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Numerical Methods for the Hydrodynamic Device 
Model: Subsonic Flow 

CARL L. GARDNER, JOSEPH W .  JEROME. AND DONALD J.  ROSE 

Abstract-An introduction to the hydrodynamic model for semicon- 
ductor devices is presented. Special attention is paid to classifying the 
hydrodynamic PDE’s and analyzing their nonlinear wave structure. 
Numerical simulations of the ballistic diode using the hydrodynamic 
device model are presented, as an illustrative elliptic problem. The im- 
portance of nonlinear block iterative methods is emphasized. Argu- 
ments for existence of solutions and convergence of numerical methods 
are given for the case of subsonic electron flow. 

I. INTRODUCTION 
HE hydrodynamic model [I], [2] plays an important T role in simulating the behavior of charge carriers in 

submicron semiconductor devices, since it exhibits veloc- 
ity overshoot [3]-[5] and ballistic effects [6]-[8] missing 
in the drift-diffusion model. The hydrodynamic equations 
consist of a set of nonlinear conservation laws for particle 
number, momentum, and energy, plus Poisson’s equation 
for the electric potential. The nonlinear conservation laws 
are just the Euler equations [9] (y = 5 / 3 )  of gas dynam- 
ics for a gas of charged particles in an electric field, with 
the addition of a heat conduction term. Thus the hydro- 
dynamic model PDE’s have hyperbolic, parabolic, and el- 
liptic modes. 

Imagine a gas of electrons flowing in a semiconductor. 
This gas has a soundspeed, and the electron flow may be 
either subsonic or supersonic. In the case of supersonic 
flow, we must allow the possibility of electron shock 
waves in semiconductor devices. This will be the subject 
of a subsequent paper [ 101. 

In this investigation we focus our attention on appro- 
priate numerical methods for both time-dependent and 
steady-state simulations when the electron flow is sub- 
sonic. The 1-D steady-state equations will then be ellip- 
tic. 

In Section 11, we discuss the hydrodynamic PDE’s and 
analyze their nonlinear wave structure. In Section 111, we 
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present the results of steady-state simulations of a 1-D 
ballistic diode using these methods, and compare our re- 
sults with those of Odeh, Rudan, and White [ l l ] .  

For the model ballistic diode problem, the effects of 
holes may be neglected. The hydrodynamic model in one 
dimension then consists of three nonlinear conservation 
laws (for electron number, momentum, and energy), plus 
Poisson’s equation for the electric potential. 

Our numerical methods are inspired by computational 
fluid dynamics: as state variables we use the electron den- 
sity, velocity, and temperature, plus the electric potential. 
We use a damped Newton method [12] to linearize the 
device equations. We then compare direct and iterative 
methods for solving these linearized equations. In the it- 
erative method case, we discuss how to optimize the num- 
ber of inner iterative loops vs. outer Newton loops. 

In Section IV, arguments are given for the existence of 
solutions and for the convergence of Newton’s method 
when the electron flow is subsonic. These arguments jus- 
tify the use of the numerical methods described in Section 
111. 

11. THE HYDRODYNAMIC MODEL 
The Hydrodynamic Model Equations 

A fairly general and rigorous set of transport equations 
for device simulation has been derived by Blotekjaer [ l ]  
from the Boltzmann equation: 

(%)( an 
- + v * (nu)  = 
at 

E + v * ( u W )  
at 

( 3 )  

where n is the electron density, v is the velocity, p is the 
momentum density, e (  > 0 )  is the electronic charge, E is 
the electric field, T is the temperature in energy units 
(Boltzmann’s constant k has been set to l ) ,  W is the en- 
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nonlinear characteristic 
wave speed 

2 shocks h , = v * c  
( 6 )  

ergy density, q is the heat flow, and the subscript c rep- 
resents collision terms. 

