

geodesy has lagged behind in the development of techniques similar to the FFT,
partly because of the rather wicked nature of the sphere on which data are usually

given, partly because there have not been enough data to make the development of

powerful techniques a general concern. The topological differences between the
Euclidean plane and the surface of the sphere may very well prevent the finding
of algorithms as efficient as the FFT for the latter (certainly none seems to have

been reported to date) but such algorithms should be regarded, nonetheless, as

the desideratum for all those who wish to put their time and work into developing

good numerical methods for spherical harmonic analysis.

The increasing use of artificial satellites for surveying the gravity field,
particularly by radar altimetry and by the projected tracking of one satellite by

another, are making the use of very efficient and accurate techniques for handling

the resulting data imprescindible: even a casual review of the literature of the

last few years will show that serious efforts to provide such techniques are getting

under way. The days of scarce, scattered, unreliable data are just about over.

The remainder of this section defines the basic problem and the associated

notation, shows the relationships between spherical harmonics and 2D-Fourier

series, presents some of the similitudes and differences between both, and ex-

plains some efficient algorithms for harmonic analysis and synthesis that are

common to a number of different problems. Section 2 begins by defining a

quadratic measure for the accuracy of the estimated harmonic coefficients based
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on the covariance functions of the signal and the noise; a discussion on the

optimization of this measure follows, leading to the application of least squares

collocation to harmonic analysis. The use and implementation of least squares

adjustment follows, and then a discussion of the connection between least squares

and least squares collocation, shown as alternative and efficient techniques

for solving the same problem. The section closes with an algorithm for the case

when data are irregularly distributed. Section 3 illustrates with several

numerical examples some of the methods presented earlier. Section 4

introduces an efficient formula for computing the covariances between block

averages when analyzing meanvalues by collocation. This formula is much

more efficient than others based on the numerical quadratures of the "point"

covariance function.

1. 1. Spherical Harmonic Analysis and Synthesis: Definitions

A square integrable, analytical function f ( , X) defined on the unit sphere

0 ! 8 s TT and 0 < X 2 T can be expanded in a series of surface spherical

harmonics

f(o,x) = E E P,,(cos 9) [CcosmX + S,,sinmAI (1.1)
1&=0 2=0

where: Pl are the associated Legendre functions of the first kind, fully

normalized so1 -j Prm(coss6)2cn) mX dcr = 1 (here da

indicates integration on the unit sphere);

,n are the fully normalized spherical harmonic coefficients.

For the sake of brevity, the following alternative notation shall be used when possible:

-a Of 15' (.(cosB)coSmA if a =0

and an( 8,) = 1 .(cosB) sinflk if a =1

C,. = C, if OL

The purpose of spherical harmonic analysis is to estimate the coefficients C"?

from measurements of the signal f( e,.). These measurements, which may be

corrupted by some noise or error signal "n", and which are assumed in what

follows to be finite in number, constitute the data. The individual samples are

called zi , so zij = f( e, A) + nij. The subscripts i and j are used only to

designate the position of the sample in a two-dimensional array, or grid, covering

in some more or less regular way the sphere: i corresponds always to (co)latitude,

and j to longitude. While, as in the last paragraph of section 3, some places in

the grid may be empty, the grid itself is defined by a set of complete parallels

and meridians. Unless otherwise specified, the separation between the lines of

-2-



latitude can be variable, but that between meridians is always constant and

equal to AX = -IN, where N is an integer. The grid most often consi-

dered in this work is the equal angular grid, also called the regular grid;

in this case A8 is also constant and equal to )A.

For equal angular grids i and j take values 0 ! i 5 N-I and 0 j 5 2N-1,

i increasing from North to South, and j from West to East. Formulas where the

i,j subscripts appear are in the form appropriate to the regular grid, though most

of them can be extended in a very simple way to other partitions.

Data may consist of values determined at the intersections of the grid, in

which case they are referred to as "point data", or they may be averages over

the blocks defined by the lines of the grid, and then they are called "area means"

or "block means". In the equal angular grid the northernmost and southernmost

blocks reach to the respective poles; there are N rows of blocks (i.e. blocks be-

tween the same parallels), there are 2N blocks per row, and i,j identify

olocks according to the row and column they are in. Grids for equal angular

point data may be "center point" grids, data being measured at the center of

each block, so i = 0 corresponds to 9 = A S/2 = AX/2.

No blocks stride the equator, so regular grids are symmetrical with respect

to it; in other words: N is always even (extension to N odd is trivial).

Area means are identified here by overbars; they can be expanded in series

simply by integrating (1. 1) term by term, which can be done because the spherical

harmonic series is always uniformly convergent for 0 < e <- and 0 5 A 5 2 -

= I- Y.,.(9,X.) doa

A W  =e .-,o c~ *l a1A1  ~30 CfO at

+ 9". X+1k sin md), (1.2)

Here fj, is the area mean of f( 9,X) on the block a . whose area is

t = A,(cos e, - cos(9 + AS)).

A basic property of spherical harmonics is their orthogonality:

1 r OX 0,X)do, fI if at = 8, m = p and n k (1.3)

4 nTJa 0 otherwise

as a consequence of which

= 4jk(9,A) f( A) da (1.4)

-3-



Expression (1.4) is the Inverse of (1. 1); both constitute the basis of spherical

harmonic analysis. In general, (1. 4) cannot bc calculated analytically, because

what is available is not the function f (9, X), but a finite set of noisy measure-

ments in the form of point values zlj or their area means 71J. Discretizing

(1. 4) on an equal angular grid results, for instance, in the following numerical

quadratures formula:

N-1 2N-1
a 1 -fc -- LL "Y.(,,A.) f(o,,X ) Au (1.5)

where Oam indicates the estimate of C,, as this type of formula is usually only

an approximation. Formulas resembling (1.5) can be called "point value!-type

quadrature formulas'; and can be handled by algorithms that are all identical from

a structural point of view and whose pvototype is that of paragraph 1. 5.

If the data are block averages, several simple approximations have been

proposed that take the form

N-1 4N-1

Ca= An" E .o E T J 9(, X) da
1=0 J=o ai

where the 4,n are scale factors. This kind of formula shall be studied further

in section 2. Writing the above expression in full

N-1 2N-1 O.Ak X+A~rks
Cri I E Efi.jf Pn.(cos) sin9d6 fmX dX (1.6)

This belongs to the general type
Aa N -1 Xa N -1 A() o .A Bm

CJ. = K N-i I [{- A(m)}cos mjt . + B  sinmjAX (1.7)
1=0 =oJ[ (m)J A (m)) X

=(cosm AX-])/m if m 4 0 r (sinm AX/m if m /0
vhere B(m) =. 0 if m = 0 ; A(m) =  AX if m=O

Formulas resembling (1.6) or (1. 7) appear several times in this work, and are

called here area means-type quadrature formulas.

If all ECI with 0 < n ! Nma are known, they can be used to compute

the (Nmax + 1)2 terms in

ma max n= _(Y

n=0 M=0 a =0

which can be regarded as an approximation to f( 0, X) at the point (8,X).

Expression (1.8), together with the truncation at Nmax of (1. 2) (area means),

defines the object of spherical harmonic synthesis: given the coefficients,

estimate the function. As shown later, analysis and synthesis are related by

a simple duality, so they require about the same number of operations when

performed on a certain grid and with a given number of coefficients.

-4-



The set of all degree variances

M 2 Cli +S. 
(1.9)

6=0

constitutes the power spectrum of f( 9,A). If all coefficients of degree n > Nmax
are zero, so are the corresponding o, ; insuch case the function f( @,X) is said

to be band limited.

Closely associated with the power spectrum is the isotropic covariance
function

cov(f(P),f(Q)) E af,2 PA(cos ) (1.10)

1%=0

Here p and Q are two points on the sphere, 4 = co'([ cos9pcosQ - sin eP
x sinS cos( P - Xq) I is the geocentric angle or spherical distance between both,

and PA(coso) is the unnormalized Legendre polynomial of degree n. The power
spectrum and the covariance of a function on the sphere, like those of func-

tions defined on the real line, on the plane,and on Euclidean spaces of higher
dimensions, can be used to obtain estimators related to discrete Wiener

filters and predictors, I.e., satisfying a minimum variance condition. The
spherical version of such technique is known as least squares collocation (Moritz,

1972). The inverse of expression (1. 10) is

CI= (2n+1) PA,(cos 1pQ) cov(f(P),f(Q) ) sin pq dgk (1.11)

Equations (1. 10) and (1. 11) show that, as usual, power spectrum and covariance
function are linear transforms of each other. A formula such as (1. 11) is some-
times called a Legendre transform.

In addition to the autocovariance (1.10), one can define, more generally,

cov(u(P),v(Q)) = L c0  P,(cos#pQ) (1.10")
n=O

as the covariance of two functions u(8P, X p) and v( X Xq) on the sphere, where
the

cUV E v , + , n o,l,... (1.9*)
%=0

constitute the "power crosspectrum".

A relationship similar to (1.11) applies to the c ' and to cov(u(P),v(Q)).

A very important property of spherical harmonics is Parseval's theorem:

2f f(8,X2 da E a,' (1.12

-5



The orthogonality of spherical harmonics, and the fact that they form a

complete orthogonal set of functions on the sphere, are among the reasons why

they are used so widely in theory and in practice, but there is more to them than

orthogonal ity.

The solid spherical harmonics

1 -a -
r (O x,)  and r Y,,(O,X)

where r is the distance to the origin of coordinates, are all solutions of Laplace's

equation,which in Cartesian coordinates is

a = W  0W 1W

This makes them appropriate for the study of harmonic functions, such as the

gravitational potential, in spherical coordinates. Another property they have,

unique among functions that are orthogonal on the sphere, is the relationship

-- Ff(P) , (2n+1) k. P.(Q)d = kCY,(Q) (1.14)

4J =0 r=J0 a---0 at = 0

which corresponds to the Convolution Theorem for ordinary Fourier serie% and is

the basis of such fundamental formulas as Stokes' in gravimetric geodesy.

1.2. Relationship Between Spherical Harmonics and 2-D Fourier Series

As indicated in the previous paragraph, spherical harmonics share important

properties with ordinary (trigonometric) Fourier series in one or more dimensions.

There is also a very immediate relationship with ordinary two-dimensional (2-D)

series that will be explained here. From Hobson (1931, Ch. Il, formula (7)) we

know that

P,,(cosO) = (-1)a (2n) 1 sin8 cos - 38- (n -m)(n -m-1) --
25 n! (n-m) I . 2 (2n-) c +

(n.- M)... (n - m - 3)
+ 2 4.(2n-1)(2n-3)cs-4 - ... (1.1)

so the normalized Legendre function is

(-l) (2n!) 12 (2n+ 1)(n -m) 1 . L• 0( )

P..(cos)=. 2Sm e s lj ak(n,m)cos - "0
2 1 (n-m)! (M+n)! k=O

where 
= { (n-m)/2 if n-m is even

f n. -(n-m-1)/2 if n-m isodd

while ak(n,m) = (-1)* (n-m)(n-m-l)...(n-m-2k+ 1)[2 4...2k(2n-1)...(2-2k+l)] "t

for k > 0

-6-



In the interval -T ! 9 's T sin 9 is even when m is even, and odd when

m is odd. In the interval -rr e 5T the sum (, M) r--akSak (n,m) cos
k=0

is always even (it is a sum of even powers of cos 9) , so the parity of

P,. (cos $) is the same as that of m if -r < 9 T-. An even function can
be expanded into a sum of cosines and an odd function into a sum of sines.

The highest frequency term will correspond to the highest frequency in the
expansion of sin! 9 cos r - 9, so this term will be of the form an cos ne or

ba sinne. Therefore, the Legendre function satisfies one of the following
equations in - ! 9 < TT

A

P.a (cos 8) = Ct cos te (a) if m is even;

PA! (coB 6) = t St sinte (b) if m is odd
t=0

A spherical harmonic Y. (9,X) can have one of four possible forms:

for m even:

(, j COS cost O omX for a= 0

1 Co'eoste sinmx for a= 1

for m odd:

an

_za C, sinte cosmA for o = 0

yU a (9,))= , (I. 16b)

Ctnsinto slnmX for a=1

A sum of spherical harmonics such as (1. 8) is equivalent to a sum of terms

of the form C Asinte cosnik, C sinte sinnx, CUcoste CosmX and

Cda cost9 sinmX, which are also the basic functions of 2-D Fourier series.

The highest m and u in the spherical harmonic expansion

LC ,_ o "."(0
-0 0 =0 o

are equal to DL, so the highest degree and order (or spatial frequencies)

in the Fourier series are also equal to N .x • In conclusion: every surface

spherical harmonic expansion where the highest degree is NA, is identical

to a 2-D Fourier series (where the highest m and n are also N.AN),

in the domain - < 9 !5. , 0 - X ! 2rr. Theconv&rse is not true, be-

cause continuous functions ona sphere, such as the Ym, must satisfy certain

conditions at the poles that ordinary functions on the -r r 9 g rT, 0 2rr

domain do not have to. Spherical harmonics correspond to a subclass

(linear subspace) of 2-D Fourier series.

-7-



For example: (Heiskanen and Moritz, Chapter 1, 1967)

P11 (cosO) =A sine

Pa (cose) =/30 sine cosE= 1/30 sin2O

So

YI = /3slne cosX, Y, =/3 sine sinX

Y ,= 130 sin2e cos2X, Y- =/30 sin2o sin2X

Calling the 2 -D Fourier coefficients "a , where

a. correspond to terms of the form cos pe cos in,

a, " " " " " " cosp9 sinmX

a, " ". " " sinpG cos in,\

N is " I " sinp9 sinmX

these can be related to the respective Ca, by expressions of the form
N-1

.L,~ 22~~n0 n =m, m +1, m+2,
S(n+m)! (1.17)

where = if m is even, and at = 2 if m is odd. The I't, . are

defined as

TT

cosi, pO P, cos0) sin0 d if m is even
f~o

in,P si n p O lR,(cosG) sinG dO if m is odd.

and can be computed recursively using the formula

2n - ( 1. n+m-i I

IO 2 n) -1P+1 + P- n- n p (1.18a)

with the following starting values

o If (m -j p) is odd (1. 18b)

i 2(m+ 1) (2m) ! if m is

2" [(m + 1)' - p2] [(rn - I)' - p ]. [e - p'] [I' - p'] even, p even,

2U (n±) 2m) ! if m is odd,

20gm+ 1 - [(m -1)-p]..[2' - P ] [-p] p odd.

The IM are zero for alternate values of both p and m. These equations

were reported by Ricardi and Burrows (1972), and show how to obtain the

-8-



C,.a once the al a have been computed from the data by means of the 2 -D
discrete Fourier transform. Normally this would be impossible, because
the data only exists in the upper half of the -r - e ! -, 0 X ! 2"T
interval, and the 2-D algorithm requires information on all of it. However,
the fact that the P,. (cos e) are sums of sines only or cosines only makes

the calculation possible.
While the maximum degree and order in a 2-D Fourier series do not

reach the Nyquist frequency 1 (m, n <' N = in an equal angular grid,
all the coefficients can be recovered exactly by solving (2N)' equations

such as

(0, I a, 4os no (119= sin sin

When n or m exceed N2,x, the matrix of the system of e quations
becomes singular, and the discrete Fourier trans form consists
of coefficients that "fit" the data, but differ from the true coefficients. The

estimated coefficients are said to have been aliased with those that exceed

the Nyquist frequency. In the case of spherical harmonics, which are a
special case of 2-D Fourier series, a similar situation must arise: the har-
monics in the data with n ! N are going to be aliased with those of lower
degree, so the information available is not enough to recover all coefficients

because the sampling is too coarse.
The aliasing of spherical harmonics sampled on regular grids is a

consequence of the aliasing of the respective 2-D Fourier series, so it

makes sense to talk of a "Nyquist frequency" In the case of those functions.

Having established the connection between allasing in both types of series,

it is time to point out also some important differences.

1.3 Sampling Errors

Expressions (1. 16a -b) shows that spherical harmonics are finite
sums of 2-D Fourier harmonics, which is not the same as being each a

Fourier harmonic. From this simple fact follow some important dis-

tinctions.

To understand them better, let us begin by stating some basic pro-
perties of Fourier series in one dimension, which carry over to higher

dimensions but are easier to explain in one dimension.

If sampled at a constant interval AX = -, the following Is always true
of sines and of cosines: N

1 Named after the Nyquist Theorem: the Fourier coefficients of a function

of period 2N&X can be recovered only If N,,, < N.
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=, ; cosrnkAX, cos pliza=0 if m p <N

2N-i
E sin nkX sinpkAX=0 if m p < N 20-a)

1=0

E cosmkAX sinpkAX=0 for all m and all p.
Ir=O

Tltse expressions are discrete counterparts of

a TT 

a T

fo cosm), cosp>,dX = o sinmX sinp>,dX=0
when m p

arT (1.20-b)
f cosmX sinpXdX=0 for all mand p.

and show that the orthogonal properties of sines and cosines are maintained
when these are sampled regularly, provided the Nyquist frequency is not
exceeded. From this follows that

a, = H E (sin) mk Xf(kA>X) =hJ ksin) mXf( ) dX (1.21)

where H if m =0 andh rTif m =0 .s h Fuirotherwise and h z_ otherwise s

counterpart of (1.5), (i.e. (1.21)) is an exact "numerical quadratures"
formula for Fourier series. When the Nyquist frequency is exceeded, the
trigonometric relationships

cos mkAX= cos (2N 1 m) kAX

sinmkaX=sin(2N -" m)kAX

imply that (1.21) will give, not the true coefficients, but the aliased estimates
K K

ao. = a. + E 20t,+o + Z aahN-.

h=o h=1 (1.22)
K K

Al Ia. = as + E a 9 ,+ - £ aVhN.

with K such that 2KN is below, and 2(K+1)N is above the highest frequency present in
f(X). Expression (1. 20 a-b), (1. 21), and (1.22) are the foundations of discrete
Fourier analysis (also known as the computation of the discrete Fourier
transform, or D. F.T.), and so well known that they are almost second nature
to many engineers and scientists. Unfortunately, none of these discrete
formulas has exact counterparts in spherical harmonic analysis, and this
fact has been the cause of considerable confusion. The most common
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misunderstandings seem to occur in the following areas:

(a) Number of equations and number of unknowns:

At each point in the grid it is possible to write an equation such as

N max _ a TI; (i 7 ( .2 )

f(elX )= E ( n, , (.
=O a---0 -- O

similar to (1.19). The maximum number of coefficients that can be reco--

vered without exceeding the Nyquist frequency ( i.e., those with n < N)

is N 2 . Coefficients of degree or order equal or higjhcr than N shall not

be, in general, free from aliasing. , inee there are .N" points in an

equiangular grid, it follows that the maximum nmr ber of fully recoverable

coefficients is also half the number of points (ectuations) in the grid. By con-
trast, in 2-D Fourier analysis the number of coefficients equals the number

of points in the grid (in the interval - <- TT , 0 < ;k 5 2n). One could

have a grid with only N2 points, as proposed by Giacaglia and Lundquist

(1972), but such a grid would not be equal angular on the sphere.

The author had discussed this problem elsewhere (Colombo,

1979a, paragraph (5.2)), showing that the system of equations (1.23)

becomes singular when all coefficients of degree and order 0 SQi, rn) M

are included among the unknowns, and M N. In o~ler words: it is not

possible to solve for a complete set of coefficients to degree and order M N.

The relevant part of that argument can be summarized as follows: the

columns of A, the atrix of the system of equations (1.23), consist insucces-

sions of values Y,. ( 0t, ),,) of the harmonics corresponding to the un--

knowns ZC(X at the points (O, XI) in the grid. The scalar product of two

such columns is,

M-1 2N-i N

2N-0 0 ifO

csons jA jcsin X 0 -- N m q
.= 0{10 other'wise

according to (1. 20-a). Therefore, if two columns correspond to unknowns

of different orders m and q, they must be orthogonal and, thus, indepen-

dent. For the whole matrix not to be singular, all columns of the same order

m must form sub-matrices A(m) that have full rank. Otherwise, there

will be columns in those A(m), and consequently in A, that are linearly

dependent, so A cannot be Inverted. Consider A(0), corresponding to all

unknowns of order 0. This is a 2N:x (M + 1) matrix, and the elements of

the columns of A(0) have the same values as P,, (cos 0 1), 0 n -- M,

0 ! I - N-1. The P.o are functions of 91 only, and there are N par-

allels in the grid, so there are nc more than N independent rows in A(0).

ecoause the 13., (cos 0) are polyn(mials of degree n in cos 0, these

rows form a sub-matrix S(O) of A(0) that has M + 1 independent columns,
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as long as M + 1 : N or M < N. If M > N the extra columns will turnS(0)

into a rectangular matrix with more columns than rows; in other words:

there will be no square submatrix In A(0) of rank M + I if M > N, so

A(0) shall be rank defficient, and from this follows that A must be singular.

Emphasis must be placed on the word complete when referring to the

set of "solvable" coefficients: It is possible, by removing some coefficients

with n < N from the unknowns, to introduce others in their stead with

n z N, but then the solution will not be a complete set of coefficients.

(b) 100% aliasig
If a term in a Fourier series has a frequency n > N then it

will be aliased with lower frequency terms and become impossible to dis-

criminate from them. For most functions of practical interest, the higher

the frequency, the smaller the term, so the coefficient estimated using the sum in

(1. 21) will be dominated by the lower frequency terms: the estimation error

is thus likely to exeeed 100%. Estimates above the Nyquist frequency are

usually regarded as meaningless and the closer a term is to that fre-

quency with increasing n., the less reliance is placedon its estimate.

In the case of spherical harmonics, expressions (1. 16a-b) show clearly

that the harmonic Y, consists of several Fourier terms of frequencies

ranging from 0 to n. When n > N , only that part of the Fourier ex-

pansion of V above the Nyquist frequency will become scrambled beyond

recovery; part of the harmonic is left intact: the low frequency "tail",

which means that the effect of aliasing on the recovered coefficients does

not necessarily reach 100% (or even 70%) at the Nyquist frequency, as shown

in the examples of section 3.

(c) Orthogonality
From (1. 20a) follows that the matrix of equations (1. 19) for the

Fourier series is orthogonal, so the coefficients estimated according to

(1. 21) are independent from each other.

In the case of the Y.. orthogonality does not carry over to all the

sampled harmonics, unless special "quadratures' weights" are introduced

in (1.5) or (1.6). This lack of orthogonality affects, for instance, the for-

mulas for mean values discussed in section 2. The method of Gaussian

quadratures is an example of "quadratures with weights" that gives exact

coefficients when the Nyquist frequency is not exceeded, though it requires

a special grid where the parallels are situated at the same latitudes as the

zeroes of P, (cos 8). The use of this method is possible because the product

[P, (cos6) P,. (cos8)1 is a polynomial in cos e of degree n + p s 2N I

the grid, however, is an unusual one. Details of the application of Gaussian

quadratures to spherical harmonic analysis are given In a report by Payne
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(1971). Other examples of methods that recover the coefficients exactly

when the data is noisless and N.., < N are: least squares collocation,

least squares adjustment, and the algorithm developed by Rice and Burrows

from expressions (1. 17) and (1.18 a-b).

In general, not all the discretised harmonics retain the orthogonality

property, and the estimated coefficients are affected by the values of many

of the other U,., in addition to those whose degrees exceed the Nyquist

frequency. More about this will be said in section 2, when discussing least

squares collocation and adjustment.

Summarising: there are enough differences between the aliasing of
Fourier series and that of spherical harmonics, in spite of their being so

closely related, to require a great deal of caution before using the intuition

gained from one type of analysis when attempting the other. For this rea-

son, the expression "aliasing error" will be replaced by the just as appro-

priate "sampling error", which is perhaps less charged with misleading

connotations because it has not been applied almost exclusively to F ourier

series.

It should be noticed here that Gaposchkin (1980) has published formulas

for the sampling error on a type of equal area grid (i.e., all blocks have the

same area as the equatorial ones). His formulas are the equivalent, for such

a grid, of expression (1. 22) for Fourier analysis, but much more complicated;

they are made tractable numerically by the use of certain recursive expressions
that he provides, thus showing an interesting new approach to the study of

the problem.

1.4 Number of Operations in Analysis and in Synthesis

Expressions (1 .17) and (1.18 a-b) can be used to calculate the C,

once the 2-D Fourier coefficients of f( ej, X ), or a, , have been esti-
mated by means of the 2-D Discrete Fourier Transform (DFT). Using the

Fast Fourier Transform (FFT algorithm (Cooley and Tuckey, 1965), the

number of operations required is proportional to the number of data points,
which Is the order of N2 , or O(N ) ) for short. The FFT is discussed further
in paragraph 1. 9.

Having obtained the Ag , calculation of (1. 17) requires N oper-

ations per C ., or NxcN = N3 for all of them. Finding the coefficients

'Most of these calculations have the form of scalar products
k p Pp = a k b., so the bas ic operation of finding p = akbk + pk-' (p =0, p -_p)

k =0

consists of one suml and one product.



