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Abstract. We propose in this paper an alternative approach for computing p-harmonic maps
and flows: instead of solving a constrained minimization problem on SN−1, we solve an unconstrained
minimization problem on the entire space of functions. This is possible, using the projection on the
sphere of any arbitrary function. Then we show how this formulation can be used in practice, for
problems with both isotropic and anisotropic diffusion, with applications to image processing, using
a new finite difference scheme.
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1. Introduction. This paper is concerned with the minimization of constrained
functionals, and in particular with p-harmonic maps. This problem has applications
to liquid crystals, as well as to directional diffusion and chromaticity denoising.
Let Ω ⊂ R

M be an open and bounded domain, and let SN−1 be the unit sphere
in R

N , for M ≥ 1 and N ≥ 2.
We first recall the following notations and terminology. The Euclidean norm of

a vector y will be denoted by | · |. The vector-valued function U : Ω → R
N belongs

to SN−1 if and only if |U(x)| = 1, a.e. (for almost every) x ∈ Ω.
The component gradient ∇Ui and its Euclidean norm are, respectively, defined

by

∇Ui =

(
∂Ui

∂x1
,
∂Ui

∂x2
, . . . ,

∂Ui

∂xM

)
, |∇Ui| =

√(
∂Ui

∂x1

)2

+

(
∂Ui

∂x2

)2

+ · · ·+
(
∂Ui

∂xM

)2

,

and the gradient matrix and its norm of the vector-valued function U are, respectively,
defined by

∇U =

 ∇U1

:
∇UN


 =


 ∂U1

∂x1
. . . ∂U1

∂xM

: :
∂UN

∂x1
. . . ∂UN

∂xM


 , |∇U | =

√√√√ N∑
i=1

M∑
j=1

(
∂Ui

∂xj

)2

.

For U : Ω→ SN−1 and p ≥ 1, we consider the p-energy

Ep(U) =

∫
Ω

|∇U |pdx,(1.1)
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which is finite if U belongs to the Sobolev class

W 1,p(Ω, SN−1) = {U ∈W 1,p(Ω,RN ), |U | = 1 a.e.}.

Minimizing Ep over U : Ω→ SN−1, with associated boundary conditions on ∂Ω,
is a constrained minimization problem. Mappings which are stationary for Ep are
called p-harmonic maps.
The associated boundary conditions can be, for example, the following: U |∂Ω

equals a given map in SN−1(∂Ω), or the Neumann boundary conditions ∂U
∂
n |∂Ω = 0,

where �n denotes the exterior unit normal to ∂Ω.
Many authors have studied harmonic maps between manifolds (existence, unique-

ness or nonuniqueness, regularity; essentially most of them worked on the case p = 2):
Bethuel, Brezis, and Coron [5]; Bethuel, Brezis, and Helein [6], [7]; Schoen and Uh-
lenbeck [29], [30], [31]; Struwe [34], [35], [36]; Courilleau and Demengel [15]; Coron
and Gulliver [14]; Brezis, Coron, and Lieb [8]; and others. There are fewer results for
the case p = 1 (for example by Giaquinta, Modica, and Soucek [19]).
We would also like to mention the following important contributions on harmonic

maps for liquid crystals, both in theory and practice: Hardt, Kinderlehrer, and Luskin
[20]; Lin and Luskin [24]; Cohen, Lin, and Luskin [12]; Cohen et al. [13]. The work
on computational aspects of harmonic maps [13] was proposed before the analysis
results on this problem. This paper deals with alternative formulations and numerical
methods for computing harmonic maps.
There are difficulties finding numerically the minimizers or the p-harmonic maps,

due to nonconvexity (the constraint |U(x)| = 1 a.e. is not convex), nonregularity, and
nonuniqueness of minimizers.
There are several classical approaches used to solve the minimization problem

(1.1).
A first approach is to solve the Euler–Lagrange equations associated with the

minimization problem. These consist of a set of coupled PDEs:

−div(|∇U |p−2∇U) = U |∇U |p.(1.2)

The above system of equations holds if and only if U ∈ SN−1. However, in practice,
the numerical solution does not necessarily satisfy the constraint |U | = 1 everywhere.
To correct the numerical error, several authors [18], [38], [39] replace the solution Un

∗
obtained at each iteration n by Un =

Un
∗

|Un∗ | , but then the question is whether one still
decreases the energy. In this framework, we also refer the reader to [13]. It is known [1]
that the energy decrease is guaranteed after this renormalization if |Un

∗ | ≥ 1, but the
behavior of the energy is not known if |Un

∗ | < 1. Also, if we would like to extend this
numerical procedure involving the projection at each step to other manifolds, then the
energy decrease is guaranteed only when the manifold is the boundary of a convex set,
and again if, in addition, Un

∗ does not belong to the interior of that convex domain.
This problem has been solved in [1] for the S2 case and in three dimensions, where

an interesting convergent algorithm is proposed, but it still involves a renormalization
step at each iteration (ensuring now that the energy decreases after the renormaliza-
tion step). Numerical methods for p-harmonic flows are also proposed in [18] and [13],
again based on the renormalization procedure at each step.
The second classical approach is given by the Ginzburg–Landau functionals [6], [7].