We will assume that 

Nonlinear Wave Structure 
If K is set to zero in (4), then (1)-(3) are the Euler equa- 

tions with source terms due to the collision terms and the 
electric field. (The polytropic gas constant y = 5/3 ,  as 
is appropriate for a monatomic gas.) These equations then 
are hyperbolic, with five nonlinear waves [9], [13]: 

q =  -KVT (4) 
and that the energy bands are parabolic: 

discontinuous 
variables 

U ,  n ,  T 

p = mnv 

3 contacts x o  = tI 

3 m 
W = - nT + - nu2 

2 2 

U T ,  T where m is the effective electron mass. 

Poisson’s equation for the electric field 
In addition to the transport equations (1)-(3), we have 

E =  -V4 

v * (EV4) = -e(ND - NA - n )  ( 7 )  
where NO is the density of donors and NA is the density of 
acceptors. Equations (1)-(7) determine the variables n ,  p ,  
W ,  and 4. 

The collision terms in (1)-(3) may be expressed in terms 
of phenomeno-logical relaxation times. This approxima- 
tion should be valid for devices with active regions 2 0.1 
pm, since at this length scale simulations of the hydro- 
dynamic model are in good agreement with Monte Carlo 
simulations of the Boltzmann equation [ 1 11, [ 141. At some 
stage though, as active device lengths become shorter and 
shorter, the hydrodynamic approximation will become in- 
valid, and the full Boltzmann equation must be simulated. 

Equations (1)-(3) may be recast [ 13 in terms of the vari- 
ables n ,  U ,  T, and 4: 

an 
at 
- + V .  ( n u )  = 

e 1 + u . V u  = -- E - - V ( n T )  + 
at m mn 

where 

3 aT 1 aw ap 
5 (at), = n (x), - n (ai), 

This form is useful for classifying the equations and cal- 
culating the characteristic speeds. 

v is the particle velocity normal to the wave, and vT is the 
particle velocity tangential to the wave. The soundspeed 

If now we let K be nonzero, (1)-(3) become hyperbolic 
(4 modes) plus parabolic (1 mode). There are now only 
four nonlinear hyperbolic waves: 

c =  JyTlm. 

nonlinear characteristic discontinuous 
speed variables 

2 shocks h * = v , c  

2 contacts x o  = v 

The contact wave corresponding to a jump in T has dis- 
appeared due to the V * ( K V T )  term in (lo), and the 
soundspeed c = a. For T = aT0 and To = 300 K, c 
= & 1.3 x lo7 cm/s. 

These results are derived and analyzed in more detail 
in [lo]. 

111. NUMERICAL SOLUTION OF THE HYDRODYNAMIC 
EQUATIONS FOR THE BALLISTIC DIODE 

The Ballistic Diode 

As a model 1-D steady-state problem, we simulate the 
flow of electrons in a submicron n+ - n - n +  silicon 
diode. This device models the n+ - n - n+ channel in a 
MOSFET, and clearly exhibits hot carrier effects at sub- 
m i c r ~ n  scales. The diode consists of a 0.1 pm E+ region, 
followed by a 0.4 pm n region, and ending with a 0 .1  pm 
n+ region. In the n +  region, the doping density N = 5 X 
10’’ ~ m - ~ ,  while in the n region N = 2 x l O I 5  cm-3. The 
ambient device temperature To = 300 K = 0.025 eV. 

Our parameters are identical with those of Odeh, Ru- 
dan, and White [l 11, so that we can compare the two sets 
of computations. Their computations also agree with 
Monte Carlo simulations [ 1 11, [ 141 of the same device. 

Relaxation Time and Heat Conduction Models 

Since the effects of holes may be neglected for the bal- 
listic diode problem, 

($) = o .  
1’ 
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Following Baccarani and Wordeman [5], we take 

-P 

-( W - 5 3 nTo) 

Til, 

where p,,,, is the low-field electron mobility and U ,  is the 
saturation velocity. 

