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NUMERICAL METHODS FOR SINGULAR PERTURBATION PROBLEMS*

BARBRO KREISSt AND HEINZ-OTTO KREISS*
Dedicated to Robert D. Richtmyer on the occasion of his seventieth birthday

Abstract. Consider the two-point boundary value problem for a stiff system of ordinary differential
equations. An adaptive method to solve these problems even when turning points are present is discussed.

1. Introduction. Consider a system of ordinary differential equations,

(1.1) %=A(x)y+F(x), 0=x=1,

with n linearly independent boundary conditions,
(1.2) Roy(0)+Ry1y(1)=g.

Here y' = (ym, cee y("))1 is a vector function with n components, and R, R, and
A(x)e C'? are n X n matrices.

We want to solve the above problem by difference approximations. For that reason
we divide the x-axis into subintervals of variable length h; with grid points x,=0,
X, = Z:& h,v=1,2,-+-,N,xny =1, and denote by u, = u(x,) vector functions defined
on the grid

hO h 1 hN—l
| % HH Py
X0 X1 XN-1 XN

Let h = max; h;. The case where we can choose / so small that #|A|« 1 has been treated
many times before. Our aim is to treat the case h|A|>»1; i.e., we want to discuss
methods for stiff equations. There are essentially two difficulties. (1) The matrix A has
large eigenvalues of both signs. (2) There are turning points, i.e., these large eigenvalues
are changing signs.

2. A simple example. Consider the system

a0
(2.1) ed—)’:= 00 0|ly=Ay, 0=x=1, >0,
0 0 +1

with boundary conditions

y(l)(0)+a0y(2)(0)+Boy(3)(0) =g,
(2.2) y2(0)+v0y?(0) = g2,
yPM) +a1y®0)+B1y"(1) = g.

* Received by the editors June 9, 1980.

+ California Institute of Technology, Pasadena, California 91125.

YIf y is a vector than y' denotes its transpose and y* its adjoint. The vector norm is defined by
|v| =max |y”|. Similar notations hold for matrices, for example |A|=sup, |Ay|/|y|. Furthermore, for vector
functions ||y (x)|| = max<, =1 |y(x)| denotes the maximum norm.

2 A(x)e C' if the elements of A are j times continuously differentiable.
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NUMERICAL METHODS FOR SINGULAR PERTURBATION PROBLEMS 263

Here € >0 is a small positive constant. The general solution of (2.1) is given by
yO(x) = e =5y (0),
y @ (x)=y?(0),
yPx) = e(x-—l)/ey(3)(1).
Introducing it into the boundary conditions gives us

1 a0 Boe 7\ [yPO) (&
—1/e (2) —
0 1 yee y70)] = |82
—1/e 3)
Bie oy 1 y (1) g3

Therefore, neglecting terms which are exponentially small, we obtain
Ym(o)zgz, Y“)(O)zgl—aogz, y(3)(1)’~g3—a1gz-

This shows that away from the boundary layers the solution of (2.1), (2.2) is smooth.
We approximate the above problem by a standard difference approximation,
namely the trapezoidal rule

- +
2.3) ”"*}l ””=A(“”“2 “"), »=0,1,2,- -, N-1

on a uniform mesh; i.e., h;=h. The desired solution shall satisfy the boundary
conditions (2.2). The general solution of (2.3) is given by

(1) (1) 2) (2) (3) - 3)
(2.4) u, =«"upy’, v =UG UN—y = K UN,
where
2¢e —h
K = .
2¢ +h

Introducing (2.4) into the boundary conditions (2.2) gives us

1 g BOKN uf)l) 81
2.5) 0 1 v | |u?| =g
B1KN aq 1 145\31) 83

If h is so small that h/2¢ « 1, then k ~ ¢~ "¢ and it is obvious that the solution of (2.3)
behaves like the solution of the differential equations. However, if h/2e »1 then
k ~—1, and the solution of (2.5) does not approximate the solution of the differential
equations at all, because u.", 1> oscillate wildly. In particular, if g = @og, g3 = @145,
then y(x), y®(x) are exponentially small and the solution of the differential equation
is smooth up to the boundary. The corresponding solution of the difference approxima-
tion is still wildly oscillating. There are two ways to overcome this difficulty.