I'p by means of the recursives (1.18 a-b) adds another O(N 3 ) operations
that can be obviated by computing the I*,, once, and then storing them on
magnetic tape or disk. One way or the other, o(N2 ) + O(N3 ) operations
are needed altogether, or o(N3 ) when N is large (say, N t 180).

As already mentioned, this prodedure was first described by Ricardi
and Burrows in 1972; more recently (1977) Goldstein developed a very sim-
ilar idea and formulated a similar algorithm for synthesis. Goldstein's
method uses recursive formulas for the I, different from (1.18 a-b). The
synthesis algorithm also requires O( N3 ) operations.

As explained in paragraphs 1.5 through 1.7, the procedures presented
there also require O(N3 ) operations for analysis, and as many for synthesis,
though they are formally different from Ricardi and Burrows'. In paragraph
1.8 it will be shown that synthesis requires as many operations as analysis,
because one Is the dual of the other.

The fact that two rather different approaches (Ricardi and Burrows'
and the one described in this report) require essentially the same number of
operations suggests that "O(N3) '" might be a property of all analysis and
synthesis algorithms on regular spherical grids due, somehow, to the nature
of the sphere itself. This is speculation, of course, but if not, are there other
ways of partitioning the sphere for which faster methods exist? The author

has discussed this possibility before (Colombo, 1979, paragraph 4.6). It
is interesting to notice that in all these procedures the Q(N3 ) operations are
those associated with G0, or "column operations"; "row operations" are
only o(N2 ). In the case of the Euclidean plane, the 2-D Fourier transform
requires the same number of operations per row than per column, O(N),
thus the total is only c(N2), or O(N) times faster than its spherical "counter-

part."

While not as efficient as the 2-D FFT, the algorithms for the sphere
considered here can be much faster than the straightforward implementation
of expressions (1.5), (1.6), (1.2), or (1.8). The latter has been the ap-
proach of many scientists who have developed their own software, but whose
main interest has generally been far removed from the study of numerical
techniques. In 1976, while working at the University of New South Wales

(Australia), the author developed the two algorithms of paragraphs 1.5 and
1.6, and C. Rizos programmed them. Subsequently they were used at
Goddard Space Flight Center, in Maryland. To everybody's surprise, Rizo's
programs turned out to be more than 100 times faster than those in use at the
time, when run under the same conditions. More recently, this author has
written the subroutines HARMIN and SSYNTH described in appendix B.

SSYNTH has been used, after the fashion of the numerical experiments des-
cribed In Section 2, to generate 64000 10 x 10 mean values (simulated aver-
aged gravity anomalies), each the sum of the 90000 terms of an expansion
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complete to degree and order 300. This took less than 50 central processor

unit seconds in the AMDHAL 470 V/6-I owned by The Ohio State University
(OSU). All calculations were in double precision (32 bits words), using

FORTRAN H EXTENDED. Precomputed values of the Legendre functions
(or their integrals) were read from tape, and all operations nvolving trigo-

nometic functions were carried out by a Fast Fourier Transform subroutine.

These two characteristics, plus a generally tighter coding, are the reasons

for the greater speed of this program, compared to the older versions men-
tioned bef ore.

in all these methods all operations along a given row or parallel (con-

stant are independent from those for any other row, so a parallel processing

_computerwith N processors (arithmetic and control units) could analyse or

synthesize a full grid of N rows as fast as an ordinary computer with one

central processor can do a single row. This N-fold Increase in speed can be

obtained with the same type of basic hardware (gates, registers) that is

currently used in conventional "general purpose" main-frame machines. The
full power of the algorithms presented in this work will be realized when

computers of parallel structure become more widely available for scientific

applications than they are today.

1.5 Algorithm for the Analysis of Point Values

Expression (1.5) written in full becomes

AN-1 2W1 ~ Cos
3  T 1 P. (CO s in) mJAx et xs,) A

1=0 3=0

which corresponds to the general type
A- I21 2N.. I cos

CU = E E X'V Z sin mJA f(9 1 , X ) 4 (1.24)
1=0 J=O 3=0

where X" could be -L P, (cos Of) 4, as above, or P. (cos S ini 4rr
the case of quadrature with weights w,, etc.

To simplify the discussion, the grid is supposed to be equal angular

and N .=N-1. This and the algorithms that follow can be easily adapted
for the equal area grids current today. Subroutines HARMIN AND SSYNTH

(Appendix B) can handle the cases N,.,<N-1 and N, , , >N-1 as well as

N,,.= N-i.

The equal angular grid is symmetrical with respect to the Equator,

and assuming that (the same as P3 a (cosi) o3 P (cos 6j) sine,)

x " xi- If n-m is even, and"-I- X. if n-i is odd, one
can write
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(-1)"l3 x'io [ar' si j~ O-- Xl) (1.25)

This formula suggests the following procedure In two nested loops:

START: set = -1, C no 0 for all 0 s n, m ---N

Ouater l1p

(a) increment I by 1 unless I = JN- 1, in which case STOP

Inner loop:
(b) com pute all a2 - j A e j

2N-1 fN-1-1~

(c) find all A (-1) a

(1.26)

for 0 ! n, m e- N (where "(l~~j"merely indicates that $ "is to
be added or substracted according to the parity of (n-rn)); GO BACK To (a).

Attheendoftheouterloop, 6a(F, Can

The a. and b. in (1. 26) can be computed by taking the Fourier
transform along row I and row N-I-i of the values of f(e, X). This in-
volves 0(N) operations. There arb half as many X"~ as Cgs 1), there-
fore it takes 2(N + 1)2 products, and just as many sums, to form the

C or the pair rof rows I and N-i-i. Consequently, there are 0(N) +

O(Ne) ope rations per pair of rows, or 0(N2 ) + O(N3) for the grid as a whole.
This Is the same as with the Ricardi and Burrows' algorithm, quickly ap-
proaching 0(N3 ) as N Increases.

Subroutine HARMIhN (Appendix B) implements this technique.



1.6 Algorithms for the Synthesis of Point Values

Expression (1. 8) is of the general form

N-I n

f (@I , x) =  E Y I' [C". cosmXkj + S sinmX3] (1.27)
a=0 9=0

where Xmi can be, for instance, K k'P, (COS 6j), etc., with K being a proportionality
constant. Rearranging terms and considering the parity of XI leads to

-1 0 (a

I=, _ .sinmjA X (1.28)

which suggests a procedure in two nested loops:

START: set i = -1

Outer loop:

(a) increment i by 1, unless I = iN - 1, in which case STOP

Inner loop:

(b) compute all

SSam

for 0 ! m ! N;

(c) find all M-i

f( 8- X K "  cos mi X +

*0 (1.29)

: ,.. s i n m J A X

for 0 : j - 2N - 1 (where (-I)'* _ means the same as in the previous
paragraph); GO BACK TO (a) .

At the end of the outer loop all f( 81, X4) in the grid are known.
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Expression (1.29) is computd by applying the IFT to the 2N of fl(per row)

and the 2N a e', fi, taking O(N) operations. The first part of the inner
loop (forming the a , f and - -  t) involves 0(N2 ) operations;

for all 12N pairs of rows the total is O(N2 ) + 0(N3 ), and this tends to O(N")

as N increases.

Subroutine SS YNTH (Appendix B) implements this technique.

1. 7 Algorithms for the Analysis and Synthesis of Area Means

(D) Analys is

Rearranging (1. 7)

2FV _'m  (,mn-rn N-L-i) B(m) 1. -)'' -- \

(M) (-1) a ) + A Ilbi+ (-1) -bVa-t=o (1.30)

were a., b. are the same as in paragraph (1.5). A procedure similar to

that for the analysis of point values can be obtained directly by replacing the

bracket in (1.26) with that in (1. 30), and then proceeding as in the algorithm

for point values. The total number of operations is, once more, O(N) + O(N3 ),

or O(N 3 ) for large N. Subroutine HARMIN also implements this algorithm.

(II) Synthesis

e + e

Truncating the series in equation (1.2), replacing J Pf, (cos 0) sin Gd 0

with X , rearranging terms,considering the parity of X"i , and using ot , fl

as defined in paragraph (1.6), leads to the expression

= I 'N-j- A(n.) - cosmjAX +

- B(m) + -i A(m) sin j i AX

The algorithm for the synthesis of the T,, is a direct extension of that for

point values. The number of operations, once more, is O(N 2 ) + O(N 3 ) for

large N . Subroutine SSYNTH implements this algorithm as well.

1. 8 Duality between Analysis and Synthesis

Pairs of direct and inverse linear transforms, such as Fourier trans-

forms, possess dual characteristics: certain words and mathematical
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expressions can be arranged in pairs (a,b) such that, if every "all is replaced
by its I' in any statement or equation valid for a function f, then the mod-
ified statement Is valid for the transform F (f f, and viceversa.

Analysis and synthesis of spherical harmonics are reciprocal linear
transformations of data Into coefficients and of coefficients nto "data" closely
akin to Fourier transforms, so they can be expected to exhibit some dual prop-
erties. Comparing the formulas and algorithms in paragraphs (1.5), (1.6)
and (1.7) shows many similarities, among them the number of operations.
This can be understood as being a consequency of duality. To make this point
clear, consider the following pairs:

f('1 X f(8," ) )andsimilarlywithC(I , if' "1,X

(t (-1) -' sin Mja.); (1, m); (n); (XCos mj0.)

1=0 0 J = 0 0 %=n

From these we can derive the following pairs:

(a. , A(m)) ; (bt., B(m)) ; (a' - ,-B(m));(b'-' , A(m)); etc.

and, in conclusion:

("ANALYSIS", "SYNTHESIS')

Each one of the analysis algorithms becomes Its synthesis counter-
part by a simple replacement of terms. Once an algorithm for analysis
(synthesis) is defined, the corresponding algorithm for synthesis (analysis)
follows. For instance, one can easily apply the principle of duality to the
Ricardi and Burrows' method of paragraph (1.4) to obtain a synthesis technique.

1.9 Usefulness of the Fast Fourier Transform Method

The excellent book by Brigham (1974) gives a thorough presentation
of the 1-D discrete Fourier transform and its applications, and explains
in detail the method known as FFT for computing such transform. The
Fourier transform in 2 and higher dimensions cn be found simply as follows:
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first, get the 1-D transform of each row, then that of each column of the mod-

ified array. . . , etc., until all dimensions have been exhausted in this way.

Understanding the workings of the 1-D transform is enough to understand

those of the N-dimensional transform as well. The FFT requires O(number of

points) operations for each row along the nth dimension, so the number for

all points in a regular, euclidean array is always of the order of the total

number of points in that array.

Before the mid-sixties _when the FFT came along - the best techniques
available for the analysis of data on regular arrays required O(number of

points)2 operations. The increase in speed of o(number of points) brought about

a true revolution in data processing: work that had been long regarded as

Impossible became feasible overnight, the field of industrial and scientific

applications for numerical Fourier transforms expanded tremendously;

the impa ct in areas as diverse as cristalography and communications engi-

neering was remarkable.

Having mentioned the positive side of the FFT, which is used in the al-

gorithms described so far (at least in principlo and in the programs HARMIN

and SSYNTH, it is only proper to say something about its alternatives.

The FFT calculates all2N Fourier coefficients a,, b . very efficiently,

but takes just about as many operations to get only a few coefficients as it

takes to get all: for N,,, small compared to N there may be a real dis-

advantage in using the FFT. The FFT is most efficient when the grid is

such that N is an integer power of 2. The grids used in geodesy are usually based

on the division of the circle in 3600, and many on the sexagesimal division

of 1 as well. In all of these N contains factors other than 2, so a less ef-

ficient version of the FFT, known as the mix-radix FFT (Singleton's algorithm)

must be used.

Finally, the mix-radix algorithm is rather convoluted, so it is best

to take ready available subroutines from software libraries (as it is done in

HARMIN and SSYNT14 rather than to incorporate the FFT "on line" in the

program one is writing. This means that the program is going to be less

self-c ontained.

The "pre-FFT" methods can be more efficient than the FFT when

N .,<,K N; they are also very easy to program. For the sake of completeness,
the outline of a method this author has used quite often will be given here.

Consider the trigonometric relationships

cos(t) - 2cosS cos(ot- 1) $-cos(a- 2)$ (1.32)

sin(Cf) = 2cos sin(a- 1) -sin(a- 2) (1.33)
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with u, fA real. If all the values of the trigonometric functions could be
obtained with one operation each, the number of operations involved in

findng~3 1  ~ s* mjAXX~)(0 1~~)would be 2(2N), or 4N' for

all 0 < m - N. In other words: O(N2), as expected. This is precisely what

can be done using (1. 32), (1. 33) as recursive expressions for cos m(j AX) and

sin m(j A X) with m integer and 0 j 2N - 1. The values of
cos n (-A X) = cos mAX and sin m (-AX) = -sin mAX X, are needed to start the

recursion; they can be calculated with standard trigonometric subroutines.
The use of such subroutines Increases the number of operations slightly over
4N 2 , but if N is large enough, this is negligible.

With all calculations carried out In double precision, this method
gives values of cosine and sine that coincide to better than 5 significant
figures with those provided by the standard FORTRAN functions, when

N is as large as 1800 (0. 10 x 0. 10 grid). By taking advantage of half-wave
symmetries in the sine and cosine, and by ingenuous programming, the num-
ber of operations can be reduced by a factor of 4 or more rather easily.

1.10 Functions Harmonic in Space and their Gradients

If f(e, X,r) satisfies Laplace's equation V2 f = 0 in the space outside
a sphere of radius a , then it can be represented, in that space, by the
solid spherical harmonic expansion

S' ' a - - a
f(O,X,r) 00 al _C (A rx C. 8) (1.34)

0 M = 0  0.

If we consider, at a point P X(0 , r) in space, the local triad r, h, t

oriented downwards to the origin, West to East along the tangent to the local
parallel, and North-South along the local meridian, the components of the
gradient of f(0, X , r) along this three axes are

bf$X, r) = E r - #.. ( n + I ) Y.. (0,A) (1.35)
21-0 LO

Xf (6, Xr) = )- F-+a T, (cosO) cosec () [mg cosmX -

m sinmX] (1.36)

00" a0 dP0a (cosO) JI, cosmX+ !, sinmX)f(, ,r) = n E E P+2 DO (1.37)

'Here one "operatiorgl as mentioned in paragraph (1.4), consists of one

sum and one product.
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Expressions (1. 34), (1. 35), (1. 36), and (1. 37) appear often in the discussion

of geodetic problems, and their calculation from a set of coefficients Is an

important problem. If all the values of any of them(with r constantand

on a regular grid) arc required, the methods discussed so far can be used

after a few minor additions.

The synthesis algorithms can be thought of, for the purpose of this

discussion, as "black boxes" with the coefficients Z%. the Legendre func-

tions, N ,,, and N as inputs, and all the 2N 2 values of f( 0, X) on the

corresponding regular grid as outputs. To compute the expressions given

above, only the pxtrt of the input consisting in the coefficients and/or the

Legendre functions has to be modified before they enter the 'box", which

rEJnains untouched. j0or instance: to compute (1. 34) one should replace

'C, 1 with "--*z Ca, in the "input"; the others are equally obvious and

will not be explained further. The following recursive formulas can be used

to obtain the derivatives of the Legendre functions:

dPt (sin0)' fn P,,(cose) cose- [(n'-m')(2n+1) ] P., f(cos

(I.38a)

d P f(2n ) sinO + cosO d"LP (2n) si 9 - +- Co r-1 - (L.38b)

with the starting value

d Pooe

These recursives follow from the unnormalized formula

(cos 2 0 - 1) dP, cos0) = n cos0 P, (cosO) - (n + m) P,-,, (cos 9)

(N.N. Lebedev, 'Special Functions", Dover, 1972, Ch. 7, equation 7.12.16), and from
1

Tin. = [s2n+1) P,,1 F,,.(see paragraph (4. 4))
(2 n -1)si 1_ -

and

(n + m)I] 'i

2(2n + 1)(n -) !

The complete recursive expressions for the P m are given in paragraph (4.4).

The expansion for the area means defined by (1.2) can be differentiated

term by term because it converges uniformly. The expressions for area

means gradients, equivalent to those given here for point values b are immed-

iatc. They can be computed after simple modifications to the C.. and/or

the X1 *ind using the same progrms for computing the area means.

Subroutine "I EGFDN", listed on Appendix 13, can compute both the nor-

malized T, (cos 0) and their derivatives d P. (cos0).

a--
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2. Error Measure and Optimal Quadrature Formulas

This section introduces a criterion for quantifying the errors of num-
erical quadratures formulas that is based on the statistical properties
of the data. Three qualities are highly desirable in an error measure: (a)
it should be easy to determine; (b) it should be mathematically tractable;
(c) it should provide a good idea of the likely size of the actual errors. Point
(a) Is taken Into account by choosing a quadratic measure, because the numerical

formulas are linear estimators of the !, and the linear, quadratic esti-
mation problem is fairly simple, with its mathematical side very well under-
stood and developed today, which takes care also of (b). Regarding (c), the
reader will have to wait till section three, where certain evidence, obtained

from numerical experiments, supports the assertion that, though statistical

in nature, the error measure adopted represents the actual errors very

closely.

Having defined the error measure, the notion of optimal or best formula
according to such measure is investigated, leading to the application of least
squares collocation and least squares adjustment to spherical harmonic analysis.

2.1 The Isotropic Covarlance

The isotropic covariance (expression (1. 10)) between two functions u(eG,X ,
v(8 ,) on the unit sphere, both expandible in spherical harmonic series

a=0 IO =0

w I V X C

n=0 3=0 0

can be formally defined as follows

cov(U(P), v(Q)) = M u(P) V(Qi (2.1)

where M I I is the isotropic averaging operator and P and Q are two points

on the sphere separated by the spherical distance 4,Q . The operator Mf
symbolizes the average of its argument (in the present case the product
u(P) v(Q)) over all rotations of the sphere. This can be visualized If one
thinks of the points P and Q as given in a fixed system of coordlntes, while

the sphere, on which u and v are deflned, rotates in all possible ways. After all the

(infinitely many) possible rotations, the average product u(P) v(Q) will be iden-
tical to cov(u(P), v(Q)). This kind of covariance, though purely geometrical,
resembles closely that uf stochastic processes such as time series.
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The importance of the isotropic operator and the isotropic covariance
function in spherical harmonic analysis stems from the fact that the latter can
be described as the estimation of certain parameters of a function f( e, X),
the C , from data sampled on a sphere. From paragraph (2. 7) on, this

report deals with optimal estimators for the C , based on the theory of least
squares collocation. Such optimal estimators minimize a quadratic measure of
the error that is defined in terms of the operator M f , this measure
being introduced in paragraph (2. 4).

The idea of least squares collocation is related to the basic principles
of such linear, minimum variance estimators for time series as the Wiener
and Kalman filters, which have found wide application In the physical sciences
and in engineering over the last thirty years, and have been generalized
to deal with both continuous and discrete time processes, and also "processes"
in more than one dimension, such as are found in pattern recognition and in
digital image enhancement. Two-dimensional Wiener filtering, of which the
reader can find several fine descriptions in the special issue of the Pro-
ceedings of the IEEE, Vol 65, No. 6, 1977, is also applicable to "flat-Earth"
geodetic calculations; least squares collocation can be regarded as the ex-
tension of this type of filtering to calculations on the sphere. Isotropic av-
erage operators are not the only ones that could be used in the "statistical"
approach, though they are probably the easiest to work with and, perhaps, the
best for the sort of application considered here. For a description of other
likely operators, the reader is referred to the paper by Rummel and Schwarz
(1978). Probably the most didatic introduction to the method of collocation
remains Heiskanen and Moritz, (Ch. 7, 1967).

Reasoning as in Heiskanen and Moritz (ibid), one can show that

0covmup', v(Q) Z -- .-P(Cos OPQ)
11=0

which is, in fact, expression (1. 10*) _the definitionof the isotropic covariance
given in section 1 without any reference to M I . Similarly,

cov(u(p), u(Q))= ac p~o~Q

n= 0

usually known as "the covariance of u " (expression 1. 10), while (1. 10*)
represents the "covariance between u and v ", or "the crosscovariance
of u and v ". The one-to-one relationship between covariance and power
spectrum (or crosscovariance and crosspectrum) should be clear

from these expressions.

To apply the notions introduced above to the C n ., it is necessary to

think of them as functions rather than fixed values. This is possible if one
considers changes in the coordinates 8, X brought about by rotation. Each
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such change results in different coefficients, though the function they describe
is the same, only rotated with respect to the old system. The new system
can be related to the first by three angles: the coordinates 6, X of the shifted

north pole, and the azimuth A of the zero meridian. Therefore, the C, 

are functions of 8, X, A and this is enough to define the average over all

rotations of the product of each C O* by Itself or by another function, in a

meaningful way. Two important properties of spherical harmonics are:

(A )! 2o 2
M 2+ M=0  a (2.2)

I.e., the power spectrum is invariant with respect to rotations. This

follows from the plain fact that the integral fa (8, X) da Is invariant

over rotations, and from Parseval's identity (1. 12); (2.2) implies that the
isotropic covariance function (1. 10) is likewise invariant.

M Y4. ( 0 if forall P and Q (2.3)
m q

i.e., the orthogonality properties of spherical harmonics with respect to
integration on the sphere are also true with respect to averaging over ro-

tations.

As a consequence of (2.2) and (2.3) above, the following relationships
are also true:

M 2 1 }= M I S.. 2 n +1 (2. 4-a).a 2n + 1

M a C qJ = 0 if n 4 p (2.4-b)
m~q

M 0 if n 4 0 (2.5)

a a
c. f(8,x) -s Va (8,x) (2.6)

2n+ 1

M Y , (8, X) dor (2.7)
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For the derivation of (2.6) the reader can see (Rummel, 1976), and (Sjoberg,

1978) for (2.7). As for (2.4a-b) and (2.5), the proof is given now.

According to (1.4):

16vT2 Mf(.)2}2M {j7e(,X>) f(e0XV) daf (6X)f0)
aV

=M~f ,Y (0, X) f(e, X) . f(6', ') Y (0', ') da d'=

f f, Y,~3 (6, X) YO. (6'1, X, ) M f~aX f('X) darda'
fa fa DR -

L YnO (O X) Yn, (0', X') Cov (f(P), f(Q))dada'

where P= (,X) and Q = (6', X'). According to (1. 10):

1677 M (C f) a, 'f Yn((8',') X a2 P,(cos q)da' =

-T 2 da - 167?2  because of (.14)
I ( Y 2n+1 2n +l

Similarly,{-__-_ } (OX) i

M aC.C2q 2n+ I 4n 1 (,) ,)da 0if n/p
m/gq

Finally, recalling that Y'o0(1, X) P0o(cos 8) = 1 for all -TT < e < and all ),

Mv JJ'I fa ' V(0, X) M(f (0,X)} da Mf f(6, X)' f(6X) d o

- of(, x)}r o
;i Jc r Y. .,(0, X) Y,30 (0,X) da =0 if n / 0,

which completes the proof.

2. 2 Some Additional Notation

So far, data points on the sphere have been identified by the subscripts
I and j . Alternatively, they could be arranged according to a sligle subscript

k = 2Ni + j (where N Is the number of parallels in a grid and 2N the num-
ber of meridians), so the points In the "0" row, ordered by increasing j , are
followed by those in the "1" row, in the same order, etc., the last element in
the "N - 1" row closing the sequence. Based on this convention, the set of all
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values of f(0 ,) (or f',) can be arranged in Np - vector form according to k:

- .(2.8)

where Zk= f(0 1 ,X,) or Zk =T 1 3  with k = 2Ni+j

and where NP is the number of data points, or 2N 2 for equal angular grids.
-a

In a similar way, the coefficients C ,. can be ordered according to a single
subscript p = ni + an + m + 1 (with the understanding that the meaningless

'S. are not included) defining the following N, - vector:

C C . CP CN _1 ]r (2.9)

Cv = Uam p n 2 +an + m + 1

where N0 = (N ,, + 1)2. Using this notation, expression (1.27) for point

data quadratures can be written

C = _um z (2.10)

where the estintor vector f M* , of dimension N, has elements of the form

Ot xs cos}
{sn mjAX

under the convention given above relating k , I and j..

Grouping all the estimates C,, In a vector c ordered in the same way

as c , the relationship between the n and z can be written, in matrix

form,

A
c F z (2.11)

where F is the estimator matrix implied by(2. 10). It is a N x N0 matrix
(where N. is the ntmuber of data points in the grid), each row beinlformed by

the coefficients of the quadrature formula for the corresponding C.,. Such

row is also the transpose of the estimatorvector of this C , designated f

in (2.10).

In the same way as the covarlance function between scalars, the coy-
lance between vector functions can be defined in terms of M { }:

M zz T) (2.12)
L-- 1 =zz

where C, is the covariance matrix of z ,of dimension N. x N. . This

matrix if a function of the relative positions of the points in the grid on which

7 has been determined, in the same way as the scalar covariance depends only

on the distance between two points. The elements of C,, are
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c , = M zr z, M .fPr) f(P° ,1

i.e., the values of the scalar covariance corresponding to pairs of points
in the grid.

