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Numerical methods for nonsmooth mechanical systems

Objectives

Objectives

I Formulation of nonsmooth dynamical systems
I Measure differential inclusions

I Basics on Mathematical properties

I Formulation of unilateral contact, Coulomb’s friction and impacts.
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Numerical methods for nonsmooth mechanical systems

Objectives

Objectives

The smooth multibody dynamics
Lagrange’s Equations
Perfect bilateral constraints
Perfect unilateral constraints
Differential inclusion

The nonsmooth Lagrangian Dynamics
Measures Decomposition

The Moreau’s sweeping process

Newton-Euler Formalism

Academic examples.

Contact models
Local frame at contact
Signorini condition and Coulomb’s friction.
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The smooth multibody dynamics

Lagrange’s Equations

Lagrange’s equations

Definition (Lagrange’s equations)

d

dt

(
∂L(q, v)

∂vi

)
−
∂L(q, v)

∂qi
= Qi (q, t), i ∈ {1 . . . n}, (1)

where

I q(t) ∈ Rn generalized coordinates,

I v(t) =
dq(t)

dt
∈ Rn generalized velocities,

I Q(q, t) ∈ Rn generalized forces

I L(q, v) ∈ IR Lagrangian of the system,

L(q, v) = T (q, v)− V (q),

together with

I T (q, v) =
1

2
vT M(q)v , kinetic energy, M(q) ∈ Rn×n mass matrix,

I V (q) potential energy of the system,
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The smooth multibody dynamics

Lagrange’s Equations

Lagrange’s equations

M(q)
dv

dt
+ N(q, v) = Q(q, t)−∇qV (q) (2)

where

I N(q, v) =

1

2

∑
k,l

∂Mik

∂ql
+
∂Mil

∂qk
−
∂Mkl

∂qi
, i = 1 . . . n

 the nonlinear inertial terms

i.e., the gyroscopic accelerations

Internal and external forces which do not derive from a potential

M(q)
dv

dt
+ N(q, v) + Fint (t, q, v) = Fext (t), (3)

where

I Fint : Rn × Rn × R→ Rn non linear interactions between bodies,

I Fext : R→ Rn external applied loads.

Linear time invariant (LTI) case

I M(q) = M ∈ IRn×n mass matrix

I Fint (t, q, v) = Cv + Kq, C ∈ IRn×n is the viscosity matrix, K ∈ IRn×n is the
stiffness matrix.
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The smooth multibody dynamics

Lagrange’s Equations

Smooth multibody dynamics

Definition (Equations of motion)M(q)
dv

dt
+ F (t, q, v) = 0,

v = q̇
(4)

where

I F (t, q, v) = N(q, v) + Fint (t, q, v)− Fext (t)

Definition (Boundary conditions)

I Initial Value Problem (IVP):

t0 ∈ R, q(t0) = q0 ∈ Rn, v(t0) = v0 ∈ Rn, (5)

I Boundary Value Problem (BVP):

(t0,T ) ∈ R× R, Γ(q(t0), v(t0), q(T ), v(T )) = 0 (6)
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The smooth multibody dynamics

Perfect bilateral constraints

Perfect bilateral constraints, joints, liaisons and spatial boundary conditions

Bilateral constraints

I Finite set of m bilateral constraints on the generalized coordinates :

h(q, t) =
[
hj (q, t) = 0, j ∈ {1 . . .m}

]T
. (7)

where hj are sufficiently smooth with regular gradients, ∇q(hj ).

I Configuration manifold, M(t)

M(t) = {q(t) ∈ Rn, h(q, t) = 0} , (8)

Tangent and normal space

I Tangent space to the manifold M at q

TM(q) = {ξ,∇h(q)T ξ = 0} (9)

I Normal space as the orthogonal to the tangent space

NM(q) = {η, ηT ξ = 0, ∀ξ ∈ TM} (10)
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The smooth multibody dynamics

Perfect bilateral constraints

Bilateral constraints as inclusion

Definition (Perfect bilateral holonomic constraints on the smooth
dynamics) 

q̇ = v

M(q)
dv

dt
+ F (t, q, v) = r

−r ∈ NM(q)

(11)

where r is the generalized force or generalized reaction due to the constraints.