(1) We use the trapezoidal rule for all components but introduce in the boundary
layersO0=x=n,1-n=x=1,n=0(e|log £|), new “stretched” independent variables,
such that the boundary layer solutions are smooth functions of these new variables.
Then we use a uniform grid in the new variables. In the old variables we get a
nonuniform mesh which is so fine that the boundary layer solutions change slowly from
one point to the next. Away from the boundary layers, we use a uniform mesh, i.e.,
h, = h for n =x =1—n. This technique was used extensively by C. Pearson [5].
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+

i
0 n 1-1
In the boundary layer regions, the differential equations are well approximated by
the difference equations. Therefore, for & » g, we get essentially

e /eyl forO=x,=n,
1 1
u=<x(=1)"u®(n) forn=x,=1-n, uf,z?Euf)Z),
e mTIEM/e, (1 _ ) forl-n=x,=1,

and correspondingly for u'®. Observe that uf,”, u® oscillate wildly in the interval

n =x =1-—n. However, if n is chosen sufficiently large, the amplitude is so small that it
has no effect. It is clear that now the solution of the difference equations approximates
the solution of the differential equations well.

The drawback of this method is that we have to use the refinement even if the
boundary conditions are such that the actual solution of the differential equation is
smooth up to the boundary. The same is true if turning points are present. We have to
construct the mesh such that all solutions through the turning point become smooth. For
nonlinear problems, one often does not know the position of the turning point and the
behavior of the solution. This makes the construction of the mesh rather difficult.

(2) Instead of using the trapezoidal rule for all components, we could use one-
sided schemes for the first and last component, for example,

1) (1) 3) 3) 2) )
U1 — U, 1) Uyi1 — U, 3) Uy+1 — U,
(2.6) 6~—-h—=-u,,4‘1, E—h———_— Uy, £—h—=0.

The general solution of (2.6) has the form (2.4) and 4", j=1,2,3aregivenby (2.5), but
now
1

“1+h/e

If now e « h, we still have ||« 1 and it is clear that the solution of the difference
equations resembles the solution of the differential equations. This technique can be
used for rather general systems. However, the boundary layers are not resolved
adequately. In general, this will result in an additional error of order O(e). To obtain
accurate results, one has to resolve the boundary layers (see for example [5]), or a
combination of the asymptotic expansion of the boundary layer solution and the
approximation (2.6) (see for example [4]).

One can refine the scheme (2.6) considerably, and we shall do this in the next
section.

The main problem for the numerical solution of singular perturbation problems is
to find the mesh on which the solution varies slowly. There are two possible ways to do
this.

(1) One can use the behavior of the coefficients of the differential equation to
determine the variation of the solution. This approach has been discussed in [1], [2]. An
extended version of [2] is under preparation [3].

(2) In this paper, we want to refine the mesh adaptively. Starting with some mesh,
one computes the numerical solution and adds or deletes mesh points according to the
variation of the numerical solution. The technique used is a considerable improvement
over earlier test calculations done by N. Nichols and H. O. Kreiss during the summer of
1974 in Stanford.

K
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In this paper, we present only the results of a number of calculations. For the
theory, we refer to [5].

3. Difference approximation for a scalar equation. Consider a scalar equation

(3.1) B ay+fx),  0=x,
dx

with initial data
y(0) = yo.

Here a(x), f(x) are complex-valued functions, which can be large. We are not interested
in the oscillatory stiff case. Therefore, we assume that there are constants p, ¢ of
“moderate size”’ and that

(3.2) plRe a|zla(x)|-C.
We approximate (3.1) by

(3-3) _l_'_‘_’_’_‘_"_;;:_u_'f = a,a,Uy, + (1 - av)av+1 Uy+1 + aufu + (1 - au)fv+la
which can be written as
(3'4) Up+r1= Avuu + hVFV’
where
a 1+ ha.a, ol 0w,

N 1_hv(1_au)av+l, - 1_‘hv(1_av)av+l.

We want to choose the «, in such a way that the following conditions are satisfied.
(1) The method is second-order accurate for |h,a,|< 1.
(2) If Re a, « —1, then the solutions of the homogeneous equation v,., = A,v,
decay rapidly. This we express by

A, |=(1+hy,)7,

where v, = o max (|[Re a,|, |Re a,.1|), o =const.>0.
(3) If Re a, » 1, then the solutions of v,.; = A,v, increase rapidly. This we express
by
A, |=1+hy.,.

(4) The a, are Lipschitz continuous functions of a,h,.

