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Abstract. In this paper, we consider a variable-order fractional advection-diffusion equation
with a nonlinear source term on a finite domain. Explicit and implicit Euler approximations for the
equation are proposed. Stability and convergence of the methods are discussed. Moveover, we also
present a fractional method of lines, a matrix transfer technique, and an extrapolation method for
the equation. Some numerical examples are given, and the results demonstrate the effectiveness of
theoretical analysis.
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1. Introduction. The fractional advection-dispersion equation is a generaliza-
tion of the classical advection-dispersion equation. Schumer et al. [30] gave an Eule-
rian derivation of this equation and demonstrated that highly skewed, non-Gaussian
contaminant plumes with heavy leading edges can be a result of the infinite-variance
particle jump distributions that arise during transport in a disordered porous medium.
Zhang et al. [33] discussed the impact of the boundary conditions that are commonly
used in hydrology to simulate solute movement. G. Huang, Q. Huang, and Zhan [6]
developed a semi-analytical inverse method and a corresponding program for param-
eter estimation under the condition of steady-state flow and input of solute.

Some authors have discussed the numerical approximation for the fractional ad-
vection-dispersion equation. Liu, Anh, and Turner [16] considered the space frac-
tional Fokker–Planck equation with instantaneous source and presented a fractional
method of lines. Meerschaert and Tadjeran [22] developed numerical methods to solve
the one-dimensional equation with variable coefficients on a finite domain. Roop [28]
investigated the numerical approximation of the variational solution on bounded do-
mains in R

2 and presented a method for approximating the solution in two spatial
dimensions using the finite element method. Yong et al. [34] examined the random
walk particle tracking approach to solve the one-dimensional equation. Liu et al. [18]
presented a random walk model for approximating a Lévy–Feller advection-dispersion
process and proposed an explicit finite difference approximation. Liu et al. [17] con-
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sidered a space-time fractional advection-dispersion equation on a finite domain and
proposed implicit and explicit difference methods to solve this equation. Momani
[24] considered the following fractional convection-diffusion equation with nonlinear
source term

∂αu

∂tα
=
∂2u

∂x2
− c

∂u

∂x
+ Ψ(u) + f(x, t), 0 < x < 1, 0 < α ≤ 1, t > 0(1.1)

and proposed an algorithm based on the Adomian decomposition method.
The theory of pseudodifferential operators and equations has also received much

attention [4, 29]. The behavior of some diffusion processes in response to temperature
changes may be better described using variable-order exponents in a pseudodiffer-
ential operator than time-varying coefficients [19, 20]. Lorenzo and Hartley [19, 20]
presented the concept of variable-order fractional integration and differentiation. Mul-
tifractional pseudodifferential models have been considered in the representation of
heterogeneous local behaviors. The solutions to such models are defined in fractional
Besov spaces of variable order on R

n (Leopold [14]). Gaussian processes defined
by elliptic pseudodifferential equations have been studied in Ruiz-Medina, Anh, and
Angulo [29]. The covariance function of these random processes defines the inner
product of a fractional Sobolev space of variable order. An interesting special case is
multifractional Brownian motion introduced in Peltier and Lévy Véhel [25] and Be-
nassi, Jaffard, and Roux [1]. Several classes of Markov processes with multifractional
transition probability densities on unbounded domains have been studied in Jacob
and Leopold [10], Komatsu [13], Kikuchi and Negoro [11], and Kolokoltsov [12]. In
particular, Kikuchi and Negoro [11] found the conditions for which general pseudodif-
ferential operators on fractional Sobolev spaces of variable order on R

n form a Feller
semigroup which has a transition density.

The research on variable-order fractional partial differential equations is rela-
tively new, and numerical approximation of these equations is still at an early stage
of development. Lin, Liu, Anh, and Turner [15] established an equality between the
variable-order Riemann–Liouville fractional derivative and its Grünwald–Letnikov ex-
pansion. Using this relationship, they defined and obtained some properties of the
operator (− d2

dx2 )α(x,t) and devised an explicit finite difference approximation scheme
for a corresponding variable-order nonlinear fractional diffusion equation. Ilic et al.
[7, 8] proposed a new matrix method for a fractional-in-space diffusion equation with
homogeneous and nonhomogeneous boundary conditions on a bounded domain.

In this paper, we consider numerical methods for the variable-order fractional
advection-diffusion equation with a nonlinear source term. In section 2, we give
the definitions of the variable-order fractional integral and derivative and introduce
the equation. In section 3, the explicit Euler approximation and the implicit Euler
approximation solutions are proposed. Stability and convergence of both methods are
given in sections 4 and 5, respectively. We also present another three computationally
effective numerical methods in section 6. Finally, some numerical examples are given
in section 7.

2. Preliminaries. Firstly, we introduce some concepts of variable-order frac-
tional derivatives.

Definition 2.1 (Riesz fractional derivative [5, 29]).

∂α(x)f(x)
∂|x|α(x)

= −(−Δ)α(x)/2f(x) = −F−1|ξ|α(x)Ff(ξ).(2.1)
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Considering that m− 1 < α(x) ≤ m, where m > 0 is a positive integer, from the
above definition, we have

−(−Δ)α(x)/2f(x) = − 1
2π

∫ ∞

−∞
e−iξx|ξ|α(x)

[∫ ∞

−∞
f(η)eiξηdη

]
dξ.

Suppose that f(x), f ′(x), . . . , f (m−1)(x) vanish at x = ±∞, then we can perform
integration by parts repeatedly to yield∫ ∞

−∞
f(η)eiξηdη = (−1)m(iξ)−m

∫ ∞

−∞
f (m)(η)eiξηdη.

Thus,

−(−Δ)α(x)/2f(x) = (−1)m+1 1
2π

∫ ∞

−∞
e−iξx|ξ|α(x)(iξ)−m

[∫ ∞

−∞
f (m)(η)eiξηdη

]
dξ

= (−1)m+1 1
2π

∫ ∞

−∞
f (m)(η)

[∫ ∞

−∞
eiξ(η−x)|ξ|α(x)(iξ)−mdξ

]
dη.

Let I =
∫ ∞
−∞ eiξ(η−x)|ξ|α(x)(iξ)−mdξ, then

I = im
∫ 0

−∞
eiξ(η−x)(−ξ)α(x)−mdξ + i−m

∫ ∞

0

f(η)eiξ(η−x)ξα(x)−mdξ

= im
∫ ∞

0

eiξ(x−η)ξα(x)−mdξ + i−m

∫ ∞

0

f(η)eiξ(η−x)ξα(x)−mdξ.

