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NUMERICAL METHODS FOR MATCHING FOR TEAMS AND WASSERSTEIN
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Abstract. Equilibrium multi-population matching (matching for teams) is a problem from mathe-
matical economics which is related to multi-marginal optimal transport. A special but important case
is the Wasserstein barycenter problem, which has applications in image processing and statistics. Two
algorithms are presented: a linear programming algorithm and an efficient nonsmooth optimization al-
gorithm, which applies in the case of the Wasserstein barycenters. The measures are approximated by
discrete measures: convergence of the approximation is proved. Numerical results are presented which
illustrate the efficiency of the algorithms.
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1. Introduction

Optimal transport theory has received a lot of attention in the last decades and is now recognized as a powerful
tool in PDEs, geometry, and functional inequalities (for which we refer to the monographs of Villani [28, 29]).
Given two Borel probability measures µ1, µ2, on metric spaces X1 and X2, respectively, and a cost function
c ∈ C(X1 ×X2, R), the Monge−Kantorovich optimal transport problem consists in finding the cheapest way to
transport µ1 to µ2 for the cost c:

Wc(µ1, µ2) := inf
γ∈Π(µ1,µ2)

∫

X1×X2

c(x1, x2)γ(dx1, dx2) (MK)

where Π(µ1, µ2) denotes the set of transport plans between µ1 and µ2, i.e. the set of probability measures
on X1 × X2 having µ1, µ2, respectively as marginals. Since this problem is of linear programming type, under
very mild assumptions (e.g. when X1 and X2 are compact), the least transport cost Wc(µ1, µ2) admits a dual
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expression given by the Kantorovich duality formula:

Wc(µ1, µ2) := sup
ϕ∈C(X1,R)

{∫

X1

ϕ(x1)µ1(dx1) +

∫

X2

ϕc(x2)µ2(dx2)

}
(1.1)

where ϕc denotes the c-transform of ϕ:

ϕc(x2) := min
x1∈X1

{c(x1, x2) − ϕ(x1)}.

A particularly important example is the quadratic case where X1 = X2 = R
d, µ1 and µ2 have finite second

moments, and c(x1, x2) = |x1 − x2|2. This case was first solved by Brenier [5], who proved that whenever µ1

is absolutely continuous, there is a unique optimal transport plan that is given by the gradient of a convex
potential. This important result relates optimal transport to Monge−Ampère equations. We refer to [3] and the
references therein for numerical methods for optimal transport based on the Monge−Ampère equation.

More generally, costs given by distances or convex power of distances are important because they lead to
the so-called Wasserstein distances. More precisely, when X1 = X2 (a metric space with distance d) and
c(x1, x2) = d(x1, x2)

p for some p ≥ 1, the value Wc(µ1, µ2) in (MK) is the p-power of the so-called p-Wasserstein
distance Wp(µ1, µ2) between µ1 and µ2:

Wp(µ1, µ2) :=

(
inf

γ∈Π(µ1,µ2)

∫

X1×X1

d(x1, x2)
pγ(dx1, dx2)

)1/p

.

In the present article, we are interested in solving numerically the following variant of the optimal transport
problem which allows for more than two marginals. Given (compact metric, say) spaces X1, . . . , XI , equipped
with Borel probability measures (µ1, . . . µI) ∈ P(X1) × . . . × P(XI), a (compact metric) space Z, and cost
functions ci ∈ C(Xi × Z, R), we look for a probability measure ν on Z solving:

inf
ν∈P(Z)

J(ν) :=

I∑

i=1

Wci
(µi, ν). (1.2)

This problem was introduced in Carlier and Ekeland [7] in the framework of multi-population matching equi-
librium; we will shortly recall in Section 2 the economic interpretation of (1.2). Problem (1.2) is also a special
case of multi-marginal optimal transport (a variant of (MK) where more than two marginals are prescribed).
Multi-marginal optimal transport is currently an active research field: compared to (two marginals) optimal
transport, there are fewer theoretical results, and the complexity of general multi-marginal optimal transport
problems typically increases exponentially in the number of marginals. Regarding the rapidly developing theory
of multi-marginal optimal transport, we refer the reader to the recent papers by Pass [23,24], by Ghoussoub and
coauthors [11,12] and the references therein for costs with special symmetry properties, motivated in particular
by challenging computational issues in density functional theory in quantum physics.

We now discuss a special, but important case of (1.2) which has a clear geometric interpretation. Let all
the Xi’s and Z coincide with R

d, the measures µi have finite second moments, and the costs be quadratic (i.e.
ci(xi, z) := λi|xi − z|2 for some weights λi > 0, summing to 1 without loss of generality). In this case (1.2) takes
the form:

inf
ν∈P(Rd)

J(ν) :=

I∑

i=1

λiW
2
2 (µi, ν) (1.3)

where W2 denotes the 2-Wasserstein distance. In analogy with the Euclidean case, a solution to (1.3) will be
called a Wasserstein barycenter of the measures µi with weights λi. Properties of Wasserstein barycenters were
studied by Agueh and Carlier [1]. Wasserstein barycenters interpolate between the measures µi; the idea of
interpolating between points of a metric space by minimizing some weighted sum of squared distances goes back
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to the notion of Fréchet mean. The case I = 2 is well-known. Letting the weights (λ, 1−λ) vary, one obtains the
classical notion of McCann’s interpolation [20] between two probability measures. This interpolating curve is
also a geodesic for W2, and in their seminal paper [2] on the dynamic formulation of optimal transport, Benamou
and Brenier gave a numerical scheme to compute this geodesic. Finding barycenters between more than two
measures is more complicated (barycenters are not associative as soon as the dimension d of the ambient space
is larger than 2). From a Partial Differential Equations viewpoint, this problem requires to solve a system of
Monge−Ampère equations, see (4.8) and (4.9) below. Interestingly, the Wasserstein barycenter problem recently
found natural applications in image processing, see Peyré et al. [26] and statistics, see Bigot and Klein [4]. Of
course, there are lots of variants of the interpolating scheme given by the W2-barycenter problem (1.3) and
in particular one can replace W2 by Wp for some p ≥ 1 or even mix different powers of the distance. Slightly
abusing the terminology, we will sometimes refer to barycenters even for these variants and even for the general
form of the problem (1.2).

