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Abstract: This article reviews the development and application of Computational AeroAcoustics
(CAA) to acoustic propagation on subsonic mean flows, with a particular focus on methods used to
predict acoustic radiation from turbofan aeroengines. The governing equations are presented and
particular issues such as the formulation of impedance and far field boundary conditions, the treament
of Kelvin-Helmholtz instabilities, resolution requirements and methods for controlling dispersion
error, are discussed. The status of current CAA methods is reviewed. Finally, the matter of validation
against benchmark problems and measured data is explored.
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1. INTRODUCTION

Computational Aero-Acoustics (CAA) acquired an

identity of its own in the early 1990s, defining itself as a

discipline distinct and separate from Computational Fluid

Dynamics (CFD). Tam wrote in 2004 [1] that CAA began

‘in earnest’ around ten years earlier. Many would date the

birth of CAA more precisely to the publication in 1993 of

the seminal article by Tam and Webb [2] which highlighted

for the first time the special requirements for efficient

finite difference schemes for CAA. This chronology must

however be extended backwards by a decade or more if one

includes more general attempts at modelling noise prop-

agation on subsonic mean flows, particularly in relation

to the noise radiated by turbofan aeroengines. Indeed, a

decade or more before the term ‘CAA’ was coined,

specialised numerical methods had been developed to

model the propagation of turbomachinery noise in the

ducted regions of turbofan engines. This is the starting

point for the current article, and the challenge of predicting

the propagation of noise from turbofan engines underpins

this review. With this in mind, it is helpful to look briefly at

the noise sources and propagation paths which exist in a

modern High Bypass Ratio (HBR) turbofan engine.

2. SOURCES OF TURBOFAN NOISE

The accurate prediction of community noise generated

by turbofan powered aircraft is a pressing requirement for

noise certification of aircraft entering service. Measured

data from rig and static engine tests remains the most

reliable input to industry noise prediction codes, but such

data are costly to acquire, and the potential benefit of using

accurate CAA prediction in place of measured data is

enormous.

The sources and propagation paths for noise generated

in a turbofan areoengine are illustrated in Fig. 1.

The principal sources are:

. Noise generated by the fan which propagates through

the intake to the forward arc, and through the bypass

duct to the rear arc.

. Noise generated by the compressor which propagates

into the forward arc.

. Core noise generated by the turbine and combustor

which radiates in the rear arc.

. Jet noise generated by turbulent mixing in the bypass

and core exhausts which forms a distributed source

downstream of the engine.

Fan noise and jet noise are the dominant contributors to

aircraft noise at take-off. Fan noise and airframe noise are

most important at approach. Accurate prediction of fan

noise is essential in both conditions.

Computational methods which are used to predict

source strength will not be discussed here at any length.

Correlations with measured rig and engine data play an

important role in estimating turbomachinery source

strengths but conventional CFD is also used to perform

‘blade to blade’ calculations from which the upstream and

downstream acoustic modes can be extracted [3] to provide�e-mail: rja@isvr.soton.ac.uk
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input to a propagation problem. Such calculations are often

performed for a single blade passage or for a small

azimuthally repeating domain which contains integer

numbers of rotor and stator passages. More general

arrangements of rotors and stators can however be

considered by using ‘chorochronic’ periodicity conditions

[4], and in some instances the whole rotor is modelled; in

predicting low frequency buzz saw tones, for example,

which depend upon small variations in blade stagger angle

[5] or in performing fan flutter predictions [6]. A review of

CAA/CFD methods for fan noise prediction is given in

reference [7].

The other major source of noise from a turbofan engine

is turbulent mixing in the jet exhaust. Hybrid methods

based on Reynolds Averaged Navier Stokes (RANS)

combined with the acoustic analogy are often used to

model these sources, as is direct computation using Large

Eddy Simulation (LES). Neither approach is relevant to the

current article. A recent review of such models is given by

Bodony and Lele [8].

In this article, the status of CAA methods is reviewed

for noise propagation from turbomachinery sources —

principally the fan — to an observer in the far field.

3. THE PROPAGATION PROBLEM

3.1. The Euler Equations

The inviscid Euler equations for a compressible fluid

form the starting point for a discussion of acoustic

propagation in a turbofan engine. The effects of viscosity

are important only over large distances or at high

frequencies, and are generally added to inviscid noise

predictions in an ad hoc way to account where necessary

for losses due to atmospheric propagation.

The full Euler equations for an inviscid, perfect gas are

given by

@�

@t
þ r � ð�vÞ ¼ 0;

Dv

Dt
þ

1

�
rp ¼ 0;

Ds

Dt
¼ 0; ð1Þ

where �, p, v and s are the density, pressure, velocity and

entropy respectively. The thermodynamic state variables

are related by p ¼ �RT , and entropy changes are related to

pressure and density changes by; Ds ¼ Cvdp=p� Cpd�=�,

where Cv, Cp are the specific heats in the usual notation,

and R ¼ Cp � Cv.

3.2. The Linearised Euler Equations (LEE)

In the context of acoustic propagation on a mean flow,

the field variables in Eqs. (1) consist of steady mean flow

variables, denoted by a subscript, 0, and small unsteady

perturbations, denoted by the superscript 0. Eqs. (1) can

then be linearised. This gives a zeroth order set of steady

equations for the mean flow;

r � ð�0v0Þ ¼ 0; ð2Þ

�0ðv0 � rÞv0 þrp0 ¼ 0; ð3Þ

ðv0 � rÞs0 ¼ 0; ð4Þ
where ds0 ¼ Cvdp0=p0 � Cpd�0=�0. The corresponding

first order equations for the perturbed quantities are;
@�0

@t
þ r � ð�0v0 þ �0v

0Þ ¼ 0; ð5Þ

�0
@

@t
þ v0 � r

� �
v0 þ �0ðv0 � rÞv0

þ �0ðv0 � rÞv0 þrp0 ¼ 0; ð6Þ
@

@t
þ v0 � r

� �
s0 þ v0 � rs0 ¼ 0; ð7Þ

where s0 ¼ Cvðp0 � c20�
0Þ=�0, c20 ¼ �p0=�0 and � ¼ Cp=Cv.