Noting that

L(tν) =
∫ ∞

0

tνe−stdt =
Γ(ν + 1)
sν+1

, Re ν > −1,

and −1 < α(x) −m ≤ 0, we have

I = im
Γ(α(x) −m+ 1)

[(η − x)i]α(x)−m+1
+ i−m Γ(α(x) −m+ 1)

[(x− η)i]α(x)−m+1

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Γ(α(x) −m+ 1)
(η − x)α(x)−m+1

[
im

iα(x)−m+1
+

i−m

(−i)α(x)−m+1

]
if η > x,

Γ(α(x) −m+ 1)
(x− η)α(x)−m+1

[
im

(−i)α(x)−m+1
+

i−m

iα(x)−m+1

]
if x > η,

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−1)m Γ(α(x) −m+ 1)Γ(m− α(x))

(η − x)α(x)−m+1Γ(m− α(x))

[
i−(α(x)+1) + iα(x)+1

]
if η > x,

Γ(α(x) −m+ 1)Γ(m− α(x))
(x− η)α(x)−m+1Γ(m− α(x))

[
iα(x)+1 + i−(α(x)+1)

]
if x > η.

Using Γ(z)Γ(1 − z) = π
sin πz (0 < z < 1), we have

Γ(α(x) −m+ 1)Γ(m− α(x)) =
π

sinπ(m− α(x))
= (−1)m−1 π

sinπα(x)
.
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Again,

i−1−α(x) + iα(x)+1 = e
π
2 (−α(x)−1)i + e

π
2 (α(x)+1)i

= 2 cos
π

2
(1 + α(x))

= −2 sin
π

2
(α(x)).

Hence, we have

I =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
π

cos α(x)π
2

1
(η − x)α(x)−m+1Γ(m− α(x))

if η > x,

(−1)m π

cos α(x)π
2

1
(x− η)α(x)−m+1Γ(m− α(x))

if x > η.

If f(x) is defined on the finite interval [a, b] and f(a) = f(b) = 0, then we can extend
the function to have f(x) = 0 for all x < a or x > b. Thus, we have

−(−Δ)α(x)/2f(x) = − 1

2 cos πα(x)
2

[
1

Γ(m− α(x))

∫ x

a

f (m)(η)dη
(x− η)α(x)−m+1

+
(−1)m

Γ(m− α(x))

∫ b

x

f (m)(η)dη
(η − x)α(x)−m+1

]
.

(2.2)

Definition 2.2 (Caputo fractional derivative).

C
a D

α(x)
x f(x) =

1
Γ(m− α(x))

∫ x

a

f (m)(η)dη
(x− η)α(x)−m+1

,

C
xD

α(x)
b f(x) =

(−1)m

Γ(m− α(x))

∫ b

x

f (m)(η)dη
(η − x)α(x)−m+1

,

where m− 1 < α(x) < m.
Definition 2.3 (Riemann–Liouville fractional derivative).

aD
α(x)
x f(x) =

[
1

Γ(m− α(x))
dm

dξm

∫ ξ

a

(ξ − η)m−α(x)−1f(η)dη

]
ξ=x

,

xD
α(x)
b f(x) =

[
(−1)m

Γ(m− α(x))
dm

dξm

∫ b

ξ

(η − ξ)m−α(x)−1f(η)dη

]
ξ=x

,

(2.3)

where m− 1 < α(x) < m.
Definition 2.4 (Grünwald–Letnikov fractional derivative [19]).

D
α(x)
a+ f(x) = lim

h→0,nh=x−a
h−α(x)

n∑
j=0

(−1)j

(
α(x)
j

)
f(x− jh),

D
α(x)
b− f(x) = lim

h→0,nh=b−x
h−α(x)

n∑
j=0

(−1)j

(
α(x)
j

)
f(x+ jh).

(2.4)
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For m− 1 < α(x) < m, we obtain

D
α(x)
a+ f(x) =

m−1∑
j=0

f (j)(a)(t− a)j−α(x)

Γ(−α(x) + j + 1)

+
1

Γ(−α(x) +m)

∫ x

a

f (m)(η)
(x− η)α(x)−m+1

dη,

D
α(x)
b− f(x) =

m−1∑
j=0

(−1)m−jf (j)(b)(b − ξ)−α(x)+j

Γ(−α(x) + j + 1)

+
1

Γ(−α(x) +m)

∫ b

ξ

(η − ξ)m−α(x)−1f (m)(η)dη

(see [26], pp. 52–55). Using repeatedly integration by parts and differentiation, we
obtain

1
Γ(m− α(x))

dm

dξm

∫ ξ

a

(ξ − η)m−α(x)−1f(η)dη

=
m−1∑
j=0

f (j)(a)(ξ − a)−α(x)+j

Γ(−α(x) + j + 1)
+

1
Γ(−α(x) +m)

∫ ξ

a

(ξ − η)m−α(x)−1f (m)(η)dη.

Similarly,

(−1)m

Γ(m− α(x))
dm

dξm

∫ b

ξ

(η − ξ)m−α(x)−1f(η)dη

=
m−1∑
j=0

(−1)m−jf (j)(b)(b − ξ)−α(x)+j

Γ(−α(x) + j + 1)
+

1
Γ(−α(x) +m)

∫ b

ξ

(η − ξ)m−α(x)−1f (m)(η)dη.

Hence, if the function f(x) has m + 1 continuous derivatives, then the Grünwald–
Letnikov definition (2.4) is equivalent to the Riemann–Liouville definition (2.3).

From (2.2), the Riesz fractional derivative of order α(x) can be defined as

−(−Δ)α(x)/2f(x) = − 1

2 cos πα(x)
2

[
aD

α(x)
x f(x) +x D

α(x)
b f(x)

]
.

We consider the following variable-order fractional advection-diffusion equation with
a nonlinear source term:

∂u(x, t)
∂t

= κ(x, t)Rα(x,t)u(x, t) − ν(x, t)
∂u

∂x
+ f(u, x, t),

(x, t) ∈ Ω = [a, b] × [0, T ],
(2.5)

and the initial and boundary conditions

u(x, 0) = φ(x),(2.6)
u(a, t) = 0, u(b, t) = 0,(2.7)

where 1 < α ≤ α(x, t) ≤ α ≤ 2; ν(x, t) (0 ≤ ν(x, t) ≤ ν) represents the average fluid
velocity, f(u, x, t) is a source term which satisfies the Lipschitz condition, i.e.,

for all u1, u2, |f(u1, x, t) − f(u2, x, t)| ≤ L|u1 − u2|,(2.8)

and 0 ≤ κ(x, t) ≤ κ.
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In (2.5), Rα(x,t)u(x, t) is a variable-order fractional derivative defined by

Rα(x,t)u(x, t) = c+(x, t)aD
α(x,t)
x u(x, t) + c−(x, t)xD

α(x,t)
b u(x, t),(2.9)

where 0 < c+(x, t) ≤ c1, 0 < c−(x, t) ≤ c2.
If c+(x, t) = 1, c−(x, t) ≡ 0, Rα(x,t) represents the Riemann–Liouville left-handed

spatial fractional derivative; if c+(x, t) ≡ 0, c−(x, t) = 1, Rα(x,t)u(x, t) represents the
Riemann–Liouville right-handed spatial fractional derivative.