In the discrete setting, the transportation problem is classical. In fact, this problem motivated the historical
development of optimization, by Kantorovich in 1939, working on Soviet railway transportation, and in the
1940’s by Hitchcock ([27], Chap. 21). The “assignment problem” arises in case of integer values weights, it is a
standard combinatorial optimization problem which can be solved by the Hungarian algorithm ([27], Chap. 21).
More generally, the “transportation problem” is a linear programming problem which arises when the weights
are real-valued, it can be solved by the Hitchcock algorithm ([27], Chap. 21), or by modern commercial general
linear programming software. Returning to the problem with continuous measures, it is natural to approximate
the measures by weighted sums of delta measures. In theory, the resulting problem can be solved using linear
programming. However, the number of variables in the linear programming problem is quadratic in the number
of variables used to represent the measures. In the discrete setting, current optimization algorithms are limited
to approximately several thousands of variables for each of the measures. This problem size corresponds to
a fairly coarse approximation of a two dimensional continuous measure. In special cases, or using specific
approximations, improvements are available, see [22] for quadratic costs, and for more references. For example,
if each measure is represented by, for example, 402 = 1600 variables, the linear program has 404 = 2 560 000
which is near the limitations of linear programming algorithms (we performed experiments using CVX [14]
and calling several academic and commercial optimization packages). Enlarging the resolution of the measures
quickly overwhelms the capabilities of the algorithms.

The problem (1.2) is even more challenging, since it involves multiple marginals and an additional unknown
measure. Resolving the barycenter measure on the full grid generally leads to an intractable problem (but as
shown by Cuturi and Doucet [8], some well-chosen smooth approximation can be solved in an efficient way).
Our main contributions regarding numerical schemes for the general problem (1.2) or the particular case of
Wasserstein barycenters (1.3) are as follows:

• We give a simple linear programming reformulation of (1.2) in Section 2.3 whose size is proportional to
the number of marginals. Together with a localization result that bounds the support of the unknown
barycenter in Section 2.2, one then obtains a tractable problem. We discretize the problem to arrive at a
finite dimensional linear programming problem in Section 2.4. We prove convergence, in the sense of weak
convergence of measures, in Section 2.5.

• Numerical results are presented in Section 3. These illustrate the validity of this linear programming ap-
proach. Barycenter problems with different costs are solved, as well as a matching for teams problem.

• The second algorithm which is specialized to the case of Wasserstein barycenter measures (1.3), is described
and illustrated in Section 4. This problem uses the dual formulation of the problem explained in Section 4,
and special features of the quadratic cost. The efficient nonsmooth optimization algorithm is described in
Section 4.3. Large size computational examples are presented (on grids of size 2002, and for measures resolved
with 15 000 points). The examples include barycenter measures using up to five measures, and an example
in texture synthesis in Section 4.4.
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2. Matching for teams and approximation

In this section, following [7], we first derive the generalized barycenter problem (1.2) as an equivalent reformu-
lation of an equilibrium problem for multi-population matching arising in economics. Next, we study localization
of the barycenter measure. Then, we present an infinite dimensional linear programming reformulation of (1.2).
This is followed by a discretization of the measures, which results in a finite dimensional linear programming
problem that is tractable for moderate problem sizes. Finally, we address stability issues (in the sense of weak
convergence of measures) when one approximates the measures µi by some (discrete) measures.

2.1. Variational characterization of matching equilibria

The model of Carlier and Ekeland [7] deals with the equilibrium of a market for a quality good (e.g. house,
school, hospitals, . . .). Producing the good requires assembling a team consisting of a buyer and a set of
producers. For instance, in the case of houses, the producers could be a plumber, an electrician and a mason.
The quality good has a range of feasible qualities (location, surface, number of rooms, facilities etc.), denoted
by Z which we assume to be a compact metric space.

Each of the different populations (buyers, plumbers, electricians, masons . . .) is indexed by i ∈ {1, . . . , I}.
The agents in each population are hetererogeneous, characterized by a certain type which affects their (quality
dependent) cost function. For example, some masons are used to work with lower quality bricks, while other
work with luxury stones, some electricians live quite far from the location of the house they work on, consumers
differ in their tastes . . . To be precise, for each population i, we are given a compact metric space of types, Xi,
and a continuous cost function ci ∈ C(Xi × Z, R) with the interpretation that ci(xi, z) is the cost for an agent
of population i with type xi to work in a team that produces good z. The distribution of type xi in population
i is known and given by some Borel probability measure µi ∈ P(Xi).

The goal is to find an equilibrium production line ν ∈ P(Z) (together with a price system) which clears both
the quality good and the labor market. The equilibrium is described below, and as we shall see, it corresponds
to the solution of the (generalized) barycenter measure problem (2.5). In this setting, one looks in particular
for an equilibrium system of monetary transfers (paid by the buyer to the producers). A system of transfers is a
collection of continuous functions ϕ1, . . . ϕI : Z → R where ϕi(z) is the amount paid to i by the other members
of the team for producing z. An obvious equilibrium requirement is that teams are self-financed i.e.

I∑

i=1

ϕi(z) = 0, ∀z ∈ Z. (2.1)

Given transfers, ϕ1, . . . , ϕI , an agent from population i with type xi ∈ Xi, gets a net minimal cost given by the
so-called ci-transform of ϕi:

ϕci

i (xi) := min
z∈Z

{ci(xi, z)− ϕi(z)}. (2.2)

By construction, ϕci

i (xi)+ϕi(z) ≤ ci(xi, z), and since agents are rational, they choose cost minimizing qualities,
i.e. a z ∈ Z such that

ϕci

i (xi) + ϕi(z) = ci(xi, z). (2.3)

The final unknown is a collection of plans, γi ∈ P(Xi ×Z), such that γi(Ai ×A) represents the probability that
an agent in population i has a type in Ai, and belongs to a team that produces a quality in A. At equilibrium,
the first marginal of γi should be µi (this is equilibrium on the ith labor market) and the second marginal
of γi should not depend on i (this is equilibrium on the quality good market), this common marginal represents
the equilibrium quality line. An equilibrium can then be formally defined. It consists of a transfer system
(ϕ1, . . . , ϕI) ∈ C(Z, R)I , probability measures γi ∈ P(Xi × Z), and a probability measure ν ∈ P(Z), such that

• teams are self-financed i.e. (2.1) holds,
• γi ∈ Π(µi, ν) for i = 1, . . . , I (equilibrium on the labor markets and on the good market),
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• (2.3) holds on the support of γi for i = 1, . . . , I, (i.e. agents choose cost minimizing qualities).