Here, the problem is solved by approximation to eliminate the constraint. The mini-
mization of the energy Ep from (1.1) under the constraint |U(x)| = 1 a.e. is approxi-



NUMERICAL METHOD, HARMONIC FLOW, IMAGE PROCESSING 2087

mated by the unconstrained minimization of the following energies, as ε→ 0:

Eε(U) =

∫
Ω

|∇U |pdx+ 1
ε

∫
Ω

(1− |U |2)2dx.(1.3)

In this paper, we introduce a different approach to solving minimization problems
on SN−1. We solve an unconstrained minimization problem on the entire space of
functions and not only on SN−1. The method uses the projection of an arbitrary
function V to the sphere SN−1. We will present our alternative approach for the
case of SN−1. Then we discuss how this approach can be extended to more general
manifolds, and in particular to manifolds defined implicitly, via a level set function.
By proposing numerical schemes in the S1 and S2 cases, we also show how our for-
mulations can be used in practice, and in particular for applications to directional
diffusion and color image denoising.

In the framework of image processing and directional diffusion, related works are
[27], [33], [9], [38], [22], [39], [42], and [32], [23]. We also refer the reader to [17] for
manifold constrained variational problems. In the framework of energy minimization
with values in S2, we refer the reader to [16], where the algorithm from [1] is applied
in the presence of a data term.

Our main idea is as follows. For U : Ω → SN−1, with Ω ⊂ R
M , consider

V : Ω→ R
N \�0 such that

U =
V

|V | .

We minimize without constraint the corresponding energy with respect to V :

inf
V

{
F (V ) =

∫
Ω

∣∣∣∣∇
(
V

|V |
)∣∣∣∣

p

dx

}
,(1.4)

and then we recover U , a minimizer of (1.1), projecting back on SN−1, by U = V
|V | ,

where V is a minimizer of (1.4).

We would like to mention that the idea of solving constrained minimization prob-
lems for harmonic maps by associating unconstrained minimization problems has been
used as a theoretical tool by Chen and Lin [10] and Struwe [37]. They find a smooth
energy-minimizing harmonic map U as a weak limit of minimizers UL to an uncon-
strained variational problem for L→ ∞.
The outline of the paper is as follows. In section 2, we consider the S1 case: we

derive the Euler–Lagrange equations associated with the unconstrained minimization
problem, and in subsection 2.1 we propose a numerical scheme for this case. Similarly,
section 3 and subsection 3.1 are devoted to the S2 case. In section 4 we validate the
proposed models and numerical schemes on several experimental results: in subsec-
tion 4.1, we consider the case with prescribed boundary conditions, and we make a
comparison with the classical formulation (1.2) with the renormalization step at each
iteration (we will see that, by the proposed approach, the numerical accuracy is im-
proved in a test case where we know the exact solution); in subsection 4.2, we consider
the case of directional diffusion, with Neumann boundary conditions, and applications
to chromaticity denoising for color images. Finally, in section 5 we conclude with a
discussion for more general manifolds.
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2. The S1 case. To develop our main idea, let us first consider the particular
case N = 2 of S1. Then, for U : Ω → S1, consider V = (u, v) : Ω → R

2 such that
U = V

|V | .
In order to obtain in an elegant way the Euler–Lagrange equations associated

with the minimization problem (1.4), we consider the orientation formulation (which
is not always equivalent with the directional formulation). Let U = (cos θ, sin θ), and
let V = (r cos θ, r sin θ). Then u2 + v2 = r2, and we have

∣∣∣∣∇
(
V

|V |
)∣∣∣∣

2

= |∇θ|2.

For p = 2 (the heat flow for harmonic maps), solving

inf
θ

∫
Ω

|∇θ|2dx,

and parameterizing the descent direction by an artificial time t, we obtain (denoting
ut =

∂u
∂t , vt =

∂v
∂t )

θt = 
θ, rt = 0.