When c+(x, t) = c−(x, t) = − 1

2 cos( πα(x,t)
2 )

,

Rα(x,t)u(x, t) = −(−Δ)α(x,t)u(x, t)

= − 1

2 cos πα(x,t)
2

[
aD

α(x,t)
x u(x, t) +x D

α(x,t)
b u(x, t)

]
=
∂α(x,t)u(x, t)
∂|x|α(x,t)

represents the Riesz fractional derivative.
If α(x, t) = 2, (2.5) becomes the following classical advection-diffusion equation

with a nonlinear source term:

∂u(x, t)
∂t

= κ(x, t)
∂2u(x, t)
∂x2

− ν(x, t)
∂u(x, t)
∂x

+ f(u, x, t).

3. Numerical approximations. In this section, we will derive a numerical ap-
proximation for (2.5). Let us suppose that the function f(x) is (m− 1)-continuously
differentiable in the interval [a, b] and that f (m)(x) is integrable in [a, b]. Then, for
every α (0 ≤ m − 1 < α(x) < m), the Riemann–Liouville fractional derivative exists
and coincides with the Grünwald–Letnikov fractional derivative [16]. The relation-
ship between the Riemann–Liouville and Grünwald–Letnikov definitions also have an-
other consequence, which is important for the numerical approximation of fractional
differential equations, manipulation with fractional derivatives, and formulation of
physically meaningful initial- and boundary-value problems for fractional differential
equations. This allows the use of the Riemann–Liouville definition during problem
formulation and then the Grünwald–Letnikov definition for obtaining the numerical
solution.

Using the relationship between Riemann–Liouville and Grünwald–Letnikov deriva-
tives, a discrete approximation to the space fractional derivative terms Dα(x,t)

a+ u(x, t)
and Dα(x,t)

b− u(x, t) may be defined from the standard Grünwald formula:

D
α(x,t)
a+ u(x, t) = lim

M1→∞
(h1)−α(x,t)

M1∑
j=0

g
(j)
α(x,t)u(x− jh1, t),

D
α(x,t)
b− u(x, t) = lim

M2→∞
(h2)−α(x,t)

M2∑
j=0

g
(j)
α(x,t)u(x+ jh2, t),

(3.1)

where M1,M2 are positive integers, h1 = (x − a)/M1, h2 = (b − x)/M2, and the
normalized Grünwald weights are defined by

g
(0)
α(x,t) = 1,

g
(j)
α(x,t) = −α(x, t) − j + 1

j
g
(j−1)
α(x,t) for j = 1, 2, 3, . . . .

(3.2)
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Let tk = kτ , k = 0, 1, 2, . . . , n, xi = a + ih, i = 0, 1, 2, . . . ,m, where 0 ≤ tk ≤ T ,
τ = T/n, and h = (b − a)/m are time and space steps, respectively. We define uk

i as
the numerical approximation to u(xi, tk). Similarly, we define ck+,i = c+(xi, tk), ck−,i =
c−(xi, tk), νk

i = ν(xi, tk), κk
i = κ(xi, tk), and αk

i = α(xi, tk).
From [22], if u(x, t) ∈ L1(Ω), Dα(x,t)

a+ u(x, t) ∈ C (Ω), and D
α(x,t)
b− u(x, t) ∈ C (Ω),

we obtain

D
αk

i
a+u(xi, tk) = h−αk

i

i+1∑
j=0

g
(j)

αk
i

u(xi−j , tk) +O(h),

D
αk

i

b−u(xi, tk) = h−αk
i

m−i+1∑
j=0

g
(j)

αk
i

u(xi+j , tk) +O(h).

(3.3)

It was shown in [22] that using the standard Grünwald formula to discretize the disper-
sion equation results in an unstable finite difference scheme. Hence, we adopt the shift
Grünwald formula to approximate the space fractional derivatives xD

αk
i

a+u(xi, tk) and
D

αk
i

b−u(xi, tk). We now prove the following lemmas on consistency and convergence.

Lemma 3.1. Suppose that ψ(x, t) =x D
α(x,t)
a+ u(x, t) ∈ C1(Ω), then

xD
αk

i
a+u

k
i = h−αk

i+1

i+1∑
j=0

g
(j)

αk
i+1
uk

i+1−j +O(h),

xD
αk

i

b−u
k
i = h−αk

i−1

m−i+1∑
j=0

g
(j)

αk
i−1
uk

i−1+j +O(h).

(3.4)

Proof. From (3.3), we have

xD
αk

i+1
a+ uk

i+1 = h−αk
i+1

i+1∑
j=0

g
(j)

αk
i+1
uk

i+1−j +O(h).

Using ψ(x, t) ∈ C1(Ω), we obtain

|ψ(xi, tk) − ψ(xi+1, tk)| ≤ C|xi+1 − xi| ≤ O(h).

Thus,

xD
αk

i
a+u

k
i = +xD

αk
i+1

a+ uk
i+1 + ψ(xi, tk) − ψ(xi+1, tk)

= h−αk
i+1

i+1∑
j=0

g
(j)

αk
i+1
uk

i+1−j +O(h).

Similarly, we can obtain

xD
αk

i

b−u
k
i = h−αk

i−1

m−i+1∑
j=0

g
(j)

αk
i−1
uk

i−1+j +O(h).

Set μk
i = νk

i τh
−1, r

(1)
i,k = κk

i c
k
+,iτh

−αk
i+1 , r

(2)
i,k = κk

i c
k
−,iτh

−αk
i−1 , g(j)

i,k = g
(j)

αk
i

, and

Lh,τu(xi, tk) = r
(1)
i,k

i+1∑
j=0

g
(j)
i+1,ku(xi+1−j , tk)

+ r
(2)
i,k

m−i+1∑
j=0

g
(j)
i−1,ku(xi−1+j , tk).
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Applying Lemma 3.1 and the following formulas

∂u(xi, tk)
∂t

=
u(xi, tk+1) − u(xi, tk)

τ
+ O(τ),

∂u(xi, tk)
∂t

=
u(xi, tk) − u(xi, tk−1)

τ
+O(τ),

∂u(xi, tk)
∂x

=
u(xi, tk) − u(xi−1, tk)

h
+O(h),

f(u(xi, tk), xi, tk) = f(u(xi, tk−1), xi, tk−1) +O(τ),

(3.5)

we get

u(xi, tk) = u(xi, tk−1) + μk−1
i [u(xi, tk−1) − u(xi−1, tk−1)] + Lh,τu(xi, tk−1)

+ τf(u(xi, tk−1), xi, tk−1) +R
(1)
i,k−1,

u(xi, tk) = u(xi, tk−1) + μk
i [u(xi, tk) − u(xi−1, tk)] + Lh,τu(xi, tk)

+ τf(u(xi, tk−1), xi, tk−1) +R
(2)
i,k ,

where |R(1)
i,k | ≤ C1(τ2 + τh) and |R(2)

i,k | ≤ C2(τ2 + τh). Thus, we obtain the explicit
Euler approximation

uk+1
i = uk

i − μk
i (uk

i − uk
i−1)