In the same way

M cc = C (2.13)

is a N, x N, diagonal matrix according to (2.4a-b). C is the covariance

matrix of the coefficients. Similarly, the covariance between c and z is

M Ic Zr}= = [ M {1 .jzc &a~ (2. 14)

where C,2 is a NxN. matrix, the elements of which are

=~Z' =1c zMf

where the right hand side Is given by (2.6).

Finally, when estimating the C , not from samples of f (GX), but

from measurements corrupted by noise

m(8 1 ,'X) = f(S91 ,X) + nis (2.15)

the measurement errors can be grouped in a Np - vector n with the same

ordering as z, and the sum of both will be, then, the N. - vector of ob-

served values

m = z + n (2.16)

The measurement errors are values that occur in time, as successive

observations are carried out: they constitute a time series. The average

operator appropriate to them is the usual statistical expectation gpeator

E _' . The measurements are suppossed to be unbiased, so E n = 0

for all k Th coNariance Implied by this op ira i eusual s t~sticaI

covariance: E k , and E f.n = 0k. This can be
generalized for the noise vectur a:

E{nn'} = D (2.17)

where D Is a N. x N. matrix of elements

dkr = E{ ninr} = ar (2.18)

Both C,, and D have in common a very important property:
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xT C:.2 X 0" if xT x # 0 , x any N. vector,
x T DJ

i.e., they are always positive matrices, moreover, in all the cases considered
here, at least D is positive definite:

x TD x >0 for all x

Positiveness can be inferred readily from the definitions of C, , and D:

i.e., xT Dx = E J, = Exnn = Erh . 0

(where h=x T n), andsimilarly for xrCzZx with M It

2.3 Estimation Errors, Sampling Errors, and Propagated Noise

A linear estimaor is of the general form

s = Fm

where m is the vector of measurements defined by (2. 16), and s is the vector
of estimates, made up in our case of the d a. According to (2.11) and (2. 16)

s F( + n)

In general, the esturfes will not be exactly equal to that which is estimated,
the difference being the estimation error. In matrix notation

A
e = c-c= (c- Fz) -(Fa) (2.19)

e being the estimation error vector. The two terms in the express ion above

can be defined as the components of this error:

e = c- Fz

which Is the estimation error In the case of noisless (perfect) data; and

e_7= Fn

which is the error due to the noise, or propagated noise.

The error e., may be due to a number of reasons If it is zero for

1 Using the relationship p = n + an + m + 1 of paragraph (2.2), ep stands

for the sampling error In 0 , and e ,p for the propagated noise.
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some estimator, then its presence in other estimators could be blamed on

them being somewhat inadequate. For instance, if the estimator was chosen

by taking the elements of F from a set of random numbers, then the estima-

tion error is likely to be always high, as the estimator has nothing to do with

the actual problem. In particular, the addition of extra measurements to

the vector m is nat going to bring any general improvement on the estimates.

On the other hand, if attention is paid to the nature of the problem when selecting

F, one would expect the error to decrease as more data is introduced. If,

as the number N, of samples In m tends to infinity, es, tends to zero,

one could say that the error- is due to the incomplete sampling of the signal
f ( 9, X), and call it the sampling error. This is prec isely the case with

any of the quadrature f-rmulas to be studied here, all of which can be written

formally as linear estimators according to (2. 11), and for all of which the

error e. . vanishes as the number of samples tends to infinity, because the

sums become identical with the integrals defined by (1.4). In this sense it is

quite suitable to call e, the sampling error, as in paragraph (1.3).

2.4 The Quadratic Error Measure

The overall error measure will be defined here as the sum of two quad-

ratic terms: onefor the propagated noise, the other for the sampling error.

(a) Propagated Noise Measure

This measure is the same as in least squares adjustment, i.e., the

variance of the error defined in terms of the usual statistical expectation

operator

= E (f, _n (2.20)

according to (2.10). This variance represents the scatter in the value of

Ila' due to the uncertainty in the values of the data. In matrix form

E E {ee} = E rFnUT FT = F Ef nnTFT = FDFT(2.21)

where E 17 is a N, x N, matrix, while D was already presented in paragraph

(2.2).

n the special case where the measurement errors are uncorrelated,

D is diagonal, and (2.20) becomes

a E no... n n f = fn Dfun

2 ax J coo 2.. 2 (2.22)

ca r fsin amja e oI ---- ,3=-0

which is the usual formula for propagating the covariane of the noise.
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(b) Sampling Error Measure

This measure is defined in terms of the :sotropic averaging operator of

paragraph (2.1)

0"2( = M{(ep _fm z)2 M (C-_z) (2.23)

or, in matrix form

L-0} M - F.(c - Fz)T} (2.24)

2 C - 2 C l' T + ]p'C" FT

where E, is a N, x N, matrix, and C, Cz, C,, were introduced in

paragraph (2.2).

(c) Total Error Measure

The total measure is the sum of (a) and (b)

, 2 0" 2 ., + "r. (2. 25)

or, in matrix form,

ET Es + E 7 C 2C.z F T + FC F + FDFT =2.26)

C - 2C,, F T + F (Cz 1 + D) F T

where ET is the NP x NP error matrix associated with F and with the

covariances that define C , C0r and (C,, + D). Expression (2.26) is a
special case of the formula for "1E. ." in least squares collocation (for instance,

Moritz (1978), Ch. 3, eqn, (3.20)); moreover, it belongs to a famly of
formulas also found in the minimum variance estimation and filtering of time
series and of processes sampled on the euclidean plane.

The total measure has been chosen simply as the sum of .2+ 01 +

by mroking the basic assumption that the sampling error and the propagated
noise are due to completely independent causes. The first depends on the values
f(0, X j), while the second depends on the measurement errors of instruments
that, at least ideally, operate with accuracies unaffected by the quantities
measured, or in such way that any Interactions can be eliminated by simple
corrections.

The columns of F are defined by the quadratuie formula used, and
such formulas either satisfy, or tend to satisfy, orthogonality conditions (para-
graph (1. 3 (c)). For tiis reason, provided that C zz and D belong to the type
to be described in paragraph (2.9), matrices E7 7 , E, , and, thus, Er , are either

diagonal or diagonal dominant, and in the latter case tend to become diagonal as
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the sampling intervals decrease, or X -. For this reason the correlations

among the errors for individual coefficients are, or "tend to bell, very small.

The diagonal elements of the error matrices Es , E and ET are the

variances of the errors in the respective coefficients, as de~ined by (2.20),

(2.23), and (2.25), respectively.

2.5 The Meaning of the Error Measure

The treatment of the propagated noise is the same as in least squares

adjustment, so Lhis part of the error measure should be easily under-
stood. The sampling error measure, on the other hand, is a geom(:t-

rical measure: M I I belongs, as a concept, in the field of integral geometry,

or the study of "geometric probabilities". This is a branch of mathematics

closely related to integration and to measure theory, and also to statistical

mechanics. In geodesy, this type of idea Is relatively new (Kaula, 1959),

Moritz (1965), but it has been used already extensively enough to show its

considerable worth.

From expressions (1. 10) and (1. 11), the covariance and the power spec-

trum are functions of each other. Since either of them, and the sampling

grid, define matrices C , C and C , in expression (2. 24), it foliows that

a statement on a2 3 is, somehow, also a statement on the performance A F

for all the functions that have the same power spectrum that determines the

diagonal elements of C . To put this more precisely, consider a function f, (e,.)
having the given power spectrum. If Cn. were estimated for fI and

also, at least ideally, for all its rotations, then the mean square of the sampl-
ing error e, in Ca for all this functions would be, by definition of M j j,

the measure (., . If a second function fa(perhaps not a rotation of f ) and

all its rotations were then analysed in the same way, the average of e.p for

all these functions would be, once more, a, ' 0 as long as f.2 has the same

spectrum as f . Moreover, the average of e P for f , , and their ro-

tations puttogether, would also be u?0 . In fact, if we had a finite set of

functions f, , f2 , . . . f, , with arbitrary n , all with the same power spec-

trum (or covariance), then e2P would average o, , for all the fi and their
rotations.

It appears, from the preceeding discussion, that one could take a simple

step and say Ilar2 is the mean of the sampling error squared of the estima-

tor = z , over all possible functions with the given power spectrum."

Unfortunately, as mentioned in the introduction, the sphere is a rather

wicked surface. There is a theorem by Lauritzen (1973) that states the im-

possibility of having the same average cuy _ for all functions as for every

function, when the distribution of the ensemblehappens to be gaussian. Moritz
(1978) has endeavoured to show that this is no problem if the ensemble of functions
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is not gaussian, but using his conclusions here would force the introductin

of a rather strange requirement of "non-gaussness" on the ensemble of the

signals analysed that is best left out, if possible.

Perhaps there is a way out in going back to the idea of a finite set of fune-

tias f, whee the problem does not cxlst, by saying:

"the error measur a ,, , for a certain estimator and a curtain type of

signal power spectrum, is the average of the square of the sampling error in

for all functions with the given power spectrum EVER TO BE ANLYSIYD
with that (:tima:tor, and for all their rotations'".

After all, accuracy is what geodesists are always interested in, not
perfection.

2.6 Simple Formulas for Area Means

The numerical studies of section 3 concentrate in area mean type for-

mulas, because area means are preferred for collating irormation,

particularly on a global basis, at present. The formulas to be studied here

and in that section can be divided into "simple" and "optimal". The name

"simple" is given here to expressions of the type

A O N- 2N-2 -

C. n 1i J C Y(eX)do, (2. 27 )5
= 0 

3=0 fJ( a

where 1L, in a scale factor affecting the nth harmonic as a whole. Ex-

pressions of this type have been developpd more or less Intutitively, along

the lines of the following reasoning:

If the signal were constant on each block, it will equal its mean value

there, and the coefficients of such a fucntion would be precisely

-1 N-1 (0,X) dr (2.2s)
1=0 = j=oJ j a

according to (1. 4). In general, most signals arc not equal to their mean value

over whole blocks, so the expression would not be exact. In most cases,

the signal would have fluctations in each block, and it would be less smooth

than a function that is constant over each block, so using the formula above

with T jl as data may result in the C of a smoothed function. As a refinement,

one could try to do.smooth the C • If the blocks were circular, the relation-

ship between "true" and "smooth" -U.Y would be
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Cut (2.29)

where fl is known as the Pellinen smoothing factor of degree n

The relationship between An and the radius of the circular blocks is given in

paragraph (4.3). For small blocks, experience shows that there is little

difference between the area meansof geodetic data on circular or on square

blocks, so the error is small if one assumes that they are the same; in

such case the modified expression
A ofN-1 2N-1 l

^ a. E 1"* 1T..(0,X) d =  (2.30)C am 4rrgn E~ -- Ol

could be used; in practice, this is only an approximation, though a good one,

as showed by Katsambalos (1979), who tested this expression extensively.

In addition to (2.28) and (2.30), Lowes (1978) has proposed using

A 1 N-1 QtN-1 (2.31)4 TT4 6: E f ~ x O
1=0 3=0 0 x1i

to estimate the harmonic coefficients. All these expressions have the prop-

erty that, because -Y 1,an (E) c;jf I~x j f, f(0,X Y(0,X) d o
as At -0 (or Np -- ), it is true that the error e,p = C=- C0 -_ 0 with

Ni - ¢o; in other words: e5 p is properly called a sampling error in the sense

given to this term in paragraph (2.3).

Comparing (2. 28), (2.30), and (2. 31) it is easy to see that they all belong

to a class of expressionsofthe form (2.27), with -T = , and

respectively.

The scaling factor A. can also be regarded as a de-smoothing factor, if one
wishes to retain the intuitive meaning of these formulas. in tie notation of para.-

graph (2.2), these expressions can be written, according to (2.27), as

= A.(h )Tz (2.32)

with -inh

Replacing (2.32) in the definition of the sampling error measure, (2. 23),
and adding with respect to m and a to obtain the total error in the nth harmonic:

I an

-34 -n (X a.' 2..u...n +
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(where c ,a is a row of C,). This is the sum of ccrtain diagonal cle-
mi-er' of E. , according to (2. 24), when the estimator has thc form (2. 27).
Clearly, (2. 33) is a qwtcuratic function of the scalar pz , and as such it can
have eith(.r a maximum or a minimum. If C is pos-itive definite, it must be a
a minimum. Findinc the corresponding value of p, is the same as finding

the formula of type (2. 27) that has the smallest sampling error per harmonic

for signals with the covariance (power spectrum) specified bly C' . In ad-
dition to the sampliug error, the mieasure of the propagated noise can be added
to obtain

PU - . C
T  

r

aX=O . O 0 --0

- U Tw (2.34)

V O M = .n m (C ,.. D ) h m

This is also quadratic and has a minimum, and finding the optimum A, is
the subject of the next paragraph.

2.7 Optimum de-Smoothing Factors

The coefficients of gl4 and i , in (2. 33) and (2. :4) are both rep 1

scalars, and so is the independent term a, . The vpr -3si, ns rep,,es-n,
parabolas, and because both C,, and D are positive, if the firther (and

likely) assumption is made that they are also definite, then Y- -T 0
" " 7A- _ -~

and the parabola has a minimum where A,, satisfies the condition

2 O, h +

r 1

i.e., at T 01 (2h3(Y
A, 4 n (2.35)

or at

An T (2.36)

(h) + D) h.,I

for the total error (2. 34).

Expressions (2.2S), (2.30), (2.31), and (2.36) will be studied further,

by means of computed ea'maples, in section 3.
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2.8 Least Squares Collocation

In the notation of Paragraph (2.2), optimizing pa is the same as ob-
taining the optimal vectors f a of the form

Ln= An ha

for the estimator

A

c = Fm

where m=z+ n, and the L% are the rows of F. If no restriction is

placed on the form the rows of F can take, then a reasoning similar to
that in thewreceeding paragraph leads to the best possible linear estimator

for the 6,. .

Considering the total measure of error for 0 n tN :

crg ~ ~ ~ Y -- 2. E o', fa +_to.,,

0 2 0 S =35= 0 O f= o W O 2 0 ( 2 . 3 7 )
I N - ' . C

a_ _OU---O

it is not difficult to see that, because all a . are non-negative, finding the
F that minimizes their sum is the same as finding the F that minimizes
them individually. The sum of the mean squared errors of all coefficients is
the trace of the error matrix ET of (2.26):

ef E an1 =tr ET]

a=On=O =0

To obtain the condition for a minimum, one must differentiate (2.37) so,
according to (2.26),

I E] -Ca + (Cz, + D) FT (2.38)

as found using well-known matrix analysis formulas.

From this follows that

F = Cat (C23 + D) - 1 (2.39)

is the F that minimizes (2.37), provided that (C,, + D) Is positive definite.

As already explained, both matrices are always positive and their sum is
usually definite. The expression for the optimal estimator for C. Is

CM z (Css + D) 1 m (2.40)
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where J,)' Is the row of the optimal estimator matrix F corresponding to

6nm

The use of expression (2.40) Is, in brief, least squares collocation

applied to spherical harmonic analysis.

When the optimal F is used, the error matrix becomes, according

to (2.26) and (2.39),

ET = C -Cox (Cgs + D)-' Cr,  (2.41)

and the total error measure is the trace of this ImtrLx: by definition, the

smallest for all possible F.

Clearly, whether one is interested n. estimating coefficients or in
determining the likely accuracy of such estimates,, using expressions (2.40)

or (2. 41) require a knowledge of either (C., + D - ' (inversion) or, at least,

of C,z (C, g + D)-1 (solution). Because the matrix (C,, + D) has dimension

D; x N. , obtaining either requi-e s, by usual linear algebra methods, O(N3)(or O(N 6)),op
e r a t io ns . in the case of a 10 x V grid, N. = 64800, so, at some

200000 products ad sums (double precision) per second, a modem computer

like the one at OSU would need about one century to obtain all &, to degree

and order 180 from data on such a grid. Fortunately, as explained in para-

graph (2.9), If the covarlance functions of signal and noise both satisfy certain
condit tons, and if A X. Is constant for the whole grid, then both Cs, and D
(consequently their sum) canbe inverted in much fewer operations than by con-

ventional methods, because they possess a particularly strong structure. More-

over, the optimal estimator C" _,,) _n turns out to be of the form (1.24)

or (1.7), depending on the kind of data m, so, under rather general conditions,

the optimal estimator of C.. is also the best quadratures type formula for

point data or for area means, as the case .may be.

The conditions mentioned above are satisfied, for instance, when both
the geometrlcal covariance cov(f(1 , f(Q)) and the stochastic covariance

E Ints n z (P (91, X) , Q = xA) are Isotropi,I. e., function only of
the separation between the points P and Q. By definition of M Tj, the

geometrical covariance obtained using this operator Is isotropic, so C,, has

the desired structure. A common assumption regarding good Instruments

is that the n1j are uncorrelated, so D Is diagonal. If the errors are sta-

t!.. so their variances are constant, or at least constant along parallels,

then matrix D has the required structure, and inverting C,, + D can be

greatly expedited. In praotice, however, this is not likely to be the case,
as the number and qcraltty of measurements will vary from region to region,

resulting indifferent at both globally and along parallels. As a result, the
best linear estimator in terms of the chosen error measure will not have the
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quadratures form, and it will be very difficult to compute whente number of

data values Is very large. Nevertheless, as shown in section 3, quadrature

formulas cm give reasonable estimates of the with noisy data sets where

the noise Is uneven, so it would be interesting to get the best quadrature for-

mula for a particular combination of signal and noise, provided that such a

formula can be obtained without undue effort.

2.9 The Best Quadrature Formula for non-Uniform, Uncorrelated Noise

If the variance of the noise fluctuates along parallels, matrix D , though

diagonal, Is such that the minimization of the error measure (2.37)

2 = tr CC -2C.,F + F (C z + D ) F (D) (2.42)

(see also (2.26))
can be very difficult with large N, , and the optimal estimator is not of the

quadrature type. Introducing a "modified noise matrix" L , also diagonal
and where the diagonal elements are

= (with k =2N I+J) (2.43)

the following modified error measure §(L) can be defined:

4(L) =tr [C-2C3 F T +F(C.+L) F)T (2.44)

The optimal estimator for this measure Is easy to obtain, and is of the

quadratres type.

The parts of § (D) and 4 (L) that measure the sampling errors are
identical, so any difference between the overall measures must come from

the "noise propagation" parts tr IF D FT] and tr IFL FT I . If the estimator

(not necessarily optimal) happens to be of the quadratures type, i.e., for
point data:

60 N-1 ~Cosffi f x1( fim  mJa;L [f(iel,Xj) + nil (2.45)

1=0 =0

then the propagated noise is, assumming the n j, to be uncorrelated,

f~~ (x.Y)

N(D) = -IFD.= I A N-1 a - N-I

0 W 0 L=0o = 0 =0 (2.46)

The "modfied noiseV on the other hand, Is, according to (2. 43) and (2.44):
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4 L) =tr [FLF'] , (x') 2 [ (CosdmjAX+ sin2 mjAX,)•

o=0 
O 1=0 =

N-1 * 8=at Crtt2()~ (2.47)

2NJ=O =Og=O L =-O

Comaring the expressions for (FLF T ] and for (FDF t ] , It follows

that they are identical, and since the "sampling" parts are also identical in

(2.42) and (2.44), then

trC -2C FT +F(C,, +L)F] = tr[C -2C.,Fe + F (C,, +D) F
(2.48)

This means that the actual and the modified error measures must

coincide if the estimator is of the quadratures type.

Replacing D with L in equation (2. 38) and solving for the estimator

matrix, one gets

FL = Cz(Cz+L)"  (2.49)

where FL Is the estimator matrix that minimizes the modified error measure

(2. 44). Because of the way L has been defined, this estimator Is of the

quadratures type, so the modified and the actual error measures coincide, as

just shown.

Assume that there is an estimator, different from A = FL m but also

of the quadraturet type, the estimator matrix of which is F, and such that:

tr (C - 2Ccz FT + F(C,, + D)FT] <tr [C - 2C., FJ + FL(CZ + D) FJ]

Then, according to (2.48),

tr [C-2C..i"+F(Cz+L) le] <tr [C -2C. F[+F(C,, +L) FL

(2.50)

which contradicts the fact that FL minimizes the modified error measure.

Therefore, (2. 50) cannot be trie, and FL must be the matrix of the optimal

guadratures type estimator that minimizes the actual error measure a.

The optimal quadratures type estimator, as the name Indicates, is the

best of a certain kind, not the absolute best. The best estimator, when no

conditions as to its form are imposed, will not be(in general) of tne quadra-

tures type, unless D happens to have the "right form" specified before,

I.e., unless D=L.

When D = L, the optimal estimator and the best quadrature formula

coincide. Regardless of this, the quadrature formula obtained from (2.49)

is the best, so its error measure is a lower bound for those of all other

quadratures formulas with the given signal and noise.
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When D i L, while minimizing the sum of all error variances a 2 , i.e.,

tr (ET), the optimal quadrature formula does not minimize each individual

variance . To show this, consider the propagated noise measure for

Ca7 when the ni, are uncorrelated (to simplify the argument):

N-1 2 Li 2cs N-i 
2T-r

I1 (X) no cshi mjtAo (XJ2[~O + t_} 2mj A), oPJ1=-0 3=0 1=O 1-=0l I-

The modified error measure, minimized by the formula, is

NK 2-1 ONIr Mi ZN-i N-1 2N-1

E (Xflu)2 f7 jcOS EmA~ ah Z (xI') E r'
1=O 5-=0 SiO i-O 3=0

Clearly, both are not the same, unless

T oSj 2mjAX ro'2 = 0

which is not likely to be fulfilled for arbitrary oi . However, looking at the

reasoning which leads to (2.47), one can see that the sums of the modified and

the actual error measures for pairs (Ca., ) and also for the individual C,
are already identical. From this follows that the variance of the error per degree

aa 2 (2.51)

and per average coefficient per degree:

2

2a + 1 (2.52)

are also identical to the modified measure. So, while nothing can be

predicated of individual coefficients, the error for each harmonic as a whole

and that for the "average coefficient" in it are going to be minimum. By Parseval's

identity (1. 12), if the coefficients were used to calculate, say, geoidal undula-
tions, the mean squared error of the computed geoid, globally, would be tlv same

as the sum of the error squared of the normalized coefficients, so individual

coefficient variances are of little interest in this and similar applications, while

the ac,, are very important. This shows that the optimal quadratures formula

when D # L can be just as useful as when D= L.

The discussion In this paragraph has been centered on point value type

formulas; the conclusions apply equally well to area nrean type formulas, the

extension of the reasoning being quite straightforward.

2. 10 The Structure of the Covarilance Matrix and its Consequences

The following discussion summarizes some results presented by this
author in a previous report (Colombo, 1979a). In order to be able to calculate

the variance of the error , with expressions such as (2.26), and also to be

able to obtain the optimal estimator according to collocation theory, it is neces-

sary to create and invert the N. x N, matrix (C,, + D), which can be very
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large if the number of data N r is large. In the case of regularly sampled data
this two problems can be greatly simplified if the covariances and the grid
has certain symmetries. The most Important of these are: (a) the sampling
In longitude must be at constant Interval. and along parallels (or parallel bands,
i.e., rows of blocks); (b) for given i and p the cov, rlances cov (u(Ot , X,),

v(p AxQ)) (or cov(iij, Vp,)) and En, n4, must deyendonly on Ij-ql . it is also very advantageous, though not essential, that the
grid be symmetrical with respect to the Equator.

In what follows Nr is the number of parallels and NI the number of meridians

(Nr = N, NJ = 2N when the grid is equal angular).

Under this set of conditions, If the data vector m Is ordered according

to (2.8) and is subdivided into partitions nil, where

T1 = [iomil . . . m 1 N11
T

includes all data values In the same parallel or row of blocks, then the
matrix (C, , + D) can be partitioned Into N blocks C "', each of dimens ion
NI x NI , containing the covariances between the data along rows i and p.

Each block C1 P has a Toeplitz circulant structure, because its elements
satisfy the relationships

lP lp CIp = lp

cSq - $ 5+q+1 c~ o = Cso .-1 Nr- when J > 0

which follow from the fact that parallels are circular, and that the covariance
between points in parallels I and p is a function of Ij-ql . Moreover,
the elements in the first row or column (the C' p are symmetrical) also

satisfy

= co when q > 0

Therefore, the first row can be represented exactly as a sum of 12N1 + 1
cosines:

1

= ap cos m.- q (2.53)

The a p form the discrete Fourier transform of the sequence
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if

H= Ha.' (2.54)

where H = {NI if mO 0

NilIf m 0

If R(m) is the matrix where each 'lip" element equals r 3 , then (as

explained by Colombo,(op. cit. )) Inverting (C z + D) is equivalent to in-

verting the Nr x Nr matrices R(m) for m = 0, 1, . . iN1

Isotropic covariances satisfy the "1j - qJ condition" mentioned above, so,

for fixed & )L, the covarlance matrix always has this regular structure.

Let Cr~cs

= co In' 0OAX, 1C"I I mAX, coa * i af(N1-1) AXI'c a ini 'ISinJ si

A vector of the type

v , v. T • . ._.c r-i (2.55)

shall be called, for convenience, a vector "of frequency m".