After some rearrangement of terms, the linearized energy

equation (7) can also be written as

@

@t
þ v0 � r

� �
p0 þ v0 � rp0

þ �p0ðr � v0Þ þ �p0ðr � v0Þ ¼ 0;

ð8Þ

in which case the linearized problem is specified by

Eqs. (5), (6) and (8) with dependent variables p0; �0 and v0.

The same equations can also be written in conservation

Inner region (propagation)

outer region (radiation)

fan

compressor

combustor

turbine

fan noise (rear)

core noise

fan noise (forward)

turbomachinery sources (CFD)

bypass mixing

core mixing

jet sources (RANS, LES)

Fig. 1 Noise sources and transmission paths in a turbofan engine.
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form by using the momentum perturbation ð�vÞ0 in place

of v0.

An important simplification occurs when the mean flow

originates in a region where the temperature gradients are

zero, valid for inlet flows where conditions are uniform

upstream of the intake. The linearised energy equation ((7)

or (8)) can then be replaced by the algebraic (homentropic)

relationship

p0 ¼ c20�
0 ð9Þ

and the problem reduces to the solution of Eqs. (5) and (6)

for a reduced set of variables (�0 or p0, and v0).

A further simplification is possible when the mean flow

is irrotational. The perturbed velocity can then be written in

terms of an acoustic velocity potential �0ðx; tÞ and the

linearised momentum equation is replaced by an unsteady

form of Bernoulli’s equation;

p0

�0
¼

c20
�0

�0 ¼ �
@

@t
þ v0 � r

� �
�0: ð10Þ

After some rearrangement of terms, the continuity equation

can be re-written as a convected wave equation

D

Dt

�0

c20

D�0

Dt

� �
� r � ð�0r�0Þ ¼ 0: ð11Þ

Equation (11) has been derived here by assuming irrota-

tional flow. Pierce [9] has shown however that it holds also

for acoustic propagation on arbitrary unsteady flows

provided that the wavelength is sufficiently small.

To summarize: In the most general case the linear

propagation problem involves the solution of five Eqs. (5–

7, 8) for five variables, p0, �0 and v0. The number of

variables reduces to four in the case of homentropic flow

when Eq. (7) is replaced by expression (9). When the mean

flow is irrotational, the problem reduces to the solution of

Eq. (11) for a single unknown parameter, the velocity

potential �0.

Time-harmonic versions of these problems are obtained

by rewriting each dependent variable, q0ðx; tÞ say, in terms

of a complex amplitude ~qqðxÞ where

q0ðx; tÞ ¼ Reð ~qqðxÞei!tÞ ð12Þ

and by replacing the operator (@=@t) by (i!). For example,

the time-domain velocity potential formulation (11) trans-

forms to a convected Helmholtz equation;

ði!þ v0 � rÞ
�
�0

c20
ði!þ v0 � rÞ ~��

�
� r � ð�0r ~��Þ ¼ 0: ð13Þ

For the case of zero mean flow, this reduces to the well-

known Helmholtz equation for a stationary medium

r2 ~��þ k20
~�� ¼ 0; ð14Þ

where k0 ¼ !=c0. Note that in the case of Eqs. (11) and

(13) the unsteady pressure can be recovered from the

velocity potential solution by using expression (10) or its

frequency domain equivalent.

3.3. Acoustic, Vorticity and Entropy Modes

Local solutions exist for Eqs. (5–7, 8) for the case of

uniform mean flow. These are helpful in understanding the

nature of the unsteady disturbance. A local wavelike

disturbance of the form;

q ¼ �qqeið!t�kxx�kyy�kzzÞ ð15Þ

where q ¼ ½�0; u0x; u0y; u0z; p0�T, is a solution for the case v0 ¼
ðU0; 0; 0Þ — uniform flow in the x direction — provided

that ! and k ¼ ðkx; ky; kzÞ satisfy one of three distinct

dispersion relationships [2]. These correspond to three

types of disturbance;

. Entropy waves. These have a dispersion relationship,

! ¼ U0kx; ð16Þ

and the solution vector q contains no pressure or

velocity components. These solutions are density

fluctuations which are convected with the mean flow.

. Vorticity waves. These satisfy the same dispersion

relationship (16) as entropy waves but contain no

density or pressure components. They are vortical

disturbances which convect with the mean flow.

. Acoustical waves. These satisfy the dispersion rela-

tionship;

ð!� U0kxÞ ¼ �c0jkj: ð17Þ

All of the physical variables are present in the solution

vector q. These solutions are acoustical disturbances

which propagate with phase speed c0 in a frame of

reference fixed in the moving fluid.

All three modes are present in general solutions of Eqs. (5–

7, 8). They do not interact when the mean flow is uniform,

but couple when shear flow is present, and at boundaries.

Also the entropy mode does not exist for the homentropic

case when the energy equation is replaced by Eq. (9).

Neither the entropy nor the vorticity mode is supported by

the irrotational formulation (Eqs. (11) and (13)).

3.4. The Computational Domain

The geometry of a typical intake problem is illustrated

in Fig. 2. An exhaust model is similar in appearance except

that the nacelle lip is replaced by the exhaust nozzle and

the flow direction is reversed. We assume that the

equations are solved on a finite computational domain R,

bounded by a far field truncation boundary S1. The fan

noise source is specified on source plane Ss. A locally

reacting impedance zð!Þ is defined on an impedance

surface Sz. S
0
1 is an integral surface within R used to define

the far-field solution.
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3.5. The Impedance Boundary Condition

The performance of acoustic liners is usually specified

in terms of a complex normal impedance zð!Þ. This defines
the relationship between the complex pressure and the

complex velocity normal to the surface;

zð!Þ ¼
~pp

~vv � n
or ~pp ¼ zð!Þ ~vv � n; ð18Þ

where n is a unit normal into the surface. When grazing

flow is present, this condition must be projected through

the boundary layer (bl). It is commonly assumed that

pressure and particle displacement are continuous across

the bl. This is the basis for the widely used ‘Myers’

boundary condition [10]

~vv � n ¼
~pp

zð!Þ
þ v0 � r

~pp

i!zð!Þ

� �
�

~pp

i!zð!Þ
n � ðn � rv0Þ: ð19Þ

The second term on the Right Hand Side (RHS) represents

the convective effect of the grazing flow; the third term

is associated with the curvature of surface. The RHS of

Eq. (19) includes a tangential derivative of impedance.

