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NUMERICAL METHODS FOR SECOND-ORDER STOCHASTIC
DIFFERENTIAL EQUATIONS∗
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Abstract. We seek numerical methods for second-order stochastic differential equations that
reproduce the stationary density accurately for all values of damping. A complete analysis is possible
for scalar linear second-order equations (damped harmonic oscillators with additive noise), where
the statistics are Gaussian and can be calculated exactly in the continuous-time and discrete-time
cases. A matrix equation is given for the stationary variances and correlation for methods using one
Gaussian random variable per timestep. The only Runge–Kutta method with a nonsingular tableau
matrix that gives the exact steady state density for all values of damping is the implicit midpoint
rule. Numerical experiments, comparing the implicit midpoint rule with Heun and leapfrog methods
on nonlinear equations with additive or multiplicative noise, produce behavior similar to the linear
case.
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1. Introduction. Newton’s second law of motion relates force to acceleration.
Consequently, second-order differential equations are common in scientific applica-
tions, in the guise of “Langevin,” “Monte Carlo,” “molecular,” or “dissipative parti-
cle” dynamics [1, 2, 3], and the study of methods for second-order ordinary differential
equations is one of the most mature branches of numerical analysis [4]. The most ex-
citing advances in recent decades have been the development of symplectic methods,
capable of exactly preserving an energy-like quantity over very long times [5], and their
extension to stochastic systems [6]. In the stochastic setting, the long-time dynamics
of a typical physical system is governed by fluctuation-dissipation, so that the amount
of time spent in different regions of phase space can be calculated from the stationary
density [7]. This density can have a relatively simple explicit expression even when
the dynamics is highly nonlinear [8]. Numerical methods replace continuous-time with
discrete-time dynamics, generating values at times t0, t1, . . . . Usually tn+1 − tn is a
fixed number Δt. The criterion for a good numerical method that will be examined
in this work is that its discrete-time dynamics has a stationary density as close as
possible to that of the continuous-time system.

The differential equations describing second-order systems contain a parameter
known as damping. The stationary density is independent of damping, but dynamical
quantities, and the usefulness of numerical algorithms, are strongly dependent on it. In
the infinite-damping limit, the system becomes first order. The limit of zero damping,
on the other hand, corresponds to Hamiltonian systems, where symplectic methods
can be applied. The aim in this paper is to devise methods capable of accurately
reproducing the stationary density for all positive values of damping.
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We shall consider equations of the following form:

ẍ = f(x) − ηs2(x)ẋ + εs(x)ξ(t),(1.1)

where
〈
ξ(t)ξ(t′)

〉
= δ(t− t′) and the damping parameter is denoted η. Angled brack-

ets denote mean over realizations. The second-order stochastic differential equation
(SDE) (1.1) describes the position of a particle subject to deterministic forcing f(x)
and random forcing ξ(t). The deterministic forcing is related to the potential function
V (x) via f(x) = −V ′(x). The amplitude of the random forcing, ε, is related to the
temperature T and damping coefficient η by the fluctuation-dissipation relation [8]
ε2 = 2ηKT .

We can write (1.1) as a pair of first-order equations for Xt and Vt, the position
and velocity variables:

dXt = Vtdt,

dVt = −ηs2(Xt)Vtdt + f(Xt)dt + εs(Xt)dWt,(1.2)

where Wt is a Wiener process satisfying
〈
WtWs

〉
= min(t, s). If s(x) is not a

constant, the noise amplitude is a function of position and the equation is commonly
said to have “multiplicative noise.” However, because the coefficient of dWt in the
SDE for Vt is a function of Xt only, there is no difference between the Ito and
Stratonovich (see Gardiner [8]) forms of (1.2). The probability density at time t is
P (x, v; t), where

P (x, v; t) =
d

dx

d

dv
Prob (Xt < x,Vt < v) .(1.3)

The stationary density, P∞(x, v), defined as

P∞(x, v) = lim
t→∞

P (x, v; t),(1.4)

has the following analytical form, independent of η and s(x) as long as η > 0 and
suitable conditions on V (x) are satisfied [8]:

P∞(x, v) = N exp
(
−v2/2KT − V (x)/KT

)
.(1.5)

Thus the late-time statistics of the velocity are Gaussian and uncorrelated with the
position. It is notable that the stationary density has a closed tractable form for many
nonlinear functions f(x) when analytical study of the full evolution is not possible.

In this paper we examine how faithfully the stationary density is reproduced
by standard timestepping methods for SDEs. These methods produce approximate
values for position Xn and velocity Vn at discrete times t0, t1, . . ., where tn+1−tn = Δt.
We consider the evolution of Xn and Vn, and their statistical properties as tn → ∞,
and compare it with the exact form (1.4). In particular, we consider P ∗(y, u; tn), the
discrete-time analogue of (1.3), and compare the limit

P ∗
∞(y, u) = lim

tn→∞
P ∗(y, u; tn),

where it exists, with P∞(y, u). In this work we base our analysis on linear second-
order equations, where the statistics are Gaussian and completely characterized by
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three quantities: the mean squares of the position and velocity variables, and the
correlation between the position and velocity.