Under the conditions described before all the eigenvectors of (C,+ D)
are vectors of frequency m, with m = 0, 1, . . . JNI . Moreover, if

Xt, (t=1, 2,. . . Nr) is oneofthe Nr eigenvaluesof R(m), and if

its a N _IT.. tm= [ 8o" •SNr-1l

Is the corresponding eigenvector of R(m), then Xt, is also an eigenvalue of
(C,2 + D), and the pair

st, S. 2.01T t T
it = L* * * * 2N..

the two corresponding elgenvectors of (C,, + D). Therefore, to decompose the

large covariance matrix In elgenvectors and eigenvalues is equivalent to
decomposing the j NI + 1 matrices R(m) , and this is why the latter are rele-

vant to the inversion of (C,, + D): the elgenvalues of the Inverse are the

reciprocal of the X. , while Its elgenvectors are the same as the s t.. Further,

this implies that (Cls +D) - l has the same structure as the covariance matrix,

I.e., it consists of Toeplitz-circulant blocks.

Since (C,, + D) - 1 has elgenvectors of frequency m , then, If h is
a linear combination of vectors of a given frequency, z = (C + D)--h Is

also a linear combination of vectors of that frequency. In the case of point

data, from expression (2.6) follows that the cross-covariances vector in

(2.40) Is
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_ .4 2n -i ] 1),,- (cos O) P . (cos ONr.1) c ]

m . . kY r _cT 
(2 . 5 6)

=[k 0 c,, k. . c.

Define n l

and

Then , (C z + D)-1c ,, must be of the form

[ YM 0T UYTT(.7
_ =*c_ .. XNr- !.l] (2.57)

where, according to Colombo (ibid).

_ 11(m) ' k (2.58)

Similarly, for area means,

2 o+619 T
[.. f (cos0) sinO d d(IX...

- (2n+1)A A  01 J

2 Ot Ar~ 0~~) (2.59)
or. J .V P(COS~snd A. 0.M

(2n + 1) A 1 . "si3d °sd (T c A(m I ."

(where b Is is supposed to be independent of j according to expressions (1. 7)

and (2.7), so

= . . (A(m) _ + TB(m) j .
X I \c B[i ( m ) -

In conclusion, the optimal estbnator for point values has the form
C '- - es

c in mjAXnil3  (2.60)
-0 =0

while that for area means is of the type

-__.m cosmjAX + sB i) sinmjAX) m1,
~) 1 XO- i3( A (2inj

so they are both o t,cu _ ve_ kind, as anticipated in the preceeding para-
graph.

2. 11 Setting up and hiverinjr the Cova riance Matrix

Each block C'P of (C , + D is wholly determined by the 1st -INI + 1

elementLs in its fir t row; if the number of operations required to coniputc any
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element of C is k , then only (INl + 1) k operations are needed per block,

instead of Nlik, as would be the case if C 1P did not have the Toeplitz structure

described previously. This Is a reduction of thenumber of operations by a

factor of 2N1, and clearly applies not only to C l but to the whole covariance

matrix as well. So (C,,, + D) can be set up about 2N1 times taster than an

ordinary matrix of the same size.

The total number of elements to be computed is jN1 x Nr , or N3 in the
case of equal angular grids. If the grid is a fine one, this can still be a very

large number of covariances. This is particularly serious in the case of area

means, because the area mean covariances are given by expressions of the form

cov 61 1 U;.) = M {fdafudaj = fJf M {u(eX) u(6e' X1)) dada'

a1 3  (2. 62)

= L f ;qcov(u(OX), u(e,,5!)) da(da'

involving double area integrals of the covariance function. Numerical quad-

ratures methods, such as the one described in paragraph (4.3), have been

used in the past to obtain cov(I,, Upq) (see, for example, Rapp (1977)).

These methods take so much time in the case of fine equal angular grids
for Instance, that it may be practically impossible to use them to set up the

covariance matrix of a global data set, in spite of the reduction by 2N1 in
the number of operations. Fortunately, the coefficients a in the Fourier
expansion of the elements

C = cov(ff, T 4 ) + E {n snrq

(expression (2.53)) can be obtained by means of a series expansica (truncated
to a conveniently high degree N, 1 ) according to express ion (4. 14) in paragraph

(4. 1). These coeffic lents are

a'.[ I:: 4.2rhI, Ii,8&+UV + I ,2N h-1, I,Nh-ap F(m)

-0 n=U h =1 n=2

where O1+ e
i ,' =I (cose) sinede ( 1V + AX(cos e, cos(01 +Ae)) (2.63)

AX2 if m=0
F(m) = (2m " ) (1 -cosmAX) and (2h+1) N2NLI

A similar reasoning to that for area means leads to an analogous formula for
point values:

SNla N X

a:= [ (PZ NU ( ? ,2N h+.(cslP *(COS 69)) +ENz (PflaNh, (COS 61)
=0 "=M ,, ?= , =" (2.64)

2n+ 1
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The Importance of (% . 63) and (2. 64) is that, if the signal and noise are such
that the nmunber of terms in the summations is not too large (N , , , is a
"manageable" numberl, thaey allcw the direct determination of the elements

of the R(m) matrices according to (2.54). In this way, the R(m) can be

created without first having to set up the whole covariance matrix and then to

obtain the discrete Fourier transform c the first -ow of each C'; . This

advantage further increases in the case when the grid is symmetrical with
respect to the equator, a situation that appiies to all equal angular grids.

Then each R(m) is persymmetrical, I.e., symmetrical with respect both
to the main diagona and the main antidlagonal, provided D is also persym-

metrical (for instance, unifor-n noise). This means that only approximately

"4"r :elements in each R(m) are different and have to be calculated indi-

v idually.

Having set up the R(m) without eirst creating the covarianct; matrix,
the Inverse of (Z Z + D) can be found by the equivalent operation of obtaining

all R1m)-F. The number of operations in a matrix Inversion is usually

O(dimension'), or O(N3% for a covarlance matrix of an equal angular data

set. The number of operations per R(m) i3 0(N,), or O(N 3 ) for the equal

angular grid. in fact, as explained in (Colombo, 1979a), the inversion of a

persymmetrical R(m) Is equivalent to that of two matrices of half its dimen-

sion, one related to vectors of frequency m of the cosine type, and the other

to vectors of the same frequency of the sine type. This further reduces calcu-

lation by a !actor of i. With O(N) R(m) matrices to be Inverted,

the tDotal comes to O(N4) operations, or O(Na) times less than for the in-
version of (C , , + D) by ordinary techniques (Choleskii factorization, Gauss-

Jordan elimination, etc.). O(Nd) is also the order of the number of data

points :a the grid, so in the case of a 10 x 10 equal angu!ar grid with 64800

elements the reduction in computing time is 0(64800).

The numerical examples in section 3 all involve 50 x 5C data sets with

2592 elements, so (C,, + D) Is of dimension 2592. Setting up and inverting

such a matrix Is a large exercise, even with a modern digital computer suah

as the AMDHAL 470 at Ohio State, unless the matrix has a strong structure
that can be exploited to simplify the work. As such is indeed the case hre,

the subroutine NORMAL described in Appendix 73 has been able to do the .'hole

setting up and inversion in only 20 seconds.

The inversion oC (C 2, + D) requires O(dlmension) operations (0(N))
instead of O(dimtns on 3 ) because of he Toeplitz circulant structure of the

C11 blocks. This "O(divnenslon) '" property is common to other algorithms

for inverting Toeplitz-type matrices, such as the famous Trench algorithm

(Trench, 1965), and the Justice algorithm (Justice, 1977), the first for data

sampled on the real line and the second for data sampled on the plane, So,
in spite of Its "rather wicked" nature, the sphere allows this very convenient

property of regular grids to apply also on its surface. in fact, not only on the
3:here, but ?.sc on any oody of revolutior" (cone, oblate and prolate spheroid,

hyperboloids and paraboloid.- of revolutlon, etc.,) rer-'lar sampling and
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covariances that satisfy the " Ij-qi condition" will result in covariance matrices

of the type described here, and this is also true of other matrices based on
symmetrical kernels, such as the normal matrices of point mass models,

when the points belong to a regular grid, etc. Finally, the optimal estimator

a, to _t m for this type of covarlance matrix is, as shown in the previous

paragraph, of the quadratures type, so the optimal can be obtained using
the same efficient algorithms described in paragraphs (1. 5)-(l. 7). Altogether,
the powerful structure of the covariance matrix for regular global data sets

is most remarkable. One of its many advantageous features is that, because

the creation and invertion of each R(m) can be done quite independently from

those of the others, the algorithms developed for this type of matrices are

eminently suited for implementation In parallel processing computers.

The separation of the algorithm according to orders also means that,
although setting up and inverting all the R(m) may require a large number of

operations, only a fraction of those actually correspond to the recovery of the

u of any given m, so the numerical errors due to rounding or truncation

are not likely to accumulate to any great extent in the results.

2.12 Optimal Formulas for non-Uniform, Correlated Noise

Irregular noise, already discussed in paragraph (2.9), may be due not
only to the varying quality of the measurements, but also to the way the data
is "grided", L e., the way the value attributed to a node (or block) ij is

obtained by interpolation from actual measurements nearby, as usually data is
not sampled regularly on a global basis. As the number, disposition, and

quality of the measurements used will vary from point to point in the grid, so
will the accuracy of the interpolated values. Furthermore, even if the measure-

ments themselves are not correlated, the grided values may be correlated

because some of the data may be used for more than one interpolated value.
This brings about the question of what can be done when D is neitherdiagonal,
nor are the D r blocks In D , corresponding to the Cl blocks in Cz, all

Toeplitz circulant. The answer is a simple extension ct the results already

obtained for the uncorrelated case.

When the noise Is both non-stationary and correlated, replacing the co-

variances E mni n., I with

at, 1hI -1 j (E { 1 n. }+ E (n1, 3 )] S. whcre h= j - s,

will result in a modified "noise matrix" L where the L (corresponding to
the D' and the C t ) will be all Toeplitz circulant, because the "covariance",

o'rlhi satisfies the condition that, for a given i and r, it is a function of jj-sj
alone. The optimal estimator for the modified measure

§(L)ftr[C - 2C., F' + F(C,3 + L) F)
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The importance of ('-. 63) and (2. 64) ts that, Lf the signal and noise are such

that the namzber of terms in the summations is not too large (N,, , is a

"manageable" number), thaey allow the direct determination of the elements

of the R(m) ma t rices according to (2.54). In this way, the R(m) can be

created w;thout first having to set up the whole covariance matrix and then to

obtain the discrete Fourier transform rf the first row of each C . This

advantage further increases in the case when the grid is symmetrical with

respect to the equator, a situation that applies to all equal angular grids.

Then each R(m) is persymmetrlcal, 1. e., symmetrical with respect both

to the main diagonal and the main antidiagonal, provided D is also persyrn-

metrical (for instance, unifor-n noise). This means that only approximately

-- N elements in each R(m) are different and have to be calculated Lndi'-

vidually.

Having set up the R(m) without first creating the covariaict matrix,

the inverse of (C , + D) can be found by the equivalent operation of obtaining

all Rim- ' . The number of operations in a matrix inversion is usually

O(dimension3 ), or O(Ne) for a covarlance matrix of an equal angular data

set. The number of operations per R(m) i3 O(N ), or O(N 3 for the equal

angular grid. In fact, as explained in (Cololnbo, 1979a), the Inversion of a

persymmetrical R(m) is equivalent to that of two matrices of half its dimen-

sion, one related to vectors of frequency m of the cosine type, and the other

to vectors of the same frequency of the sine type. This further reduces calcu-

lation by a factor of 4j. With O(N) R(m) matrices to be inverted,

the total comes to O(N4) operations, or O(Na) times less than for the in-

version of (C,, + D) by ordinary techniques (Choleskii factorization, Gauss-

Jordan elimination, etc.). O(N;) is also the order of the number of data

points in the grid, so In the case of a 10 x 10 equal angu!ar grid with 64800

elements the reduction in computing time Is 0(64800).

The numerical examples In section 3 all involve 50 x 5c data sets with

2592 elements, so (Cz + D) is of dimension 2592. Setting up and inverting

such a matrix is a large exercise, even with a modern digital computer such
as the AMDHAL 470 at Ohio State, unless the matrix has a strong structure

that can be exploited to simplify the work. As such is indeed the case hcre,

the .ubroutine NORMAL described in Appendix'i has been able to do the -hole

setting up and inversion in only 20 seconds.

The inversion of (C, + D) requires O(dlmensioC-) operations (0(N"))

instead of O(dimttrsion 3 ) because of 6he Toeplltz circulant structure of the

C" blocks. This "O(dinension 2 )" property is common to other algorithrns
for Inverting Toeplitz-type matrices, such as the famous Trench algorithm

(Trench, 1965), and the Justice algorithm (Justice, 1977), the first for data

sampled on the real line and the second for data sampled on the plane, So,

in spite of Its "rather wicked" nature, the sphere allows this very convenJent

property of regular grids to apply also on its surface. in fact, not only on the

3 )here, but P.asc on any :oody of revolutionr (cone, oblate and prolate soherold,

hyperbolodis .ind parabo'oId. of revolution, etc.,) rei-J1ar sampling ind
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covariances that satisfy the " Ij-ql condition" will result in covariance matrices

of the type described here, and this is also true of other matrices based on

symmetrical kernels, such as the normal matrices of point mass models,
when the points belong to a regular grid, etc. Finally, the optimal estimator

(z m for this type of covariance matrix is, as shown in the previous

paragraph, of the quadratures type, so the optimal . can be obtained using

the same efficient algorithms described in paragraphs (1. 5)-(1.7). Altogether,

the powerful structure of the covariance matrix for regular global data sets

is most remarkable. One of its many advantageous features is that, because

the creation and nvertion of each R(m) can be done quite independently from

those of the others, the algorithms developed for this type of matrices are

eminently suited for implementation in parallel processing computers.

The separation of the algorithm according to orders also means that,

although setting up and inverting all the R(m) may require a large number of

operations, only a fraction of those actually correspond to the recovery of the

! of any given m, so the numerical errors due to rounding or truncation

are not likely to accumulate to any great extent in the results.

2.12 Optimal Formulas for non-Uniform, Correlated Noise

Irregular noise, already discussed in paragraph (2.9), may be due not

only to the varying quality of the measurements, but also to the way the data
is "grided", L e., the way the value attributed to a node (or block) ij is

obtained by interpolation from actual measurements nearby, as usually data is

not sampled regularly on a global basis. As the number, disposition, and

quality of the measurements used will vary from point to point in the grid, so

will the accuracy of the interpolated values. Furthermore, even if the measure-

ments themselves are not correlated, the grided values may be correlated

because some of the data may be used for more than one interpolated value.

This brings about the question of what can be done when D is neitherdlagonal,

nor are the Dlr blocks In D, corresponding to the Ci blocks in C,, all

Toeplitz circulant. The answer is a simple extension d the results already

obtained for the uncorrelated case.

When the noise Is both non-stationary and correlated, replacing the co-

variances E Inij n., I with

f r =I Lj (E (Utj ) + E (nij n,, ) ,where h-j -s,

will result In a modified "noise matrix" L where the L (corresponding to

the D r and the Cr) will be all Toeplitz circulant, because the "covariance"

a rIhl satisfies the condition that, for a given i and r, it is a function of lj-si

alone. The optimal estimator for the modified measure

4(L)= tr[C - 2C,, FT + F(C,, + L) F1
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must be of the quadratures type, because of the structure of L . To show

that is is also the best estimator of this kind in terms of the original norm

(D)= tr[ C - 2Cc,, FT + F (C, , + D) ElI

the proof will proceed much as in the case of paragraph (2.9).

The propagated error measure for 6' is

mCos yX j, jcosl

0= -0 1 22& E X XI"
a [ E f -x x ' , . m JA XnI,. ssLX n.,

-- 0 ----0 =0 8 0

so, for CA, and , combined,

2 {I ZoI £" I cosr (j-s) AX E ,,, .
O r - O  $=0 =0 r=Os=O

C D= tr [FDo 3=o =o =o .
thus N. n N-1. N-I ZN-1 Q-I

§1()= tr [IDF T  =~ , X" ~ Cos mo-s)A Ejnit,,nre

1- a N-1 N-I N-i , =N-I.-

£xX X £cosmhA (EJ 'a).4 k{:n.~
n=00 =o r= =O 1=0 0

ReplacIng both E tnII n, and E {fnjn,, -.} in the last expression with
r b( Is the same as replacing D with L , so

L) = tr [FLF] =E E Nx - cosmhLX 2
n=o u-O t=o r0 0o h =0

N-i N- 8N-yirh

---0 =0 O - cos &  4--

because of the definition of ? ir bI. Comparing the expressions for I,? (L)
and for 4 (D) it is clear that they are identical. From this follows that the

modified e~ror measure f (L) coincides with (D) when the estimator is the

optimal estimator of the quadratures type for O(L), and that this must be the
optimal estimator of the quadratures type for 4(D) as well. The other con-

clusions arriied at in paragraph (2.9) for the incorrelated case app'y equally

well here.

2.13 Least Squares Adjustment, and Least Squares Collocation

(a) Band-Limited Signal

If there is a degree No,, above which the degree variances a.- are all

negligible or zero, then the signal can be said to be band limited, and the data
wll satisfy equations of the type
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Nrax n I _a

E E E=o =o oCn Y (81,j))+ n,, 
2.5

(the treatment here is for point values; the extension to area means is trivial)

With one equation such as (2.65) per point in the grid, the result is a system of

equations

m+v = Ac (v = -) (2.66)

where A is a N, x N, matrix (N, is the number of points in the grid,

N. the number of coefficients). The columns of A consist of elements of the

type

al, Yn. (e1,X]) (2.67)

According to the discussion in paragraph (1.3), if the grid is equal

angular, A has full rank when N,,, N. N, = N 2 and
the upper limit in the summations is N - 1 in what follows.

Least squares adjustment is a method for solving for the e while mini-

mizing the propaga_ ted noise defined in paragraph (2.4). The least ,squares

solution is

_ = (A T D'A)' A T D -

GIATD~m(2.68)

where

G ATD-A (2.69)

is the Nc x Nc normal matrix, while D = Efn nIa is the same noise matrix

considered before. Clearly, the least squares estimator matrix is

Ft, = (ATD
-I A) A D -I

When the noise has zero mean (E 2 = ), the estimator of(2.68)is the best

linear unbiased estimator, because it minim izes

tr IE {F nnT F I = tr [FDFr]

and , {F (z + )) =  
. If, in addition to all this, the probability distribution

of the noise is Gaussian, then (2. 68) corresponds to the maximum likelihood

cstimator as well. In many scientific applications the noise has approxinntely

zero mean and near-Gaussian distribution, while D is known reasonably well;
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for this reason, methods based on expression (2.68) are used quite often. The

linearity of the resulting estimators is helpful, because this avoids the use of

methods based on non-linear formulas that are usually difficult both from a

theoretical and from a practical point of view. The variances of the estimates

are given by the corresponding diagonal elements of the a posteriorl variance-

covariance matrix

Therefore, to obtain both the estimates and their variances it is necessary to

know (I" . Sometimes, because of the nature of A and D, G can be seriously

III-conditioned, the inversion suffering from strong numerical Instabilities. To

reduce this problem, a simple device known as regularization is often used (see,

for instance, Tlkhonov and Arsenin, 1977). Generally speaking, regularization

is the introduction of a slight change In a problem, so the solution virtually

rrmains the same, but the modified problem has better numerical properties.

In least squares methods regularization usually implies adding a small positive

definite matrix K(diagonal, as a rule) to G before attempting to invert it.

The regularized optimal estimator would be

c = + K) A'D-'rn (2.70)

The inverse of the covariance matrix of the harmonic coefficients C is a pos-
itive, diagonal matrix which could be used to regularize the normal matrix:

= (AD'A + C- 1) A'D' m (2.71)

It is easy to see that this express Ion minimizes the quadratic form

Q = cC-c + vrD-1v (2.72)

subject to the constraint

m = Ac + v (2.73)

Moreover, (2.72) is the equivalent of the least squares collocation error measure
when then signal Is band-limited (Moritz, (1980)). This idea has been used, among

others, by Schwarz (1975) for the determination of low degree zonal coefficients

of the geopotential, and by Lerch et al.(19 7 9), who employed it to estabilize the

adjustment of the GEM-9 gravity field model with remarkable suocess. The

equivalence of (2.71) to the collocation estimator is true only for band-limited

signals; in the "real world" the gravity field has infinite bandwith, so (2. 71)

is no more than an approximation. The band-limited assumption is a reasonable

one, however, as the a. eventually become negligible for large n.. This is

particularly true at satellite altitudes; in any case, geodesy is a science of
wise approximations. Moritz (1980) has provided a very clear and concise

explanation of the use of collocation in general, and expression (2. 71) in parti-

cular, in spherical harmonic analysis.



An alternative derivation of (2.71) follows from the matrix equation

CAT (ACA' + D) - = (ATD' A + C-) -. ATD -  (2.4)

(see, for instance, Uotila (1978), equation (29)), which is valid for symmet-

rical ratrices, provided the Inverses or pseudoinverses of D, C , and

(AC AT + D) do exist. According to the definitions in paragraph (2.2):

C's M M2czT} = M I TA' M1E Z J = CA T (2.75)

C', = zA c Z AT =} AMqcc AT = ACAT (2.76)

Replacing CO, and C,, in the expression of the collocation estimator matrix

(2. 39) with their equivalents given by (2.75) and (2.76):

F = C., (C. + D)- =CA T (ACA+ D) "I  (2.77)
= (AT D 1 A + C-1 )-1 At T-r

according to equation (2. 74). This shows that the "regularized" estimator matrix

(AT -1 A + C-'ATD-1 is indeed the same as the collocation estimator

matrix, so (2, 71) represents an alternative form of collocation when the data

is band-limited.

(b) Infinite Bandwith

In this case the"observation equations" are
co n -o

n=O 2=0 a=O

Calling
il (2. 78a)

and

w = [w. . • w ... wNP] (k=2Ni+j) (2.78b)

then

and, regarding this exprssio as a modified observation equation, and

replacing D with D + M ww In (2.71), the linear estimator that mini-
mizes the quadratic form

'-" + V'D+ M._' w W - (.80

is

A = D M~r)" C- 'A(D+M{ } w M (281

It is easy to show, either following the lines of Moritz (1972), or going
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back once more to the matrix identifX(2.74), that expression (2.81) Ls identical

with the estimator of least squares collocation. Rigorously speaking, expres-

sion (2.81) should be used whenever o2 /0 for n > N, cvenif 0 = 0 for

n> N., , for some finite N,, > N

2.14 Ridge Regression and Least Squares Collocation

Consider once more the estimator

S=(A T ' I 1  AT D in

If there is nonoise, so m= z = Ac, and if n < N, then
A TD-4A )

(A DA) ATD'Ac = c

According to the definition given in paragraph (2.4), the sampling error of

this estimator Is zero, so the measure of this error must be also zero. if

the noise has zero mean, it follows that

E{} E E{FL~ Ft. E {A L+ nl FL.C yn

or, as It is usually said, the estimator Is unbiased. Moreover, by a simple

extension of the Gauss-Markov theorem to the case of a general symmetrical

positive matrix D (see, for Instance, Bibby and Toutenberg, 1977), F mn,
of U1 linear uWbiasedestimatos, has the least propagated error measure

trtFL. D FtLj tri(A'D"' A) , as mentioned previously.

The estimator of expression (2.77) does not, In general, give perfect

estimates of c in the abs nce of noise: it is a basedestimlior, and the

measure of the bias is tr rC - 2CzFT + FCZFT j (thistermrW can no longer

be regarded as the measure of the sampling error, as it is the presence of

C"' inside the parenthesis in (2.71) and not the sampling that brings about

this error). According to (2.39), F is the estimator that minimizes the

total error measure, so

tr {C 2 C,,FT+ F(Cz +D) FT

!g tr {C- 2C .FL. + D F1

tr {F16 DFT

if the covarance matrix Is positive definite (which only requires that all

/ 0 for 0 < n < N) then the last expression applies with'strict inequality

tr C- 2CaFT + F(C,. +D) FT <tr{ FDFi .

=tr{ (ArD-7A) -

In the ban-limite c-5's-

In the band- im ite d c as e.



Some may find this result rather su rprising: the best estimator with zero bias
is in fact worse than the biased estimator of (2. 71) ! The difficulty is only
apparent: F1, Is the best estimator with no bias; once the "no bias" con-
dition is removed, the expression above merely indicates that there is an
estimator In the larger class of the estimators that have a bias (including
those with zero bias) such that the sum of the bias and the propagated noise
Is smaller. From this, it Is clear that

tr {FDFT } < tr {(ATD ' A) (as tr {C - 2C"~ FT + FC,,FT 0

which is indeed possible when the condition C - 2 CCZFT + F C,, FT = 0
is removed. In fact, there Is nothing very new about all this: the use of
biased estimators to obtain estimates with small variances is a reasonably
well-established practice in applied statistics. In particular, the technique
known as ridge regression consists in using the biased estimator

A T -1 T
S= (X +K) X m

with a suitable choice of K (Bibby, 1972). Clearly, this expression is the
same as (2. 71) when X = A, D=I, and K=C - . With some obvious modifi-
cations suggested by (2.81), this argument can be extended to the estirna-
ion of c when n > N , so it can be said that within the scope of spherical

harmonic analysis least squares collocation is a form of ridge regression.