Using

θ = tan−1
( v
u

)
, ∇θ = u∇v − v∇u

u2 + v2
,

we first deduce that

uvt − vut
u2 + v2

= div

(
u∇v − v∇u
u2 + v2

)
.

Now, using uut + vvt = 0 (from rt = 0), we obtain the associated Euler–Lagrange
equations for p = 2:

ut = −vdiv
(
u∇v − v∇u
u2 + v2

)
, vt = +udiv

(
u∇v − v∇u
u2 + v2

)
.(2.1)

For p = 1 (the total variation minimization of Rudin, Osher, and Fatemi [28]),
on solving

inf
θ

∫
Ω

|∇θ|dx,

we obtain

θt = div

( ∇θ
|∇θ|

)
, rt = 0.

Then, in a similar way, the associated Euler–Lagrange equations for p = 1 are

ut = −vdiv
(
u∇v − v∇u
|u∇v − v∇u|

)
, vt = +udiv

(
u∇v − v∇u
|u∇v − v∇u|

)
.(2.2)
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In the general case, i.e., for any p ≥ 1, the corresponding linear system in ut and vt
is

uut + vvt = 0,

uvt − vut
u2 + v2

= div

[( |u∇v − v∇u|
u2 + v2

)p−2(
u∇v − v∇u
u2 + v2

)]
.

Solving this linear system in the unknowns ut and vt yields similar equations in
u and v, like those for the cases p = 2 and p = 1 from (2.1) and (2.2), respectively.
We will associate with the problems (2.1) and (2.2) initial conditions in the follow-

ing form: u(0, x) = u0(x) and v(0, x) = v0(x) in Ω; at the boundary, we can prescribe
either Dirichlet boundary conditions V (t, x)/|V (t, x)| = F (x), with F : ∂Ω → S1

given, for t ≥ 0 and x ∈ ∂Ω; or Neumann boundary conditions ∂u
∂
n = 0 and

∂v
∂
n = 0

on ∂Ω.
We could add data terms in the energy, as in [9] or [16].
Remark. With these formulations, with both p = 1 and p = 2 (and, in fact, for

any p ≥ 1), we always have, for any fixed x ∈ Ω, u(t, x)ut(t, x) + v(t, x)vt(t, x) = 0,
or u2(t, x) + v2(t, x) = constant in time for fixed x.

Remark. Note that we have used an artificial time, even if we compute a stationary
solution of the problem. This is a common technique, and this artificial time represents
a parameterization of the descent direction. It can be shown, in general, that the
energy is decreasing in time, under such a time-dependent flow, for both Dirichlet or
Neumann boundary conditions (as explained in detail in the appendix).

2.1. The numerical algorithm for the S1 case. To discretize the systems
(2.1) and (2.2), we use finite differences. Assume for simplicity that U : [0, 1]M → S1,
let h be the space step, and let 
t be the time step. We denote by un and vn
the approximations of u(n
t, x) and of v(n
t, x), respectively, where x is a grid
point. (To simplify the notation, we will not explicitly indicate the discrete point xi,j
where the approximation is considered; for instance, if M = 2, un means uni,j , etc.;
similarly, any expression of the form (E)n denotes an approximation of the quantity E
at (n
t, x), at the same discrete point x; this notational convention will allow us to
consider any dimension M ≥ 1.)
We use the following semi-implicit scheme for (2.1) (p = 2):

un+1 − un

t = −v

n+1 + vn

2

[
div

(
u∇v − v∇u
u2 + v2

)]n
,

vn+1 − vn

t = +

un+1 + un

2

[
div

(
u∇v − v∇u
u2 + v2

)]n
,

and similarly for (2.2) (p = 1).
Denoting by (Div)n an approximation of the expression div

(
u∇v−v∇u

u2+v2

)
evaluated

at (n
t, ih, jh, . . .), and solving the previous algebraic system in un+1 and vn+1,
we obtain, for both p = 1 and p = 2,

un+1 =
un −

(
2vn + un�t(Div)n

2

)
�t(Div)n

2

1 +
(

�t(Div)n

2

)2 ,

vn+1 =
vn +

(
2un − vn�t(Div)n

2

)
�t(Div)n

2

1 +
(

�t(Div)n

2

)2 .



2090 LUMINITA A. VESE AND STANLEY J. OSHER

To discretize the expression div
(
u∇v−v∇u

u2+v2

)
, we use the finite difference scheme

proposed in [28] for div
( ∇u
|∇u|

)
and which has also been used in [2] for a more general

case.
Remark. As in the continuous case, it is easy to verify that the numerical solution

exactly satisfies

(un+1)2 + (vn+1)2 = (un)2 + (vn)2

at any grid point x. This proves that the scheme produces bounded solutions inde-
pendent of the relation between 
t and h.