Remark

I The formulation as an inclusion is very useful in practice

I The constraints are said to be perfect due to the normality condition.

I When M = {q(t) ∈ Rn, h(q, t) = 0}, the multipliers µ ∈ Rm can be intoduced
and we get

r = ∇qh(q, t)µ
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The smooth multibody dynamics

Perfect unilateral constraints

Perfect unilateral constraints

Unilateral constraints

I Finite set of ν unilateral constraints on the generalized coordinates :

g(q, t) = [gα(q, t) > 0, α ∈ {1 . . . ν}]T . (12)

I Admissible set C(t)

C(t) = {q ∈ Rn, gα(q, t) > 0, α ∈ {1 . . . ν}} . (13)

Normal cone to C(t)

NC(t)(q(t)) =

{
y ∈ Rn, y = −

∑
α

λα∇gα(q, t), λα > 0, λαgα(q, t) = 0

}
(14)
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The smooth multibody dynamics

Differential inclusion

Unilateral constraints as an inclusion

Definition (Perfect unilateral constraints on the smooth dynamics)

q̇ = v

M(q)
dv

dt
+ F (t, q, v) = r

−r ∈ NC(t)(q(t))

(15)

where r it the generalized force or generalized reaction due to the constraints.

Remark

I The unilateral constraints are said to be perfect due to the normality condition.

I Notion of normal cones can be extended to more general sets. see (Clarke, 1975,
1983 ; Mordukhovich, 1994)

I When C(t) = {q ∈ Rn, gα(q, t) > 0, α ∈ {1 . . . ν}}, the multipliers λ ∈ Rm such
that r = ∇T

q g(q, t)λ.
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The smooth multibody dynamics

Differential inclusion

Smooth dynamics as a DI

Differential Inclusion

−
[

M(q)
dv

dt
+ F (t, q, v)

]
∈ NC(t)(q(t)), (16)

with
q̇ = v .

Remark

I The right hand side is neither bounded (and then nor compact).

I The inclusion and the constraints concern the second order time derivative of q.

Ü Standard Analysis of DI does no longer apply.
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The smooth multibody dynamics

Differential inclusion

Objectives

The smooth multibody dynamics
Lagrange’s Equations
Perfect bilateral constraints
Perfect unilateral constraints
Differential inclusion

The nonsmooth Lagrangian Dynamics
Measures Decomposition

The Moreau’s sweeping process

Newton-Euler Formalism

Academic examples.

Contact models
Local frame at contact
Signorini condition and Coulomb’s friction.
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The nonsmooth Lagrangian Dynamics

Nonsmooth Lagrangian Dynamics

Fundamental assumptions.

I The velocity v = q̇ is of Bounded Variations (B.V)
Ü The equation are written in terms of a right continuous B.V. (R.C.B.V.)
function, v+ such that

v+ = q̇+ (17)

I q is related to this velocity by

q(t) = q(t0) +

∫ t

t0

v+(t) dt (18)

I The acceleration, ( q̈ in the usual sense) is hence a differential measure dv
associated with v such that

dv(]a, b]) =

∫
]a,b]

dv = v+(b)− v+(a) (19)
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The nonsmooth Lagrangian Dynamics

Nonsmooth Lagrangian Dynamics

Definition (Nonsmooth Lagrangian Dynamics)
M(q)dv + F (t, q, v+)dt = di

v+ = q̇+

(20)

where di is the reaction measure and dt is the Lebesgue measure.

Remarks

I The nonsmooth Dynamics contains the impact equations and the smooth
evolution in a single equation.

I The formulation allows one to take into account very complex behaviors,
especially, finite accumulation (Zeno-state).

I This formulation is sound from a mathematical Analysis point of view.