This brings up the question of just how realistic the error measure
is; after all the best of all possible estimators in terms of a given norm
could be a very had one for some specific problem where that norm is not
suitable. To anc.ver this question, one must start by defining the meaning of
"realistic". If one is interested in minimizing the actual error variance of
the coefficients per degree, i.e., the expression

E ~a )(i2(2n +l)-'
01= 0 M=O

which may be of interest because this corresponds to, say, the global men
suare of the error of representing thp continuous function (e, X) =.

U ,(,X) with f(e,r) Cry z(9 X),9 according

to Parseval's Identity (exp. (1.12)), then one could say that a realistic
measure Is one that gives close estimates of the actual errorvariances.

The "actual error" measure 6 2 corresponds to one of infinitely many
'bvents" over which the collocation measure Is an average. The proof of a
pudding being in the eating, the reader can judge just l:w realistic the collo-
cation measure is by looking at the numerical results in section 3, where the
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value of the measure turns out to differ only by a small percentage from the

actual variance in each one of a number of simulated "events", i.c., the

recovery of the U from"simulated data' where the ca are known random num-
bers scaled to have the des ied power spectimum.

2. 15 Structure of the Normal Matrix

The elements of the normal matrix G (in the case of point data) are

of the form

N-I N-

n),pq9 1 XI) C

. -I , =QN-I (CeO S e O qj(2 .82)
~ .(9 ,X 3)(COSj 9 1 {c } m jA X P 'Cs qjA oFe

XoP (COS 0,) PN (s0) Zosi t  inj-0 =-in

where = oP, for all 0 j < 2N (i.e., "regular" noise as defined in

paragraph 2.8). If n, m < N, then the following equations apply:

T-csimjA X. n }qjAX. 0 if or (2.83)
s= sin/q

Moreover, if the grid is symmetrical wIth respect to the Equator (as e qual

angular grids are), and if o = aN2_1_, (for instance, if crj is indepen-

dent also of i ) the relationships

9' (os , 02
O[i ] * (cos9,) =P,, (o )(-1) - aN-,.

must apply, according to par. (1.2), and from these follows
N- I

aj ' (r (cose1 ) P (cos91 ) = 0 if n-p isodd. (2.84)

In brief: if n, m < N , and the grid is regularly spaced in longitude, and

symmetrical with respect to the equator, then

g 0 if! or (2.85)

n -p is odd

if neither of the conditions listed above apply, then g C&O may or may not

be zero. if the coefficients E., are ordered in c so that all those of the

same m are grouped together, and for a given m all -C, arc separated

rrom all C,. , and further more all C?. with n - m even are separated from

all those with n - m odd, then the normal matrix becomes arranged in such a
way that all potentiolly non-zero elements (i. e., not satisfying (2. 85)) are also

grouped together formin a zeries of diagonal block, G3  , where 6 signals

-53-



the parity of n-p. Each one of these diagonal blocks is made

exclusively of one of the following types of elements

to" In-p even (8=0)
1,1

g.,p n-p odd (6=1)

the rid 1 not ymmeicawith respe t to the equator, groups of type

and 6 , or =0 ) and =) become included into larger non-
zero blocks, as t)ere are more non-zero elements in that case. However,
here the discussion will cover only the symn-etrical case.

The largest blocks are G "o , and their dimension is N2;

the smallest blocks have d imens ion 1 x 1 , for example

The inverse of any block-diagonal matrix such as G is another block-
diagonal matrix made up of the ingerse of tlv blocks of G . There are
4N - 2 diagonal blocks G,' In G, and as many in G71.

The eigenvalues of G are those of the diagonal blocks, and the
eigenvectors of G , those of the same blocks "expanded" with zeroes at both
ends, so as to reach the dimension N. of G.

The estimates' vector

A A 1D_

can be partitioned in the same way as c , each partition aI including all
coefficients' estimates of the same m , a, and parity 6 of n - m

A,4 6 o61 a. 1

= (G, ) A, m (2.86)

where A, is a(N - m) x NP matrix with rows that are NP - vectors

of the type

- fcos ma, = [... P,,(cos9j) Isin " A ... (2.87)

oe,6 1 a,6

(n-rm even if 6= , odd if 6= 1) Sothe rows of (C. ) A, are
linear combinations of vectors of the same frequency m and, therefore, also

vectors of the same frequency:

rcos }
_ = Ax. . (2.88)

Consequently, the estimate of a giver C , is

a D1  
= '-1 ~, os'. -

fl3 = h mlU 1- _ I X s [.sin ejA CT1 m, (2.89)-O1 J=O

and this Is a quadraturcs type estimator.
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Pa,8

Selting-up and inverting the G*6 blocks is tantamount to setting up

and lnvertingthe whole matrix G . Since all operations related to one of the
blocks are independent from those for the others, the inversion of G %56
ideally suited for parallel-processing computing. On average, each G,

requires O(N 3 ) operations to invert, or O(N') altogether. Inverting G
by ordinary techniques would involve O(((N )2)3) = O(N6 ) , so there is an
Increase In efficiency of O(N2 ) .

Finally, it is quite simple to show that these properti-hs carry over both

to the case of area means, and to problems where the surface being studied is
not a sphere, but a surface of revolution symmet rical about a plane perpendi-

cular to the axis of rotation, provided that the longitude increments be constant
and the grid symmetrical with respect to the "equator". In this lattercase,
the expansion of the signal in solid spherical harmonics is

S a -

7 -.pr- .1 ,(9 1 ,Xi)
t=0 ,-0 a=0 ri,

and the factors r* 1 are symmetrical about the equator, from which all theIJ

properties already mentioned for G follow.

Clearly, the structure of G possesses many properties similar or
identical to those of (C,, + D) when the data Is regularly sampled on a sur-
face of revolution. These similitudes underline the intimate relationship
between least squares adjustment and least squares collocation shown in the
preceeding paragraph. In fact, as least squares, regularized least squares,
and collocation differ only in the diagonal matrix ( K, or C- ") being added
to G In expressions (2. 68), (2. 70), and (2. 77), all the properties mentioned

here for G apply to the normal matrices in each of the three methods equally
well. The one important consideration, in the case of collocation, is that t4e .

data be band-limited. Otherwise, expression (2.81) Indicates that (C + M'ww -
and not C'L must be added to G . Matrix C + M1 w w T  has the sane-
Toeplltz-type structure of (C,, + D) discussed in paragrxph (2. 10). Therefore,
creat an Inverting the normal matrix requires: (a) creating and inverting

C v w~. and (b) creating and inverting ArD-1 A +(M ww 1 - + C)-,
which can be shown to have the same block diagonal structure iscu'ssed here.

This is twice the work needed to set up and invert (C,, + D) using the approach
of paragraph (2.11), so, in the case of Infinite bandwith, that approach is more

economical in computing and, therefore, more practical.

There may be one important point In favor of using formula (2. 77)

or (2.81) rather than formula (2.39) for obtaining the optimal estimator
matrix F at least in the band-limited case: as the density of the grid in-
creases, matrix (Cm + D) becomes Increasingly more Ill-conditioned, because
the closer distance between data points results In covariances that have much
the same values In consecutive rows or columns. On the other hind, the non-zero

diagonal blocks in G are likely to become more and more diagonal-dominant
as A 9, AX - 0 . This will depend on D : for Instance, If the variances of the

noise were of the form -55-



=ri sin el

then L6 N-1 i _ a

LeAX Z g, L y(6 1 ,Xj) YP*(6 1,X,) sine, A9AXAS, AX. 4TT &@, A)=° J=o 4 T

-0 -0 -0 -0

1r0 Y(9X if n p
4 ( , (e,)dcy = 1 If n = p

because of the orthogonality relationships. In general, the variances of the
noise are not going to follow a sinusoidal law, but one may reasonably expect
(at least with more or less homogeneous noise) that the stability of the normal
equations will not deteriorate with A e, A X - 0

2.16 Global Adjustment and Collocation with Scattered Data

The efficient set up and inversion of the covariance matrix (C,, + D
or of the normal matrix G , depend on the regular nature of the grid. If
not all nodes or blocks in the grid have data associated with them, the data is
said to be scattered. The blanks or "holes" in the grid destroy the orderly
structure of the matrices, making the application of the techniques previously
discussed impossible. Yet so strong is this structure that, even in fragments,
still it can be dealt with more efficiently than in the case of ordinary matrices
of the same size.

(a) Full Region Bound by Lines of Latitude and Longitude

In the case when there Is data at every point or block Inside a "square"
region limited by parallels and meridians, the partitioning of the data vector
along the arcs or parallelsinside the zone reveals a strong structure in the
(C,, + D) matrix, if all the other assumptions made in paragraph (2. 10) still
apply.

If N, is the number of rows and No the number of meridians that
cross the region, then the covariance matrix will consist of N blocks C"' of
dimension N, , both persymmetrical and Toeplitz, though not circulant
(i.e., the relationship c 10 = c is f l b nPX c q+ 1 is fulf illed, but not co, coq-1);

moreover the first row in each block does not have the property that
tP t

= cON..- . Clearly, though weaker than In the case of a global grid,
there is a definite structure here that can be exploited to make both setting
up and inverting the matrix more effic lent.

Because each block Ct Is Toeplitz, only the N, elements in its
first row have to be computed, or about *N. NG. for the matrix as a
whole, instead of iN.aNr 2 ; this amounts to a reduction in operations by
a factor of N•
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The solution of the equation = (C,, + D)-  , for the optimal
estimator vector tc, for , cih be obtained by a technique such as
conjugate gradients, or similar, in which a finite number K of matrix-

vector multiplications (C.. + D)v t (where vo , x.;.. are
K intermediate Np - vectors created during the solution) constitute the bulk
of the computing effort. There is no need to go into the details of any specific
technique, as the reader will find excellent descriptions in the literature

(Householder, 1964, Luenberger, 1969). A discussion of the matrix-vector

operation is sufficient here.

Let mi be the N, - vector partition of the N, Nl.data vector n,
containing the measurements along the ith parallel in the region, and let v'
be the corresponding partition in any of the vt vectors. The product (C., + Xhvt

= P Is, under such partition,

Nr1 
"

[nt . Pt

with Nr1 (2. 90)

Pt

so the whole matrix-vector multiplication can be broken up into Nr products

C P. y hp . Because C is a Toeplitz matrix, the N, components of
can be obtained by "weighted running averages" or discrete cowol 4ition

of the elements of vI with those in the first row of C"r. Such convolution
can be calculated efficiently using the Fast Fourier Transform algorithm (see,
for instance, Brigham, 1974, Ch. 13). Therefore, all Nr products involve
O(N 0 Nf) operations, and since there are K matrix-vector multiplicati-ns
in the whole procedure, the total number of operations needed to obtzin ,
amounts to O(KN, N, ). For conjugate gradients, K does net exceed (in
theory) NP = N r N. , so there should be O(N2 N3) operations altogether.

If (C, + D) were handled by conventional techniques, disregarding kts well
defined structure, the number would be O(N3 Nr) , so the increase in ef-

ficiency is O(N .) , the same as for the setting up.

(b) Arbitrarily Scattered Data

It is common in geodesy and in geophysics to have a set of measurements
scattered throughout the globe, without the data being on the nodes of a reg-
ular grid or without all ay £ being equal along parallels (nonhomogenous noise).
If the set is dense enough, however, It is possible to interpolate the data quite
reliably on the closest nodes of a conveniently chosen grid. Assuming that this
is done, and that the accuracies of the interpolated values are kmown well
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enough, then the problem can be dealt with by conventional least squares or

by collocation. In general, there willbeblanks or "holes" irregularly dis-

tributed over the sphere, the actua data points falling among them in no

precise pattern. This problem will be considered hero as a least squares

adjustment problem. If the data has little or no power above the Nyquist

frequency of the grid on which it has been Interpolated, then the extension of

the ideas that follow to collocation is quite simple, according to paragraph

(2.13).

Consider the element g of the matrix G -AT D 1 A

U113 -CO (OOS 201 ) COS
g{m. Pa(C5s) Pp (cosO1 ) E Isin} mjt. {sin) PJAXW1 J U-
1=0 3=0 (2.91)

where Wjj = 0 if the point ij is blank, otherwise W 1 = I ; oj is the var-

iance of the noise ni . In geDeral aI is a function both of i and of j

Clearly, matrix D is taken to be diagonal (i.e., uncorrelated noise).

From the relationships

cosmjAX cospjAX = [cos(m+p)j Ak+cos(m -p)jAX]

cosmjAX sinpjAX = [sin(m+p)jA X-sin(m -pj&X,

sinmjhA sinpjX = -[cos(m+p)jAX-cos(m -p)jI&X]

and calling

1C1 ceosrjAXa~j Wi,

r aN-1 (2.92)

IC z sinrj.AXcFT?3 W,,

where -N <r <2N , follows

C- osl cosi lo-R! ,6p I+ latk-0
~41 W1 ~1 j~Xsin Ipji), [Cm) + (-1) C(Q 1 (2.93

6 123 W asinl -) (." mjAX snPA = (,C(2.93)

0(o) ( )

Moreover, because

cos(-r) j AX= cosrjAX

sin(-r) jA X= -sinrjA AX

cosrjA X= cos(2N - r)jA X (2NA X= 2n)

sinrjA X = -sia(2N - r)j AX

follows

a IQ (Y
CN-r = Cr (-)8
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where the last one is of special interest when r > N. So only the C,

with 0 < r < N are needed. Finally, calling

g* = P.(cose,) (cose 1 ) . (- 1 ) C+q) 0a- (2.94)

(where la- 01 is the absolute value of a-

it Is
N-I

oogpq = I 1'P95

Assume that out of N rows the grid has only I with any data In them, so

at least one W1 4 0 in each. Once the corresponding C' a have been ob-

tained by computing the discrete Fourier transform of aj W along each

rov with data (O(N ) operations for the whole grid), what remains is to get

the I non-zero terms g1*L that form each element gffq of G. As there

are about *N' such elements that are different, and I is O(N) (except for

very sparse data sets), the total number of operations needed to create G

is O(N2) + O(N'), or virtually O(N6 ) . If the were computed according

to (2.91) as it is written, instead of according to its reduced version. (2.95),

the number of operations would be 0(2N ' (N) 4 ) , or O(Na ), so the gain in

efficiency allowed by this approach is O(N), which Is the same as In the case

studied in the first part of this paragraph, where the data completely filled

a "square" sector of the sphere. This count does not include the time needed

to obtain the P, (cos 91), as these can be pre-computed once and kept on

disk or tape for repeated use.

The number of operations can be reduced further, almost Iy half, by

taking advantage of the fact that 7,.(cos E I) is a common factor in all

g with the same n and the same m. Furthermore, if there are pairs

of rows I and N-i -1 (i.e., symmetrical with respect to the Equator) where

both rows contain some data, then

gAq+ g 3.,q = PS,(DOs0 ) l (cos e 1)

[(C',q + (_1) "Cl*Iq 4) + (_-1) 0W 1 -q l) ca- 1

(2.96)

which leads to further savings In computing at +he cost of additional program-

ming complexity. These economies are important, but they will not bring the

number of operations much below O(N 8 ) unless the grid s so sparse that

fs much smaller than N.

Notice that the normal matrix G = AT D7" A is created here without
actually forming the observation equations matrix A . This means consid-

erable savings In computing and in storage requirements. As for the right

hand side of the normals AT D -f1 m= b, the elements of b are given by the

formula
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I. aN-1 Cos5  (2.97) d-
bk =NE (Cosat) sf m j W13 mj(

where k=n+on+m+I and W = 0 if there Is no data at the point ii,
as before. Such expression Is of the quadratures type, and can be computed ef-
ficiently by the corresponding algorithm of section 1, also without first creating
A . Finally, the residuals vector v = m - A 8, usually of Interest, can be
obtained as the difference between the data m and the values of

z~ ~ J 41 f. (Cos9 1){c} mj'&X
Ms--n 

I

computed by means of the appropriate synthesis procedure given in section 1.
Thus v can be found without knowing A explicitly.

The normal equations can be solved by means of conjugate gradients
or a similar method involving M matrix-vectorproducts xt = Ght , where
t is part of a sequence of intermediate vectors h0 , h, . . . . _ .

Introducing the notation

zt = b1

where k =n + n+m+1 , and calling G1 to the matrix of all gapq,

so G N G G and tt = G G'h , = t - (2.98)
==0  1=0 1=0

then each element x., t of the product vector xt is of the form

JI%= Eq t 402" 4e t =. (cos et) E [0811-4 +(._1)2 CN4I
P =-- O 4= 0 0= 0 Pq( .

p . (cos 91) (2.99)

Every h; t  above multiplies always the same 11 (cos ); calling

dt 1= f(000 e t) beq

expression (2.99) becomes

(=CO 3 ( e Cmtq + (-1) "-- I 4q
V q0

All quantities inside the square brackets are constant If a, /, m, and q
are the same. Grouping equal factors together

of = -I Ima-20*X= , (COS e [C.. + () d=o

.01 (2.100)
pal (cos 80) z + (-1), C' C .. , D

[C. %-q Dqm

whe re E d1~ q
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There are (N2) products needed to form all d; (N ) sums to compute the

2N D', and (N) 2 further multiplications 1,l the Pl,, (cos 01) to form all

x As there are I non-zero , there arc, per matrix-vector product,

IxO(N) operations, or O(N a) if the data is not too sparse. M, the number Of

matrix-vector products in the solution, is O(N 2) , so the total comes to O(N b) .

Inverting G by the usual methods and without having regard for its structure

involves O(N ) operations. The gain in efficiency is, again, O(N) .

Besides providing a convenient way of demonstrating how the properties

of G can be exploited to make its Inversion more efficient (or the solution

of the normal equations, both approaches are U'quivalent), conjugate gi'a' dienti

is interesting on its own right. Sparse data sets with a poor distribution will

result in ill-conditioned normals, so the inversion of G may be numerically

impossible. So-called iterative methods, such as conjugate gradients, usually

improve the initial guess (represented by ho) of the correct values of the un-

knowns, at least for the first few iterations. Improvement here means a reduc-

tion In the quadratic form being minimized, such as the mean square value of

the residuals. If the initial guess is a gcod one, and present day spherical

harmonic coefficients of the gravity field are reasonable good for degrees up to

30 or so, then a few iterations are likely to inaprove this guess,and to pro,.?uce
reasonable estimates of those coefficients that,being wholly unknown, ari.2

taken to be zero at the start. If a "few" iterations are much less than the ina%-

imum N2 , then a reduction in computing time of C)(N4) takes place. Thih'

might allow scientists to "extend" existing models to much higher degree ,nd
order than at present, simply by obtaining approximate solutions of this type.

Clearly, all that has been said here regarding G and least sqqiares

adjustment applies equally well to (G + C" ) and least squares collocation.

Though the formulas have been developed on the basis of a point values'

formulation, their extension to area means is not difficult.
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While the descriptions of the methods for estimating the

discussed here have been confined to the case where all the data are of one

kind (i.e., gravity anomalies only, or magnetic anomalies only, or geopo-

tentLal numbers, etc.) their extension to mixed data sets is immediate,

provided that all values are glcbally distributed according to grids of the same

A X, although the latitudes need not be the same as well.

Note on the Accuracies of the C , when Using Conjugate Gradients:

Besides the estimates of the coefficients, one usually wants to know the

accuracies of those estimates. When a few iterations of conjugate gradients

are used to update some initial estimates in the efficient way described above,

what are the accuracies of the improved coefficients? In the course of the

conjugate gradients procedure (see references), the conjugate directions VK

of G = (AT D- ' A + C- 1 + Q;1) are generated (Q 1s is the variance covariance

matrixof the initial estimates, as explained in paragraph (2. 18) part (b)),

together with the scalars v-k G v k = ak . The conjugate directions have the
property

v~=0

for k p . The estimator Implied by R iterations of this procedure is

c= (A D - 1 m +Q-ic) = GAT D- (.z+n) +GQ1(c+Ac)

where c, is the vector of initial estimates, Ac, the errors in this vector, and

k=1

The variance-covariance matrix of the updated errors, for ordinary least
squares, is (assuming that E in Ac 0)

E { (G A D- n) (G A T  4E@~ C.) (GQA ) 6AD.A D

Q= (A' E A + ?4 a G

V1=1 =

Therefore, the variances of the errors in the are equal to the correspon-

ding diagonal elements of G

2a

f dll " Vpt, am

where v ,k,. is the element of v corresponding to d' in d (v and

have the same dimension). The same result applies to least squares col-

location. All that is needed to obtain the OVS , according to the formula
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above, is knowledge of the a k and of the vk, which can be saved as they are

created, during the kth iteration of the procedure. For the efficient algorithm

to be applicable, Q-, must have a suitable structure. One case is when

Q-1 is diagonal, or can be satisfactorily approximated by a diagonal matrix.

2.17 The Error Matrix in the Band-Limited Case

From (2.41) and (2.77) results

-1 T T T A T A
r

ET C C-C. (C,. +D) C = C- F cc C - (A DA7- AFD- A

[I-(A t-1 A +C') - ' A' D - ' A ] C = (AT D ' A +C-' I(A DLOA+C-')-ATD-2A]C

=(A D -  A + C-1 )- 1  (2. 101)

In the case of the best unbiased estimator C- 1 is not present in the normal

matrix, so (2. 101) becomes

ET = (ATD71 A) - I G -  (2.102)

which is the well known expression of the error matrix for ordinary least

squares.

Because of the block-diagonal structure of the variance-covariance matrix,)

the estimates of CX of different orders are uncorrelated. The diagonal

elements of the variance-covariance matrix are the variances of the estimated

coefficients total errors (i.e., sampling plus propagated noise), in (2. 101).

Obtainig the variances of the ,' , in band-limited collocation is formally

identical to getting the variances of the estimates In ordinary least squares,
according to (2. 101) and to (2. 102)

2.18 The Use of a priori Information on the Coefficients

Assume that all coefficients up to some degree and order Al are

approximately known, and that Q. is the variance-covariance matrix of their

errors. This could be the case where a model of the gravity field has been

obtained from data gathered using artificial satellites, complete to degree M,

and terrestrial data Is to be used to Improve the existing coefficients and obtain

new ones beyond degree M .

Three possible approaches to this question will be discussed here, using
a "point values" formulation in the first two cases for simplicity.

When the data set is not sparse.

-03-

... ...... I



(a) Simple weighted averages:

The terrestrial data can be used separately to obtain a model to degree
and order MT > M, together with the variance-covariance matrix Q? of
the coefficients' errors. To combine the satellite and the terrestrial coef-
ficients one can set up the following observation equations

= (2.103)
-iTI-it =III

where c Is the vector potential coefficients and I, is the (M + 1)2 x (M + 1)
unit matrix augmented with zeroes on the right, and Ir Is the (MT + 1)2 X
(Mr + 1)2 unit matrix, while c, Is the vector of'satellite'loefficLents and
CT the vector of'terrestrial' boefficLents; s and t are the corresponding
vectors of residuals. The best linear unbiased estimator for the combined
system of observations Is

Psit IT ] ?4 oT, i 's (is. 4] [Q? o 0 ,
0 QlITJ IO QTJL_-

(2. 104)
=(Q (Qc + c)

if Q. and Qr are the inverses of ordinary least squares normal ma-

trices G, and G T, then the error matrix of the combined solution

E = (Q-2 + Q )' - (G, + rT)-'

corresponds to the propagated noise only. If they are "collocation"
matrices of the type (AT D A + C-'(see expression (2. 77)), then the error
matrix includes the effect of the sampling error as well. Most satellite models are,
to date * "least squares-type" and it would be incongrous to combine them
with "collocation-type" models, terrestrial or othenvise. The problem need
not be a serious one, because geodetic spacecrafts so far have orbited at

altitudes of 800ikm or more, where the field is much smoother than at the
surface, so the sampling errors are bound to be small compared to the pro-
pagated data errors reflected by Q,.

In the case where the terrestrial model has been derived from a reg-
ularly sampled data set using the 'band-limited approach" of previous para-
graphs, QT is block-diagonal, and those blocks corresponding to orders
m > M arq identical to the corresponding blocks In (Q;" + W-1 . From
this it Is not difficult to conclude that the coefficients In the combined model
up to order M will be somewhat different (and presumably better) than those
in either the satellite or the terrestrial sets, while those above M will be
identical to the corresponding terrestrial coefficients.
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(b) A priori values Included as data In the adjustment:

Consider the system of observation equations

+( = ]2. 105)

which is the system (2.66) augmented with equations of the type

wher ea(~ =t An'

where e~1() is the error in the "satellite model" coeffictent Ca.(s)

The normal matrix of collocation is

(A =([AI ] O ][A-+C-1 (2.106)

and the optimal estimator of the band-limited type is

(Ar - A + Q7' + C-)-' (Ar V" +Q. C) (2.107)

Once more, if the data In m has been sampled regularly on the sphere,
the estimated coefficients will be affected by the existence of a priori values

only if their order is no higher than M. Naturally, this is a desirable sit-
uation. Also it s important that the error measures corresponding to ET
and Q, be congruous, though this is probably not very important In the case
of satellite models obtained with high-orbitLug spacecraft. Notice that (a)
and (b) are equivalent when QT = (A' Dr 1 A)71 and when C-1 is excluded
from (2. 106)-(2.107). In other words: these first two approaches are equiv-
alent for ordinary least squares.