This causes problems of implementation when there is a

step change in impedance (from a lined to a hard-walled

segment for example). Eversman [11] has rearranged the

Myers condition in a way which largely removes this

problem. While the Myers/Eversman boundary condition

is used in many current numerical models, debate persists

on whether continuity of particle displacement is the

appropriate condition to apply, and whether the Myers

condition deals correctly with hydrodynamic modes in the

boundary layer [12,13].

Time-domain versions of Eqs. (18) and (19) are needed

for CAA formulations in the time domain. In theory

Eq. (18) can be re-written in the time domain by taking an

inverse Fourier transform to give

p0ðx; tÞ ¼
1

2�

Z 1

�1
z0ðx; t � �Þv0nðx; �Þd�; ð20Þ

where z0ðtÞ is the inverse fourier transform of zð!Þ.
Equation (20) must then be combined with the Myers

condition. However, any evaluation of expression (20)

poses problems in practice. First, zð!Þ is generally defined

over a limited frequency range on the real axis, and must be

extrapolated over the complex plane if z0ðtÞ is to be defined.
Moreover, this must be done in such a way that the problem

remains causal, the variables real and the wall passive [14].

Also the time history of the normal velocity, v0nðx; tÞ, must

be stored indefinitely if the convolution integral is to be

evaluated at each time step.

A number of time-domain impedance models have

been proposed which do not involve the evaluation of

expression (20). These include the model of Tam and

Auriault [15], and related approaches [16], and the z-

transform method of Özyörük and Long [17]. Both have

been widely applied. Tam’s method uses a mass-spring-

damper model to represent the behaviour of the liner.

In Özyörük’s method two steps are required; first the

impedance data must be fitted to a rational continuous

model which is inherently stable, and then a z-transform is

used to define a local approximation to Eq. (20). An

interesting third approach introduces additional degrees of

freedom in the numerical model which physically model

propagation in a Helmholtz resonator attached to each

computational cell on the boundary [18]. All of the above

approaches give reasonable results for attenuation in test

ducts with subsonic mean flow. There are however

unresolved issues in practice associated with stability,

and specifically with the status of Kelvin-Helmholtz-type

instabilities when there is a slip condition at the wall. These

are often filtered numerically in time-domain numerical

schemes, but there is ongoing debate as to whether this is

an appropriate treatment [14,20]. A comprehensive review

of time-domain impedance boundary conditions is pre-

sented by Fung [19].

3.6. The Far Field Boundary Condition

At the far field boundary S1 of Fig. 2, the numerical

solution must leave the computational domain R without

spurious reflection. Three approaches are commonly used.

3.6.1. Characteristic boundary conditions

These are derived by writing the equations on the

boundary in characteristic form and assigning values to

incoming characteristic quantities [21–23]. The approach is

widely used, and performs well when the outgoing wave is

normal to the grid boundary. A review of such methods is

given by Hixon [24].

3.6.2. Asymptotic boundary conditions

These are based on prior knowledge of the asymptotic

form of the solution at large distances from the source. For

the acoustical modes the simplest such condition is the ‘�c’

impedance, or its Lorentz transformed equivalent with

Ss

incident
reflected

Sz

far field boundary S∞

absorbing layer Ra

R

z(ω)

S∞
1

integral 
surface

admission zone

Fig. 2 Geometry of an intake problem. R is the
computational domain.
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mean flow. This can be regarded as a ‘zeroth order’

condition approximating the Sommerfeld radiation condi-

tion. This can be improved by taking into account

geometric spreading as r�1=2 or r�1 for 2D and 3D

problems respectively. An ‘order 1’ boundary condition of

this type is formulated by Tam and Webb [2] for the

acoustic portion of the solution, along with compatible

boundary conditions which enforce the correct behaviour

for the entropy and vorticity modes at inflow and outflow

boundaries. The disadvantage of asymptotic boundary

conditions of low order is that they work most effectively

only at large distances from the source. The higher the

order of the boundary condition, however, the closer the

‘infinite’ boundary S1 can be placed to the source. High

order Infinite Elements [25,26] exploit this by defining an

unbounded computational domain, beyond S1, in which

the numerical solution is based on a high order, uniformly

convergent asymptotic expansion for the radiated field

[27]. In this sense the infinite elements act as a high order

asymptotic boundary condition to the solution in R. This

has proved robust in practice and is implemented in the

NASA ‘Eversman’ code and in the commercial CAA code

‘ACTRAN/TM’ [28]. A time domain implementation of

this approach has also been demonstrated [29].

3.6.3. Zonal methods

A third approach to terminating the computational

domain in the far field is to extend the computational

region to include an absorbing (or ‘buffer’) zone beyond

S1, the region Ra in Fig. 2. The solution in this zone is

non-physical, but is damped either explicitly by a low pass

filter, or implicitly by grid stretching, or by the the addition

of extra terms in the equations which damp the solution as

is propagates normal to the boundary. Such methods are

reviewed by Hu [30]. A variant on the ‘absorbing’ zone is

the ‘Perfectly matched Layer’ (PML), a concept proposed

initially by Berenger [31]. An up-to-date review of the

PML as applied to CAA is given by Goodrich [32] who

compares the effectiveness of three different PML imple-

mentations. The important distinction between the PML

and the conventional absorbing layer is that in theory

disturbances entering the PML experience no reflection

at S1 irrespective of wave angle, and are then damped

within the layer in all directions. A careful comparison of

an explicit absorbing layer, several implicit absorbing

schemes, and a PML based on the popular formulation of

Hu [33] is presented by Richards [34]. This indicates that

the buffer zone with explicit damping performed the best,

and was the simplest method to implement, giving

excellent results when the zone depth was of the order of

one wavelength or greater.