If an equilibrium quality line, ν, was known, then clearly the last two conditions above would imply that the
plan γi should be optimal for the Monge−Kantorovich problem:

Wci
(µi, ν) := inf

γ∈Π(µi,ν)

∫

Xi×Z

ci(xi, z)γ(dxi, dz). (2.4)

In fact, it was proved in [7] that there is a purely variational characterization of equilibria, which is tightly
related to the following convex problem

inf
ν∈P(Z)

J(ν) :=

I∑

i=1

Wci
(µi, ν) (2.5)

and its dual (concave maximization) formulation (see [7] or Sect. 4 for details on this duality)

sup

{
I∑

i=1

∫

Xi

ϕci

i (xi)µi(dxi) :

I∑

i=1

ϕi = 0

}
. (2.6)

Theorem 2.1. (ϕi, γi, ν) is an equilibrium if and only if:

• ν solves (2.5);
• the transfers (ϕ1, . . . ϕI) solve (2.6);
• for i = 1, . . . , I, γi solves the Monge−Kantorovich problem Wci

(µi, ν).

2.2. Localization

As noted in [7], the minimization problem (2.5), which characterizes equilibrium quality lines, can be re-
formulated as an optimal transport problem with multi-marginal constraints, as follows. First define the cost

c(x) := min
z∈Z

I∑

i=1

ci(xi, z), (2.7)

where x = (x1, . . . , xI). Let T (x) ∈ Z be a measurable selection of the solution of the above minimization,
meaning that T (x) ∈ Z satisfies

I∑

i=1

ci(xi, T (x)) = c(x).

Then consider the multi-marginal problem

inf
η∈Π(µ1,...,µI)

∫

X1×...×XI

c(x)η(dx), (2.8)

where Π(µ1, . . . , µI) denotes the set of probability measures on X1 × . . .×XI having (µ1, . . . , µI) as marginals.
It is not difficult to see that if η solves (2.8) then ν := T#η solves (2.5) (where as usual T#η denotes the push
forward of η through T , i.e. T#η(B) := η(T−1(B)) for every Borel set B).

Conversely, one can relate the minimizers of (2.5) to those of (2.8). Indeed, let ν solve (2.5) and let γi ∈
Π(µi, ν) be an optimal plan for Wci

(µi, ν). Disintegrating γi with respect to ν i.e. writing γi = γz
i ⊗ ν and

defining γ ∈ P(X1 × . . . × XI × Z) by:

γ := ⊗I
i=1γ

z
i ⊗ ν
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and η as the marginal of γ on the variables (x1, . . . , xI), one easily checks that

• η ∈ Π(µ1, . . . , µI) solves (2.8);
• on the support of γ, spt(γ), one has

I∑

i=1

ci(xi, z) = c(x);

• the previous relation, together with the fact that ν is the Z-marginal of γ and µi its Xi-marginal then
imply a useful localization property: the support of the barycenter measure, spt(ν), is contained in the set
of minimizers of the following problem.

min
z∈Z

I∑

i=1

ci(xi, z) for some xi ∈ sptµi, i = 1, . . . , I. (2.9)

Since the support of ν is unknown, which causes difficulties in practice, the localization property (2.9) gives a
practical method for bounding the unknown support of the barycenter measure. The condition above results in
a reduction of the dimensionality of discretized problems since it gives an a priori information on the support of
the unknown measure, at the expense of solving an optimization problem. However this optimization problem
is decoupled on the domain Z: each point (or neighborhood) can be tested by looping through points (or small
neighborhoods) in the domain Z and choices of points in the support sets spt(µi).

In the case where Xi and Z coincide with some ball of R
d, and the costs are powers of distance, ci(xi, z) =

λi|xi−z|p (with λi > 0 and
∑

λi = 1, say) for some p ≥ 1, one can easily derive an information on the unknown
support. Indeed, using the optimality condition for the minimization problem (2.9), one deduces that spt(ν) is
included in the convex hull of the supports of the µi’s. If we particularize further to the Wasserstein barycenter
case, i.e. to the case p = 2, the solution of (2.9) is explictly given by the barycenter z =

∑I
i=1 λixi so that the

localization property (2.9) gives the following estimate on the barycenter measure ν:

spt(ν) ⊂
I∑

i=1

λi spt(µi). (2.10)

2.3. Linear programming formulation

Multi-marginals optimal transport problems such as (2.8) are linear programs. For discrete marginals, such
problems can in principle be solved exactly by the simplex method. In practice however, the number of variables
explodes with the number of marginals, which makes the problem quickly intractable. We shall see below that one
may take advantage of the fact that c is not any cost function but has the special structure (2.7). Interestingly,
it was already proved by Pass [23] in the context of multi-marginal optimal transport that such costs are much
more well-behaved than arbitrary costs of I variables.

To find a more tractable linear programming reformulation of the matching for teams problem, it is better
to go back to the very definition of an equilibrium in terms of couplings and to reformulate problem (2.5) as

inf
(γ1,...,γI)∈Π

I∑

i=1

∫

Xi×Z

ci(xi, z)γi(dxi, dz) (2.11)

where Π consists of all measures (γ1, . . . , γI) ∈ P(X1 × Z) × . . . × P(XI × Z) such that

• the marginal of γi on the xi variable is µi i.e.

∫

Xi×Z

ψ(xi)γ(dxi, dz) =

∫

Xi

ψ(xi)µi(dxi), ∀ψ ∈ C(Xi), (2.12)
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• the marginal of γi on the z variable does not depend on i:
∫

Z

ϕ(z)γ1(dx1, dz) = . . . =

∫

XI

ϕ(z)γI(dxI , dz), ∀ϕ ∈ C(Z). (2.13)

Clearly, if the γi’s solve (2.11) then their common marginal ν ∈ P(Z) solves (2.5) and the γi’s are optimal for
the optimal transport problem Wci

(µi, ν). In other words, the γi’s are equilibrium couplings for the matching
for teams problem.

The constraints above being linear, Π is a convex and weakly ∗ compact subset of P(X1×Z)×. . .×P(XI×Z)
so that (2.11) admits solutions. Moreover in the case of discrete µi’s and ν supported by N points, the number
of variables in the linear program (2.11) is linear (and not exponential as in the case of the multi-marginal
optimal transport problem) in the number of marginals.