+ r
(1)
i,k

i+1∑
j=0

g
(j)
i+1,ku

k
i−j+1 + r

(2)
i,k

m−i+1∑
j=0

g
(j)
i−1,ku

k
i+j−1 + τf(uk

i , xi, tk),
(3.6)

where k = 0, 1, 2 . . . , n− 1, and the implicit Euler approximation

uk+1
i = uk

i − μk+1
i (uk+1

i − uk+1
i−1 )

+ r
(1)
i,k+1

i+1∑
j=0

g
(j)
i+1,k+1u

k+1
i−j+1 + r

(2)
i,k+1

m−i+1∑
j=0

g
(j)
i−1,k+1u

k+1
i+j−1 + τf(uk

i , xi, tk),
(3.7)

where k = 0, 1, 2, . . . , n− 1.
The boundary and initial conditions are discretized as

u0
i = φ(ih), uk

0 = 0, uk
m = 0,(3.8)

where k = 0, 1, 2, . . . , n, and i = 0, 1, 2, . . . ,m.
The explicit and implicit Euler approximations with boundary and initial condi-

tions can be rewritten in the following matrix form:{
uk+1 = Auk + bk,

u0 = [u0
1, u

0
2, . . . , u

0
m−1]T ,

(3.9)

where uk = [uk
1 , u

k
2 , . . . , u

k
m−1]

T , bk includes a column vector of known boundary
values and known source term values, and A is an (m− 1)× (m− 1) matrix of known
elements. We suppose that ũk is a vector of approximate solution of (3.9); the errors
ε
(k)
i = ũ

(k)
i − u

(k)
i , (i = 0, 1, 2, . . . ,m; k = 0, 1, 2, . . .) satisfy{

Ek+1 = AEk,
E0 given,(3.10)

where Ek = [εk
1 , ε

k
2 , . . . , ε

k
m−1]

T .
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Definition 3.2 (see [31, 32]). For any arbitrary initial rounding error E0, there
exists a positive number K, independent of h and τ , such that

‖Ek‖ ≤ K‖E0‖(3.11)

or

‖Ak‖ ≤ K.(3.12)

The difference approximation (3.9) is then stable.
Lemma 3.3. For i = 1, 2, . . . ,m, k = 1, 2, . . . , n, the coefficients

g
(j)
i,k , j = 1, 2, . . . ,

satisfy
(1) g(0)

i,k = 1, g
(1)
i,k = −αk

i < 0, and g(j)
i,k > 0, (j �= 1);

(2)
∑∞

j=0 g
(j)
i,k = 0, and for l = 1, 2, . . . ,

∑l
j=0 g

(j)
i,k < 0.

Proof. (1) By Definition (3.2) of g(j)
i,k (j = 0, 1, . . .), we have g

(0)
i,k = 1 and

g
(1)
i,k = −αk

i < 0.

Since 1 < αk
i < 2, if j > 2, then −αk

i −j+1
j > 0. Hence, from g

(2)
i,k > 0, we obtain

g
(j)
i,k > 0, (j > 3).

(2) By Definition (3.2) of g(j)
i,k (j = 0, 1, . . .), we have

g
(j)
i,k = (−1)j

(
αk

i

j

)
, j = 0, 1, 2, . . . .

Using (1 − x)αk
i =

∑∞
j=0 g

(j)
i,kx

j , taking x = 1, then
∑∞

j=0 g
(j)
i,k = 0. In view of (1), for

l = 1, 2, . . . ,
∑l

j=0 g
(j)
i,k < 0.

Lemma 3.4 (discrete Gronwall inequality). Suppose that fk ≥ 0, ηk ≥ 0, k =
0, 1, 2, . . . , and

ηk+1 ≤ ρηk + τfk, ρ = 1 + C0τ, j = 0, 1, 2, . . . , η0 = 0,(3.13)

where C0 ≥ 0 is constant, then

ηk+1 ≤ eC0tk

k∑
j=0

τfj .

Proof. From (3.13), we obtain

ηk+1 ≤ ρηk + τfk ≤ ρ2ηk−1 + ρτfk−1 + τfk ≤ · · · ≤ ρk+1η0 + τ

k∑
j=0

ρk−jfj.

Since ρ > 1 and η0 = 0, we have ηk+1 ≤ ρk
∑k

j=0 τfj .

Note that ρk = (1+C0τ)k ≤ eC0τ ·k = eC0tk , so that ηk+1 ≤ eC0tk
∑k

j=0 τfj .
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4. Stability and convergence of the explicit Euler approximation. We
suppose that ũ(j)

i , (i = 0, 1, 2, . . . ,m; j = 0, 1, 2, . . . , n) is an approximate solution of
(3.6) and (3.8); the errors ε(j)i = ũ

(j)
i − u

(j)
i (i = 0, 1, 2, . . . ,m; j = 0, 1, 2, . . . , n)

satisfy

εk+1
i = εk

i + μk
i (εk

i − εk
i−1) + r

(1)
i,k

i+1∑
j=0

g
(j)
i+1,kε

k
i−j+1

+ r
(2)
i,k

m−i+1∑
j=0

g
(j)
i−1,kε

k
i+j−1 + τf(ũk

i , xi, tk) − f(uk
i , xi, tk).

(4.1)

Suppose that max1≤i≤m−1 |εk+1
i | = ‖Ek+1‖∞ and Sc = ντh−1 + κ(c1 + c2)ατh−α,

where the quatities ν, κ, α, and c1, c2 are defined in section 2 after (2.7), then we
obtain the following theorem.

Theorem 4.1 (stability of the explicit Euler approximation). If Sc < 1, then
the explicit Euler approximation defined by (3.6) and (3.8) is stable, and we have

‖Ek‖∞ ≤ K‖E0‖∞, k = 1, 2, . . . , n,

where K is a positive number independent of k, h, and τ .
Proof. From Sc < 1, it follows immediately that 1−μk

i −αk
i r

(1)
i,k −αk

i r
(2)
i,k ≥ 0. For

k = 0, 1, 2, . . . , n− 1; i = 1, 2, . . . ,m− 1 using (4.1), we obtain

|εk+1
i | ≤ (1 − μk

i − αk
i r

(1)
i,k − αk

i r
(2)
i,k )|εk

i | + μk
i |εk

i−1|

+ r
(1)
i,k

i+1∑
j=0,j �=1

g
(j)
i+1,k|εk

i+1−j | + r
(2)
i,k

m−i+1∑
j=0,j �=1

g
(j)
i−1,k|εk

i−1+j | + τL|εk
i |

≤ ‖Ek‖∞ + μk
i (‖Ek‖∞ − ‖Ek‖∞)

+ r
(1)
i,k

i+1∑
j=0

g
(j)
i+1,k‖Ek‖∞ + r

(2)
i,k

m−i+1∑
j=0

g
(j)
i−1,k‖Ek‖∞ + τL‖Ek‖∞.