While the discussion above has been of damping all

disturbances at the far field boundary, zone methods can

equally be used to impose a specified incoming wave field

at a source boundary [30,34]. This is done by dividing the

solution in an admission zone (see Fig. 2) into (known)

incident and (unknown) reflected parts and by applying the

zonal damping only to the reflected part.

3.7. Kelvin-Helmholtz (KH) Instability

An infinitely thin shear layer in an inviscid flow

is unstable according to classical theory of Kelvin and

Helmholtz [35]. For a shear layer of finite thickness,

however, excited at a specific frequency, unstable spatial

modes exist only if the shear layer thickness is sufficiently

thin compared to a hydrodynamic lengthscale ðu0=!Þ [36].
In practice some portions of the exhaust shear layers close

to the nozzle will be unstable and the growth of such

instabilities destabilizes LEE computations. In the real

flow such modes will not grow indefinitely but will be

attenuated and controlled by viscous and non-linear effects.

Since these are absent in the linearized equations it is

debatable whether such numerical instabilities are ‘phys-

ical’ or not. In the framework of the LEE however they are

part of the numerical solution and this poses a practical

issue in application to exhaust flows. In many instances the

mixing layers grow sufficiently rapidly for the growth of

the KH instabilities to be controlled by this spreading

effect. Time-domain LEE solvers then produce solutions

which are globally stable but in which the ‘instabilities’ are

present where the mixing layer is thin [37]. An absolute

guarantee that the LEE solution will not be destabilized by

KH instabilities is however more difficult to achieve.

One option is to solve the LEE in the frequency

domain. It is known that a correctly posed solution of the

time harmonic equations cannot support KH instabilities. A

direct solver must however be used to solve the resulting

discrete equations since the use of an iterative solver is

analogous to marching forward in time [38]. This is a

serious constraint however on problem size.

Alternatively the time-domain LEE can be modified to

suppress the instabilities. Various methods have been used.

The LEE can be formulated for example with additional

non-physical nonlinear terms designed to control any

instable modes [39]. Another technique is to selectively

remove the terms in the time domain LEE which cause the

instabilities (for parallel flow in the x direction these are

terms involving mean flow gradients @u0=@y, and @u0=@z)

[40]. A more recent variant which automatically ensures

that the equations are modified so that all non-acoustic

modes are suppressed is to use the Acoustic Perturbation

Equations (APE), as formulated by Ewert and Schroder

[41]. APE has recently been implemented by Huang [42]

for turbofan exhaust flows and shown to give solutions that

are similar to those obtained by removing explicitly the

flow gradient terms. All of these methods produce sensible

solutions but there is ongoing debate as to whether

R. J. ASTLEY: NUMERICAL METHODS FOR NOISE PROPAGATION
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removing or modifying terms in the equations changes

significantly the acoustic solution. In a recent article Tester

et al. [43] have investigated this matter by solving the LEE

in the frequency domain with and without suppressing the

gradient terms. These studies indicate that for realistic

exhaust nozzles inclusion of the gradient terms has an

observable but small effect in the far field (of the order of

1–2 dB at most in Sound Pressure Level (SPL)).

3.8. Reconstruction of the Far Field

None of the far field boundary treatments described

previously, except for the infinite element method, predicts

directly the far field sound pressure level. The far field SPL

is obtained in most cases by extracting computed time

pressure histories (or complex amplitudes in the time-

harmonic case) on a surface S01 which lies within the

computational domain, and using these values within an

integral formulation to project the solution to the far field.

The Kirchhoff integral formulation [44], or Farassat’s

version 1A of the Ffowcs Williams and Hawkings (FWH)

equation are commonly used [45]. The FWH equation

has the advantage that the mean flow need not have

reached a uniform state for the integral formulation to be

valid.

4. RESOLUTION REQUIREMENTS
AND DISPERSION ERROR

The characteristic wavelength of an acoustic disturb-

ance in a turbofan engine at frequencies of practical

interest, is generally an order of magnitude smaller than a

reference geometric lengthscale, typically the outer fan

diameter. This is one of several multiscale challenges faced

by CAA [1] and has a strong influence on grid generation.

In simple terms, an effective CAA scheme must propagate

the acoustic solution over many wavelengths without

incurring cumulative numerical errors through dissipation

or dispersion. Such schemes must therefore be extremely

accurate over a single wavelength. The error in the

numerical solution can be characterised as an amplitude

(dissipation) error and a phase (dispersion) error. The

dispersion error is particularly important for acoustic

problems since a small, say 1%, phase error over a single

wavelength will result in a complete reversal of phase over

a propagation path of 50 wavelengths. The importance of

controlling dispersion error in numerical schemes for

aeroacoustics and the unsatisfactory nature of conventional

low order CFD in this respect was first highlighted by Tam

[2] and has since become a standard consideration in the

development of CAA methods [46]. Tam observed that

traditional finite-difference interpolation was inherently

poor at representing periodic spatial solutions. By using

a simple approximability argument, he showed that an

effective wavenumber k0 could be derived which is

characteristic of particular numerical stencil. This repre-

sented the best numerical approximation that can be

achieved for a spatial wavenumber k. The parameter

k0�x where �x is the spacing between grid points is

proportional to the number of grid points per wavelength,

with k0�x ¼ � representing the spectral limit of two points

per wavelength. Values of k0�x are plotted against k�x

in Fig. 3 for various CAA schemes. The diagonal line

represents a perfect solution free of numerical error.

Values of k�x corresponding to 5 and 10 grid points per

wavelength are also indicated. In the same article, Tam

proposed a number of new Dispersion Relation Preserving

(DRP) CAA schemes in which the stencil coefficients were

specifically chosen to reduce the error in k0. Data for Tam’s

fourth order DRP scheme are plotted in Fig. 3 and

compared to standard 2nd and 4th order central difference

schemes. Also shown are data for two 4th order prefactored

compact schemes designed by Ashcroft and Zhang [46] to

minimise dispersion error.