2.4. Discretization

The (a priori) infinite dimensional linear programming problem (2.11) of Section 2.3 can be discretized as
follows. Let {Sj

i }
Ni

j=1 be a partition of spt(µi) and let {Sk
0}

N0

k=1 be a partition of Z (or better, of the support set
estimated by the method of Sect.2.2). Approximate the measures by weighted sums of atoms

µA
i =

Ni∑

j =1

µj
i δxj

i
, for i = 1, . . . , I, with µj

i = µi(S
j
i ),

νA =

N0∑

k = 1

νkδzk , with νk = ν(Sk
0 ),

where xj
i and zk are representative points in the regions Sj

i , S
k
0 , respectively. It is well-known, that µA

i converges

weakly ∗ to µi as the diameter of the partition {Sj
i }

Ni

j=1 tends to 0. More precisely, denoting by W1 the 1-
Wasserstein distance (which metrizes the weak ∗ topology on probability measures):

W1(µ
A
i , µi) ≤ max

j =1,...,Ni

diam(Sj
i ). (2.14)

Inserting the approximation defined above into the linear programming problem (2.11), (2.12) and (2.13)
results in the following finite dimensional linear programming problem

minimize

I∑

i=1

∑

j,k

ci(x
j
i , z

k)γj,k
i

subject to:
∑

k

γj,k
i = µj

i , for all i = 1, . . . , I, and j = 1, . . . , Ni

∑

j

γj,k
1 = . . . =

∑

j

γj,k
I , for all k = 1, . . . , N0,

(2.15)

along with the non-negativity constraints γj,k
i ≥ 0. The (approximated) barycenter is then νA =

∑
k νkδzk

where the weight νk is given by the common value,

νk =
∑

j

γj,k
i , for any i = 1, . . . , I.

The linear programming problem above can be implemented in standard software packages. The size of the
problem above is as follows. The number of variables is N0 × (N1 + . . . + NI) (or IN2 if each N0 = N1 = . . . =
NI = N). The number of constraints is (N0+1)×(N1+. . .+NI)+IN0 (that is I(N2+2N) when N0 = N1 = . . . =
NI = N). The size of this linear programming problem thus scales linearly with the number of marginals, for a
given, fixed value of N (contrary to the multi-marginal formulation (2.8)).
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2.5. Approximation and convergence

Since in practice, one considers approximation by discrete measures just as in Section 2.4, we wish now
to address the stability of the following convex problem when one replaces the measures µi by some discrete
approximation

inf
ν∈P(Z)

J(ν) :=

I∑

i=1

Wci
(µi, ν). (2.16)

To do so, one has to control the dependence of Wc(µ, ν) in its three arguments (c, µ, ν) ∈ C(X×Z)×P(X)×P(Z).
We shall denote by dX and dZ the distances on X and Z, take now (c, µ, ν) ∈ C(X × Z) × P(X) × P(Z) and
(c̃, µ̃, ν̃) ∈ C(X ×Z)×P(X)×P(Z) and let ωX and ωZ be respectively a modulus of continuity of c and c̃ with
respect to x uniform in z and a modulus of continuity of c and c̃ with respect to z uniform in x, that is

max(|c(x, z) − c(x′, z)|, |c̃(x, z) − c̃(x′, z)|) ≤ ωX(dX(x, x′)), ∀(x, x′, z) ∈ X × X × Z

and
max(|c(x, z) − c(x, z′)|, |c̃(x, z) − c̃(x, z′)|) ≤ ωZ(dZ(z, z′)), ∀(x, z, z′) ∈ X × Z × Z.

Obviously, one has
|Wc(µ, ν) − Wc̃(µ, ν)| ≤ ‖c− c̃‖∞. (2.17)

Let ϕ ∈ C(Z) be a solution in the Kantorovich dual of Wc̃(µ, ν), that is

Wc̃(µ, ν) =

∫

X

ϕc̃dµ +

∫

Z

ϕdν

by the Kantorovich duality formula, we have

Wc̃(µ̃, ν) ≥

∫

X

ϕc̃dµ̃ +

∫

Z

ϕdν.

Hence, for every θ ∈ Π(µ, µ̃), we have

Wc̃(µ, ν) − Wc̃(µ̃, ν) ≤

∫

X

ϕc̃d(µ − µ̃) =

∫

X×X

(ϕc̃(x) − ϕc̃(x′))θ(dx, dx′).

We then observe that ϕc̃(x) − ϕc̃(x′) ≤ ωX(dX(x, x′)) so that

Wc̃(µ, ν) − Wc̃(µ̃, ν) ≤ WωX
(µ, µ̃) := inf

θ∈Π(µ,µ̃)

∫

X×X

ωX(dX(x, x′))θ(dx, dx′). (2.18)

Similarly

Wc̃(µ̃, ν) − Wc̃(µ̃, ν̃) ≤ WωZ
(ν, ν̃) := inf

η∈Π(ν,ν̃)

∫

Z×Z

ωZ(dZ(z, z′))η(dz, dz′). (2.19)

Putting everything together, we get

|Wc(µ, ν) − Wc̃(µ̃, ν̃)| ≤ ‖c − c̃‖∞ + WωX
(µ, µ̃) + WωZ

(ν, ν̃). (2.20)

We then remark that if µn weakly ∗ converges to µ then WωX
(µ, µn) → 0. Indeed, it is known to imply that

the 1-Wasserstein distance (corresponding to WωX
for ωX(t) = t) between µn and µ converges to 0, so that

there is some θn ∈ Π(µ, µn) which (up to a non relabeled subsequence) weakly ∗ converges to some θ supported
on the diagonal of X × X , hence

WωX
(µ, µn) ≤

∫

X×X

ωX(d(x, x′))θn(dx, dx′) → 0.
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Getting back to the approximation of (2.5), take sequences cn
i ∈ C(Xi×Z), µn

i ∈ P(Xi), and ci ∈ C(Xi×Z),
µi ∈ P(Xi), such that

‖cn
i − ci‖∞ → 0, µn

i ⇀∗ µi (2.21)

and set:

J(ν) :=

I∑

i=1

Wci
(µi, ν), Jn(ν) :=

I∑

i=1

Wcn
i
(µn

i , ν), ∀ν ∈ P(Z). (2.22)

Denoting by ωi
Xi

and ωi
Z common continuity modulus of the cn

i (the first one in xi uniformly in z and the second
in z, uniformly in xi just as above) we then have:

Proposition 2.2. For every (ν, νn) ∈ P(Z) × P(Z):

|J(ν) − Jn(νn)| ≤
I∑

i=1

‖ci − cn
i ‖∞ +

I∑

i=1

[Wωi
Xi

(µn
i , µi) + Wωi

Z
(νn, ν)] (2.23)

this implies in particular

• Jn(νn) → J(ν) whenever νn ⇀∗ ν;

• a quantitative estimate for the stability of values:

∣∣∣∣ inf
P(Z)

J − inf
P(Z)

Jn

∣∣∣∣ ≤
I∑

i=1

‖ci − cn
i ‖∞ +

I∑

i=1

Wωi
Xi

(µn
i , µi) (2.24)

• if νn minimizes Jn then, up to a subsequence, it weakly ∗ converges to a minimizer of J .