Remark. Note that we do not need to apply a renormalization step at every
iteration. Only in the end of the algorithm we let U = V

|V | , with V = (u, v). Note
also that if the initial data V0 = (u0, v0) already satisfies |V0| = 1 everywhere, then,
due to the previous remark, this equality will be preserved in time, and therefore, in
the end, the numerical solution U will be directly given by V . (In other words, in
this case, there is no need to renormalize V at the steady state; we will simply have
U = V .)

Remark. Although the solutions remain bounded regardless of the magnitude
of 
t, the numerical domain of dependence of un+1, vn+1 is such that convergence
for p = 2 is possible only if 
t ≤ Ch2. This follows from the fact that θ satisfies
the heat equation. We verified this by numerical experiments, and found that the
quantity θ is noisy if 
t is too large, although the solution is bounded. (See Fig-
ure 7 for a comparison of results obtained for several values of 
t.) Convergence for
p = 1 requires a more restrictive constraint on 
t, typical of that for total variation
minimization [28] in θ.

Remark. Note that additional penalty terms obtained by imposing constraints
on V or on V

|V | could be added to the energy or to the Euler–Lagrange equations
without any difficulty.

3. The S2 case. We will follow the same idea as in the previous case, in order to
derive the Euler–Lagrange equations associated with the unconstrained minimization
problem (1.4), for any M ≥ 1 and N = 3.
Using spherical coordinates, we let

U = (cos θ1 cos θ2, cos θ1 sin θ2, sin θ1) ∈ S2

and

V = (r cos θ1 cos θ2, r cos θ1 sin θ2, r sin θ1) = (u, v, w).

We then have r2 = u2 + v2 + w2,

θ1 = tan
−1

(
w√

u2 + v2

)
, θ2 = tan

−1
( v
u

)
,

and it can be shown that

|∇U |2 = |∇θ1|2 + cos2 θ1|∇θ2|2.
Let us consider first the case p = 2. From

inf
θ1,θ2

∫
Ω

|∇θ1|2 + cos2 θ1|∇θ2|2dx,
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we obtain (parameterizing the descent directions by an artificial time t)

θ1,t = 
θ1 + sin θ1 cos θ1|∇θ2|2,(3.1)

θ2,t = div(cos
2 θ1∇θ2).(3.2)

Let us denote by E1 and E2, respectively, the expressions on the right-hand sides
of (3.1) and (3.2), i.e.,

θ1,t = E1, θ2,t = E2.(3.3)

Again, from rt = 0, we deduce that

uut + vvt + wwt = 0.(3.4)

Computing and using

∇θ1 = (u
2 + v2)(∇w)− uw(∇u)− vw(∇v)
(u2 + v2 + w2)

√
u2 + v2

,(3.5)

∇θ2 = u(∇v)− v(∇u)
u2 + v2

,(3.6)

we can then express E1 and E2 as functions of (u, v, w) by

E1 = 
θ1 + w
√
u2 + v2

u2 + v2 + w2
|∇θ2|2, E2 = div

(
u(∇v)− v(∇u)
u2 + v2 + w2

)
.

On the other hand, we have

θ1,t =
(u2 + v2)wt − uwut − vwvt
(u2 + v2 + w2)

√
u2 + v2

, θ2,t =
uvt − vut
u2 + v2

.

We now consider the system formed by (3.3), (3.4) in the unknowns ut, vt, and wt:

uut + vvt + wwt = 0,
(u2 + v2)wt − uwut − vwvt
(u2 + v2 + w2)

√
u2 + v2

= E1,
uvt − vut
u2 + v2

= E2.

Solving this linear system in the unknowns ut, vt, and wt, we deduce the associated
Euler–Lagrange equations

ut = − uw√
u2 + v2

E1 − vE2,(3.7)

vt = − vw√
u2 + v2

E1 + uE2,(3.8)

wt =
√
u2 + v2E1.(3.9)

For the case p = 1 of the total variation minimization of Rudin, Osher, and
Fatemi [28], we consider first the problem in θ = (θ1, θ2) ∈ [−π

2 ,
π
2 ]

2:

inf
θ1,θ2

∫
Ω

√
|∇θ1|2 + cos2 θ1|∇θ2|2dx,
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which yields the equations

θ1,t = div

(
∇θ1√|∇θ1|2 + cos2 θ1|∇θ2|2

)
+

sin θ1 cos θ1|∇θ2|2√|∇θ1|2 + cos2 θ1|∇θ2|2
,

θ2,t = div

(
cos2 θ1

∇θ2√|∇θ1|2 + cos2 θ1|∇θ2|2

)
.