Two points are clear from the data in Fig. 3. Firstly,

high order methods of any description reduce dispersion

error and offer a very significant improvement over

traditional 2nd order CFD. Secondly, optimized schemes

such as Tam’s DRP scheme, and Ashcroft’s optimized

compact schemes offer further improvements over conven-

tional schemes of the same order. In Ref. [46] for example

the authors show that by using schemes (d) and (e) of

Fig. 3, a 0.5% dispersion error over a single wavelength

can be achieved by using 5 and 4 grid points per

wavelength respectively. To achieve the same accuracy

on a conventional 2nd order mesh, 63 grid point per

wavelength are required. The implications for turbofan

k ∆x

k’
∆x

0
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e
nλ=10 nλ=5

Fig. 3 Dispersive characteristics of CAA schemes. (a)
2nd order central diff. (b) 4th order central difference.
(c) 4th order DRP [2]. (d) 4th order optimized compact
(3 point stencil) [46]. (e) 4th order optimized compact
(5 point stencil) [46]. n� is the number of points per
wavelength.
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propagation problems are profound. Noise predictions are

generally required for frequencies up to 10 kHz, though it is

often possible to extrapolate numerical solutions at the

upper end of this range by using high frequency approx-

imations. However, if we assume that predictions are

needed for frequencies up to say 3 kHz, the acoustic

wavelength at this frequency is of the order of 0.1m. The

near field mesh in region R of Fig. 3 must however extend

at least one fan radius beyond the nacelle itself. For a

typical fan diameter of say 2m, the physical size of the

meshed region R is then in excess of say 20m2 for an

axisymmetric model, and 100m3 for a three-dimensional

model. A high order mesh, based on 7–10 grid points per

wavelength, would then contain in excess of 100,000 grid

points for an axisymmetric model, and 30 million grid

points for a full three-dimensional model. If a conventional

2nd order method were used, the ‘points per wavelength’

requirement would increase by an order of magnitude, and

the total number of points by two and three orders of

magnitude respectively. The necessity of using high order

methods to bring the required number of grid points within

reasonable bounds is self evident.

5. THE STATUS OF CURRENT METHODS

CAA methods currently applied to turbofan propaga-

tion will be reviewed in this section. They are presented

roughly in order of increasing generality and complexity.

5.1. Boundary Element Methods

The Boundary Element Method (BEM) is the computa-

tional method of choice for many acoustic applications in

the absence of flow [47]. It requires a surface rather than a

volume discretization and generates a smaller, though less

sparse, set of discrete equations compared to a domain-

based method. It is less well suited to flow acoustics

since an analytic Green’s function is required and this is

available only for uniform flow. The BEM was used in

early computational models for turbofan acoustics by

coupling it iteratively to finite elements in the near field

[48]. More recently Dunn, et al. [49] presented a Boundary

Integral approach to modelling propagation and radiation

of forward and rear arc noise from a thin walled, lined

cylindrical duct with uniform flow and a turbofan-like

source. While the BEM clearly does not represent the flow

physics fully, because of the assumption of uniform flow, it

is nonetheless a valuable approximate tool which can be

applied to fully three-dimensional intakes at acceptable

cost, and has been used for this purpose in recent years

[50,51]. Interest in the use of BEM for such calculations

has increased with improvements in performance through

the use of Fast Multipole Methods (FMM), implemented

for example in the EADS/AIRBUS BE code actipole

[52,53].

5.2. The Parabolic Equation Method

The parabolic approximation to the wave equation has

been used extensively in underwater acoustics and is based

on a wave splitting approach in which the scheme marches

‘forward’ from the source to the receiver and neglects

backward reflections. It is very fast for this reason and

deals well with three-dimensional problems. Against this

must be balanced the knowledge that it will give poor

results when reflections and backscattering are present. The

method was implemented for nacelle calculation by Boeing

in the late 1990s [54] and has been maintained and further

developed by NASA since then as the nacelle prediction

code CDUCT-LaRC [55,56].

5.3. Finite Element Helmholtz Methods

The use of finite elements in the frequency-domain for

flow acoustic propagation dates back to the early 1980s.

Such schemes solve the convected Helmholtz problem of

Eq. (13) on an irrotational mean flow. The ‘Eversman’

code based on the formulation developed by Astley,

Eversman and others almost three decades ago [57–59]

is typical of this aproach. Quadratic finite elements are

coupled to infinite elements which act both as a non-

reflecting boundary and as a far field pressure representa-

tion. In the context of Fig. 3 the scheme is 4th order

accurate [60]. Some directional effects are evident in two

and three dimensions when the mean flow is aligned with

the mesh [61]. The fan source is represented by a modal

expansion on the fan plane. An improved version of the

Astley-Eversman formulation which uses mapped infinite

elements in place of the original wave envelope elements

[26] was developed in the late 1990s, and the same

formulation is implemented in the commercial code

ACTRAN/TM [28]. Similar schemes which use high order

spectral elements have also been developed [62], though

using an absorbing layer rather than an infinite element

termination. Higher order Lagrangian elements have also

been shown to give improved accuracy [63] but are not as

simple to mesh and are not widely used. The Eversman

code is formulated for an axisymmetric domain but permits

an acoustic field which varies as eim�, where � is an

azimuthal angle about the geometric axis of symmetry,

commonly referred to as a ‘2.5D’ model. ACTRAN/TM is

implemented for both axisymmetric and 3D problems [28].

The Finite Element/Infinite Element approach has

several advantages. It is unstructured which makes auto-

matic mesh generation relatively simple, and has the

dispersion characteristics of a fourth order scheme when

quadratic elements are used. At the time of writing, it is the

only CAA tool which is commercially available and

routinely used in industry. The disadvantages of the

method are that it requires a direct solver which means

that solution time scales steeply with problem size, and it is
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restricted to irrotational flows, which precludes its straight-

forward use for exhaust propagation. The latter objection

can be partially overcome by the introduction of vortex

sheets to approximate a mixing layer. Matching the

pressure and particle velocity across such a discontinuity

captures much of the physics of the problem [64]. The

more fundamental problem of solving large linear systems

by using direct solution methods at an acceptable computa-

tional cost has been partially alleviated by the use of 64 bit

processors, able to access large quantities of memory,

along with significant algorithmic improvements in parallel

direct frontal solvers such as MUMPS [65]. As an

indication of the current capabilities and limitations of

this approach, a three-dimensional ACTRAN/TM mesh for

the bellmouth intake of a CF34-8E/Embraer nacelle is

shown in Fig. 4. This model is discussed in detail in [28].