Proof. The statements directly follow from estimate (2.20) and the already observed fact that the right-hand
side of (2.23) converges to 0 as soon as νn ⇀∗ ν. �

In the case where the cost functions ci = cn
i are Lipschitz (with Lipschitz constant Lip(ci)) and the approxi-

mated measures µn
i satisfy (for the usual 1-Wasserstein distance) W1(µ

n
i , µi) ≤

C
n , (2.23) above just takes the

form

|J(ν) − Jn(νn)| ≤
I∑

i=1

Lip(ci)

(
C

n
+ W1(ν

n, ν)

)
.

3. Numerical simulations: Linear programming

In this section, we present various numerical simulations using the Linear Programming approach of Sec-
tions 2.3 and 2.4. The localization method of 2.2 is used to approximate the support of the barycenter measure.
An alternate approach to approximating the support of the barycenter measure, which can be combined with
localization is a a two stage solution approach: the first stage, using a coarse grid, gives an approximation of
the support of the barycenter, the second stage gives a more accurate representation of the barycenter using
information on the support obtained in the first stage.

All computations in this section were performed in MATLAB on a Mid 2011 MacBook Air laptop. To
solve (2.15) we use the software package CVX [13, 14] which is callable from MATLAB. The CVX language
allows for a very concise description of the convex optimization problem, and allows for the use of multiple
solver libraries (e.g. MOSEK, Gurobi). The numerical solution obtained is the correct up to tolerances near
numerical precision.
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Figure 1. Given measures in black. Figure left, centre, right : Solution of the geodesic problem
with weights .25, .5, .75, respectively.
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Barycentre using full grid

grid size: 256, support size: 62
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Barycentre computed on support

support size: 366, full grid size:  1024

Figure 2. Refinement for the geodesic problem. Left: Solution on full grid. Right: Solution on
the implied support, but more resolved. The size of the problems is the same, but the resolution
is increased by a factor of three.

3.1. Geodesic paths between measures in the plane

We considered two measures in the plane, and by varying the weights in the quadratic cost function, we
computed three points on the geodesic path (or McCann interpolant) represented in Figure 1. The computational
time was less than a minute. The measures are illustrated by a circle centered on the atom (middle of the
corresponding square) and a radius proportional to the weight. Both the shape of the support (square, diamond)
and the density of the measure are illustrated in the figure: the interpolated measures are influenced by both
properties. Figure 2 illustrates the two-stage support refinement strategy.

3.2. Comparing different cost functions

For the next set of examples, we took two uniform measures, the first corresponding to a vertically oriented
rectangle, and the second corresponding to an horizonal rectangle. These measures are shown in Figure 3. First,
we compared the convergence of the solutions for different grid sizes in Figure 4. Notice that the general support
of the computed measures seems stable, but there are oscillations in the density, for different resolutions.
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Figure 3. The measures m1, m2, m3, m4 used in the examples which follow.

Figure 4. Comparison of the numerical barycenter for measures m1, m2 using cost C(x, y) =
|x − y|4 on different grid sizes: 252, 502 and 1002. Note the general shape of the solutions are
similar, but the density has more oscillations at higher resolution.

Next, we computed the barycenter with various power cost functions C(x, y) = |x− y|p, for p = 1, 2, 3, 4. The
solutions we computed use grids of size 502. Computational time was close to two minutes. A second run using
grid size of 1002 and a localization of the support took 30 to 45 min and is represented in Figure 5. The densities
are plotted using a grayscale which corresponds to the relative values, however the grayscale is different for each
figure. We also include another view of the density for p = 1 in Figure 6.

The solutions have a complicated geometry. For the cost with p = 1, the support of the barycenter is the
entire convex hull of the supports of the measures, although the density is highly concentrated at the intersection
of the measures. The density ranges from about 0.01 at the edges to 0.12 in the center.

For the case p = 2, the density is supported on a square, but wider than the width of the rectangle. The
density has some oscillations, but is strictly positive (taking values in the range [.004,.005]). For the case p = 3,
the density is supported on a small octagonal shape, with zero density in the middle, and with larger oscillations.
For the case p = 4, a much larger octagonal shape appears with a large zero density hole in the middle. The
supports of the barycenter measures are close to the ones estimated by localization.

Finally, we computed the barycenters using all four measures from Figure 3 (see Fig. 7).

3.3. Matching for teams

We considered the matching for teams problem and used measures and costs as follows, also see Figure 8. Set
the quality domain Z = [0, 1]2 and write z = (z1, z2) for points in Z. Set M0, M1, M2 to be measures which have
constant density on their support, and let their supports be [1, 2]2, [1.25, 1.75]× [1, 2], and [1, 2] × [1.25, 1.75],
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Figure 5. Barycenters of two rectangles m1, m2, with cost C(x, y) = |x − y|p for p = 1, 2, 3,
using grid size 1002.

Figure 6. Surface plot of the barycenter corresponding to p = 1.

Figure 7. Barycenters of the measures m1, m2, m3, m4 (four rotated rectangles) with cost
C(x, y) = |x − y|p for p = 1, 2, 3, using grid size 502.
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Figure 8. Solution of the matching for teams problem. Left: The three measures, and the
solution. Right: Surface plot of the solution. The solution concentrates mass mostly on the
corners with some mass on the edges.

respectively. The corresponding cost functions (with the interpretation that c0 is the negative of the buyer’s util-
ity) are

c0(x, z) = −5.5(x1z1 + x2z2)

c1(x, z) = c2(x, z) = (x1 + z1)
2 + (x2 + z2)

2.

The solution concentrates mass at the boundary, and especially at the corners of the domain.