The Euler and Heun methods simply treat (1.2) as a pair of SDEs, without
attempting to take advantage of their special structure due to their origin in a single
second-order differential equation. We shall show that they perform reasonably well
at intermediate values of damping but fail at high damping, when the equations are
stiff, and low damping, when it is important to conserve energy-like quantities over
long times.

The Verlet algorithm [1, 9, 10] produces numerical solutions of second-order dif-
ferential equations by updating the position variable without reference to the velocity
variable. Extensions of this idea to Langevin equations [10, 11, 12, 13] have proved
successful, and convergence properties may be analyzed using second-order difference
equations [12, 14, 15]. The implicit midpoint rule cannot be written as a difference
equation but can be written as a matrix equation [15]. Schurz [16, 17] studied multidi-
mensional Ornstein–Uhlenbeck processes and showed that the implicit midpoint rule
possesses the correct stationary distribution. Time-dependent properties of numerical
algorithms for the class of linear equations considered in this paper can be consid-
ered by means of a modified frequency [15] or by the method of modified equations
[18].

Recent analysis by Mannella [19, 20] of the stationary distribution resulting from
numerical timestepping methods, based on an expansion of the exponent in (1.5), has
led to a proposed modification of the leapfrog method. We shall take this method as
one of our examples and find that it provides a notable improvement on the standard
leapfrog method.

A slightly different system has been studied by Strømmen Melbø and Higham
[21]. They considered a second-order system, but without a damping term. Rather
than approaching a stationary density, the sum of the mean squared velocity and
position grows proportional to time. Partitioned methods are superior to the Euler
method for this system.

In section 2, we consider the case f(x) = − gx, where g > 0 is a constant, and
s(x) = 1. That is, we consider linear second-order equations describing harmonic os-
cillators with additive white noise and damping. The statistics for linear systems
are Gaussian, described by a covariance matrix, and can be calculated exactly in the
continuous-time and discrete-time cases. A matrix equation is derived for the sta-
tionary variances and correlations resulting from a large class of numerical methods.
We then calculate the stationary variances produced by some well-known methods.
All methods we shall consider use one realization per timestep of a Gaussian distribu-
tion with mean zero and variance Δt. This framework includes many methods with
multiple intermediate steps and implicit methods (which are in fact explicit for linear
equations).

In section 3 we seek “measure-exact” methods for linear second-order SDEs, that
is, methods that give the correct late-time mean square of the position and velocity
and absence of correlation between them. In section 4, we restrict our consideration to
Runge–Kutta methods for systems of additive noise SDEs and show that the unique
measure-exact method is the implicit midpoint rule. In section 5 we report on numer-
ical experiments carried out with f(x) = x− x3 and s(x) = 1; in section 6 we report
on numerical experiments carried out with f(x) = x − x3 and s(x) = x. In both
cases, of additive and of multiplicative noise in the double-well system, the implicit
midpoint rule is the most satisfactory, with no error in two of the three quantities of
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interest over the full range of values of damping. However, leapfrog methods have the
benefit of being fully explicit.

2. Linear equation and matrix notation. If f(x) = −gx, then the stationary
density (1.4) is

P∞(x, v) = N exp
(
−g x2/2KT − v2/2KT

)
.

The distributions of the position and velocity variables are Gaussian with

lim
t→∞

〈
Xt

2
〉

=
1

g
KT , lim

t→∞

〈
V2

t

〉
= KT, and lim

t→∞

〈
XtVt

〉
= 0.(2.1)

If f(x) = −gx and s(x) = 1, then the linear second-order SDE can be written in
matrix notation as

d

(
Xt

Vt

)
= Q

(
Xt

Vt

)
dt + ε

(
0
1

)
dWt,(2.2)

where

Q =

(
0 1
−g −η

)
.(2.3)

We consider numerical updates for the linear system (2.2) that can be summarized as(
Xn+1

Vn+1

)
= R

(
Xn

Vn

)
+ εrΔWn,(2.4)

where

R =

(
r11 r12
r21 r22

)
, r =

(
r1
r2

)

and ΔWn is sampled from a Gaussian distribution with mean zero and variance Δt,
independently of ΔWm for n �= m. Since the numerical update (2.4) is a linear
transformation, P ∗

∞(x, v) is Gaussian. Let the correlation matrix be

Σ =

(
σ2
x μ
μ σ2

v

)
,(2.5)

where

σ2
x = lim

tn→∞

〈
X2

n

〉
, σ2

v = lim
tn→∞

〈
V 2
n

〉
, and μ = lim

tn→∞

〈
XnVn

〉
.