Since
∑i+1

j=0 g
(j)
i+1,k+1 < 0 and

∑m−i+1
j=0 g

(j)
i−1,k+1 < 0, then

|εk+1
i | ≤ (1 + τL)‖Ek‖∞ ≤ (1 + τL)k+1‖E0‖∞ ≤ eLT ‖E0‖∞,

i.e., ‖Ek‖∞ ≤ eLT ‖E0‖∞ = K‖E0‖∞. From Definition (3.2), this shows that the
explicit Euler approximation defined by (3.6) and (3.8) is stable.

Now we consider the convergence of the explicit Euler approximation. We suppose
that the continuous problem (2.5)–(2.7) has a smooth solution u(x, t) ∈ C1+α,2

x,t (Ω).
Let u(xi, tk) (i = 1, 2, . . . ,m − 1; k = 1, 2, . . . , n) be the exact solution of (2.5)–

(2.7) at mesh point (xi, tk). Define

ηk
i = u(xi, tk) − uk

i , i = 1, 2, . . . ,m− 1; k = 1, 2, . . . , n

and

Yk = (ηk
1 , η

k
2 , . . . , η

k
m−1)

T .
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Using Y0 = 0 and uk
i = u(xi, tk) − ηk

i , substitution into (3.6) leads to

ηk+1
i = ηk

i + μk
i (ηk

i − ηk
i−1) + r

(1)
i,k

i+1∑
j=0

g
(j)
i+1,kη

k
i−j+1

+ r
(2)
i,k

m−i+1∑
j=0

g
(j)
i−1,kη

k
i+j−1 + τ [f(u(xi, tk), xi, tk) − f(uk

i , xi, tk)] +Rk
i ,

(4.2)

where i = 1, 2, . . . ,m− 1, k = 0, 1, 2, . . . , n− 1.
Similarly, we can obtain the following theorem.
Theorem 4.2 (convergence of the explicit Euler approximation). Suppose that

the continuous problem (2.5)–(2.7) has a smooth solution u(x, t) ∈ C1+α,2
x,t (Ω). Let uk

i

be the numerical solution computed by using (3.6) and (3.8). If Sc < 1, then there is
a positive constant C independent of i, k, h, and τ such that

|uk
i − u(xi, tk)| ≤ C(τ + h), i = 1, 2, . . . ,m− 1; k = 1, 2, . . . , n.(4.3)

Proof. From 1 − μk
i − αk

i r
(1)
i,k ≥ 0 − αk

i r
(2)
i,k ≥ 0, using (4.2), we obtain

|ηk+1
i | ≤ (1 − μk

i − αk
i r

(1)
i,k − αk

i r
(2)
i,k )|ηk

i | + μk
i |ηk

i−1|

+ r
(1)
i,k

i+1∑
j=0,j �=1

g
(j)
i+1,k|ηk

i+1−j | + r
(2)
i,k

m−i+1∑
j=0,j �=1

g
(j)
i−1,k|ηk

i−1+j |

+ τL|ηk
i | + C1(τ2 + τh)

≤ ‖Yk‖∞ + μk
i (‖Yk‖∞ − ‖Yk‖∞)

+ r
(1)
i,k

i+1∑
j=0

g
(j)
i+1,k‖Yk‖∞ + r

(2)
i,k

m−i+1∑
j=0

g
(j)
i−1,k‖Yk‖∞

+ τL‖Yk‖∞ + C1(τ2 + τh).

Since
∑i+1

j=0 g
(j)
i+1,k+1 < 0 and

∑m−i+1
j=0 g

(j)
i−1,k+1 < 0, then

|ηk+1
i | ≤ (1 + τL)‖Yk‖∞ + C1(τ2 + τh).

Further,

‖Yk+1‖∞ ≤ (1 + τL)‖Yk‖∞ + C1(τ2 + τh).

Using the discretized Gronwall lemma, we obtain

|ηk+1
i | ≤ ‖Yk+1‖∞ ≤ C1e

Lkτ (τ + h) ≤ C1e
LT (τ + h) = C(τ + h).

Thus we see that for any x and t, as h and τ approach 0 in such a way that (ih, kτ) →
(x, t), uk

i approaches u(x, t). This proves that uk
i converges to u(xi, tk) as h and τ

tend to zero. Hence, the conclusion follows.
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5. Stability and convergence of the implicit Euler approximation. To
obtain the stability of the implicit Euler approximation (3.7), we rewrite (3.7) as

uk+1
i + μk+1

i (uk+1
i − uk+1

i−1 )

−r(1)i,k+1

i+1∑
j=0

g
(j)
i+1,k+1u

k+1
i−j+1 − r

(2)
i,k+1

m−i+1∑
j=0

g
(j)
i−1,k+1u

k+1
i+j−1

= uk
i + τf(uk

i , xi, tk).

(5.1)

For i = 0, 1, 2, . . . ,m; j = 0, 1, 2, . . . , n, we have

εk+1
i + μk+1

i (uk+1
i − uk+1

i−1 )

−r(1)i,k+1

i+1∑
j=0

g
(j)
i+1,k+1ε

k+1
i−j+1 + r

(2)
i,k+1

m−i+1∑
j=0

g
(j)
i−1,k+1ε

k+1
i+j−1

= εk
i + τf(ũk

i , xi, tk) − f(uk
i , xi, tk).

(5.2)

Thus, the following theorem can be obtained.
Theorem 5.1 (stability of the implicit Euler approximation). The implicit Euler

approximation defined by (3.7) and (3.8) is unconditionally stable, and we have

‖Ek‖∞ ≤ K‖E0‖∞, k = 1, 2, . . . , n,

where K is a positive number independent of k, h, and τ .
Proof. Assume that |εk+1

i0
| = max1≤i≤m−1 |εk+1

i | = ‖Ek+1‖∞. Using
∑i0+1

j=0

g
(j)
i0+1,k+1 < 0 and

∑m−i0+1
j=0 g

(j)
i0−1,k+1 < 0, we have

|εk+1
i0

| ≤ |εk+1
i0

| + μk+1
i0

(|εk+1
i0

| − |εk+1
i0

|)

− r
(1)
i0,k+1

i0+1∑
j=0

g
(j)
i0+1,k+1|εk+1

i0
| − r

(2)
i0,k+1

m−i0+1∑
j=0

g
(j)
i0−1,k+1|εk+1

i0
|

≤ |εk+1
i0

| + μk+1
i0

(|εk+1
i0

| − |εk+1
i0−1|)

− r
(1)
i0,k+1

i0+1∑
j=0

g
(j)
i0+1,k+1|εk+1

i0−j+1| − r
(2)
i0,k+1

m−i0+1∑
j=0

g
(j)
i0−1,k+1|εk+1

i0+j−1|

≤ |εk+1
i0

+ μk+1
i0

(εk+1
i0

− εk+1
i0−1)

− r
(1)
i0,k+1

i0+1∑
j=0

g
(j)
i0+1,k+1ε

k+1
i0−j+1 − r

(2)
i0,k+1

m−i0+1∑
j=0

g
(j)
i0−1,k+1ε

k+1
i0+j−1|.