The I -D Steady-State Equations 

following form: 
The 1 -D steady-state hydrodynamic equations take the 

d 
dx f , ,  = - ( n u )  = 0 (19) 

f , , = # y - - - - + - -  V dv e ” ( n T )  + - = 0 (20)  
dx m dx mn dx TP 

3 dT  d v  
1 d (Kg)  dx n dx 

f T = T V Z +  T - - - -  

d2$ f a  = E 7 + e ( N  - n )  = 0. 
dx 

In [2] and [ l l ] ,  the two first-order equations (19) and 
(20) for n and U are eventually combined into a single 
second-order equation for n ,  where the nonlinear term 
v ( d v / d x )  is linearized about a previous iterate. In the 
1 -D steady-state problem, this method produces an ellip- 
tic equation for n,  and is justified only as long as the elec- 
tron flow is everywhere subsonic. In the spirit of com- 
putational fluid dynamics, we prefer to solve the full set 
of conservation laws. Our method then can be extended 
to the case where the electron flow may become super- 
sonic. 

The simplest boundary conditions are n = N and T = 
To at x,,, and x,,, , and 

e+(xrnin) = Tln (n ln ,>  

e$(xmaX) = TIn (n /n , )  + eV (23)  

where Vis the bias across the diode, and n, is the intrinsic 
electron concentration. 

Physical Parameters: In silicon, the effective electron 
mass m = 0.26 m p ,  where m ,  is the electron mass, E = 
11.7 and n, = 1.4 X 10’’ cmP3. Following [ 5 ] ,  we take 
pno = 1400 cm2/s 

Discretization 

V and U ,  = lo7 cm/s. 

n ,  T ,  and $ are defined at the grid points i = 0, 1, 
* , N - 1 ,  N .  The boundary conditions specify n ,  T ,  
at i = 0 and i = N .  U is defined at the midpoints of the 

elements 1, ( i  = 1 ,  * , N ) connecting grid points i - 
1 and i .  

Equations (19), (21), and (22) are enforced at the in- 
terior grid points i = 1, * * . , N - 1, while (20) is en- 
forced at the midpoints of the elements I,, i = 1 ,  , 
N .  

The discrete equations are then derived by using the 
1-D form of the box method (see, e.g., [15]) and central 
differences. 

We use Newton’s method to linearize (19)-(22). The 
resulting operator equation 

where J is the Jacobian andfis  the 4 x 1 residual, is also 
discretized by using the 1-D form of the box method and 
central differences. The new solution is obtained by set- 
ting 

where t is a damping factor [12] between 0 and 1, chosen 
to insure that the norm of the residual f decreases mono- 
tonically. 

The operator Jacobian has the following block struc- 
ture: 

J =  

f . 5 ,  
6n 6v 

After discretization, each block is diagonal, bi-diagonal, 
or tri-diagonal. Newton’s equation (24) may be solved di- 
rectly by sparse matrix techniques, or by block iterative 
methods. 
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As an initial guess for the solution, we take n = N(x) ,  
ZI = 0, T = To, and e$ = TIn ( n l n , ) .  This initial guess 
is very far from the hydrodynamic model solution even 
for V = 0.5, so we use a continuation method in I/: i .e.,  
we start with V << 0.5, compute the solution, increment 
V by a small amount AV, compute the new solution, etc. 
This method works well up to V = 10 for the parameters 
discussed in  this paper. At each stage, the Newton method 
converges quadratically when the variations of K ,  rp,  and 
r,,, with respect to n and Tare included. Typically between 
two and six Newton iterations are performed at each stage. 

Computations f o r  Subsonic Flow 

Simulations of the ballistic diode using the hydrody- 
namic model were performed for biases V = 0.5, 1, 1.5, 
and 2 V .  Fig. 1 shows the temperature T(x )  of the elec- 
tron gas. Note that the temperature increases as the elec- 
trons flow from left to right across the n region. The max- 
imum temperature is an order of magnitude higher than 
ambient for V = 2 V.  Recall that the drift-diffusion model 
assumes the electron temperature T = To throughout the 
device. 

The temperature curves for V = 0.5, 1, and 1.5 V agree 
almost exactly with those of [ 1 I], even though we used 
60 equal grid intervals and central differences, while Ru- 
dan, Odeh, and White used 30 or 100 interior grid points 
(with more points near the n+ - n boundaries) and a 
Scharfetter-Gummel discretization. 