References
(Schatzman, 1973, 1978 ; Moreau, 1983, 1988)
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The nonsmooth Lagrangian Dynamics

Measures Decomposition

Nonsmooth Lagrangian Dynamics

Measures Decomposition (for dummies){
dv = γ dt+ (v+ − v−) dν+ dvs

di = f dt+ p dν+ dis
(21)

where

I γ = q̈ is the acceleration defined in the usual sense.

I f is the Lebesgue measurable force,

I v+ − v− is the difference between the right continuous and the left continuous
functions associated with the B.V. function v = q̇,

I dν is a purely atomic measure concentrated at the time ti of discontinuities of v ,
i.e. where (v+ − v−) 6= 0,i.e. dν =

∑
i δti

I p is the purely atomic impact percussions such that pdν =
∑

i piδti

I dvS and diS are singular measures with the respect to dt + dη.
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The nonsmooth Lagrangian Dynamics

Measures Decomposition

Impact equations and Smooth Lagrangian dynamics

Substituting the decomposition of measures into the nonsmooth Lagrangian
Dynamics, one obtains

Definition (Impact equations)

M(q)(v+ − v−)dν = pdν, (22)

or
M(q(ti ))(v+(ti )− v−(ti )) = pi , (23)

Definition (Smooth Dynamics between impacts)

M(q)γdt + F (t, q, v)dt = fdt (24)

or

M(q)γ+ + F (t, q, v+) = f + [dt − a.e.] (25)
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The Moreau’s sweeping process

The Moreau’s sweeping process of second order

Definition (Moreau (1983, 1988))
A key stone of this formulation is the inclusion in terms of velocity. Indeed, the
inclusion (15) is “replaced” by the following inclusion

M(q)dv + F (t, q, v+)dt = di

v+ = q̇+

−di ∈ NTC (q)(v+)

(26)

Comments
This formulation provides a common framework for the nonsmooth dynamics
containing inelastic impacts without decomposition.
Ü Foundation for the time–stepping approaches.
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The Moreau’s sweeping process

The Moreau’s sweeping process of second order

Comments

I The inclusion concerns measures. Therefore, it is necessary to define what is the
inclusion of a measure into a cone.

I The inclusion in terms of velocity v+ rather than of the coordinates q.

Interpretation

I Inclusion of measure, −di ∈ K
I Case di = r ′dt = fdt.

−f ∈ K (27)

I Case di = piδi .
−pi ∈ K (28)

I Inclusion in terms of the velocity. Viability Lemma
If q(t0) ∈ C(t0), then

v+ ∈ TC (q), t > t0 ⇒ q(t) ∈ C(t), t > t0

Ü The unilateral constraints on q are satisfied. The equivalence needs at least an
impact inelastic rule.
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The Moreau’s sweeping process

The Moreau’s sweeping process of second order

The Newton-Moreau impact rule

− di ∈ NTC (q(t))(v+(t) + ev−(t)) (29)

where e is a coefficient of restitution.

Velocity level formulation. Index reduction

0 6 y ⊥ λ > 0
m

−λ ∈ NR+ (y)
⇑

−λ ∈ NTR+ (y)(ẏ)

m
if y 6 0 then 0 6 ẏ ⊥ λ > 0

(30)
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The Moreau’s sweeping process

The Moreau’s sweeping process of second order

The case of C is finitely represented

C = {q ∈M(t), gα(q) > 0, α ∈ {1 . . . ν}} . (31)

Decomposition of di and v+ onto the tangent and the normal cone.

di =
∑
α

∇T
q gα(q) dλα (32)

U+
α = ∇qgα(q) v+, α ∈ {1 . . . ν} (33)

Complementarity formulation (under constraints qualification condition)

− dλα ∈ NTIR+
(gα)(U+

α )⇔ if gα(q) 6 0, then 0 6 U+
α ⊥ dλα > 0 (34)

The case of C is IR+

− di ∈ NC (q)⇔ 0 6 q ⊥ di > 0 (35)

is replaced by

− di ∈ NTC (q)(v+)⇔ if q 6 0, then 0 6 v+ ⊥ di > 0 (36)
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The Moreau’s sweeping process