Using (4.2), we obtain

|εk+1
i0

| ≤ |εk
i0 + τ [f(ũk

i0 , xi0 , tk) − f(uk
i0 , xi0 , tk)]|

≤ ‖Ek‖∞ + τL|ũk
i0 − uk

i0 |
≤ (1 + τL)‖Ek‖∞.

Hence,

‖Ek‖∞ ≤ (1 + τL)k‖E0‖∞ ≤ ekτL‖E0‖∞ ≤ eLT‖E0‖∞, k = 1, 2, . . . , n,
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i.e., ‖Ek‖∞ ≤ eLT‖E0‖∞ = K‖E0‖∞. From Definition 3.2, this shows that the im-
plicit Euler approximation defined by (3.7) and (3.8) is unconditionally stable.

Similarly, it can be verified that ηk
i = u(xi, tk) − uk

i satisfies

ηk+1
i = ηk

i + r
(1)
i,k+1

i+1∑
j=0

g
(j)
i+1,k+1η

k+1
i−j+1 + r

(2)
i,k+1

m−i+1∑
j=0

g
(j)
i−1,k+1η

k+1
i+j−1

+ τ [f(u(xi, tk), xi, tk) − f(uk
i , xi, tk)] +Rk+1

i ,

(5.3)

where i = 1, 2, . . . ,m− 1, k = 0, 1, 2, . . . , n− 1.
As a result, the following convergence theorem is obtained.
Theorem 5.2 (convergence of the implicit Euler approximation). Suppose that

the continuous problem (2.5)–(2.7) has a smooth solution u(x, t) ∈ C1+α,2
x,t (Ω). Let uk

i

be the numerical solution computed by use of (3.7) and (3.8). Then there is a positive
constant C independent of i, k, h, and τ such that

|uk
i − u(xi, tk)| ≤ C(τ + h), i = 1, 2, . . . ,m− 1; k = 1, 2, . . . , n.(5.4)

Proof. Assume that |ηk+1
i0

| = max1≤i≤m−1 |ηk+1
i | = ‖Yk+1‖∞. Using∑i0+1

j=0 g
(j)
i0+1,k+1 < 0 and

∑m−i0+1
j=0 g

(j)
i0−1,k+1 < 0, we have

|ηk+1
i0

| ≤ |ηk+1
i0

| + μk+1
i0

(|ηk+1
i0

| − |ηk+1
i0

|)

− r
(1)
i0,k+1

i0+1∑
j=0

g
(j)
i0+1,k+1|ηk+1

i0
| − r

(2)
i0,k+1

m−i0+1∑
j=0

g
(j)
i0−1,k+1|ηk+1

i0
|

≤ |ηk+1
i0

| + μk+1
i0

(|ηk+1
i0

| − |ηk+1
i0−1|)

− r
(1)
i0,k+1

i0+1∑
j=0

g
(j)
i0+1,k+1|ηk+1

i0−j+1| − r
(2)
i0,k+1

m−i0+1∑
j=0

g
(j)
i0−1,k+1|ηk+1

i0+j−1|

≤ |ηk+1
i0

+ +μk+1
i0

(ηk+1
i0

− ηk+1
i0−1)

− r
(1)
i0,k+1

i0+1∑
j=0

g
(j)
i0+1,k+1η

k+1
i0−j+1 − r

(2)
i0,k+1

m−i0+1∑
j=0

g
(j)
i0−1,k+1η

k+1
i0+j−1|.

Using (5.2), we obtain

|ηk+1
i0

| ≤ |ηk
i0 +Rk+1

i0
+ τ [f(u(xi0 , tk, xi0 , tk)) − f(uk

i0 , xi0 , tk)]|
≤ |ηk

i0
| + |Rk+1

i0
| + τ |f(u(xi0 , tk), xi0 , tk) − f(uk

i0
, xi0 , tk)|

≤ ‖Yk‖∞ + C2(τ2 + τh) + τL|u(xi0 , tk) − uk
i0 |

≤ ‖Yk‖∞ + C2(τ2 + τh) + τL‖Yk‖∞.
Also,

‖Yk+1‖∞ ≤ (1 + τL)‖Yk‖∞ + C2(τ2 + τh), k = 0, 1, 2, . . . , n− 1.

Using the discretized Gronwall lemma, we have

‖Yk‖∞ ≤ ekτLkC2(τ2 + τh) ≤ eLTC2T (τ + h) = C(τ + h), k = 1, 2, . . . , n.

Thus we see that for any x and t, as h and τ approach 0 in such a way that
(ih, kτ) → (x, t), uk

i approaches u(x, t).This proves that uk
i converges to u(xi, tk) as

h and τ tend to zero. Hence, the conclusion is obtained.
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6. Other numerical methods.

6.1. Fractional method of lines. The method of lines is a well-known tech-
nique for solving parabolic-type partial differential equations. The fractional method
of lines was described in Liu, Anh, and Turner [16] (see also Meerschaert and Tadjeran
[22]) and has been used to solve fractional partial differential equations. Essentially,
this method proceeds by leaving the derivatives along one chosen axis untouched (usu-
ally in time), while the fractional partial derivatives (in space) are discretized using
a method such as that discussed in section 3. The system is thereby reduced from its
partial differential equation to a system of ordinary differential equations, then inte-
grated in time. In the fractional method of lines, time integration is accomplished by
using a differential-algebraic equation integrator. Brenan, Campbell, and Petzold [2]
developed the differential-algebraic system solver known as DASSL, which is based on
the backward difference formulas. DASSL approximates the derivatives using the kth
order backward difference, where k ranges from one to five. At every step it selects
the order k and stepsize based on the behavior of the solution. In this work, we used
DASSL as our solver. The fractional differential equation (2.5) can be discretized as
follows.

For i = 1, 2, . . . , n,

dui(t)
dt

= −νi(t)
ui(t) − ui−1(t)

h
+
κi(t)c+,i(t)
hαi(t)

i+1∑
j=0

g
(j)
i (t)ui−j+1(t)

+
κi(t)c−,i(t)
hαi(t)

m−i+1∑
j=0

g
(j)
i (t)ui+j−1(t) + f(ui(t), xi, t),

where

ui(t) = u(xi, t), νi(t) = ν(xi, t), αi(t) = α(xi, t),
κi(t) = κ(xi, t), c+,i(t) = c+(xi, t), c−,i(t) = c−(xi, t),

g
(0)
i (t) = 1, g

(j)
i (t) = −αi(t) − j + 1

j
g
(j−1)
i (t) , j = 0, 1, . . . ,m.