Since n and T may exhibit strong variations over small 
regions, the Scharfetter-Gummel discretization (with its 
exponential fitting over each element) does resolve the 
hydrodynamic solution somewhat more efficiently for 
subsonic flow than the central difference discretization 
with equidistant grid points. However, even for subsonic 
flow, we expect the central difference discretization plus 
automatic mesh refinement [ 161 to be competitive with the 
Scharfetter-Gummel approach. For cases where the elec- 
tron flow can become supersonic, a hyperbolic method 
(upwind, Lax-Wendroff, or Godunov) designed to re- 
solve solution discontinuities (shocks and contacts) is ap- 
propriate. 

In Fig. 2 we plot the electron velocity v ( x ) .  Note the 
velocity overshoot phenomenon U > v , ~  throughout most 
of the n region. These curves do differ from those of [ 111, 
since there the authors took K~ = 5 / 2  in (1  8) for K instead 
of the value K~ = 3 / 2  which they currently recommend. 
The new value leads to a quantitative shift up in the ve- 
locity curves in Fig. 2, but leaves the temperature curves 
in Fig. 1 basically unchanged. (If we use the factor 5 /2 ,  
we recover the velocity cuyes  of [ 1 11.) 

Fig. 3 displays the Mach number v ( x ) / c  of the elec- 
trons. Typical Mach numbers for these flows are around 
0.5 to 0.7. As a self-consistency check for our elliptic 
numerical methods, we note that the flows are everywhere 
subsonic. (The one value of v /c  for V = 1 which lies 
above Mach 1 is a grid effect. If more points are placed 
near the right n - n +  boundary, v / c  falls below 1.) 

0 0 . 2  

Fig. 1. Electron temperature T ( x )  in electron volts for V = 0.5, I ,  1.5,  
and 2 V.  x is in microns. 

Fig. 2. Electron velocity zi(x) in  IO’ cm/s for V = 0.5, I .  1.5, and 2 V .  
x is in microns. 

Block Iterative Methods 
The 1-D ballistic diode serves as a numerical laboratory 

for investigating methods which will be essential for com- 
putational efficiency in 2-D problems. 

The form of (26) for the operator Jacobian suggests [ 151 
solving Newton’s equation (24) by the iterative Gauss- 
Seidel splitting. Rewrite (24) and (25) as 

J ~ x  = -fk; z k + l  = z k  + tkx (27) 

where x = ( 6 n ,  6v, AT,  IS$)^, z = ( n ,  U ,  T,  4)’, and k = 
1, 2, - * * labels the ourer Newton iterations. Then the 
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1 

Fig. 3 .  Electron Mach number N ( X ) / C  for V = 0.5, 1, 1.5, and 2 V. x is 
in microns. 

iterative Gauss-Seidel splitting is 

Lk(Xn - 4 - 1 1  = -(Jkxn + f k 1  (28) 
where Lk is the lower triangular part of J and n = 1, 2, 
. . .  , NGs labels the inner Gauss-Seidel iterations. After 
discretization, (28) may be viewed as a block iterative 
method for the discretized block system (27). 

In one dimension, our computational experience indi- 
cates that solving the discrete version of Newton’s equa- 
tion by sparse matrix methods is faster than using block 
iterative methods. However, in two dimensions, block it- 
erative methods will be essential as the number of PDE’s 
increases. Block iterative methods are ideally suited for 
the hydrodynamic model, since in 2-D the number of 
PDE’s is K = 4Nspecies + 1, where NFpecies may be as large 
as four in GaAs (upper and lower valley electrons and 
holes). 

In more detail, solving K PDE’s on an N X N grid by 
sparse direct methods requires O (  K3N3) operations, while 
block iterative methods require 0 ( KN3 ) + NGs - 0 ( KN2 
In ( N  ) ) operations as N and K become large. The cross- 
over from sparse direct to block iterative methods be- 
comes favorable if NGs << K2N/ln (N) .  