Then

P ∗
∞(x, v) =

1

2π
|Σ−1| 12 exp

(
−1

2
(x, v)Σ−1

(
x
v

))
.

The stationary density P ∗
∞(x, v) has the property of invariance under the transfor-

mation (2.4). Now, if
(
Xn

Vn

)
is Gaussian with mean zero and correlation matrix Σ, then

R
(
Xn

Vn

)
is Gaussian with mean zero and correlation matrix RΣRT. Thus the correlation
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matrix that results from a method of the form (2.4) satisfies Σ = RΣRT + ε2rrTΔt,
or

RΣRT = Σ − ε2rrTΔt.(2.6)

In the remainder of this section, we shall use (2.6) to calculate the σ2
x, μ, and σ2

v

as a function of η and Δt under six numerical methods for the case s(x) = 1. We can
rewrite (2.6) in a form suitable for inversion:⎛

⎝r2
11 − 1 2r11r12 r2

12

r11r21 r11r22 + r12r21 − 1 r12r22
r2
21 2r21r22 r2

22 − 1

⎞
⎠

⎛
⎝σ2

x

μ
σ2
v

⎞
⎠ = −ε2Δt

⎛
⎝ r2

1

r1r2
r2
2

⎞
⎠ .

The stability boundaries of the methods are functions of the parameters ηΔt and
gΔt2. Of the methods discussed below, the implicit midpoint rule and the leapfrog
methods have the virtue of reducing to a symplectic method if η = 0 [5]. Further
explicit methods with this property have been devised [6].

2.1. Forward Euler method. Under the Euler method, the position and ve-
locity variables are updated as follows:

Xn+1 = Xn + Vn Δt,

Vn+1 = Vn − ηVnΔt + f(Xn) Δt + εΔWn.

With the notation of (2.4), R = RE and r = rE, where

RE = 1 + ΔtQ =

(
1 Δt

−gΔt 1 − ηΔt

)
,(2.7)

rE =
(
0
1

)
and the solution of (2.6) yields

ΣE =
KT

1 − g
ηΔt

(
2 − ηΔt +

1

2
gΔt2

)−1 (
g−1(2 − ηΔt + gΔt2) −Δt

−Δt 2

)
.(2.8)

In Figure 1 we display the differences between the stationary variances, obtained
by applying the Euler method to the linear equation, and the exact values (2.1).
The forward Euler method works best at intermediate values of η. It is unstable if
ηΔt < gΔt2 or ηΔt > 2+ 1

2gΔt2. In Figure 2, we plot the correlation between velocity
and position, which is zero in the exact solution but is proportional to Δt under the
Euler method.

2.2. The Heun method. Under the Heun method, intermediate values are
obtained via the Euler method:

X̂ = Xn + Vn Δt,

V̂ = Vn − ηVnΔt + f(Xn) Δt + εΔWn.

The update is

Xn+1 = Xn +
1

2
(Vn + V̂ ) Δt,

Vn+1 = Vn − 1

2
η(Vn + V̂ )Δt +

1

2
(f(Xn) + f(X̂)) Δt + εΔWn.
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Fig. 1. Mean squares versus damping for the forward Euler method. The differences between
the late-time mean squares and the exact values are plotted against η for fixed Δt = 0.1, g = 1, and
KT = 1.0. The lines use (2.8). Dots with error bars are obtained from the numerical solution of
the linear SDE.

With the notation of (2.4), R = RH and r = rH, where

RH = I + ΔtQ +
1

2
Δt2Q2 =

(
1 − 1

2gΔt2 Δt− 1
2ηΔt2

−gΔt + 1
2ηgΔt2 1 − ηΔt + 1

2 (−g + η2)Δt2

)

and

rH =

(
1
2Δt

1 − 1
2ηΔt

)
.

Let k1 = ηΔt and k2 = gΔt2. Then, for the stochastic Heun method,

(2.9)

σ2
x =

KT

g

1 − 1
4k1 + 1

8k
2
1 − 1

32 (k1k2 + k3
1) + 3

64k
2
1k2 − 1

32k1k
2
2 + 1

128k
3
2(

1 − 1
2k1 + 1

4 (k2
1 − k2) − 1

8k1k2
2 + 1

16k
2
2

) (
1 − 1

2k1 + 1
2k2 − 1

4k
2
2/k1

) ,
σ2
v = KT

(1 − 1
2k2)

2(
1 − 1

2k1 + 1
4 (k2

1 − k2) − 1
8k1k2

2 + 1
16k

2
2

) (
1 − 1

2k1 + 1
2k2 − 1

4k
2
2/k1

) ,
μ = KTΔt

(
k1−

1

2
k2

)
1 − 1

2k1(
1− 1

2k1+
1
4 (k2

1 − k2) − 1
8k1k2

2+
1
16k

2
2

) (
1− 1

2k1+
1
2k2− 1

4k
2
2/k1

) .
Compared with the Euler method, the upper limit on η for stability is little changed.
The lower limit is, however, proportional to Δt3. As Δt → 0, the Heun method is
stable if (1

2gΔt2)2 < ηΔt < 2, and the correlation between position and velocity is
proportional to Δt2. See Figure 3.
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Fig. 2. Position-velocity correlation versus damping for the forward Euler method. The late-
time correlation, μ, obtained using the forward Euler method, is plotted against η for fixed Δt = 0.1,
g = 1, and KT = 1.0. The line uses (2.8). Dots with error bars are obtained from the numerical
solution of the linear SDE.