6.2. Extrapolation method. The implicit difference method was shown to
be stable above. This method is consistent with a local truncation error which is
O(τ + h). Further, if problem (2.5)–(2.7) has a sufficiently smooth solution, using
Taylor formula, we can obtain

∂u(xi, tk+1)
∂t

=
u(xi, tk+1) − u(xi, tk)

τ
+

1
2!
∂2u(xi, tk+1)

∂t2
τ − 1

3!
∂3u(xi, tk+1)

∂t3
τ2 + · · · .

Combining with Proposition 3.1 in [23], we can obtain the following local truncation
error:

C
(1)
1 h+ C

(2)
1 τ + C

(1)
2 h2 + C

(2)
2 τ2 + · · · ,

where the coefficients C(1)
i and C(2)

i do not depend on the grid size h and τ . In order
to improve the low order of convergence in time and space, we choose h = τ . Hence,
the local truncation error can be rewritten as

C1h+ C2h
2 + · · · + Cnh

n + · · · ,
where Ci do not depend on the grid size h.
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Therefore, according to Lax’s equivalence theorem [27], it converges at this rate.
We then apply the implicit Euler approximation on a (coarse) grid Δt = τ,Δx =
h, and then on a finer grid Δt = τ/2,Δx = h/2. The extrapolated solution is
then computed from u(xi, t) ≈ 2u2k

2i (h/2, τ/2) − uk
i (h, τ), i = 1, 2, . . . ,m − 1 , where

t = tk, x = xi on the coarse grid, while t = t2k, x = x2i on the fine grid. uk
i (h, τ)

and u2k
2i (h/2, τ/2) are the numerical solutions on the coarse grid and the fine grid,

respectively. Thus, the extrapolation method may be used to obtain a solution with
convergence order O(τ2 + h2) (see [9, 23]).

6.3. Matrix transfer technique (MTT). In order to introduce the MTT, we
consider an approximation of the Riesz fractional derivative. Suppose that x ∈ [a, b],
and xi = a + ih, i = 0, 1, . . . ,m, and h = b−a

m . For convenience, let yi = y(xi), i =
0, 1, . . . ,m, so that

d2y(xi)
dx2

=
yi+1 − 2yi + yi+1

h2
+O(h2).

If y0 = ym = 0, then Δy ≈ −h−2Ay, i.e., −Δy ≈ h−2Ay, where

Δy =
(
d2y(x1)
dx2

,
d2y(x2)
dx2

, . . . ,
d2y(xm−1)

dx2

)T

, y = (y1, y2, . . . , ym−1)T ,

and

A =

⎡⎢⎢⎢⎢⎢⎣
2 −1
−1 2 −1

−1 2 −1
. . . . . . −1

−1 2

⎤⎥⎥⎥⎥⎥⎦
(m−1)×(m−1)

.

We know that the eigenvalues of the (m− 1) × (m− 1) real symmetric matrix A are
μi = 4 sin2( iπ

2m ), i = 1, 2, . . . ,m− 1, and the eigenvector corresponding to μi is

vi = (v(1)
i , v

(2)
i , . . . , v

(m−1)
i )T ,

where v(j)
i = sin ijπ

m , j = 1, 2, . . . ,m − 1. It can be seen that all the eigenvalues of
the matrix A are positive and different. Further, the following propositions can be
obtained.

Proposition 6.1. The matrix A is symmetric and positive definite.
Proposition 6.2. Suppose that y1,y2, . . . ,ym−1 are the eigenvectors correspond-

ing to the eigenvalues μ1, μ2, . . . , μm−1 of the matrix A, then y1,y2, . . . ,ym−1 form
an orthonormal set.

Proposition 6.3. The matrix A is a symmetric positive definite matrix. There
exists an orthogonal matrix P such that

PTAP = Λ,

where Λ is a diagonal matrix with diagonal entries being the eigenvalues of A.
In fact, setting Pi = vi/‖vi‖2 =

√
2/mvi, i = 1, 2, . . . ,m−1, then we can take

P = (P1,P2, . . . ,Pm−1).
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Hence, we have

PTAP = Λ =

⎡⎢⎢⎢⎣
μ1

μ2

. . .
μm−1

⎤⎥⎥⎥⎦
or

A = PΛPT .

Because P is an orthogonal matrix and A is a positive definite matrix, from Propo-
sitions 6.1–6.3, we can obtain the following proposition.

Proposition 6.4 (see [21]). Suppose that the matrix A is positive definite, and

A = Pdiag(μ1, μ2, . . . , μm−1)PT ,

where P is an orthogonal matrix. Then for an arbitrary real α,

Aα = Pdiag(μα
1 , μ

α
2 , . . . , μ

α
m−1)P

T

may be uniquely determined by A and α.
We consequently adopt the following approximation [8]:

−(−Δ)
α
2 y ≈ − 1

hα
A

α
2 y,(6.1)

where

A
α
2 = PΛ

α
2 PT =

m−1∑
j=1

μ
α
2
j PjPT

j =
m−1∑
j=1

2
m
μ

α
2
j vjvj

T .

Hence, −(−Δ)
α
2 y ≈ − 1

hα

∑m−1
j=1

2
mμ

α
2
j (vT

j y)vj , i.e.,

−(−Δ)
α
2 yi ≈ − 1

hα

m−1∑
j=1

2
m
μ

α
2
j sin

ijπ

m

m−1∑
l=1

sin
ljπ

m
yl .

Letting ci,l =
∑m−1

j=1 μ
α
2
j sin jlπ

m sin ijπ
m , we get

−(−Δ)
α
2 yi ≈ − 2

m · hα

m−1∑
l=1

ci,lyl.

We consider the following equation:

∂u

∂t
= −ν(x, t)∂u

∂x
+ κ(x, t)(−(−Δ)

α(x,t)
2 u) + f(u, x, t),(6.2)

and propose a self-discretized difference scheme for it as

dui(t)
dt

= −νi(t)
ui(t) − ui−1(t)

h

− 2κi(t)
m · hαi(t)

m−1∑
l=1

ci,l(t)ul(t) + f(ui(t), xi, t), i = 1, 2, . . . ,m− 1,
(6.3)
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where

νi(t) = ν(xi, t), κi(t) = κ(xi, t), αi(t) = α(xi, t),

ci,l(t) =
m−1∑
j=1

μ
αi(t)

2
j sin

jlπ

m
sin

ijπ

m
, l = 1, 2, . . . ,m− 1 .

We can now apply the fractional method of lines to solve (6.3).

7. Numerical examples. In order to demonstrate the effectiveness of our the-
oretical analysis, four numerical examples are now presented. In Examples 1 and 2,
we take α(x, t) = 1.5 + 0.4 sin(0.5πxt).