The number of inner iterative loops (versus outer New- 
ton loops) is optimized by using the methods of [ 121. We 
define 

cyk ,n  = 11 f k  + Jkxn  1 1  11 f k  11’. (29) 
If the Gauss-Seidel iteration converges, ( Y ~ . , ~  + 0 as n --t 

03. We stop the inner iterations when 

a k . n  cyO 11 f k  11 / 11 f 0  11 (30) 
where cyo E (0, 1 ) .  

be presented in [ 171. 
Computational experiments for a 2-D Si MESFET will 

IV. MATHEMATICAL ANALYSIS OF THE HYDRODYNAMIC 

Steady-State Problem 
The specification of a subsonic physical regime for the 

carrier velocity, i.e., I V I  < JT/m, provides certain 
mathematical simplifications, in that the derivative mul- 
tiplier matrix, for the linearized system, is positive defi- 
nite and symmetric in this case. This justifies the char- 
acterization of the system as elliptic. There is, however, 
a complication. Simply because the system at the solution 
behaves subsonically, it does not follow that iterates far 
from the solution will necessarily satisfy a comparable in- 
equality. A local analysis then is forced to assume either 
the existence of a solution with this property, and to re- 
strict approximate solutions to be sufficiently close in 
graph and slope to maintain this, or to assume the equiv- 
alent, via the Newton-Kantorovich theorem, in terms of 
negligible residuals and subsonic properties. Because the 
Newton-Kantorovich theorem expresses both an existen- 
tial as well as an approximation result, we use this as the 
motivational basis for our approach. Thus we begin by 
introducing the linearized problem at a subsonic point in 
function space, and proceed to discuss conditions under 
which the linear increments are bounded in appropriate 
norms. This is equivalent to the well-known property of 
an operator Newton method, which uniformly bounds the 
operator derivative inverse maps. General operator New- 
ton methods with this property, and Lipschitz derivative 
regularity, have been studied in 1121 and 1181. In addi- 
tion, continuation, clearly relevant here, is discussed in 
these references. 

The linearized steady-state hydrodynamic equations in 
1-D assume the fallowing form (symmetry considerations 
dictate the interchange of n and U ) :  

EQUATIONS 

n 

E 

0 

0 

dx 

d26$ 
dx2 
- 

d6 T 
dx 

The (spatially dependent) eigenvalues of the symmetric 
matrix A are calculated to be 
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The smaller eigenvalue is clearly positive at a subsonic 
point in dependent variable space, i.e., a point for which 

It is possible to obtain estimates for the linearized equa- 

so that 

1 
2 

n and Tare strictly positive, and v 2  < T/m. ( J u ,  U )  = - ( ( J u ,  U >  + ( J * u ,  U ) )  

= (i ( E  + E* - “ ) U ,  U ) .  (41) dx 

where U = [6v, 6n]  and w = [6T,  641. Here, F ‘  denotes 
the left-hand side of (31). By taking the inner product of 
(33) with [ d u l d x ,  01, we obtain the relation (written in 
terms of vector L2 inner moducts) 

The property of u-coerciveness reduces to the assump- 
tion that M = E + E *  - dA/dx  has positive eigenvalues, 
uniformly bounded away from zero. 

By taking the inner product of (33) with [ U ,  01, we 
obtain the relation 

( A u ‘ ,  U ’ )  + (Bw’, U ’ )  + (Eu ,  U ’ )  + ( F w ,  U’) 
( J u ,  U )  + (Bw’, U )  + ( F w ,  U )  = ( f i ,  U )  (42) 

= ( f l ,  U ’ ) .  (34)  
so that 

By the positive-definiteness of A (assumed uniform here), 
we conclude that 

where 1 1  . ( 1  denotes the L2 norm. Assuming for the mo- 
ment that upper bounds exist for 1 dn/dx  l ,  I d v / d x  l ,  and 
T ,  and a lower bound for n exists, we deduce from (35) 
that 1 1  U ’  I( is bounded in terms of ( 1  u 1 1 ,  I( f l  1 1 ,  and the H1 
normofw,  IIwIJH1 = JIIwII’ + IIw’II2. 