An easy calculation shows that these conditions are satisfied if we choose «, in the
following way:

1. If Re h,a, =0 and Re h,a,.; =0, then

3 if Re h,a,|=1,
T 1 if |Re & 1
——————————— > .
2|Re h,a,| if |Re ha,|
II. If Re h,a, =0 and Re h,a,.1 =0, then
3 if Re h,a,.1|=1,
a, = 1
1 if |Re h,a,+1]>1.

" 2Re h,a, .1
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I1I. If Re h,a, >0 and Re h,a,.; <0, then a, =3.

IV. If Re h,a, <0 and Re h,a,.:>0, then introduce a new point x} with x, =
x¥ <x,,1 where Re h,a(x¥)=0. Then I or II is applicable.

Remark. For linear equations, the condition that «, is a Lipschitz continuous
function of h,a, is not necessary. One could use the standard procedure

if Re h,a, >1,
if [Re h,a,|=1,
0 ifRe h,a, <-1.

N

a, =

This is the procedure we proposed in [4]. However, for nonlinear equations we use
Newton’s method and the discontinuous change of the formulas can cause convergence
problems. Also, if one wants to use Richardson extrapolation one needs an even
smoother transition.

We shall now describe the procedure to refine the mesh. Assume we have
computed the solution of (3.3) onamesh O0=x;<x,<---<xy=1.Let

f — U, —Uy—1 j =gv+1,1~fl/,1
v1 h,, ) v,2 h,,+h,,+1 s

denote the first and second divided differences, respectively. Under reasonable
assumptions (see [5]) one can prove that the error max, |y (x,)— u,| can be estimated by
max, M([x,_1, x,, x,+1], where

M[xv—-l) Xy xv+1] = (hi + h3+1 )(ljv,Zl + |jv,l| + |uu|)‘

Therefore the strategy is to add points if M[x,_1, x,, x,+1] is too large and to delete
points if M[x,_1, x,, x,+1] is very small. In detail, we proceed as follows. Let A denote a
threshold constant, and assume we have constructed the mesh for x =x, ;.

If M[x,_1, X., X,+1]> A then we add the points x,_1 +3h,_1, X, +3h,.

If Ml[x,_1, X, X,+1]<3A, then we investigate M[x,_1, X,41, X,12]. If also
Mx, 1, Xpi1, X, 42] < 1A, then we delete the point x, and investigate
M{[X, 1, Xy12, Xyps3). If M[x,_1, X,42, X,+3] <3A also, then we delete x, .1, etc.

This procedure gives us a new mesh. However, numerical experience has shown
that one should not change the mesh size too fast. Therefore, we add more points such
that

h,

is
(3.5) °= hv+1

=3.

This is done by the following procedure.

If |h,/ b, 1] <3, then we add the point x,.1+3k,41.

1f|h,/ h,+1| > 3, then we add the point x, + 3h,. This process is repeated until (3.5) is
satisfied everywhere.

The next step is to calculate the solution of (3.3) on the new mesh.

4. Difference approximations for systems. In applications, the systems are often of
the form

dy

4.1) e

=(§-A(x)+B(x))y +F(x).
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Here € >0 is a small constant and

an(x) ap(x) - an(x)
Alx)= az(x) crr o aza(x) i
n1(x) “r aua(x)
bii(x) bia(x) -+ bia(x)
B = | P2 co bau(x)
bn1(x) co ban(x)

are smooth functions of x.
If A(x) is upper triangular, i.e., a; = 0 for i > j, then we can write (4.1) formally as n
scalar equations,

dy(l')

4.2) ir

1 . ;
= ("(lii + bii)ym +GY,
€
where

n n
GV = 1 Y agy W4y bi,y(j) +FO.
€ j=i+1 ji=1
j#i
Thus, we can use the scheme and the refinement procedure of the last section for every
equation in (4.2).

If A(x)is not upper triangular, then we have to transform A (x) to upper triangular
form. This can be done analytically or by the Q-R method which is economical. Assume
that we want to calculate the solution of the difference equation onamesh 0 =x; <x, <
+++<xn = 1. Then we construct unitary matrices U; such that

dq1(x;) A1n(x:)
U?‘A(xi)Ui _ 0 dp(x) -+ dan(x) .
0 0 dnn(xi)

In every interval x; = x = x;+1, we introduce a new variable by

X —X;

y=U)7, U(x)=[]i+(lji+l_(-]i)

Xi+1 _xi’
and obtain, from (4.1),
dy

1 . aU.
o U*(x)(;A(x) +B(x)) UG- U*SZ5+ U*F.