Single frequency analyses can be performed for frequen-

cies corresponding to values of kR between 40 and 45. Four

threads on a single Intel Xeon 3.0GHz node are used. The

CPU time is about 2 hours for each frequency. Figure 4

also illustrates the advantage of an unstructured mesh in

which the resolution of specific areas (region B, for

example) can be increased without driving up grid

resolution elsewhere.

5.4. Structured Methods for LEE

Two approaches are commonly used to solve the LEE

on structured grids. These are the DRP scheme of Tam and

Webb [2] and the low dispersion compact schemes of

Ashcroft and Zhang [46]. Both methods lend themselves to

efficient parallelization when implemented in the time

domain. The DRP scheme, has been on the scene longest. It

forms the basis for many CAA research [67] and in-house

industry codes [66]. Some of these are able to solve large

3D turbofan problems at realistic frequencies [68]. The

DRP idea also forms the basis for variants such as the high

order optimised upwind scheme of Zhuang [69] and a high

order DRP base finite volume approach [70].

DRP implementations are predominantly in the time-

domain, where the potential for efficient parallelization is

greatest. High order ‘DRP-like,’ finite difference schemes

have also been implemented however in the frequency-

domain. An important example is the FLESTURN code

implemented by Özyörük [71] for 2.5D intake and exhaust

problems. This uses the MUMPS direct solver.

High order, optimised, prefactored compact schemes

have also been widely used for CAA propagation. They

provide an alternative structured approach and have the

advantage of reducing the stencil size and facilitating the

formulation of stable stencils near boundaries. A family of

high order accurate compact schemes with low dissipation

and dispersion was proposed by Ashcroft and Zhang [46],

extending earlier work by Hixon [72]. Dispersion data for

fourth order schemes of this type with three and five point

stencils are included in Fig. 3. Such schemes have been

applied to intake and exhaust problems in 2.5D and in 3D

[34,73–76].

Structured meshes are generally regarded as a dis-

advantage from the point of view of mesh generation. The

use of overlapping (‘chimera’) grids provide a partial

solution to this problem. This approach has been adopted in

the TUBA DRP codes developed by Schoenwald, Thiele

and others [67]. A chimera grid for a scarfed intake is

shown in Fig. 5. Adaptive mesh refinement has also been

used to achieve nonuniform mesh resolution for a DRP

computation on block structured grids [77].

The computational demands of DRP and compact

schemes are comparable, and both can exploit very high

parallel efficiencies. In terms of the overall computational

effort required for turbofan applications, the CPU time for

the 3D exhaust analysis of ref [76] performed using the

sixth order accurate compact scheme of ref [46] is 40 hours

running in parallel on a cluster of 12, 3.06GHz processors.

The Helmholtz number kR is 28. This is more demanding

in terms of CPU than the figure quoted for the ACTRAN/

TM intake solution of comparable size noted in the

previous section, but also less memory intensive and more

easily scalable with the number of processors.

5.5. Unstructured Methods for LEE

The practical advantages of unstructured grids are well

known for industrial applications, and indeed the method of

choice for industrial CFD is to use low order schemes on

unstructured grids. The implementation of higher order

CAA methods on unstructured grids is not straightforward.

A

B

C

Fig. 4 Actran/TM FE/IE mesh for an analysis of a
bellmouth intake (see [28]) indicating varying mesh
resolution. Region A: Low resolution mesh in rear arc.
B: high resolution mesh required for region of high
velocities and high velocity gradients. C: Nominal ‘fan
plane’ for modal source definition.
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Kok [70] has proposed a high order DRP extension of a

finite volume scheme, although implemented on a struc-

tured grid. The most promising high order unstructured

scheme for the LEE is the Discontinuous Galerkin Method

(DGM) [78], a flux based finite element approach which

allows variable orders of approximation within irregularly

shaped elements.

A number of DGM schemes have been proposed for

the LEE [79–83] and studies performed to assess their

accuracy and stability [84,85]. In terms of practical

application to turbofan acoustics, the ACTRAN/DGM

code [83] developed in the MESSIAEN and TURNEX

projects funded by the European Union under the sixth

framework programme (FP6) is probably the most ad-

vanced. The performance of this code for 2.5D and 3D

exhaust problems is generally comparable to that of

structured schemes [86]. For example, a realistic model

of a 3D exhaust problem with 27 million degrees of

freedom at a frequency corresponding to kR ¼ 30:0

executes in 24 hours on 16 processors. The method scales

well with frequency and the same problem at kR ¼ 70 runs

on the same system in 4 days.

While the strengths of the DGM formulation lie predom-

inantly in the time domain, it has also been implemented in

the frequency domain to circumvent the problems associ-

ated with Kelvin Helmholtz instabilities [87].

5.6. Solution of the Full Euler Equations

The use of the full — rather than the linearized —

Euler formulation for CAA has the advantage that Kelvin

Helmholtz instabilities are damped ‘naturally’ by nonlinear

terms. Such schemes can also accommodate nonlinear

propagation effects close to the fan and the formation of

shocks. The sAabrinA code [88] developed at ONERA is

an example of a scheme of this type. The full Euler

equations are solved with sixth order spatial accuracy and

high order time integration. The application of sAbrinA to

a realistic 3D engine exhaust including pylon effects is

presented in [88]. A computation over 17.55 periods of the

source excitation for kR ¼ 29:8 required 55 CPU hours,

though it is not clear on what system the computation

was performed. Nonetheless, this indicates that the over-

head of using full Euler rather than LEE may not be

excessive.