At a solution point, bounds for 1 dn/dx  1 and 1 d v / d x  I 
are obtained by using (20): 

+ l l F l l l l w l l l l u l l ~ ~  (43) 

IIu1I2 + IIu’1l2 const {l!w1I2 + llw’1l2 + IIfl1I21 

It follows that I( u ( 1  can be estimated in terms of the HI 
norm of w and in terms of I (  fl 1 1 .  By using (35) and (43), 
we conclude that 

(44 )  
provided the subsonic and u-coerciveness properties are 
assumed at the solution, where the linearization is carried 
out locally, near the solution in an appropriate sense. 

n dT In order to obtain an inequality of the form 121 5 (: - v2)-I ( y  + ;lz - e g l )  (36) 
IIuJ12 + llurl12 + 1142 + I l W ’ I l 2  + I l ~ ” / l 2  

(37 )  
Bounds (36) and (37) can then serve as a starting point to 
obtain derivative bounds for functions “close by” in a 
local theory. 

The elimination of 11 u 1) in the estimation of 11 U ’  11 is 
more subtle, and focuses attention on an additional prop- 
erty of the subsonic hydrodynamic system necessary to 
derive a Newton-Kantorovich theory. This property, not 
to be confused with the positive-definite property of the 
matrix A ,  may properly be termed a coerciveness prop- 
erty. 

Specifically, define the operator J by 

Ju = Au‘  + Eu. 

We require, for u-coerciveness, that 

(38)  

(39)  ( J u ,  U )  2 wo(u, U )  

for some positive constant wo.  The adjoint operator is de- 
fined by 

(40) 
d 
dx 

J*u = -- ( A u )  + E*u 

(45 1 2 
5 const ) I  f ) I  , 

which is an appropriate statement of the uniform deriva- 
tive invertibility required for the Kantorovich approach, 
one requires a parallel concept of w-coerciveness. In this 
context, this simply means that the coefficient of 6T in the 
linearized version of (21), i .e.,  the nonzero entry of H in 
(3 l), is sufficiently positive in a uniform sense. When this 
holds, estimation can be made by taking the inner product 
of (33) with [ 0, w].  We find that 

I l W l l ? f l  5 const {ll.(12 + IIu’Il2 + I I f 2 I l 2 } .  (46) 

By (44) and further use of the w-coerciveness property, 
we conclude that 

(47)  
2 11 11 XI + II w I1 ”1 I const I/ f 11 . 

The sharpening of (47) to (45) can be made by direct es- 
timation of second derivatives within the linearized sys- 
tem. 

The following result follows from the preceding esti- 
mates, and from the Newton-Kantorovich theory. It as- 
sumes a Lipschitz coritinuous derivative F ’  . 

Proposition: If a function space localization is possi- 
ble, with uniformly subsonic properties for the approxi- 
mations, and uniform coerciveness in the linearized sys- 
tems, then Newton’s method, with a sufficiently small 



GARDNER er a l . :  HYDRODYNAMIC DEVICE MODEL 507 

initial residual, converges R-quadratically to a solution of 
the hydrodynamic equations. 

Time-Dependent Problem 
Space limitations prevent us from providing an analo- 

gous discussion of the evolution system. A few brief com- 
ments are in order, however. If one thinks of the appro- 
priate linearized evolution system as discretized in time, 
then the U -  and w-coerciveness properties may be ex- 
pected to hold for At sufficiently small. In this case, the 
matrix multiplier of U is not longer symmetric, but the 
eigenvalues are U f w, so that the corresponding 
subsystem is symmetrizable. The appropriate boundary 
condition for the 1-D linearized evolution system may be 
specified by the Friedrichs theory of admissible boundary 
conditions [ 191. 

Boundary Conditions 
For general electron flows in one dimension, boundary 

conditions for both steady-state and time-dependent prob- 
lems may be determined by applying Friedrichs’ theory 
[ 191. Boundary conditions for two- and three-dimensional 
problems may be specified by applying the theories of 
Agemi [20], Oliger and Sundstrom [21], and Osher and 
Chakravarthy [22]. These theories apply to the Euler 
equations, and must be modified in light of the fact that 
in the hydrodynamic model one of the hyperbolic modes 
of the Euler equations has become a parabolic mode. 
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