2.3. The leapfrog method. Under leapfrog methods, velocity and position are
updated successively rather than together. The simplest possible method is

X̂ = Xn +
1

2
VnΔt,

Vn+1 = Vn − ηVnΔt + f(X̂) Δt + εΔWn,

Xn+1 = X̂ +
1

2
Vn+1Δt.(2.10)

Under this method, with the notation of (2.4), R = Rle and r = rle, where

Rle =

(
1 − 1

2gΔt2 Δt− 1
2ηΔt2 − 1

4gΔt3

−gΔt 1 − ηΔt− 1
2gΔt2

)

and

rle =

(
1
2Δt
1

)
.

The leapfrog method maintains the independence of position and velocity and pro-
duces the exact stationary variance of the position variable. However, the error in σ2

v

is an increasing function of η:

Σle = KT

(
g−1 0
0 (1 − 1

2ηΔt− 1
4gΔt2)−1

)
.(2.11)
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Fig. 3. Mean squares versus damping for the Heun method. The differences between the
late-time mean squares and the exact values are plotted against η for fixed Δt = 0.1, g = 1, and
KT = 1.0. The lines use (2.9). Dots with error bars are obtained from the numerical solution of
the linear SDE.

Mannella [19, 20] has proposed the following modification of the leapfrog method:

X̂ = Xn +
1

2
VnΔt,

Vn+1 = c2

(
c1Vn + f(X̂) Δt + εΔWn

)
,

Xn+1 = X̂ +
1

2
Vn+1Δt,

where c1 = 1 − 1
2ηΔt and c2 = (1 + 1

2ηΔt)−1. The corresponding quantities are

RM =

(
1 − c2

1
2gΔt2 1

2Δt
(
1 + c1c2 − 1

2c2Δt2
)

−c2gΔt c1c2 − 1
2c2gΔt2

)
,

rM = c2

(
1
2Δt
1

)
,

and

ΣM = KT

(
g−1 0
0 (1 − 1

4gΔt2)−1

)
.(2.12)

The only error, in σ2
v , is independent of η.

2.4. The BBK method. Under the Brünger–Brooks–Karplus (BBK) method
[11], the position variable is updated without reference to the velocity variable. The
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two most recent values of the position variable need to be retained, and the update is

Xn+1 = Xn +
1 − 1

2ηΔt

1 + 1
2ηΔt

(Xn −Xn−1) +
Δt

1 + 1
2ηΔt

(f(Xn) + εΔWn) .

With the definition of velocity VnΔt = Xn−Xn−1, proposed in [12], the BBK method
can be written in the form (2.4) with [22]

RB =

⎛
⎝1 − gΔt2

1+ 1
2ηΔt

1− 1
2ηΔt

1+ 1
2ηΔt

Δt

− gΔt
1+ 1

2ηΔt

1− 1
2ηΔt

1+ 1
2ηΔt

⎞
⎠

and

rB =
1

1 + 1
2ηΔt

(
Δt
1

)
.

Whatever the definition of velocity, we find [12, 15, 18]

σ2
x =

KT

g

1

1 − 1
4gΔt2

.(2.13)

However, σ2
v and μ do depend on the definition of velocity. Note that, with the velocity

definition 2VnΔt = Xn+1−Xn−1, the BBK update cannot be put into the form (2.4).

2.5. The implicit midpoint method. Under the implicit midpoint method,
intermediate values are obtained via the implicit procedure

X̂ = Xn +
1

2
V̂ Δt,

V̂ = Vn − 1

2
ηV̂ Δt +

1

2
f(X̂) Δt +

1

2
εΔWn.

The update is

Xn+1 = Xn + V̂ Δt,

Vn+1 = Vn − ηV̂ Δt + f(X̂) Δt + εΔWn.