Denoting again by E1 and E2 the expressions on the right-hand sides of the above
equations (corresponding now to the case p = 1), these can be expressed as functions
of (u, v, w) using (3.5) and (3.6). The Euler–Lagrange equations for the case p = 1,
in (u, v, w), are therefore as in (3.7)–(3.9) but with the corresponding differential
operators E1 and E2 for p = 1.

3.1. The numerical algorithm for the S2 case. The expressions E1 and E2

are discretized following [28] and [2] for both p = 1 and p = 2. (We will still denote
their discretizations at a given point by E1 and E2.)
Let us denote by un, vn, wn the discrete solutions at a discrete point in two or

three dimensions (but without writing uni,j or u
n
i,j,k, for simplicity). We discretize the

system (3.7)–(3.9) using the following implicit scheme:

un+1 = un − 
t√
(un)2 + (vn)2

un
(
wn+1 + wn

2

)
E1 −

(
vn+1 + vn

2

)
E2
t,

vn+1 = vn − 
t√
(un)2 + (vn)2

vn
(
wn+1 + wn

2

)
E1 +

(
un+1 + un

2

)
E2
t,

wn+1 = wn +
t
√
(un)2 + (vn)2E1.

We will use the notations

A =
E1
t

2
√
(un)2 + (vn)2

, B =
E2
t
2

, C = 
t
√
(un)2 + (vn)2E1.

The linear system in un+1, vn+1, wn+1 is nonsingular and has the unique solution

un+1 =
R1 −BR2

1 +B2
, vn+1 =

R2 +BR1

1 +B2
, wn+1 = wn + C,

where R1 = u
n −Aun(2wn + C)− vnB and R2 = v

n −Avn(2wn + C) + unB.
Remark. The numerical scheme will exactly satisfy the relation

(un+1)2 + (vn+1)2 + (wn+1)2 = (un)2 + (vn)2 + (wn)2

at each grid point, if in the above discretizations the expression
√
(un)2 + (vn)2 is

replaced by
√
un
(
un+un+1

2

)
+ vn

(
vn+vn+1

2

)
, but this yields a nonlinear system in the

unknowns un+1, vn+1, and wn+1, which could be solved by a fixed-point iteration.

4. Numerical experiments. In this section we present numerical experiments
in the cases M = 2, N = 2, and M = 2, 3 and N = 3. We will consider the cases with
Dirichlet boundary conditions (subsection 4.1) and Neumann boundary conditions
(subsection 4.2).
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INITIAL DATA 1

Fig. 1. Left: initial condition for the Dirichlet problem, as a perturbation of x−x0
|x−x0| in (0, 1)2,

given by (4.1)–(4.2), and agreeing with x−x0
|x−x0| at the boundary, where x0 = (0.5, 0.5). Right:

corresponding initial angle θ = tan−1
(

v0

u0

)
.

4.1. Numerical results for prescribed boundary conditions. In the S1

case, we first consider the Dirichlet problem, with the boundary condition U(x) =
x−x0

|x−x0| on ∂Ω, with x0 = (0.5, 0.5), where Ω = (0, 1)
2. In this case, it is known that

the map x �→ x−x0

|x−x0| is an exact solution and minimizer in Ω. We will show that
the numerical solution has the correct behavior, approximating very well the exact
solution.

Following [13], an initial condition V 0 = (u0, v0) inside Ω can be a perturbation
of x−x0

|x−x0| (shown in Figure 1, after normalization):

u0(x1, x2) =
x1 − .5
|x− x0| + .6(1 + x

2
1 − x2

2)− .8η,(4.1)

v0(x1, x2) =
x2 − .5
|x− x0| + .6(x1 − 2x2) + .8η,(4.2)

for all (x1, x2) ∈ Ω, where η is random noise.
We will also consider another initial condition in this case, defined using the

distance function to the boundary as follows: for (x, y) ∈ Ω, find (xb, yb) ∈ ∂Ω as the
closest point to the boundary ∂Ω from (x, y). Then let (u0(x, y), v0(x, y)) = U(xb, yb),
where U defines the boundary conditions on ∂Ω. (This second initial condition is
shown in Figure 2.)