Example 1. Consider the following variable-order fractional advection-diffusion
equation:

∂u

∂t
= −ν(x, t)∂u

∂x
+ c+(x, t)aD

α(x,t)
x u+ c−(x, t)xD

α(x,t)
b u+ f(u, x, t),(7.1)

(x, t) ∈ Ω,

u(x, 0) = x2(1 − x)2, 0 ≤ x ≤ 1; u(0, t) = u(1, t) = 0, 0 ≤ t ≤ 1,(7.2)

where

ν(x, t) = 6x3(1 − x)3et,
c+(x, t) = 0.5Γ(5 − α(x, t))x2+α(1 − x)4et,
c−(x, t) = 0.5Γ(5 − α(x, t))x4(1 − x)2+αet,
f(u, x, t) = u+ u2(−24x2 + 2α(x, t)(4 − α(x, t)).

The exact solution of the above problem is u(x, t) = etx2(1 − x)2.
A comparison of numerical solutions using explicit Euler approximation (EEA),

implicit Euler approximation (IEA), fractional method of lines (MOL), and the ex-
act solution at time t = 2.0 is shown in Figure 7.1. Here we take h = 0.01 as the space

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

x

u(
x,

t=
2)

 

 
The exact solution
The EEA
The IEA
The MOL

Fig. 7.1. A comparison of numerical solutions using explicit Euler approximation, implicit
Euler approximation, fractional method of lines, and the exact solution at time t = 2.0.
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Table 7.1

Maximum errors for the IEA and extrapolation method (EM), and the effect of grid size reduc-
tion at time t = 2.0.

h = τ Max error-IEA Error-IEA rate Max error-EM Error-EM rate
1
20

3.595E − 2 - 7.844E − 3 -

1
30

2.147E − 2 1.675 ≈ 30/20 3.242E − 3 2.419 ≈ (30/20)2

1
40

1.529E − 2 1.404 ≈ 40/30 1.784E − 3 1.817 ≈ (40/30)2

1
50

1.200E − 2 1.274 ≈ 50/40 1.134E − 3 1.573 ≈ (50/40)2

1
60

9.844E − 3 1.219 ≈ 60/50 7.853E − 4 1.445 ≈ (60/50)2

stepsize for all methods and τ = 0.01 as the time stepsize for the IEA. To ensure the
convergence of the EEA, we take τ = 0.0002 as its time stepsize. It is apparent that
the three numerical solutions are in good agreement with the exact solution.

Table 7.1 shows the numerical errors at time t = 2.0 between the exact solution
and the implicit and extrapolation numerical solutions. The second column shows
the absolute value of the maximum error in the implicit numerical solution at time
t = 2.0. The third column shows the ratio of the error reduction as the grid is
refined. Note that the behavior of this error is (almost) linear when the IEA is used.
Column 4 shows the absolute value of the maximum error when the IEA solution
is extrapolated. Column 5 shows the ratio of these extrapolated solution errors to
examine the convergence. It is seen that the rate of convergence is of order O(τ2 +h2).
From Table 7.1, both methods are in excellent agreement with the exact solution, and
the convergence order of the EM is improved significantly.

Example 2. Consider the following variable-order fractional advection-diffusion
equation with the Riesz fractional derivative:

∂u

∂t
= −ν(x, t)∂u

∂x
− κ(x, t)(−Δ)

α(x,t)
2 u+ f(u, x, t), (x, t) ∈ Ω,

u(x, 0) = x2, 0 ≤ x ≤ 1,

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ 2 .

(7.3)

We choose

ν(x, t) = x3(1 − x)3et, κ(x, t) = −2 cos(0.5πα(x, t))Γ(5 − α(x, t))(x − x2)2+α(x,t),

and

f(u, x, t) = [1 − g1(x, t) − g2(x, t)]u + 2(1 − 2x)u2,

where

g1(x, t) = 2x2(1 − x)2+α(x,t)[12x2 + (4 − α(x, t))(−6x + 3 − α(x, t))],

g2(x, t) = 2(1 − x)2x2+α(x,t)[12(1 − x)2 + (4 − α(x, t))(6x − 3 − α(x, t))].

The above problem has the exact solution u(x, t) = etx2(1 − x)2.
A comparison of the exact solution and numerical solutions using IEA, fractional

MOL, and MTT for Example 2 at time t = 2.0 is shown in Figure 7.2. It is apparent
that all the numerical solutions are in excellent agreement with the exact solution.
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Fig. 7.2. A comparison among the IEA, the fractional MOL, the MTT, and the exact solution.
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α=1.8
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Fig. 7.3. Comparison of numerical solutions of the nonlinear advection-diffusion equation, with

α = 2.0, α = 1.8, and α = α(x, t) = 1.7 + 0.5e−
x2

1000− t
50−1 at t = 32.

Example 3. Consider the following nonlinear variable-order fractional advection-
diffusion equation with the Riesz fractional derivative:⎧⎨⎩

∂u

∂t
= −0.1

∂u

∂x
− 0.1(−Δ)

α(x,t)
2 u+

1
4
u(1 − u), (x, t) ∈ Ω,

u(−50, t) = 0, u(50, t) = 0, 0 ≤ t ≤ 32,
(7.4)

where Ω = (−50, 50)× (0, 32], α(x, t) = 1.7 + 0.5e−
x2

1000− t
50−1, and the initial function

u(x, 0) = u0(x) which takes the constant value u = 0.8 around the origin and rapidly
decays to 0 away from the origin. The exact solution is not available.

Figure 7.3 shows the numerical solutions with α = 2, α = 1.8, and α = α(x, t)
(which is close to 2) at t = 32, respectively. Figures 7.4, 7.5, and 7.6 show the
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Fig. 7.4. The approximation solution of (7.4) when α(x, t) = 1.8.
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Fig. 7.5. The approximation solution of (7.4) when α(x, t) = 2.0.
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Fig. 7.6. The approximation solution of (7.4) when α = α(x, t) = 1.7 + 0.5e−
x2

1000− t
50−1.

solution behavior of (7.4) when α(x, t) = 1.8, α(x, t) = 2.0, and α = α(x, t) =
1.7 + 0.5e−

x2
1000− t

50−1, respectively.
From Figures 7.3, 7.4, 7.5, and 7.6, it can be seen that the solution with α =

2 produces a rapidly decaying solution away from the origin. However, numerical
solutions with α = 1.8 and α = α(x, t) have heavy tails, which are similar to the
results reported in del Castillo-Negrete, Carreras, and Lynch [3] for the one-sided
fractional reaction-diffusion equation.

8. Conclusion. In this paper, EEAs and IEAs for the variable-order fractional
advection-diffusion equation with a nonlinear source term were described and demon-
strated. We discussed the stability and convergence of both approximation schemes.
The fractional MOL, the EM, and the MTT with the Riesz fractional derivative were
also presented. The three methods provide a computationally efficient tool for simu-
lating the behavior of solutions of the equation. In particular, the EM approximates
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the exact solution very well, and its convergence order is improved significantly. This
type of fractional differential equation is able to describe heavy-tailed motions more
accurately. These methods and techniques can be applied to solve variable-order
fractional (in space and in time) partial differential equations.

Acknowledgments. The authors wish to thank the referees for their many con-
structive comments and suggestions to improve the paper.
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