With the notation of (2.4), R = Rim and r = rI, where

Rim =

(
I − 1

2
ΔtQ

)−1 (
I +

1

2
ΔtQ

)
=

(
1 − 1

2κ
−1gΔt2 κ−1Δt

−κ−1gΔt 2κ−1 − 1

)
,

and

rim = κ−1

(
1
2Δt
1

)
,

where κ = 1 + 1
2ηΔt + 1

4gΔt2. Thus

Σim = KT

(
g−1 0
0 1

)
.(2.14)

Since Rim and rim satisfy (2.6), the implicit midpoint method gives the exact sta-
tionary variances for all values of η. Only an algebraic error in Appendix A of [15]
prevented this observation from being made by Mishra and Schlick. The behavior of
the implicit midpoint method is explored further in section 4.
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3. Measure-exact algorithms. We shall call a method “measure-exact” if its
correlation matrix is the exact one for (2.2):

Σe = KT

(
g−1 0
0 1

)
.(3.1)

The R and r matrices for a measure-exact method satisfy (2.6) with Σ = Σe, that is,

R

(
g−1 0
0 1

)
RT =

(
g−1 0
0 1

)
− 2ηrrTΔt.(3.2)

We shall assume Σ is positive definite and let Δt be chosen small enough to ensure
G = Σ− ε2rrTΔt is also positive definite. Matrices Σ

1
2 and G

1
2 can be constructed to

satisfy G = G
1
2 (G

1
2 )T and Σ = Σ

1
2 (Σ

1
2 )T. Let Σ− 1

2 and G− 1
2 be the inverses of Σ

1
2

and G
1
2 . Condition (2.6) can then be rewritten as PPT = I, where P = G− 1

2RΣ
1
2

and I is the identity matrix. Any 2 × 2 orthogonal matrix P generates a solution of
(3.2) as

R = G
1
2PΣ− 1

2 .(3.3)

A real 2 × 2 orthogonal matrix can be written as

P =

(
(1 − a2)1/2 a

−a (1 − a2)1/2

)
,

for some |a| ≤ 1. This form is convenient because we can take a ∝ Δt, so that P
reduces to the identity matrix when a = 0.

With Σ given by (3.1), we can choose

Σ
1
2 = (KT )1/2

(
g−1/2 0

0 1

)
.

So

G = Σ − rrTΔt =

(
KT/g − r2

1Δt −r1r2Δt
−r1r2Δt KT − r2

2Δt

)
,

and

G
1
2 =

⎛
⎜⎝

(
KT/g − r2

1Δt
) 1

2 0

−r1r2Δt

(KT/g−r2
1Δt)

1
2

(
KT − r2

2Δt + (r1r2Δt)2

KT/g−r2
1Δt

) 1
2

⎞
⎟⎠ .

Any measure-exact method, using one Gaussian random variable per timestep,
can be obtained from (3.3) with some choice of a, r1, and r2. For example, we may
obtain a measure-exact Euler-like method by choosing r =

(
0
1

)
. That is,

G1/2 = (KT )1/2
(
g−1/2 0

0 (1 − 2ηΔt)1/2

)

and

R = G1/2P Σ−1/2 =

(
(1 − a2)1/2 ag−1/2

−ag1/2(1 − 2ηΔt)1/2 (1 − a2)1/2(1 − 2ηΔt)1/2

)
.
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The Euler method is obtained as Δt → 0 if a = g1/2Δt. Thus

R =

(
(1 − gΔt2)1/2 Δt

−gΔt(1 − 2ηΔt)1/2 (1 − gΔt2)1/2(1 − 2ηΔt)1/2

)
.(3.4)

Notice that the difference between (3.4) and (2.7) is proportional to Δt2. This modi-
fied Euler method reproduces the exact stationary density as long as 2ηΔt < 1. As a
next step, we may impose agreement of R with exp(ΔtQ) to order Δt2:

R = I + ΔtQ +
1

2
Δt2Q2 + · · · .

Then a = g
1
2 Δt − 1

2g
1
2 ηΔt2, r1 = 1

2Δt + · · ·, and r2 = 1 − η 1
2Δt + · · ·. Methods

constructed in this way will have a stationary density differing from the exact density
by some power of Δt.

Having established that measure-exact numerical methods do exist, in the next
section we return to the question of solving condition (3.2) exactly, this time in the
context of Runge–Kutta methods.

4. Runge–Kutta methods for additive noise. From the point of view of
general Runge–Kutta methods, the system of two SDEs (1.2) with s(x) = 1 is a
special case of the m-dimensional additive noise SDE that can be written [23]

dYt = f(Yt)dt + εHdBt,

where Yt and Bt are m×1 column vectors, the entries of Bt are independent Wiener
processes, and H is an m × m matrix with constant entries. Let the numerically
generated approximations be denoted by column vectors yn. Under an s-stage Runge–
Kutta method, yn+1 is obtained from yn as a weighted sum of s evaluations of the
function f at intermediate values Yi:

yn+1 = yn +

s∑
j=1

bjf(Yj)Δt + εHΔBn,

where
∑

j bj = 1. The m entries of ΔBn are drawn independently from a Gaussian
distribution with mean zero and variance Δt. The column vectors of intermediate
values satisfy

Yi = yn +

s∑
j=1

aijf(Yj)Δt + εciHΔBn.(4.1)

Runge–Kutta methods for the case s(x) �= 1 also exist [23].
We apply this general formalism to the linear equation (2.2) with m = 2. We

have

yn =

(
Xn

Vv

)
, f(y) = Qy, and H =

(
0 0
0 1

)
.