4. Dual formulation

4.1. Duality and optimality conditions

Let us now explain why the variational problem (2.6) can be naturally be seen as a dual formulation of (2.11)
(see [7] for more details on this duality). To that end, let us observe that (γ1, . . . , γI) ∈ Π if and only if (2.12)
holds for every i (these are the fixed µi marginals constraints) and

I∑

i=1

∫

Xi×Z

ϕi(z)γi(dxi, dz) = 0, as soon as

I∑

i=1

ϕi(z) = 0, ∀z ∈ Z. (4.1)

Indeed, clearly if the γi’s have the same marginal on Z then (4.1) holds. Conversely assume (4.1), let i �= j and
ϕ ∈ C(Z) then applying (4.1) to the potentials ϕi = ϕ, ϕj = −ϕ and ϕk = 0 for k ∈ {1, . . . , I} \ {i, j} we see
that

∫
Xi×Z ϕ(z)γi(dxi, dz) =

∫
Xj×Z ϕ(z)γj(dxj , dz). This proves that (4.1) characterizes the fact that the γi’s

share the same marginal on Z. This enables us to rewrite (2.11) in inf-sup form:

inf
γi≥0

sup

{
L((γi)i, (ψi)i, (ϕi)i) : ψi ∈ C(Xi), ϕi ∈ C(Z) :

I∑

i=1

ϕi = 0

}
(4.2)

where the Lagrangian L is given by

L((γi)i, (ψi)i, (ϕi)i) :=

I∑

i=1

∫

Xi×Z

(ci(xi, z) − ψi(xi) − ϕi(z))γi(dxi, dz)

+

I∑

i=1

∫

Xi

ψi(xi)µi(dxi).
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To obtain the desired dual formulation, we formally switch the inf and the sup (again, we refer to [7] for a
rigorous derivation):

sup
(ψi,ϕi),

∑
ϕi=0

inf
γi≥0

L((γi)i, (ψi)i, (ϕi)i).

We next observe that

inf
γi≥0

L((γi)i, (ψi)i, (ϕi)i) =

I∑

i=1

∫

Xi

ψi(xi)µi(dxi) +

I∑

i=1

inf
γi≥0

∫

Xi×Z

(ci(xi, z) − ψi(xi) − ϕi(z))γi(dxi, dz)

and the latter infimum is 0 when

ci(xi, z) ≥ ψi(xi) + ϕi(z), ∀(xi, z) ∈ Xi × Z (4.3)

and −∞ otherwise. The dual of (2.11) therefore consists in maximizing

I∑

i=1

∫

Xi

ψi(xi)µi(dxi)

subject to the constraints (4.3) and
∑I

i=1 ϕi = 0. For fixed ϕi, the maximal ψi that satisfies (4.3) being ψi = ϕci

i ,
we see that that the dual can be equivalently formulated as

sup

{
I∑

i=1

∫

Xi

ϕci

i (xi)µi(dxi) :
I∑

i=1

ϕi = 0

}
(4.4)

which is exactly (2.6). For the existence of solutions and the equality between the infimum in (2.11) and the
supremum in (4.4) (which is obtained by a slightly different argument), we again refer to [7]. Now the optimality
conditions for (2.11) and (4.4) are summarized by the equivalence between the following assertions:

• (γi)i ∈ Π solves (2.11) and (ϕi)i such that
∑I

i=1 ϕi = 0 solves (4.4);
• ((γi)i, (ϕ

ci

i )i, (ϕi)i) is a saddle point of L,
• for every i, one has

ϕci

i (xi) + ϕi(z) = ci(xi, z) (4.5)

γi-almost everywhere on Xi × Z or, equivalently, by continuity, on the support of γi.

4.2. The case of Wasserstein barycenters

From now on, we restrict ourselves to the quadratic case where all the Xi’s and Z are some ball B (say) of
R

d and the costs ci are quadratic:

ci(xi, z) :=
λi

2
|xi − z|2

where the λi’s are positive coefficients which we normalize in such a way that they sum to 1. In this case, (2.5)
corresponds to

inf
ν∈P(B)

I∑

i=1

λiW
2
2 (µi, ν) (4.6)

where W 2
2 stands for the squared 2-Wasserstein distance. This problem has been studied in details in [1] where

uniqueness (under the assumption that one of the measures does not give mass to small sets), characterization,
Lp or L∞ regularity results are established for Wasserstein barycenters as well as a close connection with the
quadratic multimarginal optimal transport problem of Gangbo and Świȩch [10]. Since Wasserstein barycenters
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constitute a natural way to interpolate between an arbitrary number of measures, they therefore also find
applications in image processing [26] and statistics [4].

Let us now informally give the optimality conditions for the barycenter using once again the dual formu-
lation (4.4) (see [1] for details). In the present quadratic setting, the formula for the ci-transform takes the
form

ϕci

i (xi) = inf
z

{
λi

2
|xi − z|2 − ϕi(z)

}
,

which, defining

ui(xi) :=
1

2
|xi|

2 −
ϕci

i (xi)

λi

can conveniently be rewritten as

ui =

(
1

2
|.|2 −

ϕi

λi

)∗

(where ∗ denotes the usual Legendre transform). In particular, ui is convex (hence differentiable outside of a
small set) and defining vi := u∗

i we have

1

2
|.|2 −

ϕi

λi
≥

(
1

2
|.|2 −

ϕi

λi

)∗∗

= u∗
i = vi. (4.7)

Moreover the optimal coupling γi is concentrated on the set where equality (4.5) holds which is equivalent to the

relation ui(xi)+
1
2 |z|

2− ϕi(z)
λi

= xi ·z but recalling (4.7), this implies that xi ·z ≥ ui(xi)+vi(z) = ui(xi)+u∗
i (z) ≥

xi · z so that z = ∇ui(xi) (provided ui is differentiable at xi which is the case µi a.e. as soon as µi does not
charge small sets . . .). This implies that the barycenter which is also the marginal ν that is common to all the
γi’s is actually given by ν = ∇ui#µi for every i and ∇ui is the optimal transport between µi and ν for W 2

2 . As
explained above, we can deduce from (4.7) and the fact that γi-almost everywhere equality (4.5) holds that for
ν-a.e. z, one has

1

2
|z|2 −

ϕi(z)

λi
= vi(z).

Recalling that the ϕi have to sum to 0, we deduce that

I∑

i=1

λivi(z) =
|z|2

2
(4.8)

on the support of ν. The optimality conditions for the barycenter ν = ∇ui#µi = ∇vi
∗
#µi therefore, at least

formally take the form of the system of Monge−Ampère equations

ν = µi(∇vi) det(D2vi), i = 1, . . . , I (4.9)

which is supplemented with equation (4.8) on the support of ν. We shall see in the next paragraph how to
compute numerically in an efficient way the potentials ϕi.