5.7. Physics Based Methods

The unsuitability of polynomial bases for representing

spatially periodic wavefields lies at the heart of the

dispersion and resolution requirements of most CAA

codes. Numerical methods which use basis functions which

are themselves ‘wavelike’ have been studied as a potential

remedy for this problem. Casalino [89] has proposed a

Green’s function approach for the solution of Eq. (13) for

propagation on irrotational flow. A finite difference stencil

is formulated which is consistent with a superposition of

Green’s function sources at grid points. Since these are

local solutions of the governing equations, the dispersion

characteristics of the scheme are excellent and grid spacing

can extend over several wavelengths.

A similar philosophy underpins the Partition of Unity

approach applied to the same equations by Gamallo and

Astley [90] in which a local basis of plane waves is used

within a conventional finite element formulation. Again,

elements can be used which extend over several wave-

lengths permitting very coarse meshes and reducing the

overall size of the discrete problem. The accuracy of the

method is however limited by conditioning. More recently,

a wave-based discontinuous Galerkin approach has been

applied by Gabard [91] to the frequency-domain LEE, in

which acoustic, vorticity and entropy waves are present in

the element bases and fluxes.

6. VALIDATION AND BENCHMARKING

The methods reviewed in this article can be assessed by

comparing computed solutions to known analytic solutions;

by testing for consistency between different methods when

applied to problems for which no exact solution exists; and

by comparing to measured data.

Most of the methods described in previous sections

have been benchmarked against analytic solutions such as

those of Homicz and Lordi [92], Munt [93] or Gabard [94].

These give an idealised model for propagation from an

intake or exhaust. In each case a mode radiates from the

open end of a circular or annular pipe, propagating with or

against a mean flow. The problem of Homicz and Lordi

[92] is shown in Fig. 6. In the case of the Munt solution a

cylindrical vortex sheet exists downstream of the exhaust

Fig. 5 Chimera grid for DRP analyis of a three-dimen-
sional intake showing overset grid used to represent the
nacelle lip geometry [67].
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lip. A comparison of analytic and predicted far field sound

directivities for the Homicz and Lordi problem is shown

in Fig. 7. The computed solution is obtained by using a

Helmhholtz, frequency-domain Finite and Infinite element

model [95]. Similar comparisons have been made and

similar correspondence achieved for structured and un-

structured LEE codes.

Direct comparisons between different CAA codes

applied to the same problem are less common, and

comparisons to measured data extremely rare. Compre-

hensive comparisons of both type were recently performed

in the TURNEX project funded by the European Commis-

sion, and some of this data is available in the public domain

[96]. The TURNEX project included rig scale tests of

geometrically realistic, short cowl and long cowl, coaxial

exhausts. Spinning modes were generated in the bypass

duct by a mode synthesiser, and propagated through the jet

shear layer into a large anechoic jet test facility. Far field

SPL measurements were taken using polar and azimuthal

microphone arrays. A rotating microphone array in the

bypass duct down stream of the synthesiser decomposed

the source field into azimuthal and radial orders. The rig is

illustrated in Fig. 8.

A number of CAA codes were used to predict the sound

field in the rear arc. At each frequency, the incident power

of each mode was determined from the modal decom-

position in the bypass duct. A comparison of far field SPL

— referenced to a nominal 1m radius — is shown in

Fig. 9. Results are shown for the short cowl engine for

an azimuthal mode order m ¼ 10 and for a frequency

characteristic of Blade Passing Frequency (BPF) at

approach. The mean flow is also typical of the approach

condition. Results are shown for two prediction schemes, a

time domain DGM code (ACTRAN/DGM) and a fre-

quency-domain DRP scheme (FLESTURN). Results are

presented for each radial mode and plotted against polar

angle measured from the axis of the exhaust. Slight

differences can be observed between the two predictions

but on the whole, the correspondence between the

predictions of the two schemes acts to validate both for

engineering purposes.

Finally, a comparison of predicted and measured data

for the same rig is shown in Fig. 10. The prediction is from

the FLESTURN DRP code but a similar prediction using

the time-domain DGM scheme — not shown here — is

virtually indistinguishable. Measured data from the polar

and azimuthal arrays are labelled as measurement (a) and

measurement (b). Notwithstanding some scatter in the data,
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the correspondence with the predicted result is encourag-

ing. It should be noted that the comparison is made without

any normalization or adjustment of the far field levels.

These are absolute predictions based on the measured

source amplitudes.

7. CONCLUSIONS

The current state of CAA for turbofan noise propaga-

tion has been reviewed. The use of CAA in this important

application has advanced greatly over the last decade.

Linearised models based on the potential wave equation

and LEE are able now to deal relatively easily with

axisymmetric geometries. Predictions obtained using such

models are beginning to find their way into industry

prediction procedures. The solution of 3D problems is

more challenging, but solution times are approaching

values which would be regarded as acceptable to engine

manufacturers and airframers (turnaround times measured

in hours rather than days). Indeed robust commercial

Helmholtz codes are already quite widely used for intake

and in-duct bypass duct noise prediction. Structured and

unstructured time-domain LEE codes are however more

suitable for exhaust computations. A number of techniques

have been proposed to deal with Kelvin-Helmholtz

instabilities which historically have impeded the progress

of such computations. The acoustic perturbation equations

may also offer a systematic way of dealing with this issue.

Comparisons between the mainstream CAA propagation

methods indicate that they generate results which are

consistent with each other, within the limits of slightly

different assumptions which are made. The scarcity of non-

proprietary data makes it difficult to assert at this stage that

current CAA predictions correctly predict the noise which

is actually radiated from turbofan engines, but the

comparisons of this type which exist are encouraging.
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[71] Y. Özyörük and S. Lidoine, ‘‘Numerical analysis of noise
radiation from a turbofan exhaust cowl with an extended liner
in flight,’’ AIAA Paper 2008-2880 (2008).

[72] R. Hixon, ‘‘A new class of comact schemes,’’ AIAA Paper 98-
0367 (1998).