The Moreau’s sweeping process of second order

Summary for perfect schleronomic constraints

M(q)dv + F (t, q, v+)dt = di

v+ = q̇+

di = H(q)dλ

U+ = H(q)T v+

if gα(q) 6 0, then 0 6 U+
α ⊥ dλα > 0

(37)

where H(q) is the transpose of the Jacobian matrix of the constraints,

H(q) = ∇qg(q)

.
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Newton-Euler Formalism

The Moreau’s sweeping process in Newton–Euler Formalism

Classical Newton-Euler formalism
The velocity of a rigid body is represented with

I vG ∈ R3 the velocity of the center of mass expressed in a Galilean reference frame
R0,

I Ω ∈ R3 the angular velocity expressed in a frame attached to the solid R, called
the body frame .

Rotation matrix and angular velocity vector
By defining the rotation matrix R ∈ SO+(3) from R0 to R, the angular velocity is
given by

Ω̃ = RT Ṙ or equivalently Ṙ = RΩ̃. (38)

where the matrix Ω̃ is defined by Ω̃x = Ω× x , for all x ∈ R3.
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Newton-Euler Formalism

The Moreau’s sweeping process in Newton–Euler Formalism

Smooth Newton-Euler Equations
From the Fundamental Principle of Dynamics, the Newton–Euler equations are
obtained as 

Mv̇G = Fext (xG , vG ,Ω,R),

I Ω̇ + Ω× I Ω = Mext (xG , vG ,Ω,R),
ẋG = vG ,

Ṙ = RΩ̃, R−1 = RT , det(R) = 1.

(39)

where

I xG is the position of the center of mass,

I M = mI3×3 is the mass matrix and I the constant inertia matrix,

I Fext is the vector of external forces expressed in R0

I Mext is the vector of external moments expressed in R

Another angular velocity vector
The Newton–Euler equations can be also expressed in terms of the angular velocity

ω = RΩ

that is the expression of the angular velocity in R0.
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Newton-Euler Formalism

The Moreau’s sweeping process in Newton–Euler Formalism

General Formulation
Choosing q = [xG ,R]T and v = [vG ,Ω], the Newton–Euler equations fits within the
general framework

q̇ = T (t, q)v , (40a)

M(q)v̇ + F (t, q, v) = T T (t, q)r = T T (t, q)H(q)µ (40b)

h(q) = 0 (40c)

where

I H(q) = ∇T
q h(q)

I T (t, q) is the operator that links the velocity to the time–derivative of the
parameters,

I h(q) = 0 are the constraints for the configuration manifold R ∈ SO+(3)
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Newton-Euler Formalism

The Moreau’s sweeping process in Newton–Euler Formalism

Parametrization of rotations
The choice q = [xG ,R]T ∈ R12 is not well–suited for numerical computation.
Generally, the rotation matrix is parametrized by a set of parameters, Θ such that

R = R(Θ)

and we get
ω = P(Θ)Θ̇ or Ω = Q(Θ)Θ̇.

Examples of parametrization:

I geometrical description angles : Euler angles, Cardan/Bryant Angles,

I Rodrigues parameters,

I direct cosines,

I unitary quaternions,

I Cartesian oration vector

I Conformal rotation vector,

I linear parameters, . . .
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Newton-Euler Formalism

The Moreau’s sweeping process in Newton–Euler Formalism

Smooth DI for Newton–Euler Formalism
−
[

M(q)
dv

dt
+ F (t, q, v)

]
∈ T T (q, t)NC(t)(q(t))

q̇ = T (q, t)v

(41)

The case of C is finitely represented

C = {q ∈ Rn, gα(q) > 0, α ∈ I, gα(q) = 0, α ∈ E} . (42)

we get 

q̇ = T (q, t)v

−
[

M(q)
dv

dt
+ F (t, q, v)

]
∈ T T (q, t)r

r = H(q)λ

U = HT (q)T (q, t)v

gα(q) = 0, α ∈ E
0 6 gα(q) ⊥ λα > 0, α ∈ E

(43)
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Newton-Euler Formalism

The Moreau’s sweeping process in Newton–Euler Formalism

Measure DI for Newton–Euler Formalism

[M(q)dv + F (t, q, v)dt] = T T (q, t)di

−di ∈ NTC (q)(v+)

q̇+ = T (q, t)v+

(44)
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Newton-Euler Formalism

Objectives
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Academic examples.