(c) The method of Kaula and Rapp:

W. Kaula (1966) proposed a technique for simultaneously filtering er-
rors out of a terrestrial data set and improving the coefficients of a satellite
model. This method was later developed by R. Rapp (1968), who more recently
(1978) used it to improve a global data set of mean 10 x 10 anomalies by com-

bining it with the potential coefficients of the GEM-9 model. This adjusted
data set was used by the author of this report to create the 50 x 50 mean anom-
alies analysed in one of the numerical experiments of section 3.

The idea is to satisfy condition equations of the type

+ d . - (4Try(n - 1)PS %Y,.(e,X)doa(,g1 , +vj))=0
1 0 J0o (2.108)
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while minimizing the quadratic form

g(d, +d Q.d+v D- v (2.109)

where v is the vector of corrections v, 3 to the mean gravity anomalies

Agij , and d is the vector of corrections d to the satellite potential coef-

ficients t(.); ; is the nth degree Pellinen factor discussed in paragraph

(4.3), y is the mean value of equatorial gravity, and S is the ratio between
the radius of the Earth's largest inner geocentric sphere and the mean Earth

radius. In matrix form, the condition equations (2. 108) are

c, +d -A'§ -A' v =0 (2. 110)

where A is a 2N2 x (M + 1)2 matrix having columns af of the form

a (4 (n - 1)yS' fl,, 1 i! X (0,A)dO. *..fY.( ,A)d]

so, except for the factor (4T-r(n - 1)YS f , A is the "area means version"
of the matrix of system (2. 66), and has the same properties as the "A" mat-

rices considered so far.

The optimal estimates are given by the expie ssions

c. + d (2. 111-a)

+ v. (2 111-b)

where

d = -((A D A) + Q.)- (A D A) - ' (., -A 5g) (.12)

and
v = DAQ, d (2. 113)

If the data set Is both complete and of uniform quality, the matrix AT D A

has the block structure first discussed in paragraph (2.15). The presence of
D instead of D makes no difference to the calculations needed to set up
and invert the matrix: the procedures are those already explained. Ter-
restrial data, however, Is usually both scattercd and of varying quality
(i.e., different noise variances). For this type of data, therefore, the meth-
ods for scattered measurements given In paragraph (2.16) could be used.

2.19 Optimal Estimation over a Band of Spatial Frequencies

Assume that the signal Is of the type

m = A c + n
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where A and c may now be Infinite (I.e., all degrees from 0 to *

may be present). if c' is a sub-vector of . comprising, say, the first

be coefficients, and if s Is a vector of estimates of a function s at

a given set of points on the sphere, such that the values of s depend only on those

of c' according to the relationship

s - Bc' (2.114)

where B Is some matrix of appropriate size, not necessarily of the same type

as A , then the optimal estimator for A is, according to (2.39), (2. 75),

C. (C, +D) - m
- M 1. z T(Cit+D) - L m M Bc'c' A(Cz+D)711

= B&A(C1 3 +f' rn (Where C'Mfc' t )= BC' (C,,+D)- m 'Co', a(C,, + I)- nr

or

A =B' (2.15

according to (2.40).

Expression (2. 115) indicates that the optimal estimates of a band-
limited function s from data m are identical to the values of e obtained

from the optimal estimates of the coefficients cl by means of the rela-

tionship h"Be
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3. Numerical Examples

This section presents several computed examples to illustrate some
of the ideas and methods discussed earlier on. The question posed here is,
basically, that of the accuracy of the various procedures, and Is answered
by means of error analysis carried out with the formulas for error variance
developed in section 2, and also by analysing simulated data and comparing
the recovered coefficients to the original ones in order to find the actual
errors. A comparison of the rms of these errors with the theoretical rms
(I.e., the square root of the variance) provides both a check on each set of
results and, more important, shows just how adequate an error measure
the theoretical rms can be. Besides error analysis and simulations, this
section shows, in the last paragraph, the results of the harmonic analysis

of a real data set: a 50 x 50 equal angular set of mean gravity anomalies
covering the whole Earth, from which the coefficients of the disturbing
potential have been recovered to degree and order 36 by means of least squares
collocation, using the "Toeplitz matrix" approach of paragraphs (2.10) and

(2.11).

3.1 Generation and Analysis of Simulated Data

As explained in the preceeding section, the variance of the error in
the estimate of C depends on the power spectnm (or covariance function)
of the signal, and on the variance-covariance matrix of the noise. The pro-

pagation of the noise is quite straightforward, and anybody who has had any
practical experience with adjustments of geodetic networks and the like al-
ready has enough "feeling" for this part of the error measure, and is eap-

able of understanding its significance when its value is given to him. The
part corresponding to the sampling error is somewhat different; it involves
a rather unusual geometric average over rotations, and this type of error
measure, while not exactly new (collocation, based on this measure, has
been around since the mid-sLxties) is not so familiar to geodesists yet, and
Its use, in harmonic analysis in particular, far from common practice. For
this reason, it is probably fair to the readers to provide some illustration of
how "close" this part of the error measure is to the actual sampling error
that occurs when data of the assumed power spectrum is analyzed in any of
the ways discussed so far to recover spherical harmonic coefficients. By
"close, one means that the actual numbers measuring the theoretical and the
actual variances (or rms) should differ from each other by a small percentage,
or some equally clear-cut criterion.

The theoretical variance considered here is the variance of the esti-
mation errors per degree e,, defined in to rms of the error measure of
section 2 as follows (see paragraph (2. 8))
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Or ~ 3 ~( + -2 -f + U)(C..+D)
8=o a=o =O=O (2 1 (3.1)

The rms of the error is the square root of this variance, and the ratio of

this rms to the rms per coefficient:
0 _ - (~ (C D f_))

2:- (- z (c. + D) ) (3.2)
2=0 Q=o

multiplied by 100 , or the percentage rms error per degree, is the theo-

retical quantity to be compared to the "actual" percentage rms e-rror per

degree derived from the analysis of simulated data with the same statistical

characteristics (i.e., al'o , C.., and D) In formula (3.2).

Theai, were computed with subroutine NORMAX (Appendix B).

To obtain the actual percentage rms error per degree, sets of simulated

data were created on full regular grids as follows! the artificial data con-

sisted of area means computed globally, using the algorithm outlined in para-

graph (1.7) and subroutine SSYNT11 (Appendix B), on the basis of expression

(1.2). The CX,, cnplete to degree and order N,,, >> N = - , came from

sequences of random numbers. The random numbers, obtained using the IMSL

subroutine "GGNOR" with generating'seeds"of the order of 104, were scaled

to give them the desired degree variances a,2. For each simulation, a se-

quence of (N... + 1)2 numbers was obtained, the first corresponding to Cor

the second, third, and fourth to U, , , and *1 , respectively, and. so

forth. If r~ , rU, . . . r , were the (2n + 1) numbers corresponding to

degree n, then the scaling that resulted in the corresponding U 0 was

UMtz (3.3)

The harmonic coefficients 'C, obtained in this way were the "actual" coef-

ficients to which the b a, recovered by some of the procedures described

In section 2,were then compared to obtain the actual percentage rms errors

per degree

I = (6, - x 100 (3.4)
m0 o= 0

The analysis of the simulated data was done with subroutine HARMIN (appendix

B). This type of numerical experiment was carried out three or more times

in each case, varying only tCe seed used to generate the random numbers,much

as a Montecarlo-type of analysis is conducted. The seeds were chosen widely

apart, to ensure that the correlation between "trials" would be virtually nil.
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The maximum degree and order in the set of artificial coefficients,
N.. x , was chosen so that the power in the mean values above degree N=, ,

2000

PN.mx n (3.5)

were lessthan 1% of the power between degrees 0 and 2000. The &
are the Pellinen coefficients, discussed in paragraph (4.3), corresponding
to 50 x 50 area means. The values used for the degree variances ,n had been
empirically obtained from terrestrial data in the manner described below.
The data were supposed to be noise-free, as only the sampling part of the
error was studied in this way, for the reasons given at the beginning of this
paragraph. The estimators being linear, the propagated noise and the sampling
error merely add arithmetically to each other, and can therefore be studied
separately, if so desired. Summing up, it can be said that the simulated
data consisted In global data sets of artificial gravity anomalies, averaged

over equal angular grids.

The empirical degree variances were obtained as follows: up to degree
100 they were those implied by a set of coefficients, complete to degree 180,
obtained by R. Rapp and associates at 0. S. U. from a global data set of
10 x 10 mean anomalies. Above degree 100, the a n (hg) were obtained from

a model of the form

°a(Ag) = (n -1) S + (n+B) (n-) ) [mgal 2 ] (3.6)

(Morltz, 1976), where the parameters oe , ez, S, , a, A and B have

been adjusted to fit existing gravimetric data, satellite altimetry, satellite
field models, and other geophysical data. The parameters used in most
examples were

f= 3.4050 S = 0.998006 A = 1.
c= 140.03 S1 = 0.914232 B = 2.

corresponding to the best model of this type given in a report by R. Rapp
(1979) who, in the same work, discusses also the empirical degree variances
obtained from his 180, 180 field model. The degree variances Implied by (3-6)
with the parameters listed above are also very similar to those Obtained by quite
different means by Wagner and Colombo (1979), who analyzed the (Fourier) power
spectrum of short arcs of GEOS-3 altimetry, and converted their average to
a spherical harmonics spectrum using formulas that follow from the
relationship between spherical harmonics and Fourier series. The empir-
ical variances for n < 100 are included in the listing of subroutine NVAR,
in Appendix B.

In order to understand how critical the choise of empirical degree variances
is to the theoretical and actual errors, a different two-term model obtained
by C. Jekell (1978) was used as well. This model has the following parameter

-70-



values

= 18.3906 S1 = 0.9943667 A = 140.

04 658.6132 S2 = 0.9048949 B = 10.

All the examples considered In this section refer to complete equal angular

sets of mean values with the same statistical properties of terrestrial gravity

anomalies (as far as such properties are known). The analysis of actual

mean gravity anomalies is shown in the last paragraph. Besides being im-

portant in geodetic stuies, gravity anomalies constitute a type of geophysical

data with reasonably well known statistical properties, and their study here

is meant to give the reader some idea of how effective are the ideas presented

earlier when it comes to handling "real data" ( or something resembling it).

3.2 Agreement between the Actual and the Theoretical Measures of the

Sampling Errors

Table (3. 1) lists side by side the theoretical precentage rms per degree

of the sampling error according to(3.2) and the actual value of this percen-

tage for two different sets of coefficients (i.e., from random sequences with

different seeds). The coefficients were recovered using the quadratures for-

mula

-1 aN 1 r
CU Ngj1 Yv (e, X)d aia. =0=

This type of formulas has been discussed in paragraph (2.6). The simulated

data consisted in full sets of 50 x 50 mean anomalies obtained from harmonic

coefficients complete to degree and order N,,, = 140 . The power above

degree 140 in 50 x 50 anomalies is negligible, according to the empirical

power spectrum model that was used. The results shown here are fairly

typical of similar tests conducted with other quadrature formulas, so the

conclusions that can be drawn are likely to be valid for the analysis of area

means by numerical quadratures In general. There is clear agreement
between the theoretical and the actual rms of the errors, and not just the

average rms of actual errors, but the actual rms of each trial as well. The

agreement is close, and the reader will probably agree that to use a theoretical

error measure that can predict the actual error so well is a meaningful way

of quantifying the error.

3.3 Accuracies of Various Quadratures Formulas

Five quadratures formulas for area means have been studied: the first

four of the type

i"=O -0 71-I-71-



Table 3.1

Comparison of actual versus theoretical percentage rms

error per degree.

50 x 5 mean anomalies, N.., = 140, 0. mgal rms noise.

n Actual, No 1 Actual, No 2 Average Theoretical(expres-

(seed=53218) (seed=31765) 1 and 2 sion (3.2)x100)

2 0.50 0.62 0.56 0.51
5 1.06 1.10 1.08 1.23

10 4.99 5.81 5.40 4.89
15 13.06 11.03 12.05 12.75

20 23.48 25.97 24.72 24.77

25 23.04 30.82 26.93 30.03

30 45.84 46.26 46.05 43.28

36 (N) 55.33 61.10 58.22 60.35

40 70.61 75.82 73.22 75.14

45 85.91 86.41 86.16 87.03

50 101.51 101.43 101.47 101.47

differ only in JZ.:
(a) = the optimal dc-smoothing factor given by expression (2,36) in para-

graph (2. 7):

_ 1
(b) g. = "

_ 1(C) P . = I

(d) p. = 1
4 TT

(e) The optimal quadratures - type formula, in the least

squares collocation sense (i.e., minimum combined error measure) for
the given grid; sir- 1 and noise (paragraph (2.8)). The grid was equal
angular in all five )es. Table (3.2) compares the percentage rms of the
errors per degree for a 300 x 300 grid; table (3. 3) corresponds to a 100 x 100
grid; and table (3.4) to a 50 x 5' grid. N,,x was 100 for the first two tables,
-:14 140 for the last. All these values are theoretical, computed In accordance

t, 'i.,, rmuI,; in paragraph (3.1). In all three cases noise is not present,

*, r rs are purely sampling errors.

5) corresponds to a 50 x 50 grid and an uniform noise of

, ' ffict of the noise has been included in the results.
.. i,,jc cirrclatiun coefficients for the various methods,

.rrelatwnf coefficient for the nth degree is defined as

, o
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and it Is also equal to

= 4 1 (3.8)

Lf 4g daf, A g da

This coefficient can be regarded either es a measure of the agreement between

the actual and the recovered coefficients of the nth harmonic, or of between

the nth harmonic Ag, in the signal and the harmonic A that can be computed

from the recovered coefficients. If the ' could be seen as random variables

with gaussian distribution, the interpretation of A would move along well-worn

paths; however, as it was mentioned in paragraph (2. 5), there are some unex-

pected problems when extending the idea of a gaussian random process to the

sphere, so is better to chose another approach. One could regard the coef-

ficients of the nth harmonic as the coordinates of a vector in (2n + 1)-dimen-

sional euclidean space. The actual coefficients will define thus one vector,

and the recovered coefficients another. Expression (3.7) then merely defines

as the scalar product of this two vectors. Likewise, expression (3.8) is

that of the scalar product of two elements of a function space. The angle

formed by these vectors is 0' when correlation is (maximum), and 900 for

0 correlation; a minimum correlation of -1 corresponds to the case when

the vectors are equal but of opposite sense. The scalar product is independent

of any scale factors that may multiply the vectors: it depends only on their

mutual orientation. For this reason, the correlation coefficients are the same

for the four quadratures formulas of the type

*-1 &N-I a

= A -' Jfa 
Y g (e, X) dcr

because the difference between the errors for the same harmonic, predicted with

two different formulas of this kind, consists In a scale factor t
Clearly, as the rms of the error Increases with n, p, decreases from almost

1 where the error is smallest (very low degrees),to below 0. 5 where the

error exceeds 90% (highest degrees analyzed).

Observing the percentual rms of the errors In the first four tables, It

is easy to see that they by no means reach 100% as soon as the Nyquist

frequency is reached (n = N), but that they remain substantially smaller than

100% even at degrees considerably higher than N ; this is in line with the

conclusions in paragraph (1. 3). The optimal estimator Itself cannot have an

error larger than 100% , be it due to sampling, noise, or both. Otherwise,

a null estimator (one that predicts only zeroes) would be better than the op-

timal, which is not possible.

Table (3. 7 ), compares the theoretical errors with zero noise (i.e.,

the sampling errors) of the collocation estimator obtained, first according to
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2 a implied by R. Rapp's model (used in all the other tables), and then ac-

cording to the "2L" model of C. Jeleky, both described in paragraph (3.1

This table is included here to give the reader an idea of how sensitive the theo-
retical error variances are to the empirical degree variances used to compute

them. The "2L" model has considerably more power than Rapp's at high degrees,

and this may be reflected in the somewhat larger errors in the corresponding

column of the table.

Table 3.2
Theoretical percentage rms error per degree.

300 x 300 mean anomalies, N,, = 100, 0. mgal rms noise.

optimal * 1 1!
n Estimator 47 K 4 4$

2 12.51 13.17 13.95 15.86 13.57
4I 25.09 25.60 26.91 36.12 28.72

6 (N) 58.77 65.13 68.03 67.18 101.41

10 92.82 96.01 194.08 97.13 882.98
12 98.44 99.27 915.49 105.44 17835.58

Table 3. 3

Theoretical percentage rms error per degree.

100 x 100 mean anomalies, N,, x = 100 , 0. mgal rms noise

Optimal * 1 1 1

n Estim. Al 4

2 1.52 1.63 1.71 2.04 1.65
4 2.24 2.46 3.00 4.76 2.56
6 4.27 4.68 5.83 9.51 4.94

8 8.74 9.60 10.99 16.39 10.16

10 13.19 14.02 15.89 23.68 15.19
12 31.60 33.03 33.10 37.84 37.43
14 40.43 41.41 41.41 46.45 49.91
16 41.41 42.18 42.36 51.41 53.12
18 (N) 56.81 59.94 61.26 63.41 88.17
20 76.50 78.99 94.69 79.07 158.26
22 76.02 78.54 89.75 79.05 167.49
24 84.96 87.40 116.57 87.59 258.09

26 90.40 94.03 164.50 97.85 443.76

28 92.21 95.98 193.17 100.35 646.88
30 93.31 97.30 232.24 101.88 1010.13
32 95.80 98.30 303.89 103.49 1828.98
34 94.95 97.40 281.73 97.77 2619.98

36 96.87 98.08 485.72 98.45 8694.11
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Table 3.4

Theoretical percentage rms error per degree

50 x 5' mean anomalies, Nax = 140 , 0. mgal rms noise.

Optimal 1 1
n Estim. 4jT3P 4r 4T

2 0.47 0.49 0.51 0.59 0.50

6 1.36 1.44 1.71 2.61 1.48

12 9.74 10.11 10.40 12.27 10.37

18 15.14 15.55 16.35 21.20 16.46

24 30.58 31.06 31.21 36.30 34.89

30 42.88 43.28 43.28 49.04 53.32

36 (N) 57.62 59.15 60.34 621.67 85.90
42 72.16 73.51 80.25 74.72 137.19
48 82.15 83.62 101.19 83.82 216.98

Table 3.5

Theoretical percentage rms per degree
50 x 50 mean anomalies, N, , = 140 , 5. regal rms noise.

Optimal * -_ _1 1
n Estim. 4 4

2 8.74 8.81 8.84 8.83 8.85

6 9.33 9.34 9.34 9.43 9.41

12 32.80 32.88 33.79 33.02 35.28

18 35.94 36.04 36.54 36.25 39.86
24 53.32 53.47 56.73 53.49 66.99

30 61.97 62.14 67.15 62.15 87.22

36 (N) 71.98 72.62 82.81 72.63 122.67

42 81.55 82.17 102.91 82.54 181.19

48 88.00 88.72 124.09 89.54 271.87

Table 3.6

Correlation factor per degree.
50 x 50 mean anomalies, N., ,=140, 0. mgal noise.

n Optimal Estim. Simple quadratures

2 1.00 1.00
6 1.00 1.00

12 1.00 1.00

18 0.99 0.99

24 0.96 0.96

30 0.90 0.89

36 (N) 0.81 0.81

42 0.72 0.71

48 0.59 0.57
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Table 3.7

Comparison between the theoretical errors(optimal esti-

mator)when different covariance functions are assumed.

N.. 140 , 50 x 50 mean anomalies, 0. mgal noise.

n R.l1app's variances "2L" model

2 0.47 0.64
6 1.36 1.79

12 9.74 7.84

18 15.14 18.10
24 30.58 31.41
30 42.88 46.28
36 (N) 57.62 59.84
42 72.16 72.19
48 82.15 81.80

The results in the tables show that the optimal estimator errors are the
smallest, as expected, and that the quadratures formula with the optimal de-
smoothing factors is the best of the four simple quadratures formulas compared here,
though It is not quite as good as the optimal estimator, also as expected. In
the case of zero noise each of the three non-optimal quadratures formulas
has errors that, In some region of the spectrum, are smaller than those for
the other two; concretely, the de-smoothing factor ., -4 works better
for low degree harmonics (or n N i.a., the percen 4 has of the
error is less than for the other two formulas there, the factor p.L =

is best for middle harmonics (approximately 1/3N<n % N), and

=- is best above the Nyquist frequency N . It is possible, therefore,

to obtfL a simple 'Itomposite" quadratures formula that combines the good

properties of all Inree formulas, by defining its de-smoothing factor as follows:

1 (j92 if 0 n < 1/3N
AA= TT 7 where 77, 1 If 1/3N <n !N (3.9)

11 if n >N

This composite formula has been implemented in tle version of-subroutine
HARMIN listed in Appendix B, through the subroutine can be easily changed

to compute other quadrature formulas.

It is clear from the tables that, while better than all the others, the

optimal formula is only marginally so: from a practical point of view, the

simple "composite" formula (3.9) above is virtually as good, but it is much
easier to Implement and compute. Therefore, when analysing data of the type

considered here (resembling mean anomalies with uniform noise on an equal

angular grid), the quadratures formulas discussed the composite in

particular, are about as good as any linear technique for estimating the coef-

ficients, and also very easy to program and very efficient.
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There may be cases, however, when this is not true. if the data set
were very noisy and/or incomplete, or if the coefficients to be recovered were

not those of the signal, but those of some complicated transformation of It

(as in the case of satellite-to-satellite tracking data. where the signal depends

on a combination of differences oi raaiai and horizontal derivatives of the grav-

itational potential) so no simple integral formula like (1.4) exists that can be

readily discretized into summations like (1.5) or (1.6), then s imple quadrature

formulas like those in section 1 would be of no real use, and the optimal es-

timator could provide the only practical way of obtaining the coefficients. Both

collocation and least squares adjustment are very similar, as shown in section

2, and both can be implemented with reasonable efficiency if nothing simpler

is available. More important, the optimal formulas provide a theoretical

background on which one can build a coherent and comprehensive understanding

of the other linear techniques for spherical harmonic analysis. It is, after all,

because of the theory developed in the prevla s section that it has been possible

to obtain the results shown in the preceeding tables, results that constitute the

factual basis for these considerations.

The techniques for setting up and livertlng the variance-covariance

matrix of the data are of interest in a number of estimation and filtering

problems, besides harmonic analysis. The author hopes that the examples

provided in this section will encourage the wider use of least squares col-

location for the processing of large, global sets of data, both point values

and area means. Creating the simulated mean anomalies with subroutine

SSYNTH, obtaining the "weights" x', of the optimal quadratures formula with

NORMAI&(Appendix B), and recovering the for comparison with the or-

iginal C, up to degree and order 72 (same 5000 coefficients) on a 50 x 5" degree

grid (about 2600 "data" values) took less than 20 seconds, central processor

unit time, In the AMDHAL computer at Ohio State. To recover the harmonic

coefficients up to degree and order 180 from a complete equal angular set of

10 x 1' mean values would require less than two hours, using the same machine.

Most of this time would be dedicated to creating and inverting (C., + D).
But In the optimal estimation and filtering of geoidal undulations, deflections

of the vertical, and any other function of the gravity field estimable from (say)

gravity anomalies, the fact that (C,, + D) can be set up and inverted efficiently

transcends harmonic analysis. A major implication is that such extremely

large global adjustments require a computational effort that is already within

the reach of most researchers.

As mentioned already in section 2, matrix (C,, + D) may become poorer

conditioned, I.e., its numerical inversion less stable, as the data distribution

becomes denser. This tendency towards instability was noticed: when there was

no noise (D = 0) the R(m) matrices had to be regularized by adding a small

positive constant k to each diagonal term (Colombo, 1979, par. (4.5)) before

they could be inverted successfully. This constant, which in most cases was

much smaller than the diagonal elements it was being added to, was 10- for

300 x30° and 100 x10, but had to be increased to 10 in the case of a
5 x 50 grid. When noise was present, the nonzero diagonal elements in D
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were sufficient to provide stability, and no regularization was needed. Be-

cause of this tendency to instability, the "fband-limited" approach of paragraphs

(2.13) to (2.17) may be preferable, whenever it can be properly applied.