Now U*AU is upper triangular in the mesh points and we can apply the previous
method.

5. Numerical examples. In this section, we consider second-order equations

4’y _d(a(x)y)

(5.1) & dxz— dx

+b(x)y, —c=x=d, y(-c)=a, y(d)=8.



268 BARBRO KREISS AND HEINZ-OTTO KREISS

We write them as a first-order system by introducing a new variable

dv
T b(x)y.
Then we can integrate (5.1) and obtain
& _(ato) o dv_
(5.2) dx—( e y+f19 fl_s v, dx"'f2’ f2_bY'

We think of the system as two scalar equations and apply the method developed earlier.
In particular, the second equation will always be approximated by

U1~ Uy
£

We present in Figs. 1-10 a number of computer printouts of our results. The
notation is as follows (compare with [3]).

EPS +D2Y/DX2=D((-X"3+X/2)*Y)/DX+(B3*X2+02)*Y=0
stands for

1
(5°3) =5(bv+IYV+l+buyv)'

d’y _d((=x’+x/2)y)
dx® dx

EPS = 1.0E-5 means ¢ = 107"

TOL =0.1 is of no consequence for linear equations. For nonlinear equations, it
tells the machine to stop the Newton iteration when the residue is smaller than the
tolerance.

DELTA = 0.03 denotes the value of the threshold constant in the mesh refinement
procedure.

ITERATIONS is of no consequence for linear equations. For nonlinear problems
it counts the number of Newton iterations.

REFINEMENTS denotes the number of mesh refinements.

€ +(3x%+0.2)y.

EPS#D2Y/DX2=DC (=X 3+X/2>%Y >/DX + (3#X"2+8.2>%Y

u
2 1
1.6 ]
1.2 4
-
8.8 |
8.4

0 bl w W T 1

-1 o N ) o X

-2.6 -8.2 8.2 2.6 1

EPS=1.@E-5 TOL=@.1 DELTA=0.03

ITERATIONS=0 REFINEMENTS @ NUMBER OF POINTS=21
Fi1G. 1
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EPS#D2Y/DX2=D( (~X"3+X/2>%#Y >/DX + (3#X"2+0.2)>%Y

u
2
1.6
1.2
2.8
0.4
[°}
-1 -8.6 -8.2 0.2 0.6 1 X
EPS={ . QE-S TOL=08. 1 DELTA=0.03
ITERATIONS= @ REFINEMENTS 8 NUMBER OF POINTS=46
Fi1G. 2

EPS#D2Y/DX2=D(—-C(SINCPI®XD>"2%Y>/DX + C(=X+1+PIs#SINC2#PI*X>d»Y

U
2 J
-1.4
-4.8
-8.2
-11.6
-15
-1 -0.6 -0.2 8.2 8.8 1 X
EPS=1{ .QE-S TOL=8.1 DELTA=0.08
ITERATIONS=@ REFINEMENTS | NUMBER OF POINTS=1{8

F1G. 3
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EPS*D2Y/DX2=D(~C(SINCPI®XJ372%#Y>/DX + (=X+{+PInSINC2#PI*XDd%Y

u
2
1.6
1.2
2.8
2.4
) et
—1{ -2.8 -2.2 2.2 0.8 1 X
EPS=1.QE-5 & TOL=0.1 DELTA=0.08
ITERATIONS=8 REFINEMENTS 2  NUMBER OF POINTS=32
FiG. 4
EPSHD2Y/DX2=DC~CSINCPIXD D 2%YD /DX + C—X+1+PIxSINC2#PI®XDdnY
u
2
1.6
1.2
2.8
8.4
)
- -8.6 -2.2 8.2 0.8 1 X
EPS=1 .QE-5 TOL=0.! DELTA=@.@8

ITERATIONS=0@ REFINEMENTS 4 NUMBER OF POINTS=48
FI1G. 5
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EPS*D2Y/DX2=D(~C(SINCPI#XDD"2x#Y>/DX + (=X+{+PIsxSINC2#PInXddxY

U
2 N
1.6
1.2
2.8
8.4
%]
-1 -8.6 -0.2 0.2 2.6 1 X
EPS=1 BE-S TOL=0.1 DELTA=0.08
ITERATIONS=0 REFINEMENTS 8 NUMBER OF POINTS=58
FI1G. 6
EPS*#D2Y/DX2=D(~X#X%Y D/DX+(2X-1)d%Y
U
1 -
8.6
-
0.2
-2.2
-2.8
=1 T . . . - . . . - .
"] X