Let Y = (Y1, Y2, . . . , Ys)
T, c = (c1, c2, . . . , cs)

T, e = (1, 1, . . . , 1)T and A be the s× s
matrix whose entries are the aij in (4.1). Then (4.1) can be written

Yi = e⊗ yn + A⊗QYiΔt + εc⊗
(

0
1

)
ΔWn.
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If b = (b1, b2, . . . , bs)
T , we can write

yn+1 = yn + bTY ⊗QΔt + ε

(
0
1

)
ΔWn

= yn + bT ⊗QΔt (Is ⊗ Im −A⊗QΔt)
−1

(
e⊗ yn + εc⊗

(
0
1

)
ΔWn

)

+ ε

(
0
1

)
ΔWn

=
(
Im + bT ⊗QΔt (Is ⊗ Im −A⊗QΔt)

−1
e
)
yn

+ ε
(
Im + bT ⊗QΔt (Is ⊗ Im −A⊗QΔt)

−1
c
)(

0
1

)
ΔWn.

Thus

yn+1 = R(ΔtQ)yn + R1(ΔtQ)

(
0
1

)
εΔWn,

where, for scalar z,

R(z) = 1 + bTz(Is −Az)−1e

and

R1(z) = 1 + bTz(Is −Az)−1c.

In the notation of (2.4), r = R1

(
0
1

)
. For example, the Euler method has R = ΔtQ

and rT =
(
0 1

)
.

Let us now examine the condition for an exact stationary measure. We shall take
g = 1, which can always be achieved by rescaling time, so

Σe = KT

(
1 0
0 1

)
.

The equation to be satisfied is now

RRT − I + 2ηΔtR1

(
0 0
0 1

)
RT

1 = 0.(4.2)

Let

R(ΔtQ) = I +

∞∑
i=1

αi(ΔtQ)i

and

R1(ΔtQ) = I +

∞∑
i=1

βi(ΔtQ)i.
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Then (4.2) can be expanded in powers of Δt as

Δt

(
α1(Q + QT) + 2η

(
0 0
0 1

))

+Δt2
(
α2

1QQT + α2(Q
2 + (QT)2) + 2ηβ1

(
Q

(
0 0
0 1

)
+

(
0 0
0 1

)
QT

))

+Δt3

(
α3(Q

3 + (QT)3) + α1α2(Q
2QT + Q(Q2)T)

+ 2η

(
β2Q

2

(
0 0
0 1

)
+β2

(
0 0
0 1

)
(QT)2+β2

1Q

(
0 0
0 1

)
QT

))
+ · · · = 0.

If this equation is to be satisfied for all Δt, then each coefficient in the expansion must
be zero. It is easily shown that this can hold if and only if αi = ( 1

2 )i−1 and βi = ( 1
2 )i.

Thus the family of Runge–Kutta methods that gives the exact stationary density is
characterized by

R(ΔtQ) =

(
I − 1

2
ΔtQ

)−1 (
I +

1

2
ΔtQ

)
(4.3)

and

R1(ΔtQ) = (ΔtQ)−1(R(ΔtQ) − I).

Explicitly, with Q given by (2.3),

r = R1

(
0
1

)
= Δt−1

(
−r22 − ηr12 + 1

r12

)
.

While Runge–Kutta methods with more than one stage can be constructed that have
the stability function given by (4.3), they all have a singular tableau matrix. The
unique Runge–Kutta method, with a nonsingular tableau matrix, extended with a single
Gaussian random variable per timestep, that preserves the exact stationary density of
the linear equation for all values of damping, is thus the implicit midpoint method.
The method also has the virtue of being symplectic in the limit η → 0 [5]. For linear
equations, the method is explicit.

In the case of (2.2), the implicit midpoint rule is implemented as follows. We first
generate X̂ and V̂ :

V̂ = κ−1

(
Vn − gXn

1

2
Δt +

1

2
εΔWn

)
(4.4)

X̂ = Xn + V̂
1

2
Δt,(4.5)

where κ = 1 + 1
2ηΔt + 1

4gΔt2. Then

Xn+1 = Xn + V̂ Δt,(4.6)

Vn+1 = Vn − ηV̂ Δt− gX̂ Δt + εΔWn.(4.7)

Steps (4.4)–(4.7) are carried out in the order given.
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5. Double-well system: Additive noise. The good properties of the implicit
midpoint and leapfrog methods applied to linear second-order SDEs prompt us to
investigate their accuracy for nonlinear equations. In this section we take as our
example system (1.2), with the double-well potential

V (x) = −1

2
x2 +

1

4
x4(5.1)

and with s(x) = 1. The stationary density is given explicitly by (1.5). The statistics of
the position variable are non-Gaussian, but the mean is zero and σ2

x can be evaluated
to arbitrary accuracy by a numerical evaluation of an integral.