We now consider the case p = 2 for these two initial conditions. For the initial
data 1, we also compare the results (the error and the energy decrease) with the
classical harmonic map formulation with numerical renormalization at each time step
by solving the semidiscrete problem (using central difference approximations for the
space derivatives, and with the same prescribed boundary conditions and the same
time and space steps):
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0 5 10 15 20
0

5

10

15

20

INITIAL DATA 2

Fig. 2. Left: another initial condition for the Dirichlet problem, constructed using the closest
point to the boundary, and agreeing with x−x0

|x−x0| at the boundary, where x0 = (0.5, 0.5). Right:

corresponding initial angle θ = tan−1
(

v0

u0

)
.

un+1
∗ − un


t = 
un + un
[
(unx)

2 + (uny )
2 + (vnx )

2 + (vny )
2
]
,

vn+1
∗ − vn


t = 
vn + vn
[
(unx)

2 + (uny )
2 + (vnx )

2 + (vny )
2
]
,

(un+1, vn+1) =
(un+1

∗ , vn+1
∗ )

|(un+1∗ , vn+1∗ )| .

We show the energy decrease and the error versus iterations for the results ob-
tained with the classical harmonic maps applied to the initial data 1, and with the
proposed model applied to both initial data 1 and 2 (see Figure 3). Using the proposed
model, the error is much smaller. Also, note that the initial data 2 produces a result
very fast. For both initial data 1 and 2, by our proposed model, the numerical solution

U(x) = V (x)
|V (x)| at the steady state approximates very well the exact solution

x−x0

|x−x0| in
Ω = [0, 1]2, and it is better than using the classical harmonic map scheme with the
renormalization at each step.
The results obtained with the proposed model for p = 2, for both data, are shown

in Figure 4, together with the angle θ = tan−1
(
v
u

)
.

Corresponding results obtained with the proposed model for p = 1 are shown in
Figures 5 and 6.
In Figure 7 we show the angle θ = tan−1

(
v
u

)
, obtained with the initial data 1, for

p = 2, at the steady state using the proposed model, for different decreasing values
of 
t. This test proves again that if 
t is too large, then θ is noisy, but the numerical
solution (un, vn) remains bounded. Similar results can be obtained for p = 1, with a
slightly stronger condition on 
t, to guarantee the stability of the numerical scheme.
We show next a numerical result for maps with values in S2 in the three-dimen-

sional case. Following [1], we perform a test, which shows again that, for the Dirichlet
boundary conditions, the numerical solution approximates well the exact solution for
p = 2: in Figure 8, the initial data is to the left, and the result is on the right. We
see that the singularity has moved in the center of the domain, this being therefore
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Fig. 3. Energy and error versus iterations, for the classical harmonic map scheme applied to
the initial data 1, and for the proposed model applied to both initial data 1 and 2. Note a much
better accuracy obtained with the proposed model, compared with the classical formulation (we use
the same �t = 0.0001, h = 1./21), for both formulations.

an approximation of x−x0

|x−x0| , with x0 = (0.5, 0.5, 0.5).

4.2. Application to directional denoising and color image denoising.
Next, we consider the case with Neumann boundary conditions. For the initial data
in Figure 9, the results for p = 1 and p = 2 are presented in Figure 10. Note that,
for p = 1 (left), the “edges” are very well preserved, thanks to the total variation
minimization [28], while denoising in the homogeneous regions. (We show the results
at the steady state and without any fitting term.)

Finally, we show applications more related to denoising of color RGB images. In
the first test (Figure 11), we consider a map from R

2 → S2, but instead of vectors
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Fig. 4. Left: numerical result, approximating well the exact solution and minimizer for p = 2,
with Dirichlet boundary conditions (�t = 0.0001, h = 1/21). Right: corresponding angle θ =

tan−1
(

v
u

)
.

we plot colors, using the rectangular color space RGB: in Figure 11 (left), we show
an initial image of noisy directions. (The components of the unit vector (u, v, w) are
visualized as channels in a color RGB picture.) We show in Figure 11 (middle and
right) two numerical results in the case of directional diffusion, with p = 1 (middle)
and p = 2 (right), with Neumann boundary conditions. As expected, in the case of
the total variation [28], the edges are well preserved, while these are smeared out with
the heat flow.
We end the paper with an application to denoising of color RGB images. We

consider a color image I = (IR, IG, IB) ∈ R
3 from which we can extract the intensity

or brightness |I| =√I2
R + I

2
G + I

2
B and the chromaticity

I

|I| =
(

IR√
I2
R + I

2
G + I

2
B

,
IG√

I2
R + I

2
G + I

2
B

,
IB√

I2
R + I

2
G + I

2
B

)
∈ S2.