Academic examples

The bouncing Ball and the linear impacting oscillator

0

q

m

f

(a) Bouncing ball example

0

m

q

(b) Linear Oscillator example

Figure: Academic test examples with analytical solutions
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Numerical methods for nonsmooth mechanical systems

Academic examples.

NonSmooth Multibody Systems (NSMBS)

-2
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 0
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 0  0.5  1  1.5  2  2.5  3  3.5  4
time (s)

Exact Solution. Bouncing Ball Example

position
velocity

Figure: Analytical solution. Bouncing ball example
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Academic examples.

NonSmooth Multibody Systems (NSMBS)
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Exact Solution. Linear Oscillator Example

position
velocity

Figure: Analytical solution. Linear Oscillator
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Academic examples.

The Moreau’s sweeping process of second order

Example (The Bouncing Ball)

h

O

z

R

θ

g

x

f

Figure: Two-dimensional bouncing ball on a rigid plane
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Academic examples.

The Moreau’s sweeping process of second order

Example (The Bouncing Ball)
In our special case, the model is completely linear:

q =

 z
x
θ

 (45)

M(q) =

 m 0 0
0 m 0
0 0 I

 where I =
3

5
mR2 (46)

N(q, q̇) =

 0
0
0

 (47)

Fint (q, q̇, t) =

 0
0
0

 (48)

Fext (t) =

 −mg
0
0

+

 f (t)
0
0

 (49)
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Academic examples.

The Moreau’s sweeping process of second order

Example (The Bouncing Ball)
Kinematics Relations The unilateral constraint requires that :

C = {q, g(q) = z − R − h > 0} (45)

so we identify the terms of the equation the equation (32)

− di = [1, 0, 0]T dλ1, (46)

U+
1 = [1, 0, 0]

 ż
ẋ

θ̇

 = ż (47)

Nonsmooth laws The following contact laws can be written,
if g(q) 6 0, then 0 6 U+ + eU− ⊥ dλ1 > 0

if g(q) > 0, dλ1 = 0

(48)
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Academic examples.
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Contact models

Local frame at contact

Local coordinates system at contact

Lagrangian approach of constraints is not sufficient.
The elegant Lagrangian approach of unilateral constraints and their associated
multipliers is not sufficient for describing more complex behavior of the contact :

I The Lagrange multipliers have no physical dimensions

I The constraints can be multiplied by a positive constant.

For a mechanical description of the behaviour of the contact interface, a (set-valued)
force laws needs to be introduced together with a coordinate systems at contact.
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Contact models

Local frame at contact

P

Body O

Body O’

n

t s

t

s

P’

n

C

Body O’’

Definition of a contact frame
Assume that we have defined

I P and P′ proximal points between O
and O′

I n an outward unit normal vector along
P′P

I t and s two unit tangent vectors

I g(q) a gap function, i.e., the signed
distance P′P

Remark
This definition is not trivial for a
nonsmooth or nonconvex surfaces.
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Contact models

Local frame at contact

Local coordinates system at contact

Relative local velocity
The relative local velocity U is defined by

U = VP − VP′ (49)

and is decomposed in the frame (P′, n, t, s) as

U = UNn + UT, UN ∈ R,UT ∈ R2 (50)

Link with the gap function
The derivative with respect to time of the gap function t → g(q(t)) is the normal
relative velocity UN

ġ(·) = UN(·) = ∇gT (q)v(·) (51)

Local reaction force at contact
The relative local velocity R acts from O′ to O and is also decomposed as

U = RNn + RT, RN ∈ R,RT ∈ R2 (52)
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Contact models

Local frame at contact

Local coordinates system at contact

Relations with global/generalized coordinates
Is is assumed that there exists a relation between the local relative velocity U and the
velocity of bodies v such that

U = HT (q)v (53)

By duality (expressed in terms of power) we get

r = H(q)R (54)

Unilateral contact in terms of local variables

if g(q) 6 0, then 0 6 UN ⊥ RN > 0 (55)
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Contact models

Signorini condition and Coulomb’s friction.