[73] X. Zhang, X. X. Chen, C. L. Morfey and P. A. Nelson,
‘‘Computation of spinning modal radiation from an unflanged
duct,’’ AIAA J., 42, 1795–1801 (2004).

[74] X. Zhang, X. X. Chen and C. L. Morfey, ‘‘Acoustic radiation
from a semi-infinite duct with a subsonic jet,’’ Int. J.
Aeroacoust., 4, 169–184 (2005).

[75] S. K. Richards, X. X. Chen, X. Huang and X. Zhang,
‘‘Computation of fan noise radiation through an engine exhaust
geometry with flow,’’ Int. J. Aeroacoust., 6, 223–241 (2007).

[76] X. X. Chen, X. Huang and X. Zhang, ‘‘Sound radiation from a
bypass duct with bifurcations,’’ AIAA J., 47, 429–436 (2009).

[77] X. Huang, X. Zhang and S. K. Richards, ‘‘Adaptive mesh
refinement computation of acoustic radiation from an engine
intake,’’ Aerosp. Sci. Technol., 12, 418–426 (2008).

[78] B. Cockburn, G. E. Karniadakis and C-W. Shu, Discontinuous
Galerkin Methods: Theory Computation and Applications,
Lecture Notes in Computational Science and Engineering,
Vol. 11 (Springer-Verlag, Berlin, 2000).

[79] F. Bassi and S. Rebay, ‘‘High order accurate discontinuous
finite element solution of the 2D Euler equations,’’ J. Comput.
Phys., 138, 251–285 (1997).

[80] H. L. Atkins and C. W. Shu, ‘‘Quadrature free implementation
of the discontinuous Galerkin method for hyperbolic equa-
tions,’’ AIAA J., 36, 775–782 (1998).

[81] D. Stanescu, M. Y. Hussaini and F. Farassat, ‘‘Aircraft engine
noise scattering — A discontinuous spectral elememt ap-
proach,’’ AIAA Paper 2002-0800 (2002).

[82] P. P. Rao and P. J. Morris, ‘‘Application of a generalized
quadrature free discontinuous Galerkin method in aeroacous-
tics,’’ AIAA Paper 2003-3120 (2003).

[83] N. Chevaugeon, J.-F. Remacle, X. Gallez, P. Ploumhans and S.
Caro, ‘‘Efficient discontinuous Galerkin methods for solving
acoustic problems,’’ AIAA Paper 2005-2823 (2005).

[84] F. Q. Hu and H. L. Atkins, ‘‘Two-dimensional wave analysis of
the discontinuous Galerkin method with non-uniform grids and
boundary conditions,’’ AIAA Paper 2002-2514 (2002).

[85] Y. Reymen, M. Baelmans and W. Desmet, ‘‘On the perform-
ance of the quadrature-free discontinuous Galerkin method
on hexahedral and tetrahedral grids for linearized Euler
equations,’’ AIAA Paper 2008-2301 (2008).

[86] R. Leneveu, B. Schiltz, S. Laldjee and S. Caro, ‘‘Performance
of a DGM scheme for LEE and applications to aircraft engine
exhaust noise,’’ AIAA Paper 2008-2884 (2008).

[87] Y. Zhao and P. J. Morris, ‘‘The prediction of fan exhaust noise
propagation,’’ AIAA Paper 2005-2815 (2005).

[88] S. Redonnet, C. Mincu and E. Manoha, ‘‘Computational
aeroacoustics of realistic co-axial engines,’’ AIAA Paper 2008-
2826 (2008).

[89] D. Casalino, M. Roger and M. C. Jacob, ‘‘Prediction of sound
proapagtion in ducted potential flows using Green’s function
disrcetization,’’ AIAA J., 42, 736–744 (2004).

[90] P. Gamallo and R. J. Astley, ‘‘The partition of unity finite
element method for short wave acoustic propagation on non-
uniform potential flows,’’ Int. J. Numer. Methods Eng., 65,
425–444 (2006).

[91] G. Gabard, ‘‘Discontinuous Galerkin methods with plane
waves for time harmonic problems,’’ J. Comput. Phys., 225,
1961–1984 (2007).

[92] G. F. Homicz and J. A. Lordi, ‘‘A note on the radiative
directivity patterns of duct acoustic modes,’’ J. Sound Vib., 41,
283–290 (1975).

[93] R. M. Munt, ‘‘The interaction of sound with a subsonic jet
issuing from a semi-infinite cylindrical pipe,’’ J. Fluid Mech.,
83, 609–640 (1977).

[94] G. Gabard and R. J. Astley, ‘‘Theoretical model for sound
radiation from annular jet pipes: Far- and near-field solutions,’’
J. Fluid Mech., 549, 315–341 (2006).

[95] R. J. Astley, J. A. Hamilton, N. Baker and E. H. Kitchen,
‘‘Modelling tone propagation from turbofan inlets—The effect
of extended lip iners,’’ AIAA Paper 2002-2449 (2002).

[96] B. J. Tester, F. Arnold, S. Caro and S. Lidoine, Turbomachi-
nery Noise Radiation through the Engine Exhaust: Project
No. 516079, 6th Framework Programme: Publishable final
activity report (TURNEX Deliverable D0-1-9a 2008).

R. Jeremy Astley received a BSc(hons) de-
gree in mathematics from the University of
Canterbury in New Zealand in 1968 and MSc
and PhD degrees in applied mathematics from
Bristol University in the United Kingdom in
1970 and 1973. In 1999 he was awarded a
higher doctorate (Doctor of Engineering) from
the University of Canterbury for contributions to
computational acoustics. He is currently Profes-

sor of Computational Aero-acoustics at the Institute of Sound and
Vibration Research at the University of Southampton in the United
Kingdom, and Director of the Rolls-Royce University Technology
Centre in Gas Turbine Noise. He is a fellow of the Academy of the
Royal Society of New Zealand (FRSNZ), a fellow of the Institution
of Professional Engineers of New Zealand (FIPENZ) and a fellow of
the international Institute for Acoustics and Vibration (FIIAV).

R. J. ASTLEY: NUMERICAL METHODS FOR NOISE PROPAGATION

239