Let us assume that noise has been added to the image but only to the chromaticity I
|I| .
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Fig. 5. Left: numerical result, approximating well the exact solution and minimizer for p = 1,
with Dirichlet boundary conditions (�t = 0.00001, h = 1/21). Right: corresponding angle θ =

tan−1
(

v
u

)
.

Then we can apply the above directional denoising method, with p = 1, to the chro-
maticity. (In this test case, we do not add noise to the brightness |I|.) If noise were
also added to the brightness, then this could have been denoised, for example, with
the corresponding total variation minimization [28] or any other anisotropic diffusion
PDE. With the processed result, we obtain a denoised version of the image, using the
unchanged brightness. We mention that the idea of decomposing a color RGB image
into its brightness and chromaticity, and processing these two quantities separately,
has been already used in other works (for example in [21], [40], [41], [38], [39], [9],
[32], [23], [33]).

This type of application is illustrated in the last numerical example. In Figure 12,
we show an original color RGB image I = (IR, IG, IB) ∈ R

3 (left), a noisy version
(middle), where only the directions I

|I| (the chromaticity) were noisy, keeping the
brightness |I| or magnitude of the vectors unchanged, and a denoised version obtained
with p = 1 (right), where only the chromaticity or directions were denoised, keeping
the brightness or magnitude unchanged from the original image, equal to |I|.
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Fig. 6. Energy and error versus iterations for p = 1 with Dirichlet boundary conditions,
corresponding to the results in Figure 5.

5. Concluding remarks and discussions for more general manifolds. In
this paper, we have proposed an alternative approach for computing harmonic maps
and harmonic flows. We have illustrated the proposed methods by experimental re-
sults and comparisons with classical schemes, and applications to directional diffusion
and image processing.

It is easy to see that the minimization problems (1.1) and (1.4) have the same
infimum, and that solving one problem yields a minimizer for the other one, and
vice versa. Of course we cannot expect to have uniqueness of minimizers for (1.4),
because λV is a minimizer for any nonzero constant λ if V is a minimizer. Showing
the existence of minimizers for (1.4) may be a difficult problem, because the energy
is not convex. We have also posed the following question: given Dirichlet boundary
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t = .001 
t = .0005


t = .0004 
t = .0002 
t = .0001

Fig. 7. The angle θ = tan−1
(

v
u

)
at the steady state for p = 2, obtained using the proposed

model with Dirichlet boundary conditions, for decreasing values of �t. (If �t is too large, θ is noisy,
but the numerical solution (un, vn) always remains bounded.)

INITIAL DATA NUMERICAL SOLUTION

Fig. 8. Top: initial flow x−x1
|x−x1| from (0, 1)3 into S2 with prescribed Dirichlet boundary con-

ditions equal to x−x0
|x−x0| , where x0 = (0.5, 0.5, 0.5) and x1 = (0.64, 0.64, 0.64). Bottom: numerical

solution obtained for p = 2. The singularity has moved to the center of the domain, approximating
well the exact solution and minimizer (�t = 0.00001, h = 1/7).
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Fig. 9. Initial noisy data for the case with Neumann boundary conditions.
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Fig. 10. Numerical results with the initial noisy data from Figure 9, for Neumann boundary
conditions and p = 1 (left), with �t = 0.00005, h = 1, steady state, and p = 2 (right), with
�t = 0.00005, h = 1, steady state.

Initial directions p = 1 p = 2

Fig. 11. Directions denoising with p = 1 (middle) and p = 2 (right). The unit vectors are
represented as RGB colors (�t = 0.01, h = 1).
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Fig. 12. Chromaticity denoising with p = 1. The brightness is kept unchanged from the original
image (�t = 0.01, h = 1, 50 iterations).

conditions on ∂Ω, what would be a good initial condition in Ω to guarantee a fast
computation of a minimizer? (To find a particular initial condition, we have used the
distance function to the boundary ∂Ω, although perhaps other choices could also be
constructed.)
This method can be extended to more general manifolds. For instance, if we

consider a manifoldM ⊂ R
N , then the associated constrained minimization problem

can be formulated as follows:

inf
U :Ω→M

F (U) =

∫
Ω

|∇U |pdx.