In general, using an implicit method on a nonlinear equation requires an iterative
procedure at each timestep. However, the structure of second-order systems makes a
very simple iteration possible. First, the intermediate value X̂ is generated by fixed-
point iteration with the starting value X̂ = Xn. This amounts to repeated evaluation
of

X̂ = Xn +

(
1 +

1

2
ηΔt

)−1
1

2
Δt

(
Vn +

1

2
Δtf(X̂) +

1

2
εΔWn

)
.(5.2)

The rest of the algorithm is explicit:

V̂ =

(
Vn +

1

2
f(X̂) Δt +

1

2
εΔWn

)/(
1 +

1

2
ηΔt

)
,

Xn+1 = Xn + V̂ Δt,

Vn+1 = Vn − ηV̂ Δt + f(X̂)Δt + εΔWn.

In our numerical experiments with the double-well system we used six iterations of
(5.2), which was not a large overhead, comparable to an explicit predictor-corrector
approach. However, in larger systems, where evaluation of f(x) is computationally
expensive, the number of iterations needs to be considered along with Δt.

In Figure 4 we display results obtained at KT = 0.1, using the Heun, leapfrog,
and implicit midpoint methods, as a function of η for Δt = 0.1. The Heun method is
seen to be poor both at large and small values of damping, while the leapfrog method
is accurate for small damping but inaccurate in σ2

v at large values of damping. The
implicit midpoint method produces the exact values of σ2

v and μ at all values of
damping but has a nonzero error in σ2

x. Results for Mannella’s modification of the
leapfrog method are not shown in Figure 4 but are summarized as follows: the errors
show little or no dependence on η, the error in σ2

x is comparable to that of the implicit
midpoint method, while the error in σ2

v is similar to that of the standard leapfrog
method as η → 0.

In Figure 5 we display results obtained using the Heun and implicit midpoint
methods, the standard leapfrog method, and Mannella’s modified leapfrog method as
a function of Δt, with η = 1 and KT = 0.1. Both leapfrog methods and the implicit
midpoint method maintain the independence of position and velocity for all values of
Δt. The implicit midpoint method also gives the exact value of the late-time mean
square of the velocity variable. Mannella’s modification of the leapfrog method leads
to a reduced error in σ2

v .
It is appropriate to compare numerical methods in a way that reflects their de-

mand for computer resources. Figure 6 plots the errors in σ2
x and σ2

v as a function of
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Fig. 4. Mean squares and correlation versus damping: double-well system. Results obtained
at KT = 0.1 using the Heun (circles), leapfrog (larger filled circles), and implicit midpoint (small
filled circles) methods with Δt = 0.1. The top graph shows the late-time mean square of the position
variable; the exact value is shown as a solid line. The middle graph shows the late-time mean square
of the velocity variable; the exact value is 0.1. The lower graph shows the correlation between the
position and velocity variables; the exact value is 0.

the number of evaluations of f(x) per time unit. In the cases of the leapfrog methods,
the horizontal axis is simply Δt−1. The Heun method requires two evaluations of
f(x) per timestep; the horizontal axis in this case is 2Δt−1. The implicit midpoint
rule requires a total of eight such evaluations, six of them in the iterative step; the
horizontal axis is thus 8Δt−1. All four methods have errors in σ2

x proportional to
Δt2; the extra computer time required for the iteration makes the implicit midpoint
rule more expensive. On the other hand, the implicit midpoint rule reproduces the
exact value of σ2

v . Mannella’s modification reduces the error in σ2
v associated with the

leapfrog method.

6. Double-well system: Multiplicative noise. It is of interest to see how the
methods analyzed and tested in this paper perform when extended to multiplicative
noise systems, i.e., s(x) �= 1. We first describe in the following steps how we have
implemented them in our numerical experiments.

(i) Under the Heun method, intermediate values are obtained via the Euler
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Fig. 5. Mean-squared velocity and correlation versus Δt: double-well system. Results obtained
at KT = 0.1 using the Heun method (circles), leapfrog method (larger filled circles), Mannella’s
modification (squares), and the implicit midpoint method (small filled circles) with η = 1. The top
graph shows the late-time mean square of the velocity variable; the exact value is 0.1. The lower
graph shows the correlation between the position and velocity variables.
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Fig. 6. Error in mean squares: double-well system. Results obtained at KT = 0.1 and η = 1
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(squares), and the implicit midpoint method (small filled circles) with η = 1. The horizontal coor-
dinate is Δt−1 multiplied by the number of evaluations of f(x) per timestep.
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method:

X̂ = Xn + Vn Δt,

V̂ = Vn − ηs2(Xn)VnΔt + f(Xn) Δt + s(Xn)εΔWn.