4.3. An efficient algorithm for Wasserstein barycenters

4.3.1. Discretization of the dual problem

We assume in all this section that the sets Xi’s and Z are subsets of R
d for some d = 1, 2 or 3. As described

in the previous section, the computation of one Wasserstein quadratic barycenter is equivalent in its dual form
to the maximization of

I∑

i=1

∫

Xi

ϕci

i (xi)µi(dxi) (4.10)
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where

ϕci

i (xi) = inf
z

{
λi

2
|xi − z|2 − ϕi(z)

}
,

under the linear constraint
∑I

i=1 ϕi(z) = 0 for all z ∈ Z. This formulation leads to the following natural dis-

cretization of Wasserstein quadratic barycenter computation. Suppose (yj
i , ν

j
i )j=1,...,Ni

⊂ Xi×R+ is a convergent
quantization of the measures µi. More explicitly, we assume that for all i = 1, . . . , I

lim
Ni→∞

c(Ni)

Ni∑

j =1

νj
i δyj

i
= µi

in the sense of the weak convergence of measures. In order to only consider probability measures, we set
c(Ni) = (

∑Ni

j = 1 νj
i )−1. Additionally, we suppose that (zk) is a dense countable family of points of Z. Based

on (4.10) and previous quantizations, for a given Nk ∈ N, our discrete optimization problem of I ×Nk variables
reads

Φ((ϕk
1 ), . . . , (ϕk

I )) =

I∑

i=1

c(Ni)

Ni∑

j =1

νj
i min

k=1,...,Nk

{
λi

2
|yj

i − zk|
2 − ϕk

i

}
(4.11)

under the Nk pointwise linear constraints:

∑

i

ϕk
i = 0, ∀k = 1, . . . , Nk. (4.12)

This optimization problem in its dual form can be seen as a large scale non-smooth concave maximization
problem. We discuss in the next paragraph alternatives that have been developed to solve numerically this type
of problems.

4.3.2. Non smooth algorithms

Many different approaches have been introduced in the last decades to approximate optimal solution of
non-smooth concave (or convex) problems, e.g. gradient sampling methods [6] and bundle methods [17]. These
algorithms make use of a partial or complete description of superdifferentials in order to identify ascent directions
(see next paragraph). Even though Proposition 4.1 describes explicitly the whole superdifferential, finding
an effective ascent direction in practice is made difficult by the large dimension of some superdifferentials.
Additionally, those approaches are essentially of order one and follow the singular parts of the graph of the cost
function. These two facts could explain a slow rate of convergence when starting from an initial point far away
from any optimal vector.

One surprisingly efficient alternative for minimizing non-smooth functions is the use of quasi-Newton methods.
It is known [25] that if the maximized function, Φ, is twice continuously differentiable and the suplevel set
Φ ≥ Φ(x0) is bounded, then the sequence of function values generated by the BFGS method with inexact
Armijo−Wolfe line search, starting from x0 converge to the maximal value of Φ. More recently, it has been
pointed out by different authors [16,18,19] that variable metric algorithms may produce in some cases sequences
which converge to an optimal point in the sense of Clarke. The mathematical analysis of this good behavior
has just been initiated in recent papers of Overton [18, 19]. This efficiency could be explained heuristically by
the fact that the approximated inverse of the Hessian matrix has a spectral decomposition in two subspaces
which describe the two different local behaviors of the cost Φ: a subspace associated to the regular directions
of the cost function Φ, and the subspace of eigenvectors whose eigenvalues are small in absolute value, which
correspond to the singular directions of Φ.

It has been observed in simple situations that L-BFGS (low memory version of Broyden−Fletcher−
Goldfarb−Shanno algorithm) algorithms are sometimes able to converge to an optimal point. In more stan-
dard examples, where concentration can occur for instance, L-BFGS approach fails to converge. This expected
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behavior for strongly non-smooth functions illustrates the need for using more specific non-smooth techniques
close from the optimal point. The costly, but reliable, bundle type algorithms have demonstrated their efficiency
in this context.

We will not give here a detailed study of quasi Newton methods applied to optimal transportation which
would be out of the scope of this paper. We only point out that the L-BFGS algorithm combined with a bundle
approach gives a rather efficient way to solve this type of problem. We refer to [15] for a careful study and an
efficient implementation of this kind of hybrid algorithm.

4.3.3. Gradient computation

The previous approach relies on the capability of providing at every iteration one supergradient vector of the
current iterate. It is straightforward to obtain the following characterization of the supergradient of the discrete
dual cost Φ:

Proposition 4.1. Let (ϕk
1), . . . , (ϕk

I ) ∈ R
Nk×I . Then

((vk
1 ), . . . , (vk

I )) ∈ ∂Φ((ϕk
1), . . . , (ϕk

I ))

if and only if it is a convex combination of the finite set of extremal vectors defined in the following way. Let

ϕ
k(i,j)∗

i be any selection of minimizing values involved in the dual cost. That is ∀i, j

k(i, j)∗ ∈ argmink=1,...,Nk

{
λi

2
|yj

i − zk|
2 − ϕk

i

}
. (4.13)

Then, the set of extremal vectors is the finite collection of all vectors

(ek∗

) =

⎛

⎝
∑

j

∑

k

−c(Ni)ν
j
i δk(i,j)∗(k)

⎞

⎠ (4.14)

for any selection (k(i, j)∗).

A crucial observation that has been raised in [21] is the fact that the computation of a vector of the superdif-
ferential does not require generically an order of I ×Nk ×

∑
Ni operations. Actually the following formulation

makes it possible to use a special data structure called kd-tree which in most cases reduces the complexity of
finding one vector of ∂Φ((ϕk

1), . . . , (ϕk
I )). Notice that for very large scale problems, the so called Approximate

Nearest Neighbor Search could provide a relevant tool to relax our problem. In all our experiments we performed
exact searches.

Let i, j be given and assume we want to evaluate the minimal value

M = min
k

{
λi

2
|yj

i − zk|
2 − ϕk

i

}
.

Let us then define ci = maxk ϕk
i and

M = −ci + min
k

{
λi

2
|yj

i − zk|
2 + ci − ϕk

i

}
.

Since the latter term is positive:
M = −ci + min

k
||P j

i − Qk
i ||

2

where P j
i = (

√
λi

2 yj
i , 0) is a fixed vector of R

d+1, Qk
i = (

√
λi

2 zk,
√

ci − ϕk
i ) and ||.|| stands for the standard

euclidean norm of R
d+1. Thus our supergradient request reduces to identify one closest point of P j

i among points
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of (Qk
i )k. Observe that the family (Qk

i )k does not depend of the parameter j. This task is a standard operation
in computational geometry which can be performed efficiently with kd-tree structures. By using such tools, we
can reduce the complexity of the supergradient request in the generic case to an order of I × log Nk ×

∑
Ni

operations. Observe that if the Ni’s and Nk are of same order N , one request is generically of complexity of
order I2N log N .