8.2 0.4 8.6 8.8 1
EPS={ .QE-5  TOL=0.t DELTA=0.5
ITERATIONS=() REFINEMENTS @ NUMBER OF POINTS=21{

Fi1G. 7



272 BARBRO KREISS AND HEINZ-OTTO KREISS

EPS*#D2Y/DX2=D{~X#X#Y >/DX+{(2X~-1d%Y

U
1 e
8.6
0.2
-8.2
-8.6
-1
-1 . . . . . . . .
[*]
8.2 0.4 8.6 2.8
EPS={ .BE-S TOL=0. 1 DELTA=0.5S
ITERATIONS=(Q) REFINEMENTS 1{ NUMBER OF POINTS={3
Fi1G. 8

EPS#D2Y/DX2=D(~X*X#Y D>/DX+(2X~-1d%Y

U
20 _

-4 _|

-2

~-20
o
9.2 0.4 0.6 0.8
EPS=1 .QE-5 TOL=8.1 DELTA=0.5
ITERATIONS= REFINEMENTS 2  NUMBER OF POINTS=16

F1G. 9
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EPS#D2Y/DX2=D(~X#X#Y J/DX+(2X~-1d%Y

T T T T T T T T

0 % ' "X
8.2 9.4 0.6 0.8 {
EPS=1 .BE-5 TOL=0.1 DELTA=0.5
ITERATIONS=:/ REFINEMENTS 7 NUMBER OF POINTS=32
F1G. 10

6. Nonlinear equations. We consider now nonlinear equations

ey"=(a(x,y)) +b(x,y), —c=x=d,
y(=c)=a, y(d)=8,

(6.1)

and rewrite them as first-order systems

ey'=a(x,y)+v,
6.2) Y Y

v'=b(x,y).

We use Newton’s method to solve the system. Let y™, v be an approximation to the
solution of (6.2). Then we linearize (6.2) around y, v to obtain new approximations

y(n+1) = y(n)+)~;, v(n+1) — U(n)+l7,

where u, v are solutions of the linearized system

. TN~ o~ da
ey’ =a,(x, y( ))y +0+f1, a, =—,

dy
6.3) o .
v = by(x» y )y +f2’
with
fi==e(y™Y +alx y)+o®,  fo=—0") +b(x y").
The linear system (6.3) is solved by our method.
As an example, we have considered the equation

ey = —%(yz)’+y, -1=x=1,
y(-1)=-1, y(+1)=2,
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and solved it for
e =0.1, 0.05, 0.02, 0.01, 0.005, 0.02, 0.001.

The initial guess was a straight line between y = —1 and y = 2. We used ‘‘the method of
continuation”; i.e., we used the computed solution as an initial guess to solve the
problem for the next e. Figs. 11-14 show the printouts for ¢ =107, 1072, 107>, The
sudden increase in the number of Newton iterations is due to the decrease of TOL from
107 to 107>

EPS*D2Y/DX2=DC~Y*Y/2) /DX+Y

]
2
1.4
2.8
8.2
-0.4
-1
-1 -0.6 -8.2 8.2 8.6 1 X
EPS=0 . 1{ TOL=8.81 DELTA=8.05
ITERATIONS=2 REFINEMENTS 2 NUMBER OF POINTS=3{
FiG. 11
EPS%D2Y/DX2=D(~Y*Y/2)/DX+Y
u
2
1.4
8.8
8.2
-0.4
-1

-1 -0.6 -9.2 8.2 0.6 1 X

EPS=8.01 TOL=0.01 DELTA=0.85
ITERATIONS=2 REFINEMENTS 2 NUMBER OF POINTS=42

Fi1G. 12
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EPS®D2Y/DX2=D(-Y*Y/2)/DX+Y

u
2
1.4
2.8
8.2
-0.4
-1
-1 -0.6 -8.2 0.2 8.6 1 X
EPS=1 .QE-3 TOL=@.81 DELTA=0.0S
ITERATIONS={ REFINEMENTS 4 NUMBER OF POINTS=52
FiG. 13
EPS*D2Y/DX2=D(-Y*Y/2>/DX + Y
u
2
1.4
2.8
8.2
-8.4
-1
-1 -8.6 -8.2 2.2 2.6 1 X
EPS={ .QE-3 TOL={ BE-3 DELTA=0.1{
ITERATIONS=8 REFINEMENTS §  NUMBER OF POINTS=44

F1G. 14
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