The proposed method for the case whenM = SN−1 can be extended to such general
cases if we assume, for example, thatM can be represented implicitly, via a level set
function, given by the signed distance function toM, from any other point in R

N . (We
refer the reader to [26] for definitions and dynamics of closed hypersurfaces defined
implicitly, via level set functions and signed distance functions.) Then we can write
M = {x ∈ R

N : d(x) = 0}, where d is the signed distance function to M (in
particular a Lipschitz function, taking real values). To any U : Ω→ M, we associate
V : Ω → R

N such that U is the projection of V on the manifold M. This can be
done using the closest point or the projection U = V − d(V )∇V d(V ), and we have
d(U) = 0. Then we can associate the unconstrained minimization problem

inf
V :Ω→RN

∫
Ω

|∇(V − d(V )∇V d(V ))|pdx.

This is a generalization of the caseM = SN−1, because in this case we have d(V ) =
|V | − 1, and V − d(V )∇V d(V ) =

V
|V | . We plan to consider in the future the solution

of this general unconstrained minimization problem.
We would like to mention that the case of more general manifolds, and in partic-

ular of manifolds defined implicitly, has been considered in [3], [4] for the manifold of
origin and in [25] for the target manifold, but using different formulations.
We would also like to mention that the idea of solving constrained minimization

problems for harmonic maps by associating unconstrained minimization problems
has been used as a theoretical tool by Chen and Lin [10], Chen and Struwe [11], and
Struwe [37]. They find a smooth energy-minimizing harmonic map U as a weak limit
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of minimizers UL to an unconstrained variational problem for L→ ∞. They construct
in a different way the unconstrained variational problems.

Appendix. We show here that, parameterizing the descent direction by an ar-
tificial time, the energy is still decreasing under the associated flow. (See the last
remark from subsection 2.1.) We show this property in a general framework. In order
to solve the minimization problem

inf
u1,...,uN

∫
Ω

f(u1, . . . , uN ,∇u1, . . . ,∇uN )dx,

where Ω ⊂ R
N , x = (x1, . . . , xM ) ∈ R

M , we associate the time-dependent coupled
PDEs for 1 ≤ i ≤ N (the functions ui take real values, and we use the notations
u = (u1, . . . , uN ), ∇u = (∇u1, . . . ,∇uN ), (ui)xj

= ∂ui

∂xj
):

∂ui
∂t
= −∂f(u,∇u)

∂ui
+

M∑
j=1

∂

∂xj

(
∂f(u,∇u)
∂((ui)xj

)

)
,

with the initial conditions ui(0, x) = u0,i(x) in Ω. On the boundary ∂Ω, we can
assume Dirichlet boundary conditions ui(t, x) = u0,i(x) for x ∈ ∂Ω and t > 0, or free
boundary conditions in the form

∑M
j=1

∂f(u,∇u)
∂((ui)xj

)nj = 0, where �n = (n1, . . . , nM ) is the

exterior unit normal to ∂Ω.
We formally compute now d

dt

∫
Ω
f(u1, . . . , uN ,∇u1, . . . ,∇uN )dx = d

dt

∫
Ω
f(u,∇u)dx,

and we show that this quantity is always negative or zero; therefore the energy is de-
creasing in time:

d

dt

∫
Ω

f(u,∇u)dx

=

N∑
i=1

∫
Ω

(
∂f(u,∇u)

∂ui

)(
∂ui
∂t

)
dx+

N∑
i=1

∫
Ω

[ M∑
j=1

(
∂f(u,∇u)
∂((ui)xj )

)(
∂(ui)xj

∂t

)]
dx

=
N∑
i=1

∫
Ω

(
∂f(u,∇u)

∂ui

)(
∂ui
∂t

)
dx+

N∑
i=1

∫
Ω

[ M∑
j=1

(
∂f(u,∇u)
∂((ui)xj )

)(
∂(ui)t
∂xj

)]
dx

=
N∑
i=1

∫
Ω

(
∂f(u,∇u)

∂ui

)(
∂ui
∂t

)
dx+

N∑
i=1

∫
Ω

{
−

M∑
j=1

[
∂

∂xj

(
∂f(u,∇u)
∂((ui)xj )

)](
∂ui
∂t

)}
dx

+
N∑
i=1

{∫
∂Ω

(
∂ui
∂t

)( M∑
j=1

∂f(u,∇u)
∂((ui)xj )

nj

)
dS

}

=
N∑
i=1

∫
Ω

(
∂ui
∂t

)[
∂f(u,∇u)

∂ui
−

M∑
j=1

∂

∂xj

(
∂f(u,∇u)
∂((ui)xj )

)]
dx

= −
N∑
i=1

∫
Ω

(
∂ui
∂t

)2

dx ≤ 0.
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