The update is

Xn+1 = Xn +
1

2
(Vn + V̂ ) Δt,

Vn+1 = Vn − 1

2
η(s2(Xn)Vn + s2(X̂)V̂ )Δt +

1

2
(f(Xn)

+ f(X̂)) Δt +
1

2
ε(s(Xn) + s(X̂))ΔWn.

(ii) The standard leapfrog method is now

X̂ = Xn +
1

2
VnΔt,

Vn+1 = Vn − ηs2(X̂)VnΔt + f(X̂) Δt + εs(X̂)ΔWn,

Xn+1 = X̂ +
1

2
Vn+1Δt.

(iii) Mannella’s leapfrog method is now

X̂ = Xn +
1

2
VnΔt,

Vn+1 =

(
1 +

1

2
s2(X̂)ηΔt

)−1 ((
1 − 1

2
s2(X̂)ηΔt

)
Vn + f(X̂) Δt + εs(X̂)ΔWn

)
,

Xn+1 = X̂ +
1

2
Vn+1Δt.

(iv) When using the implicit midpoint method, intermediate values X̂ are gener-
ated by repeated evaluation of

X̂ = Xn +

(
1 +

1

2
s(X̂)2ηΔt

)−1
1

2
Δt

(
Vn +

1

2
Δtf(X̂) +

1

2
εs(X̂)ΔWn

)
,

with the starting value X̂ = Xn. The rest of the algorithm is explicit:

V̂ = Vn +
1

2
ΔtX̂,

Xn+1 = Xn + V̂ Δt,

Vn+1 = Vn − ηs2(Xn+1)V̂ Δt + f(X̂)Δt + s(Xn+1)εΔWn.

We have performed numerical experiments with s(x) = x. In Figure 7 we display
results obtained at KT = 0.1, using the Heun method, Mannella’s modification of the
leapfrog method, and the implicit midpoint method, as a function of η for Δt = 0.1.
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Fig. 7. Mean squares and correlation versus damping: double-well system with multiplicative
noise. Results obtained at KT = 0.1 and Δt = 0.1 using the Heun method (circles), the leapfrog
method (larger filled circles), Mannella’s modification of the leapfrog method (squares), and the
implicit midpoint method (small filled circles). The top graph shows the error in the late-time mean
square of the position variable (log scale). The middle graph shows the late-time mean square of the
velocity variable; the exact value is 0.1. The lower graph shows the correlation between the position
and velocity variables.

In terms of the error in σ2
x, Mannella’s method performs best. The implicit midpoint

method, however, is the only one that appears to give the exact value of σ2
v at all

values of η. In Figure 8 we display numerical results with KT = 0.1 and η = 1 as a
function of Δt. Mannella’s method is the only one that has second-order convergence
in σ2

x, but the implicit midpoint method is more accurate in σ2
v .

Note that, for systems of SDEs where there is a difference between Ito and
Stratonovich forms, the implicit midpoint rule will converge to the Stratonovich form.
However, it will only have strong order 0.5 for noncommutative SDEs with more than
one noise term, in which case other approaches are needed to obtain a strong order
of 1 [23, 24].

7. Conclusion. Exact calculations for linear equations are of interest in their
own right and because the qualitative form of the error as a function of Δt and η carries
over to the nonlinear equations used as examples here. The implicit midpoint rule
is the only Runge–Kutta method with a nonsingular tableau matrix that reproduces
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Fig. 8. Mean squares and correlation versus Δt: double-well system with multiplicative noise.
Results obtained at KT = 0.1 and η = 1 using the Heun method (circles), the leapfrog method (larger
filled circles), Mannella’s modification of the leapfrog method (squares), and the implicit midpoint
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position variable (log scale); the dotted lines are 0.1Δt, 0.06Δt, and 0.08Δt2. The middle graph
shows the late-time mean square of the velocity variable; the exact value is 0.1. The lower graph
shows the correlation between the position and velocity variables.

the exact stationary distribution for all values of damping. It also performs well when
applied to second-order nonlinear and multiplicative noise equations, with no apparent
error in the stationary mean square of the velocity variable even for the nonlinear
double-well system with multiplicative noise. However, leapfrog-type methods have
the advantage of being fully explicit even for nonlinear equations. In particular, they
require only one evaluation of the deterministic force per timestep.

Applied to linear equations, the simplest leapfrog method gives the exact sta-
tionary variance of the position variable and maintains the independence of position
and velocity. Mannella’s modification of the leapfrog method maintains this virtue
while reducing the magnitude of the error in the variance of the velocity variable.
We found similar qualitative behavior in our numerical experiments on the nonlinear
double-well system: the implicit midpoint method and Mannella’s method perform
best, the former being superior in the error in σ2

v and the latter in σ2
x.

In the deterministic case when solving separable Hamiltonian problems, explicit
partitioned Runge–Kutta methods can be constructed that are symplectic. A chal-
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lenge is to extend the idea in a stochastic setting to construct explicit partitioned
methods that approximate the stationary correlation matrix with high-order
accuracy.
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