As shown in Table (3. 1), the theoretical and the actual sampling errors
are almost the same in most cases. The propagated noise measure Is very
easy to compute in the case of uncorrelated noise, and can be added to the

actual sampling error (variance) to get an estimate of the total error, both
actual and theoretical. This estimate, where the sampling part Is the result of
a Montecarlo-like approach, is much easier to obtain than the theoretical one
that involves setting up matrix (C,, + D), or at least the R(m) matrices. In the
case of equal angular data sets like those considered here, this empirical es-

timate Is likely to be just as accurate, when it comes to judge the performance
of any given type of harmonic analysis. Such estimate has been used to evaluate
the likely errors in the potential coefficients obtained from 10 x 1 mean anom-
alies using the quadratures formula 6 = - - f:0 ' U1 0,)da g•
The Montecarlo method described in paragrapi I.1) Vas implemented with the
help of subroutines SSYNTH and HARMIN, the error variance being equated

to its average over three "trials" (three sets of coefficients created from dif-
ferent random sequences), C. Jelell, also at O.S. U., who undertook this work
as part of his own research,fitted a quartic to the percentage rms per degree
thus obtained. When this was expressed as a function of the "normalized de-

gree" n/N, the quartic fitted equally well the theoretical results for 300 x 30'
100 x 100 , and 50 x 50 presented in this section. Jekeli's quartic expression

for the truncation error Is (private communication):

Crnx 100 =[(-16.19570 (n ) + 30. 34506) (-)+ 40.29588] nj)2

(3.10)
It is quite remarkable that such a complex phenomenon can be described satis-
factorily by such a simple law.

The expansion of the simulated 1 x 10 mean anomalies was complete

up to degree and order N.,ax 300. Creating (or analysing) area mean values
up to degree and order N... 300 required about 50 seconds o.p.u. time
using double precision arithmetic In the AMDHAL computer at O.S. U.

Table 3.8 shows the actual percentage rms sampling error per degree
as computed in one of the trials, and the percentage rmns propagated noise
(theoretical) corresponding to a 1 ingal rms noise in the data. Clearly, the
errors are much smaller than for any of the cases considered previously:
this improvement Is due to the finer sampling (the sampling error tends to
zero as the area of the blocks tends to zero). The data, however, tends to

be noisier when averaged on smaller blocks, so the propagated noise may in-
crease. For a given rms error in the data, multiply the number In the "pro-
pagated noise" column by this rms (in rgals) to obtain the corresponding per-

centage. These numbers arc only valid for the estimator where M = 1

Repeated trials with different random coefficients resulted in much 4TT

the same percentages for the sampling errors, so these values are probably fairly
typical. -78-
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Table 3.8

Percentage rms errors per degree for a 10 x 1'

equal angular grid. ;A, = 1, N., = 300,
cg= lmgal

actual propagated
a samplibg error (theor,)

2 0.01 0.47
10 0.10 0.72
20 0.46 1.39
30 0.98 1.72
40 1.55 1.93
50 2.68 2.07
60 4.71 2.20
70 6.94 2.34
80 9.43 2.47
90 13.51 2.62

100 14.79 2.77
110 17.98 2.96
120 25.06 3.08
130 25.33 3.26
140 30.87 3.43
150 37.02 3.62
160 44.17 3.81
170 44.43 4.03
180 (N) 53.07 4.24
190 61.87 4.47
200 65.90 4.73

A possible way of bringing the sampling error down is to use weighted

area means of the form

N= &~ Agj') wk

where A gil is the kth measurement inside the block aij, and where the
W are functions of the distance of Ai to the center of the block, If the
Wk decay gently towards the border of the area element, the resulting
weighted means will be smoother than the ordinary area means considered so
far (all Wk = 11 ) and their harmonic content above the Nyquist frequency
will be atenuated. Consequently, the harmonics below N can be recovered
with less sampling error. This Idea certainly deserves further study. Ob-
viOusly, It is applicable only in those oases wia re the original measurements

il are available.
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3.4 The Analysis of a Global Data Set of 50 x 50 Mean Anomalies

As a final demonstration of the use of optimal estimators, this paragraph
presents some results obtained by analysing a real data set, consisting of 5 z 50
mean gravity anomalies. These anomalies were obtained from a global set
of 10 x 10 mean values created by R. Rapp and associates (Rapp, 1978) from
the combination of land and gravity measurements, satellite altimetry over
the oceans, and the GEM-9 satellite model (Lerch et al., 1979).

The 50 x 50 values, &-g(o) , were obtained from the 1 x 10 values,
&-g1), using the formula

where represents summation over all 10 x 1 blocks inside a 50 x 50 block.
The valances of the S(o were obtained from the formula

where the assumption has been made that the errors in the 1 x 10 values
were uncorrelated, which Is not quite true, as the values used were the pro-
duct of an adjustment. The variances e 4g, were different from 50 block
to 50 block, but they were "homogeneized,,u described in paragraph
(2.9), in order to obtain a (Cz + D) matrix that was easily invertible and re-
sulted in a quadratures-type estimator inexpensive to implement.

Figure (3.1) shows a comparison between the collocation solution, com-
plete to degree and order 36, and the same coefficients obtained by R. Rapp
by numerical quadratures from the original 10 x 10 values. The figure shows
the rms per degree ( j Pn /(2n+l)) for potential coefficients (ar2(T) =
o, (Aj) )Pe (n-1)-G, y = 979800 mgal). The circles correspond to Rapp's re-

sults, and the triangles to those obtained using collocatln as already explained.
Because the grid used by Rapp is much finer, the corresponding results are
likely to be less affected by sampling errors, at least up to degree 36, than
those obtained from the 50 x 50 anomalies; for this reason FRapp's rms values
are regarded here as the "true,, ones. The solid line corresponds to C. Jelekil's
1"2L" model for the o., used here to obtain the optimal estimator. It is Inter-
esting to notice that the triangles follow the circles (or "true" values) rather
than the line. A common concern among those using this type of estimators is
to what extent the "a priori" power spectrum or covariance function used to set
up the estimator may 'bias" the results by forcing the spectrum of the output
to resemble the "a priori" spectrum. Here there is little evidence of such a
"blas".

In addition to Rapp's coefficients, those of GEM-10B (Lerch, 1980)
were also used for comparison. The "collocation" values follow them very closely
too (the three sets of results agree, In hact, very well with each other). The
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GEM values are not shown in the figure, to have a cleaner picture. In any

event, the "collocat ion" values compare very well withthe other two, and in the

higher degrees (31 to 36) where the divergence between Rapp's model and col-

location Is largest, GEM-10B fits right In between them. The results shown

here were presented in a previous paper by the author (Colombo, 1979-b).

Figure 3. 1
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4. Covariances Between Area Means

In what follows, the expression "point" covarlance refers to

cov(u(P),v(P')) 0 C: P"(4,) = Mfu(P),v(P')l (4.1)

The covariawce between the area means of two functions u and v is related
to the "point" covariance function by the following integral relationship (Sjbberg,

1978):

cov = da cov (u(P), v(P')) dOa' (4.2)

where P belongs to the area block a,,, and P' to akI, while

- 1 - J u(P) do (4.3)

is the average of u over the block ai of area

Aj= AX (cos (at) - Cos(8 1 + AG)) (4.4)

At, AX are the colatitude and longitude spans of the blocks in the "row" between

colatitudes 91 and Ot + lAS. To simplify the discussion, 601 =AS is assumed
constant; extension to the more general case where AG1 varies from row to row
is straightforward.

4. 1. Derivation of an Approximate Formula for the Covariance'

Expression (4. 2) can be computed by numerical quadratures (Rapp, 1977).

Because of the double integral, this is a very laborious process, and it is not

practical If many covariance values have to be found, as in the case of large data
sets. A more efficient alternative is needed.

Replacing the covariance function in the integrand of (4.2) with its Legendre
erpans ion

cov , -r c 'PV P.(4p,) (4.5)

Here , f cos-'(cooa9 coo e' + sin8 sin 0' cos (X - V)) is the spherical dis-

tance between points P ao(O,A), and P' U(O',X') In the unit sphere, while

is the nth degree variance of the cross-spectrum of u and v. As shown In the
Appendix, the order of summation and integration can be reversed.

In this section, expression P, (4p,) is shorthand notation for P (cos #g,').
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COV(1jVk1) cu," 1a f P. d~ a' 4.6)

Let P,. (cos 9) be the fully normalized associate Legendre function of the first

kind of degree n and order m. Applying the Summation Theorem for such

functions, the P,(4p') can be replaced in the integrand as shown below.

COV( k1) =1. d= " a d= 15 (cos) .(cos')cosm(X-X')da'
'~A1J'IcI 7i1141~= 2u+1 jj a il 0 =0

(4.7)

The sum in the general term of the series above has a finite number of terms

(n+1), so it is valid to exchange summation and Integration once more:
['CD n

cov(UTjVk 1  n zo 2i+. CJ ,,kf, P.4cos8) P,,(cos81) cos m(A-X)d

(4.8)

Writing out the area integrals as colatitude and longitude integrals:

11cOV(U0,Vk0) = E e P.(cos6) sn8d6 • (4.9)-Eidkl SO 2n+1 =

-kA~ >rX+AkX f A o (k;' ,P" (cos 8') sin9 ' dG' j* X j cos m(-A') dA

Calling A =  , as all blocks in the same "row" have the same area, we

introduce two functions,

F(M) fAx if m=0 (4. 10-a)
L(2/m 2 )(1-cosmAX) otherwise,

and

= 2 1 f t(cosO) sinO d8 (4.10-b)

Then expression (4.9) can be written, after integrating and reordering terms, as
follows:

COV(UtjVkl) = F(m) E rl I,k cosm(XI-Aj) (4.11-a)
M=0 =-

This regrouping of the series is valid because, as shown in the Appendix, the series

Is absolutely convergent. The integrals In the definition of 1,, (expression (4. 10-b))
can be calculated very accurately and efficiently with recursive formulae obtained by
M. K. Paul (1979). Regarding j as being fixed, the last expression is also that of the
Fouxwr series of cosines of cov(uis,vkl), with amplitudes

a = F(m) E I(4 1 b)

and phases (p, = -mX .
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While (4. 11-a,b) are valid for all values of X in the interval 0 X j 2 ,
this expression has to be calculated only for Xj = 0,AX, 20X,... ,j X. According

to the sampling theorem for ordinary Fourier Series, at such regularly spaced Xj
expression (4. 11-a) takes precisely the same values as the finite sum

N

COV(-Ukl) = a, Cos m( j - XI) (4. 12)
M~MO

where N =  /AX

an = a2Nh + a2Nh- (4.13)
h=0 h = I

To calculate the covariances, (4. 11-a, b) and (4. 13) have to be truncated, excluding

all harmonics above some degree Nmax; (4.12) becomes:
N K N

COV(UIJ,Vkl) -COV("UIJ,Vkl)N = OE - ~ ~ Nh.a=v - n'
K NI&X+ (Ia-.,)

+~ E E i.2h,1(U,2Nh-,,k, 1 F( m) cos m(Xj - ~)(4.14)

where (2K +I1)N ! Nmax.

4.2. Choosing Nmax

To calculate the values of covariances between equal angular mean anomalies, 6g,

the value of Nmax could be chosen so that the percentage error

V = IcOv(( - g3
' E k)Q - cov(Ngjj .. )N.. I

(cov(Fgj ,Y"gkl )q being computed by numerical quadratures) does not exceed a pre-

scribed upper bound c. The smallest Nmax that meets this condition increases

towards the poles, because the decrease in area of equal angular blocks with latitude

means that the averages have a high frequency content that increases accordingly.

On the other hand, the absolute values of the integrals of the , and therefore

the Fourier coefficients a, in (4.12), decrease quite fast with increasing order m
near the poles, so their contribution soon becomes insignificant. This is fortunate,

because the need for lengthier calculations for each Fourier coefficient nearer to

the poles can be offset by the existence of fewer coefficients there. In fact, because

of the finite arithmetic of digital computers, all a. for blocks less than 300 from
the poles are rounded off to zero for m considerably less than N In the cases

presented here. Because of this, calculations near the poles can be less laborious

than close to the equator, in spite of the larger Nmax . To take advantage of this
A

in the programming of (4. 14), the a, coefficients were not computed above the first

m for which the following condition was met:
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112 ^ 8 and
n-1 Az 2

tr ag

where 0 12 - . This ensured no change in the first six significant figures of

the result when compared to the case where no coefficients were ignored, but

there were great savings in computing.

4.3. Numerical Examples

To verify the accuracy of the truncated series in expression (4.14), mean

gravity anomaly covariances were computed both with this formula and by numeri-

cal quadratures. All calculations were carried out in double precision (32 bytes),

some of those for expression (4.14) being repeated in extended precision (64 bytes).

The agreement between both sets of results was better than 6 significant figures,

suggesting that both expression (4.14) and Paul's recurs ives (used to obtain the

are quite stable numerically, at all latitudes.

The covariances computed were between a mean anomaly in a fixed block

and all the anomalies in the same row of blocks (i. e., all blocks bounded by the

same parallels), calculations being done for several rows, at close intervals from

equator to pole. Results for only a few of those will be shown here, because they

are typical of the rest. Both a 50 and a 10 grid (equal angular) were studied. The

results were compared to those obtained by numerical quadratures, and by the

approximate formula

cov(giJgki) Noax
N la xAg, Ag

COV(Eg 0jNgk1 0. n0. P k Ce P,( OYY') (4.15)

where Y and Y' are the center points of Cai and akl, while

PY - 1 1 P1 -cosec 2n+I [ PI- (cos 0o) - P+ .1 (cos o) ]

is the nth degree Pellinen smoothing factor (the formula is Meissl's), and

00 = cosi A (cOs( 8 a+ 1) - cos 01) + I]

This formula gives the covariances of averages on circular blocks of the same

area as that of the equal angular blocks in the row between colatitudes 81 and .
These covariances are used sometimes as approximations to the equal angular co-
variances .between mean values.

The numerical quadratures technique consists in the following: (a) sub-

dL, .uiug each block with a grid of k equally spaced latitude and k equally spaced

longitude lines; (b) computing the covariances between point gravity anomalies

at the nodes of each subdivision (there are k4 different pairs of nodes to be consi-

dered); (c) obtaining the approximate value of the covariance between mean

anomalies as
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k-I k-I. k-i k-I

cov(g 1i',t9C) E E E E c v (agAgk) (4.16)
au0 a=O r= 0 A= 0

where m, n, r, and s are indexes that identify the elements of each pair of nodes

in the subdvasions of oj and a,,. The covariances between point anomalies such

as AgJ and AgI were obtained using a two term model for the degree variances

of the anomalies:
•(n-1) 09499

cai = 18.3906 (n-l) 0.9943667"' + 658.6132. 0.904894f+

(n+100) (n+20)(n-2)

This is the "2L" model of C. Jekeli (1978), and has the advantage that the value of

the point covariance function can be computed using finite recursion formulas

(Moritz, 1977). The same degree variances were used in (4. 14) and (4. 15). The

number of point covarances being very large (k4 ), a table with entries spaced

at AO = 0.050 intervals was created first, the required values being obtained by

linear interpolation from this table. Numerical tests showed that k = 10 was

large enough for both 50 and 10 blocks, because doubling this number resulted in

a change of less than 0.2% in the values given by (4.16). Reducing the interval

AO from 0.050 to 0.0050 had a negligible effect also, therefore the values obtained
with (4.16) are probably accurate enough to test those given by (4.14). The only

exception was the "polar" row, where the equal angular blocks are, in fact, tri-

angles with a common vertex at the pole. Both with 50 and 10 blocks the dis-

crepancies between (4.14) and (4.16) were large (more than 30%), regardless

of how large a k, how small a AO, or how big a Nmac were chosen. The

probable explanation is that the pole is given undue weight in (4.16) because it is

treated as a whole row, instead of as a single point. For this reason, the
numerical examples presented here stop at the row immediately below the pole.

The first two tables show the covariances between 50 mean anomalies in the
row between latitudes 00 and 50 (just above the equator) and in the row between

latitudes 800 and 850 (one below the pole). The error is at most 8%, though much

less in most cases, and NmrAx = 180 in each table. Under "Pelinen" one finds

the values obtained using (4. 15) with due regard for the change in block areas with

latitude. While there is very good agreement near the equator, there is no resem-

blance at all close to the pole to the other values listed.
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Table 4. 1. Comparison between covariances of 50 mean anomalies -"g

computed with expressions (4. 14), (4. 16) and (4. 15),

respectively. Nmax= 180. Row between 00 and 50 .

Expression (4.14) Numerical Pellinen Block No.

250.53 253.77 251.78 1

148.80 149.46 151.03 2
193.93 93.95 93.90 3

57.16 57.15 57.10 4
31.80 31.76 31.67 5

13.94 13.93 13.86 6
-18.09 -18.09 -18.08 12

9.12 9.12 9.11 24

-13.68 -13.68 -13.65 36

Table 4. 2. Comparison between covariances of 50 mean anomalies Ag
computed with expressions (4.14), (4.16) and (4.15),
respectively. Nma x *= 180. Row between 800 and 850.

Expression (4. 14) Numerical Pellinen Block No.

418.60 437.23 835.53 1

329.03 318.27 800.09 2
220.91 229.17 709.03 3

191.75 196.40 592.19 4

179.79 179.70 5
165.58 168.46 6
120.60 123.73 12
69.89 73.27 24
54.66 58.01 149.40 36

The next three tables show results for 10 blocks. Here the numerical

method was conducted with the same 40 and k as in the case of the 50 grid.

Results for rows between latitudes 00 and 10, 450 and 460, and 880 and 890
are shown. In tables 4.3 and 4.4 the discrepancies between (4. 14) and (4. 16)

stay below 1%; this Increases to about 5% near the pole (table 4.5). Nmax is
300 for the equatorial row, and r~ses to 400 from 450 on. As with 50 blocks,

the "Pellinen" values are quite close to these of (4. 14) and (4.16) near the

equator, but become very different near the pole.
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Table 4.3. Comparison between covariances of 10 mean gravity

anomalies computed with (4.14) and (4.16). Ni,= 300.

Row between 00 and 10.

Expression (4.14) Numerical Block No.

849.68 855.16 1
411.32 410.30 2
220.35 219.63 3

181.84 181.50 4

163.33 163.21 5
149.11 149.15 6

1.07 1.08 31

-16.79 -16.79 61

1.99 1.99 91

8.54 8.53 121

-4.79 -4.79 151

-14.39 -14.38 181

Table 4.4. Comparison between covariances of 10 mean gravity

anomalies computed with (4.14) and (4.16). Nma x - 400.

Row between 450 and 460.

Expression (4.14) Numerical Block No.

952.25 959.17 1

531.15 531.97 2

275.55 274.65 3
210.81 210.46 4

185.36 185.57 5

170.82 171.08 6
27.79 27.79 31

-14.37 -14.37 61

-18.01 -17.01 91
-8.27 -8.28 121
-1.01 -2.92 151

1.39 1.39 181
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Table 4. 5. Comparison between covariances of 10 mean gravity
anomalies computed with (4. 14), (4. 16), and (4. 15),

respectively. Nma x = 400. Row between 880 and 890.

Expression (4.14) Numerical Pellinen Block No.

1137.97 1187.94 1795.88 1

1135.79 1184.15 1795.02 2
1129.28 1177.99 1792.45 3

1118.55 1155.08 1788.18 4
1103.76 1131.34 1782.25 5
1085.15 1102.85 1774.68 6
408.59 443.12 31

248.27 257.88 61
207.19 210.64 91

189.65 192.55 121
181.93 184.53 151

179.65 179.86 368.60 181

Calculations were carried out in the Ohio State University's AMDHAL

470 V/6-lI computer, using the FORTRAN H EXTENDED compiler, and double
precision. The computing times for obtaining all 37 different covariances

between the elements of a row of 50 mean anomalies, and all 181 covariances

in a row of 10 mean anomalies, using (4. 14) and (4. 16) are listed in table 4.6

for comparison. The integrals of the Legendre functions required by (4.14),

and the table of point anomalies covariances needed in (4. 16), were precomputed
and stored in core memory arrays, so the times given here do not include the

determination of those auxiliary values. In most ordinary applications of these

formulas, those quantities can be read from disk or tape whenever needed,
because they are the same for a whole variety of problems. Clearly, using

(4.14) can be orders of magnitude more efficient than using (4. 16), while the
accuracy is much the same. In fact, accuracy is probably better at the polar

rows with (4.14) than with (4. 16), because the latter seems to have problems
handling triangular blocksi Finally, not all of the time-saving properties of

(4. 14) were exploited in the computer program used to calculate it, so there is
scope for some improvement in efficiency beyond that shown in the table. Notice

the time saved in the 880 - 890 row thanks to the neglect of terms in (4. 14) that

become too small near the poles, as explained In paragraph (4.2).
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Table 4.6. Comparative efficiencies of algorithms based on expressions

(4.14) and (4. 16).

Block Size 1 Row Nmax Expression (4.14) Numerical Quadratures

50 00- 50 180 0.1 sec. 23.3 sec.

50 800 -850 180 0.1 sec. 23.3 sec.

10 00 - 10 300 0.35 sec. 113.3 sec.

10 450 -460 400 0.43 sec. 113.3 sec.

10 880 -890 400 0.06 see. 113.3 sec.

4.4. Covariances Between Mean Values and Point Values

The prediction by least squares collocation of mean values from point

values, or vice versa, requires finding the corresponding "mixed" covariances.

In such case, formula (4.2) becomes

COV(Ur1 ,v(e,A)) =- 1 fcov(u(P'),v(P)) dcr (4.17)

where P'- (0',X')Ecal, P- (O,X), v(P) is the "point" value of v, and U,,

is the average over the i,j block of the grid, as before. Following a similar

reasoning, one arrives at a formula that corresponds to (4.14), except that only

one area integral has to be considered. The new expression is:

N K Nmaxc

cov ('Uj,v(E),X)) " E = E m / n.=, h+ (C Sa
Al = S =U (In,2Nh+m,1 nahaloe

9 Nmax 1

h 1U=E. (2Ln+)(. ZNh , P.,Nh-.(cose)] {(A(m)cosm(Xa-X)

+ B(m) sin m(X3 - X)] (4.18)

where

A(m) ifm 0 B(m)= 0 if m=0

) (cosmA-1)/m otherwise I(sinmA;.)/m otherwise

and the , the c,, , and the N, K, and Nmax are as in (4.14). Expression

(4.18) assumes that the area means belong to a grid with constant A. If the point
values are also on a grid, and if this grid is congruent with that of the mean anom-

alies, implementation of (4. 18) is quite efficient. In fact, the speed of a good

algorithm for doing this should be much the same as that of one for implementing

(4.14). On the other hand, computing the same covarianccs by numerical quadra-

tures is 12 times faster in this "mixed" case than it was in the previous one, be-
cause there is only one area integration involved. Assuming k = 10, as in the

previous examples, then expression (4. 18) should be only 2-3 times faster than

numerical quadratures for 50 mean values, and from 4 to 15 times faster in the

case of 1' averages.
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Both the normalized Legendre function and their integrals are needed for
(4.18). They can be precomputed and stored on disk or tape until reeded. In
this study the following recursive relationships were used to generate their
values:

9 2n- 1)(2n -3) 1 (cos9 P.a's.I(CO5O)

F(n1(~-(-m 1[(n -l)(n+m-)n m-)if _

- L(2n-1)(n+m-3)(n-m-) I Pn.. 3 ,_i(Cos 0), m 9n (4.19a)
- [(2 n -)(n- 2)1 -m)

P.-1 ,,-1 (cs ) = 2 sin Pn-2(COS ) (4. 19b)

+ nn ['(2 n- l) (2n - )(n m - 1 Op

+ (n-)2n-2)2 (n-m) Jre ,-3,=_1(tos8)sin0 d9 (4.20a)T~~~nI( n (2n-)2))(n-_ -. .3co )'e

02 1 2-) 02

+ _(n-l)(2n-l)(2n- 2

2 n1 (n -2) ' el~ P.-_,,._(cos 0) sin 0 d0 (4. 20b)

if 8 is uot very small, or

J921_S.l~os8)[ (2n-I1)(2n -3).. 1. fl

lei ( (2n dn [ 2) (2 n-4..7s(2n-)(2n-4).. : sins@9 -

1 sinn 1 13 sin4 + 135 sin6 i

1+ I (4.20c)LD1 2 n+3 24 n+5 246 n+7 401

if 6 is very small. Here y(0) 1e -= y((0) - y(191 ) . The recursive formulas for
the integrals of the Legendre functions were derived by M.K. Paul (1978); the
author has been fortunate enough to have available a FORTRAN subroutine pro-
grammed by Paul, and kindly sent by him to Professor R.H. Rapp of the Depart-
ment of Geodetic Science at O.S. U. The results reported here have been made
possible by, and bear witness to, the great numerical stability of Paul's for-
mulas.
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5. Conclusions

The relationships between spherical harmonic series and Fourier series,
coupled to the symmetries of spherical grids, permit the development of ef-
ficient algorithm for numerical analysis of data regularly sampled on the sphere.

The algorithms presented In section 1 for implementing numerical quad-
ratures are efficient enough to allow the analysis of 64800 1' x 10 mean values
through degree 180 In less then 20 seconds, and the summation of the 90000
terms of a harmonic series complete through degree 300, on a full 10 x 10
equal angular grid, in less than 1 minute. The analysis of large global data
sets to a very high resolution is a relatively trivial operation with modern

digital computers.

