Numerical Methods for Stochastic Control Problems in Continuous Time

Second Edition

With 40 Figures

Contents

	Int	roduction	1	
1	Review of Continuous Time Models			
	1.1	Martingales and Martingale Inequalities	8	
	1.2	Stochastic Integration	9	
	1.3	Stochastic Differential Equations: Diffusions	14	
	1.4	Reflected Diffusions	21	
	1.5	Processes with Jumps	28	
2	Cor	ntrolled Markov Chains	35	
	2.1	Recursive Equations for the Cost	36	
		2.1.1 Stopping on first exit from a given set	36	
		2.1.2 Discounted cost	38	
		2.1.3 Average cost per unit time	40	
		2.1.4 Stopping at a given terminal time	41	
	2.2	Optimal Stopping Problems	42	
		2.2.1 Discounted cost	43	
		2.2.2 Undiscounted cost	47	
	2.3	Discounted Cost	48	
	2.4	Control to a Target Set and Contraction Mappings	50	
	2.5	Finite Time Control Problems	52	
3	Dyi	namic Programming Equations	53	
	3.1	Functionals of Uncontrolled Processes	54	

		3.1.1	Cost until a target set is reached	54	
		3.1.2	The discounted cost	56	
		3.1.3	A reflecting boundary	57	
		3.1.4	The average cost per unit time	58	
		3.1.5	The cost over a fixed finite time interval	59	
		3.1.6	A jump diffusion example	59	
	3.2	The C	Optimal Stopping Problem	60	
	3.3	Contr	ol Until a Target Set Is Reached	61	
	3.4	A Dis	counted Problem with a Target Set and Reflection \ldots	65	
	3.5	Avera	ge Cost Per Unit Time	65	
4	Markov Chain Approximation Method: Introduction				
	4.1	Marke	ov Chain Approximation	69	
	4.2	Conti	nuous Time Interpolation	72	
	4.3		rkov Chain Interpolation	74	
	4.4		ndom Walk Approximation	78	
	4.5		terministic Discounted Problem	80	
	4.6	Deter	ministic Relaxed Controls	85	
5	Cor		tion of the Approximating Markov Chains	89	
	5.1		Dimensional Examples	91	
	5.2		rical Simplifications	99	
		5.2.1	Eliminating the control dependence in the		
			denominators of $p^h(x, y \alpha)$ and $\Delta t^h(x, \alpha)$	99	
		5.2.2	A useful normalization if $p^h(x, x \alpha) \neq 0$	100	
		5.2.3	Alternative Markov chain approximations for		
			Example 4 of Section 5.1: Splitting the operator	103	
	5.3		General Finite Difference Method	106	
		5.3.1	The general case	108	
		5.3.2	A two dimensional example: Splitting the operators	112	
	5.4		ect Construction	113	
		5.4.1	An introductory example	114	
		5.4.2	Example 2. A degenerate covariance matrix	117	
		5.4.3	Example 3	119	
		5.4.4	A general method	121	
	5.5		ble Grids	122	
	5.6	-	Diffusion Processes	127	
		5.6.1	The jump diffusion process model: Recapitulation .	127	
		5.6.2	Constructing the approximating Markov chain	128	
		5.6.3	A convenient representation of $\{\xi_n^h, n < \infty\}$		
			and $\psi^h(\cdot)$	131	
	5.7		ting Boundaries	132	
		5.7.1	General discussion	132	
		5.7.2	Locally consistent approximations on the boundary.	136	

		5.7.3 The continuous parameter Markov chain	
		$\operatorname{interpolation}$	138
		5.7.4 Examples	138
		5.7.5 The reflected jump diffusion	141
	5.8		141
		5.8.1 Optimal stopping	141
			144
		5.8.3 Reflecting boundary	145
	5.9		148
6	Cor	mputational Methods for Controlled Markov Chains	153
	6.1		154
	6.2	Classical Iterative Methods	156
			156
			158
		6.2.3 Combined approximation in policy space and	
		•• • • •	160
		6.2.4 The Gauss-Seidel method: Preferred orderings	
			161
	6.3		164
			164
			165
	6.4	Accelerated Jacobi and Gauss-Seidel Methods	166
		6.4.1 The accelerated and weighted algorithms	166
		6.4.2 Numerical comparisons between the basic and	
		accelerated procedures	168
		6.4.3 Example	170
	6.5	Domain Decomposition	171
	6.6		174
	6.7		176
		6.7.1 The smoothing properties of the	
		Gauss-Seidel iteration	176
		6.7.2 A multigrid method	179
	6.8		183
		6.8.1 Linear programming	183
		6.8.2 The LP formulation of the Markov chain	
		control problem	186
7	The	8	191
	7.1		192
	7.2	A Jacobi Type Iteration	196
	7.3	Approximation in Policy Space	197
	7.4	Numerical Methods	199
	7.5	The Control Problem	201
	7.6	The Interpolated Process	206