Coulomb’s friction
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Figure: Coulomb’s friction. The sliding case.
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Numerical methods for nonsmooth mechanical systems

Contact models

Signorini condition and Coulomb’s friction.

Coulomb’s friction

Definition (Coulomb’s friction)
Coulomb’s friction says the following. If g(q) = 0 then:

If UT = 0 then R ∈ C

If UT 6= 0 then ||RT(t)|| = µ|RN| and there exists a scalar a > 0

such that RT = −aUT

(56)

where C = {R, ||RT|| 6 µ|RN| } is the Coulomb friction cone
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Contact models

Signorini condition and Coulomb’s friction.

Coulomb’s friction

Definition (Coulomb’s friction as an inclusion into a disk)
Let us introduce the following inclusion (Moreau, 1988), using the indicator function
ψD(·):

−UT ∈ ∂ψD(RT) (57)

where D = {RT, ||RT(t)|| 6 µ|RN| } is the Coulomb friction disk

Definition (Coulomb’s friction as a variational inequality (VI))
Then (57) appears to be equivalent to RT ∈ D

〈UT, z − RT〉 > 0 for all z ∈ D
(58)

and to
RT = projD[RT − ρUT], for all ρ > 0 (59)

Numerical methods for nonsmooth mechanical systems Vincent Acary , INRIA Rhône–Alpes, Grenoble. – 39/43
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Contact models

Signorini condition and Coulomb’s friction.

Definition (Coulomb’s Friction as a Second–Order Cone Complementarity
Problem)
Let us introduce the modified velocity Û defined by

Û = [UN + µ ||UT||,UT]T . (60)

This notation provides us with a synthetic form of the Coulomb friction as

−Û ∈ ∂ψC(R), (61)

or
C∗ 3 Û ⊥ R ∈ C. (62)

where C∗ = {v ∈ IRn | rT v > 0,∀r ∈ C} is the dual cone.
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Contact models

Signorini condition and Coulomb’s friction.

Coulomb’s friction

−ÛN
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−Û
−ÛN
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Figure: Coulomb’s friction and the modified velocity Û. The sliding case.
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Contact models

Signorini condition and Coulomb’s friction.

Coulomb’s friction with impacts

It is for instance proposed in (Moreau, 1988) to extend (57) (??) to densities, i.e. to
impulses with a tangential restitution

−PN ∈ ∂ψ∗IR− (
1

1 + ρ
U+

N (t) +
ρ

1 + ρ
U−N (t))

−PT ∈ ∂ψ∗D(
1

1 + τ
U+

T (t) +
τ

1 + τ
U−T (t)).

(63)

with ρ and τ are constants with values in the interval [0, 1] or
−PN ∈ ∂ψ∗IR− (U+

N (t) + eNU−N (t))

−PT ∈ ∂ψ∗D(U+
T (t) + eTU−T (t))

(64)

where eN ∈ [0, 1) and eT ∈ (−1, 1).
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Contact models

Signorini condition and Coulomb’s friction.

Objectives

The smooth multibody dynamics
Lagrange’s Equations
Perfect bilateral constraints
Perfect unilateral constraints
Differential inclusion

The nonsmooth Lagrangian Dynamics
Measures Decomposition

The Moreau’s sweeping process

Newton-Euler Formalism

Academic examples.

Contact models
Local frame at contact
Signorini condition and Coulomb’s friction.
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Contact models

Signorini condition and Coulomb’s friction.
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