4.3.4. Numerical quantization and localization

We suppose that all the measures µi are compactly supported. We use the discretization of Section 2.4. The
support of the unknown barycenter measure is bounded using the results of Section 2.2, in particular, (2.10)

4.3.5. Reconstruction of the barycenter density

One additional difficulty associated to the dual formulation is the fact that optimal dual vectors only give an
implicit description of the barycentric measure. In order to recover the support and the density of the barycentric
measure, we introduce the following least square procedure.

Every optimal dual vector (ϕk
i )k must be associated to an optimal transport from µi to the barycentric

measure. A crucial observation is the fact that every associated map transports the µi to the same measure. We
exploit this optimality condition to recover the barycentric measure through the coefficients f j,k

i which describe

the mass transported from yj
i to zk. By optimality, some mass can be transported from yj

i to zk if and only if

Gi,j(ϕ
k
i ) = min

k′=1,...,Nk

Gi,j(ϕ
k′

i ). (4.15)

where Gi,j(ϕ
k′

i ) = λi

2 |yj
i − zk|2 − ϕk′

i . Let us fix some parameter ε > 0. Based on the previous observation, we

only consider the unknown coefficients f j,k
i for which Gi,j(ϕ

k
i ) is less than the optimal value (4.15) plus ε. In

order to recover the barycentric measure, we look for the set of coefficients which generate the same measures
in an optimal least square sense. More precisely, we solve the sparse least square problem:

min
fj,k

i

∑

l,m

∑

k

⎛
⎝

∑

j

f j,k
l νj

l −
∑

j′

f j′,k
m νj′

m

⎞
⎠

2

(4.16)

among non negative coefficients less than one which satisfy the linear constraints

∀i, j,
∑

k

f j,k
i = 1.

4.4. Numerical results

As detailed in the previous paragraphs, our approach relies first on a non smooth optimization step using
an hybrid LBFGS/Bundle algorithm and a fast computation of supergradient vectors. In a second phase, a
sparse least square problem is solved in order to recover an approximation of barycentric density. Let us point
out that in all the following examples, the first optimization step was stopped after one hour of computation
on a standard PC. This costly step could be dramatically sped up in using a straightforward parallelized cost
evaluation.

We validate our approach by considering different test cases for which analytic descriptions of barycenters
are available. The simplest situation is the case of the barycenters of a measure of density ρ(.) and a translated
measure of density ρ(. + V ) where V is some fixed vector. In this trivial case, the isobarycentric measure is
of course the measure of density ρ(. + V/2). We display in Figure 9, the barycentric measure obtained by our
located approximation scheme applied to ρ = χc where χc is the characteristic function of a unit square. In
this experiment, we used a grid of size 200 × 200 and a recovering parameter ε = 10−5. In the least square
optimization problem (4.16), we obtain an error of order 10−4 for every quadratic term.

Next we applied our approach to the case of Gaussian measures. A complete description of barycenters of
Gaussian measures has been given in [1]: consider a family of Gaussian measures µi(mi, Si) of means (mi)i

and covariance matrices (Si)i. Then,the barycentric measure associated to the non-negative weights (λi)i is a
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Figure 9. Classical McCann interpolation between translated measures.

Figure 10. Isobarycenter computation of three gaussian measures by a global (first row) and
a localized approach (second row).

Gaussian measure of mean the barycenter of the (mi, λi)i. Moreover, its covariance matrix is the only definite
positive matrix S solution of the equation

∑

i

λi(S
1/2SiS

1/2)1/2 = S. (4.17)

We denote by N (mi, σi) a Gaussian of mean mi and of covariance matrix equal to σ2
i Id. We considered two

different test cases and applied for both our global and localized approaches. In all the experiments the number
of sampling points of the given measures and of the barycentric measure have been fixed for the global approach
to ∀i, Ni = Nz = 15×103. For the localized approach by Minkowski sum, we imposed ∀i, Ni = Nz = 5×103. The
first test case consists in approximating the isobarycenter of the three Gaussian measures of random standard
variations N ((0.1, 0.8), 1/49.75), N ((−0.9,−1), 1/35.89) and N ((1,−0.9), 1/74.63). More precisely, due to the
infinite support of Gaussian measures, we apply the following threshold: for every Gaussian measure, we restrict
the support to the grid point contained in a unit disk centered at the mean vector. Thus, we apply a uniform
normalization to obtain measures of the same total mass.

The resulting barycenter and the given measures are presented in Figure 10. Our second test case is related
to the approximation of the barycenter of the five gaussian measures (N (mi, σi), λi)i=1,...,5 where the mi are the
vertices of a regular pentagon with σi = 1/50 and λi = 1/7 if i is odd and σi = 1/100 and λi = 2/7 otherwise. The
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Figure 11. Non uniform barycenter computation of five gaussian measures by a global (first
row) and a localized approach (second row).

Figure 12. Isobarycenter of the three textures of the first row. The pointwise mean of the three
textures corresponds to the left picture of the second row. Wasserstein barycenter is presented
on the right picture of the second row.

resulting barycenter and the given measures are drawn in Figure 11. Observe that in the localized illustrations,
the support of the unknown measure is not anymore centered due to the loss of symmetry in Minkowski’s
sum. To conclude the study of those test cases, we provide in Table 1, the errors between the theoretical and
computed means and covariance matrices. As expected, even if the number of degree of freedom is smaller, the
results obtained by the located approach are significantly better than the ones obtained by the first algorithm.

To conclude our numerical experiments, we provide large scale examples in which we interpolate three textures
of images of size 150 × 150. This type of applications have been first studied in the framework of optimal
transportation in reference [26] (also see Galerne et al. [9] for a different setting using the Fourier spectrum
that is useful in the case of color images). The texture mixing problem consists in synthesizing a texture from
a family of given textures. The interest of using Wasserstein barycenters in this context is due to the spatial
nature of Wasserstein distance which provides a more natural interpolation process than the naive pointwise
means (see Figs. 12 and 13). We carried out similar experiments as the one depicted in [26]. Our contribution
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Table 1. Upper bounds of the gap between theoretical and computed means and covariance
coefficients.

||mth

i − mi|| |σth

i − σi|
First test case 0.003 0.005
First test case localized 0.0002 0.0014
Second test case 0.002 0.07
Second test case localized 0.0002 0.0013

Figure 13. Isobarycenter of the three textures of the first row. The pointwise mean of the three
textures corresponds to the left picture of the second row. Wasserstein barycenter is presented
on the right picture of the second row.

with respect to [26] lies in the fact that we do not replace the quadratic Wasserstein distance by the easier to
handle so-called sliced Wasserstein distance (which is an average over directions of one dimensional Wasserstein
distances). We obtained by our method an approximation of the original model up to an error of 10−3 for every
quadratic term of (4.16).
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