	7.7	Computations	207
		7.7.1 Constant interpolation intervals	207
		7.7.2 The equation for the cost (5.3) in centered form \ldots	209
	7.8	Boundary Costs and Controls	213
8		vy Traffic and Singular Control	215
	8.1	Motivating Examples	216
		8.1.1 Example 1. A simple queueing problem	216
		8.1.2 Example 2. A heuristic limit for Example 1	217
		8.1.3 Example 3. Control of admission, a singular	
		control problem	221
		8.1.4 Example 4. A multidimensional queueing or produc-	
		tion system under heavy traffic: No control	223
		8.1.5 Example 5. A production system in heavy traffic with	
		impulsive control	228
		8.1.6 Example 6. A two dimensional routing	
		control problem	229
		8.1.7 Example 7	233
	8.2	The Heavy Traffic Problem	234
		8.2.1 The basic model	234
		8.2.2 The numerical method $\ldots \ldots \ldots \ldots \ldots \ldots$	236
	8.3	Singular Control	240
9	Wos	ak Convergence and the Characterization	
9		Processes	245
	9.1	Weak Convergence	246
	5.1	9.1.1 Definitions and motivation	240 246
		9.1.2 Basic theorems of weak convergence	240 247
	9.2	Criteria for Tightness in $D^k[0,\infty)$	250
	9.2 9.3	Characterization of Processes	250 251
	9.4	An Example	253
	9.4 9.5	Relaxed Controls	203 262
	9.0		202
10	Con	vergence Proofs	267
	10.1	Limit Theorems	268
		10.1.1 Limit of a sequence of controlled diffusions	268
		10.1.2 An approximation theorem for relaxed controls	275
	10.2	Existence of an Optimal Control	276
	10.3	Approximating the Optimal Control	282
		The Approximating Markov Chain	286
		10.4.1 Approximations and representations for $\psi^{h}(\cdot)$	287
		10.4.2 The convergence theorem for the interpolated chains	290
	10.5	Convergence of the Costs	291
		Optimal Stopping	296
		i ii u ii	

11	Con	vergence for Reflecting Boundaries, Singular	
	Con	trol, and Ergodic Cost Problems	301
	11.1	The Reflecting Boundary Problem	302
		11.1.1 The system model and Markov chain approxim	ation 302
		11.1.2 Weak convergence of the approximating process	ses . 306
	11.2	The Singular Control Problem	315
	11.3	The Ergodic Cost Problem	320
12	Fini	te Time Problems and Nonlinear Filtering	325
		Explicit Approximations: An Example	
		General Explicit Approximations	
	12.3	Implicit Approximations: An Example	331
	12.4	General Implicit Approximations	333
	12.5	Optimal Control Computations	335
	12.6	Solution Methods	337
	12.7	Nonlinear Filtering	340
		12.7.1 Approximation to the solution of the	
		Fokker-Planck equation	340
		12.7.2 The nonlinear filtering problem: Introduction	
		and representation $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	
		12.7.3 The approximation to the optimal filter for $x(\cdot)$), $y(\cdot)$ 345
13		trolled Variance and Jumps	347
	13.1	Controlled Variance: Introduction	
		13.1.1 Introduction	
		13.1.2 Martingale measures	
		13.1.3 Convergence	
	13.2	Controlled Jumps	
		13.2.1 Introduction	357
		13.2.2 The relaxed Poisson measure	
		13.2.3 Optimal controls	
		13.2.4 Convergence of the numerical algorithm	365
14		blems from the Calculus of Variations:	
		te Time Horizon	367
		Problems with a Continuous Running Cost	
	14.2	Numerical Schemes and Convergence	
		14.2.1 Descriptions of the numerical schemes	
		14.2.2 Approximations and properties of the value fun	
		14.2.3 Convergence theorems	
	14.3	Problems with a Discontinuous Running Cost	384
		14.3.1 Definition and interpretation of the cost on	
		the interface	386
		14.3.2 Numerical schemes and the proof of convergence	e388

15 Problems from the Calculus of Variations:		
Infinite Time Horizon		401
15.1 Problems of Interest		403
15.2 Numerical Schemes for the Case $k(x, \alpha) \ge k_0 > 0$		404
15.2.1 The general approximation		404
15.2.2 Problems with quadratic cost in the control		405
15.3 Numerical Schemes for the Case $k(x, \alpha) \ge 0$		409
15.3.1 The general approximation		410
15.3.2 Proof of convergence		
15.3.3 A shape from shading example		422
15.4 Remarks on Implementation and Examples	•••	435
16 The Viscosity Solution Approach		443
16.1 Definitions and Some Properties of Viscosity Solutions		444
16.2 Numerical Schemes		449
16.3 Proof of Convergence		453
References		455
Index		467
List of Symbols		473