The principles and Ideas behind the optimal estimators of section 2 pro-

vide a rational basis for the study of linear techniques for spherical harmonic

analysis, both optimal and non-optimal. The error measure introduced in this

section is shown to be a very reasonable way of evaluating the estimation error,

as Illustrated by the results listed In table (3. 1).

The optimal estimators themselves are reasonably easy to compute and
use, particularly when they are of the quadratures type, which happens under

the firly general conditions discussed In section 2. Even when such conditions

are not present, as in the case of scattered data, the problem still has a

structure strong enough to allow efficient algorithms for creating and inverting

the normal matrix.

The separation of the problem of estimating the coefficients (by least
squares collocation or by least squares adjustment) according to the order m of

the coefficients, allows both for efficiency and for numerical stability. Even
if the total number of unknown coefficients is very large, the largest matrix

to be inverted is of dimension N , instead of O(N ), as It would be if the prob-

lem could not be separated In this way.

All the algorithms presented here, when the grid is complete and regular,

are well suited to parallel processing.

In the case of full grids of mean values with even noise, the results of
section 3 suggest that the optimal "collocation" estimator can be approximated

very closely by a much simpler quadratures-type formula, the "composite for-

mula" (3.9). The search for simple, near-optimal estimators is just as impor-
tant, from a practical point of view, as the search for efficient algorithms for

obtaining the optimal estimators themselves. This is a topic that certainly

deserves thrther research.

The methods for creating and Inverting the normal matrix, that make

possible to find optimal estimators for large data sets, have application outside
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spherical harmonic analysis, in all areas of estimation, filtering and prediction
on the sphere. This has been the subject of a previous report (Colombo, 1979).

It must be added that the principles presented here can be generalized to bodies
of revolution other than the sphere to the case where the data are not bomo-
geneous (i.e., a mixture of, say, gravity anomalies, satellite altimetry, etc.);
to the case where the coefficients to be estimated are not those of the signal as
given, but of some more or less complex linear transformation of this signal,
satellite-satellite tracking data being a good example. In fact, the author is
at present considering the error analysis of the determination, by least squares
collocation, of the potential coefficients from satellite-satellite tracking, fol-
lowing some of the principles of section 2. This will be the subject of another
report.

The method developed in section 4 to calculate the covarlance between
two area means without employing cumbersome numerical integrations is of

interest, not only in spherical harmonic analysis, but more generally in fil-
tering, prediction and estimation from mean values on the sphere.

The computer programs described and listed In Appendix B should help
the interested reader to implement some of the techniques discussed in this
report. The author sincerely hopes that this will be done by workers concerned
with improving and further developing such methods.

Above all, the author hopes that he has conveyed to those who had read
this far, the idea that the detailed analysis of very large sets of global, reg-
ularly sampled data can be done within the computing resources available today
to most scientisrs who work at universities and research institutions every-

where. The processing, be it by numerical quadratures, or by Simultaneous
adjustment, of "all the data in the world" is not a fanciful thought, but a practiaA-1

possibility.
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Appendix A. Term by Term Integration of Formula (4.5), and Rearrangement

of Terms in Formula (4.9) to Arrive at Formulas (4. 11-a) and (4.14)

The area integrals in expression (4. 5) can be split into integrals in 8 and

X, and the summation theorem for fully normalized spherical harmonics can be

used to replace P(Opp,) with an equivalent expression in the general term of the

series:

cov(Uli,Vk1) = 1- singd8! sln ' dO' d d dX' •

n

E P,,.(cos8) P.(cose') cosm(X- X') (2n+I)- 1  (A.1)
m=O

Starting with (A. 1), the proof proceeds in four steps, each justifying in turn

the taking of one of the four integrals inside the summation symbols. Each time,

three theorems are invoked:

The first is the "M-Test" theorem, due to Welertrass (see, for instance, Carslaw,

(1950)): =

The series f(x) = 4ou(x). will converge uniformly in a!x!b

if there is a convergent series of positive constants Mo, M1 , .... M , ...
such that, for all x in a- xgb, Iu(x), [1 M, for every positive

Integer n.

The second theorem is (also according to Carslaw):
co

If the general term u (x), of the series Eou (x), is continuous,

and if the series converges uniformly to some function f (x) in

the interval a'x!5b, then
fx)dx = ux),idx - x

"J = - =0

This is a sufficient condition for term by term integration. The third theorem

is the mean value theorem for integrals
b

f f(x) isanalytic in a:x:9b then .f(x) dx = (b-a)f(c)

for some c such that a c <b.

Proof: The series in the left hand side of (A. 1), if all variables but X' are kept
fixed, is uniformly convergent in the Interval XL 5 X' ! X1+ AX because

(2n4 1)" 3  I 'P (COSe) P C(CoS e') CoS m(- X') = c3 .I P
2=0

and fc0,'p.(4) ' cu, because max P.(O)l = 1 (the argument of P, is real) for
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al n, while £ UV = cov(u(P),v(P)) is always finite (equals the valueC"

of the "point" covariance when s = 0 ). The "M-Test" condition is satisfied

so the series converges uniformly; therefore, term by term integration with

respect to X' is valid:

cov(UIjVk,) sindO ' sine9 d'j dX

8Cos m(,- X' dk (2+ 1)-

".o u- o x0

Applying the mean value theorem to the last express ion:

e'1+49 ek+46+A
COV(1Jk) - 9 sinOdO Jk sine, d' dC x

a

U= I0EC, ~a P34xTi.(Cos ) 15..(cos 6') cos m( X- XQ) (2 n+ 1)

where X, !r X : X+ 4). Removing the common factor 6X from the summation:

COV(UIjVkl) = A .nd , sine8 dek •X

W a

0 t ie" £;a.,(cos e) %5.(cos ') cos m(,- Aq)(2n+1) (A.2)

The general term in the partially Integrated series is

11

(2n+1) c' E oP..(cose) P%(Cose') cos m(X- Oq) c P.(4)

where Q -(9',1XQ); now Icu" P,(@pq)[ I c u'7 forall n, and for all A in the

interval Xj 9 X Xj + 4X , so the "M-Test" is satisfied again and the series is

uniformly convergent, and thus integrable, with respect to X. Therefore

ao~i1 ,~ ) 2 9. 1+e ()e CD

= -- sin Od e sine dS E c"

P P8.(CosO) P,,(CosO') cos m(Xt -Xq) (2n+1) - 1 (A.3)
•0

where , <9 Xq X3+AX. Once more the general term of the twice integrated

series satisfies the "M-Test", because

j(2n+1T'c'u nE' P.(cos8) P.(cos9,) cos m(X-xQ)I = 1,u'P.(,)l u'

(where R S (e, X)) for all n and, in particular, for 6' in the interval
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8k 8 ' < 1,+ 6. In consequence

de sinesine d U,
O ,Ak el d a .

P.*(Cose) P.,(cos0 s) cos m(AA- AQ) (2n+l)-1 (A.4)

Finally,

1(2a+ ~ P c"" T.(CO56) ?;.(COS 8s) Cos m(Xim-AQ) 1 ! IC"R(4)j g CA"
a=0

(where X (83, AQ)) for all n and, in particular, for 6 in the interval
61 : e c 9+ A so the last integral can be put inside of the summations, and the
proof of the term by term integration of (4.5) is complete:

= #C (cos e) PD(Cos es) cosm(, -Xq) (A.5)
3=0 -0

where 61 r 8r T! el+A9 and h = W snL9 sin ey AelAl.k

The general term in (A. 5) satisfies the "M-Test":

I Av- 12nt .(Cos 9) fl.(COS) cos m(XR-XQ)I cCa "
30

Since the series .o c ' converges, any series of positive terms JZJ satisfying
I z,,1 cA must converge also: the "M-Test" condition implies the absolute con-
vergence of o z. . Absolutely convergent series can have the order of their
terms changed arbitrarily, without changing the value of their limit sums. This
justifies the reordering of (4.9) that leads to expression (4. 11-a).
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Appendix B: Computer Programs (Descriptions and Listings)

This Appendix contains the description and listing of each of the major

subroutines developed in the course of this research, together with their own

auxiliary routines. The listings of the main subroutines contain explanatory

comments that the author hopes will be of help to those who may use them.

The description accompanying each main program defines arguments, gives

the dimensions of the memory arrays required, mentions the relevant for-

mulas from preceeding sections, and gives a brief explanation of the various

segments of the program.

B. 1 General Programming Considerations

Only one-dimensional arrays are used in the software described here.

The language used for all of them is FORTRAN IV ; some subroutines from

the International Mathematical and Statistical Libraries Inc. (IMSL) are called

by the main subroutines. Implicit DO loops in READ or WRITE statements have

been avoided as much as possible, because their execution may be rather slow,

depending on the compiler; instead, subroutines FREAD, FWRITE and REWIND

are used for all imput/output operations involving large files on tape or disk,

in some of the subroutines. All operations involving real arithmetic have been co-

ded in double precision ( 8 bytes, or 32 bits), which is equivalent to retaining

the first 7 significant figures In all arithmetic operations.

The arrays containing the associated Legendre functions or their integrals,

as the case may be, are arranged first b&degree, and then by order : 00, 10,

11, 20, 21, 22, . . .(N,,, , Noax).The i--.are arranged accordingly, always in

two separated arrays: one for the C5- and another for the C, . Ia order to

get the value of the element '"nni' from one of this arrays, the following formula

is used:

k = in(n+l) +m+ 1

where k is the position of this element in the one-dimensional array. When

the elements are recovered sequentially from the beginning (00), the following

type of DO loop is used:

KOUNT - 1

Do XX N=1 1 , N,,,

DO XX M1 N1, N,,,

LEGEND (KOUNT) ARRAY (KOUNT) **2

XX KOUNT = NDUNT + 1

where, in this particular example, the nm (n=Nl-l, m=M1-1) element in array L

LEGEND is equated to the square o the nm element In ARRAY. Avoidance of two-

dimensional memory arrays results in considerable improvements in efficiency.
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B.2 Subroutine SSYNTH

This subroutine computes the sum of a spherical

harmonic series complete to degree and order NMAX at each one of the 2N 2

points or blocks in an equal angular grid. The subroutine can calculate point

values (IFLAG = 0 or area means (IFLAG = 1) . The number of rows or paral-

lels N (Nyquist frequency) must be even. Subroutines FFTP from the IMSL Double

Precision Library is used to calculate the sum of the series along rows by means

of the Mix Radix Fast Fourier Transform algorithm.

The procedure used is that described in paragraphs (1.6) and (1.7). The

symmetry of the grid with respect to the equator, and the corresponding even-

odd symmetry of the values of the Legendre functions or their integrals, (I.e.,

the x,' of section 1) are exploited. The values of those functions, or of their

integrals, are read from mass storage (disk or tape) into array ROW, in the

order described in the previous paragraph. All the values for one latitude, or

Tow" are read at once, so the dimension of ROW is *N%., +1)(Nj,,x+ 2). AU the coef-

ficients e? are also stored in core, the cor -esponding RCNM and RSNM ar-

rays (for C. and 9, respectively) have the same dimension (the g,°,, are

included, though they are all zero). The output consists of 2N 3 values in ar-

ray DATA. This array is organized in rows, from North Pole to South Pole.

The rows, of 2N points or blocks each, have their values written consecutively.

The following is the list of arrays, and their dimensions:

NAME DIMENSION TYPE

ROW RD( N.. + 1) (N.. . + 2) REAL *8

RCNM RD

RSNM RD

X RD INTEGER *2

DATA 2N 2 (N = 180/BLOCK) REAL * 8

CRI N + 1 "

CR2 N + 1 "

SR1 N + 1 "

SR2 N + 1

AM N + 1
BM N + 1

F AUX1 4N
F AUX2 4N
F IWK see IMSL Handbook INTEGER *4

F LL " !1 "1 LOGICAL *4
F A " " " REAL *8

IV N+I

("F" designates those arrays required by the IMSL subroutine FFTP). In ad-
dition, the size (in degrees) of the blocks is defined by BLOCK; IPP = *(N... + 1)

(N 3&+ 2); IU is the number of the unit (disk, tape) from which the Legendre

fimctions or their integrals are to be read.

Array X contains Information on whether a given xj" is even or odd;
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arrays CR1 , SR 1 ,and CR2 , SR2 , respectively, contain the Fourier coef-
ficients , (a) and P.(b ) of rows I and N--i -; arrays AM and BM
contain the values of A(m) and B(m) , as defined in expression (1. 7); the
auxiliary array IV contains the numbers in(n + 1) needed to locate Individual
elements within arrays ROW, RCNM, and RSNM, when they are not addressed
sequentially.

The comments in the listing are probably enough to understand most of it
on close Inspection; one point however may be worth explaining further: the
"aliasing" of the Fourier coefficients has been incorporated to take care of the
case when N,. > N - 1 . In such situation the el (a') and $.(b.) become
aliased, as Fourier coefficients must, and it is their aliased values that the FFT
subroutine requires to compute the values of the spherical harmonic expansion
along parallels. The formulas for the aliased coefficients are

of,= ,+k= N + ( +K-) (B 1-a)

+ 
1

11 (+_ , - - ) (B 2-b)

where KM is a large enough integer. A similar expression applies to a,
and to ba .

The arrangement of the output in latitude corresponds, in the case of area means,
to the intervals on which the ,, are integrated; for point values, it is de-

fined bythe latitudes e1 at which the %, (cos 9t) have been precomputed. As
regards longitude, the grid starts from the zero meridian used for defining

the coefficients. In the case of point values it is usual to compute all values at
the center of each block. To do this, the Ir must be precomputed at the lati-
tudes of the center points, while the longitudes are taken care by modifying the

coefficients as follows

, = os m L + T. sIn m-. (B 2-a)
2 2

S' =  Cos m -& - .1 8 sInm A, (B 2-b)
'U 2

This is equivalent to rotating the grid eastwards from the zero meridian by .

B.3 Subroutine HARMIN

This subroutine Implements either the algorithm of paragraph (1. 5)
for the harmonic analysis of area means, or that of paragraph (1.7) for the
analysis of point values.

The subroutine calls IMSL's FFCSIN to calculate the a', b* or the
a. P, by means of the Fast Fourier Transform (Mix Radix) algorithm. It
also calls subroutine QUADFS , that returns in array A the de-smoothing
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factors j, QUADFS calls LEGPOL , a subroutine that computes the Legcndce

polynomials up to degree NN + 1 needed for the fl; in P, •

The data is arranged as in SSYNTt1, In array DATA , before the subroutine

is called. Afterwards, the contents of DATA are destroyed, as the a., b'

or the a., & are formed in place of them, row by row, by FFCSIN . The

resulting coefficients' estimates are put into arrays RCNM and RSNM , in the

same order as for HARMN . The other arrays, with the exception of A , are

as in SSYNTH. The same is true of the scalars, with the exception of NN .

NN is the highest degree and order to be estimated. NDD is the total number

of Legendrefunctionsortheir Integrals, to be read from unitlIl , per C-1

This number is (NN+1) +(NN+2)/2. A is a REAL *8 array of dimension NN + I

The dimension In QUADFS allows fora maximum NN = 300; for larger solutions,

the dimensions there and in LEGPOL must be increased accordingly.

In the case of point data, the estimated coefficients are computed using a

center point formula that assumes that the data are situated at the centers of the

blocks; the resulting coefficients are refer red, nonetheless, to a grid starting

at the zero meridian (the "rotation" of the coefficients takes place between

statements 0071 and 0073, when IFLAG = 0). When IFLAG=I , the area means

formula (1.30) is computed; the x'S' =  n(e)sin d e , and the 11, are

those produced by QUADFS, as already mentioned. The integrals of the Legendre

functions are read from unit "nU", as in SSYNTH (same format), and the size

of the blocks is specified by BLOCK (in degrees). The version of QUADFS
listed here implements the 'composite" estimator of paragraph (3.3). If

another is desired, this can be achieved simply by replacing lines 0021 through

0024 in QUADFS.

B.4 Subroutine NORMAL

This subroutine creates the optimal estimators for the Z5 based on the
formation and inversion of the R(m) matrices described in paragraph (2. 10)

The algorithm exploits the fact that (C,,-- D) is a block matrix of Toeplitz

circulant sub-matrices. This subroutine is meant only for mean values.

The grid Is as in SSYNTH and HARMIN. The symmetry with respect to the

the equator is only partly exploitedt matrix D may not be persym-

metric, so the total matrix (C,, + D) may not be so either. C', however, is

always persymmetric, and this Is taken into account to save computing and stor-

age. A general diagonal matrix D corresponds to a rather broad class of

actual problems, such as the analysis of the 5' x 50 real gravity anomalies

described in paragraph (3.4).

This subroutine requires four input/output units: 8 (read only) contains
the values of the integrals of the Legendrc functions, row by row, arranged as in

SSYNTH or HARMIN; 10 contains the right hand sides of the "reduced normals"

km =R(m) e"' (expression (2.58)); 15 contains the R(m) matrices, ordered by
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P_

increasing m , stored in vector array form column by column; 30 stores the

Xt of the optimal quadratures-type estimator. The X"s are stored from N.

Pole to S. Pole, and according to nm , as the Legendre integrals and the coef-

ficients. In some circumstances the grid may be geocentric rather than geodetic

and a change of coordinates might be desirable: this can be achieved by setting

the parameter IGEO to 2 . The flattening assumed for this transformation is

F = 1/298.257.

After the R(m) matrices have been created, the y are Inverted by IMSL

subroutine LUDECP , that performs a Choleskii factorization. IMSL sub-

routine LUELMP solves the equations resulting in the X" ; if during the in-

version LUDECP detects an ill-conditioned (or a singular) matrix, the solution

part is avoided, and a set of null X' is stored for that particular m . As

an additional check for the stability of the solution, the relative residuals.

r. = N o where v = [vo, v1 , . . ValIs

i _ k'"(B3)
L=0 v =  - R(m) x" (computed)

are computed and printed. In all the cases studied here these residuals indicated an

agreement of at least 9 significant figures. To improve the stability of the

solution, a regularizing constant REGUL is added to the diagonal elements of

the R(m) (Paragraph (3.3)).

Arrays PN, SS, and FC contain the propagated noise, sampling, and

total error measure (variance) per degree. W contains the averaged row

variances (expression (2.43)) arranged from North to South.

The scalar arguments, NMAX, NN , DGRID , IGEO , REGUL , NRUN , and

NC 2 , are described in the comments inserted between statements 0006 and 0010.

The arrays are as follows:

NAME DIMENSION TYPE

ROWP i(NMAX+1)(NMAX+2) REAL* 8

ROWQ " "

RHS 2-NN (NN + 1) N (N = Nyquist freq.) "

S NN + 1) N

A " (N - 1)+N "

UL i Y

W N
DVAR NMAX + 1

FC NN + 1

PN W t

SS Y "

Arrays ANMPQ, FF, XO, B3, X, BT, FINMP (all REAL* 8), and IDD (REAL* 4),
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all dimensioned 200 or 400 In the subrcutine itself, are large enough for

problems where N < 200 . For finer grids, the size of these arrays should be

increased in the same proportion as that of N.

The R(m) matrices are frrmed according to expression (2. 63) . Subroutine

FUR computes the "allased" Fourier coefficients of the covariance functions

that are, in fact, the elements of the R() , scaled by N or 2N, depending on

m. Common MM and array MT are part of a logic set up to ensure that the

Fourier coefficients are not computed more than once each.

Subroutine ANALYS uses the Xn* stored in unit 30 to analyze the data

in array DATA . The nX., are formed in place, as in HARMIN , so the

original values In DATA are destroyed. Arrays CR, SR, CAA , CBB , SAA ,

and SBB have all the same description as CR 1 , SR 1 , etc., in HARMIN.

IMSL subroutine FFCSIN (double precision) is used to obtain the a,', N. The

reason why ANALYS is used instead of HARMIN, is the arrangement of the

x)V "columnwise", or by increasing latitudes, rather than "rowise" (i.e., all

the x, for the same I stored together) as HARMIN would require.

The listings of FUR, ANALYS, and those of the fast input/output sub-

routines FREAD, FWRITE , REWIND , are given after that of NORMAL.

The input/output subroutines have dummy arguments, because originally NORMAL

was written to work with certain subroutines available at 0. S. U. that may not

be in the software libraries of other institutions.

B. 5 Subroutine NORMAX

A modified version of NORMAL, this subroutine was created to compute

the variance of the estimation errors in ordinary quadratures formulas according

to the theory in section 2 . Essentially, it computes

,= o 
f 

+

a 
L-

by forming and using the R(m) . Since no inversion or solution of the normal

equations is required, the corresponding segments have been removed from

NORMAL, and a new final segment added for the computation of the various

accuracies.

The theory behind the calculation of the c(?, using the R(m) matrices is

as follows:

In the case of ordinary formulas of the type (see expression (1. 7))
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fa T

no- (_02 o(InN- 1J (0,X)d dm

= A }cosmjAX + sBnnjAX mIu= 0 Ot in i L ( )J I A (n)l

the estimator vector is a combination of a "sine"' and a "cosine" vcc-tor of

"frequency" m (terminology introduced In paragraph (2. 10)). The product of

such vector by (C,, + D) Is, because of the stnicture of this matrix, another

combination of a '"siic" and a "cosine"' Vector of the same "frequency". From
the properties of the normal matrix follows that

(it= 2N If m =0 rn Ama =Nm rcosnj .
(C,+D)fo = or m =N C • •os mj, -+

if m /0 -" (m) I

where,calling I- A(V Usinm3X oj

t0[ , R(m ) , n • X -1]

and 2N 2  if m 0 or n =N
F(M) 4N (1-cosmAX) if m/0 , m.nN

Is in1 N-1
In no

(f.J (C z + D) fn = F(m) LX i(
i=0

a

Regarding the scalar product 2c T,,, , it is easy to show that

2c.%.Z _n 2 i (XI) F(m) (B 4-b)
n+I=O

Expressions (B 4-a) and (B4-b) are implemented'by NORMAX to obtain the

error variances. This subroutine also uses FUR. Subroutine QUADRS is

also called, to obtain the de-smoothing factors. In the case listed here, this

factor is p = e Array QUADS has been added to the list of arguments,

and it contains-the" p after the call to QUADFS

B. 6 Subroutine LEGFDN

This subroutine computes the normalized Legendre functions and, if so

desired, their derivatives at a given O . All values correspond to the same

order M ; if more than one order at a time is needed, a DO loop, where the

subroutine Is called unce for each order, can be set up. The subroutine Is

based on formulas (4.19 a-b) and (1.38 a-b). The use of this subrouitine is

exiJained by the comment,- Insertied in the listinig. l'he, .nLiblity or t]' ,'ccutsw.

formuls was testAd by computing IT. (cos 0) ard (P,,G/dG)(coso) fi r i - 350

and 350 - n 4 400 , 2. 50 0o 1 900, at 50 intervals. Calculations were don(e

first In double precision (8 byte words) and then repeated in extended precision
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(16 byte words). Both sets of results agreed with each other to better than

10 significant figures.

B. 7 Subroutine NVAR

This subroutine computes the degree variances of the gravity anomalies
(point values),up to degree 100, according to the coefficients obtained by
R. Rapp from a complete, equal angular set of mean 10 x 10 anomalies, as mentioned
In par. (3.1). Above n = 100, the subroutine uses a two-term model to calcu-
late the a2.(Ag) . The resulting degree variances are stored in array DVAR.
The first element In DVAR Is af (Ag)
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B. 8 SUBROUTINE COVBLK

Subroutine COVBLK calculates covariances between area means according to expres-

sion (4.14). This subroutine is listed in the following pages. The arguments are
explained in the comments at the beginning of the listing. In addition, the

following things have to be born in mind: the dimcnsiin of the array DVAR
is Nmax; the dimension of both RINS and RINN is 4(Nnax+l)(NmaM- 2 ); the
dLmension of COVS is 360/BLOCK. The values returned in DVAR are the
original degree variances c, each divided by 2n+1. If LB is less than
360/BLOCK, the LB--1, LB+2, ... ,(360/BLOCK- TB-I ) elements in COVS
are returned as zeroes, the remainder contain the first (and last) LB covari-
ances. The dimension of F is 180/BLOCK (Nyquist frequency). To use this
.;ibroutine with Nmax > 400, the arrays FF and IDD (whose dimension should

le no less t1han Nmax), should be redimensioned.

The subroutine does not take advantage of the "aliasing" of Fourier coeffi-
cients i ziii to expression (4.14). Implementing this aspect should lead to
some additional iprovement in efficiency. T17he Fourier series is computed.

'-, tX,- lff .have .een determined, by multiplying each coefficient hy
the .:;:-: ro~n cosine of mXk and adding the products together. The values

' cos )F .re computed using the following recursive formula:

cos m). = 2 cos Aj cos (m-1) 4 - cos(i-2)Xj

which avoids repeated calculation of the FORTRAN COS function (only cos X. is
required t, start the recursion). Actual ca1lculation of the Fourier series requires
about 0.14 seconds in the most time consuming case: the grid of 10 blocks. The
greater part of the time taken by this subroutine goes into finding the Fourier

coefficients of the mean value covariances. For this reason, there is not much
difference between computing all covariances in a certain row, or just a few of
them, using ttis procedure.
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