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Series Preface

Mathematics is playing an ever more important role in the physical and biological
sciences, provoking a blurring of boundaries between scientific disciplines and a
resurgence of interest in the modem as weIl as the classical techniques of applied
mathematics. This renewal of interest , both in research and teaching , has led to
the establishment of the series: Texts in Applied Mathematics (TAM).

The development of new courses is a natural consequence of a high level of
excitement on the research frontier as newer techniques, such as numerical and
symbolic computer systems, dynamical systems, and chaos, mix with and rein­
force the traditional methods of applied mathematics. Thus, the purpose of this
textbook series is to meet the current and future needs of these advances and en­
courage the teaching of new courses .

TAM will publish textbooks suitable for use in advanced undergraduate and
beginning graduate courses, and will complement the Applied Mathematical Sei­
ences (AMS) series, which will focus on advanced textbooks and research level
monographs .



Preface

This book is designed to serve as a textbook for graduate students or advanced
undergraduates studying numerical methods for the solution of partial differen­
tial equations goveming wave-like flows. Although the majority of the schemes
presented in this text were introduced in either the applied-rnathematics or atmos ­
pheric-science literature, the focus is not on the nuts-and-bolts details of various
atmospheric models but on fundamental numerical methods that have applications
in a wide range of scientific and engineering disciplines. The prototype problems
considered include tracer transport, shallow-water flow and the evolution of inter­
nal waves in a continuously stratified fluid.

A significant fraction of the literature on numerical methods for these problems
falls into one of two categories, those books and papers that emphasize theorems
and proofs , and those that emphasize numerical experimentation. Given the un­
certainty associated with the messy compromises actually required to construct
numerical approximations to real-world fluid-dynamics problems, it is difficult to
emphasize theorems and proofs without limiting the analysis to classical numeri­
cal schemes whose practical application may be rather limited. On the other hand,
if one relies primarilyon numerical experimentation it is much harder to arrive at
conclusions that extend beyond a specific set of test cases. In an attempt to es­
tablish a clear link between theory and practice, I have tried to follow amiddie
course between the theorern-and-proof formalism and the reliance on numerical
experimentation. There are no formal proofs in this book , but the mathematical
properties of each method are derived in a style familiar to physical scientists. At
the same time, numerical examples are includcd that illustrate these theoretically
derived properties and facilitate the intercomparison of various methods .



x Preface

A general course on numerical methods for geophysical fluid dynamics might
draw on portions of the material presented in Chapters 2 through 6. Chapter 2 de­
scribes the largely c1assical theory of finite-difference approximations to the one­
way wave equation (or alternatively the constant-wind-speed advection equation).
The extension of these results to systems of equations, several space dimensions,
dissipative flows and nonlinear problems is discussed in Chapter 3. Chapter 4
introduces series-expansion methods with emphasis on the Fourier and spherical­
harmonie spectral methods and the finite-element method. Finite-volume methods
are discussed in Chapter 5 with particular attention devoted to methods for sirn­
ulating the transport of scalar fields containing poorly resolved spatial gradients.
Semi-Lagrangian schemes are analyzed in Chapter 6. Both theoretical and applied
problems are provided at the end of each chapter. Those problems that require nu­
merical computation are marked by an asterisk.

In addition to the core material in Chapters 2 through 6, the introduction in
Chapter I discusses the relation between the equations governing wave-like geo­
physical flows and other types of partial differential equations. Chapter 1 con­
c1udes with a short overview of the strategies for numerical approximation that
are considered in detail throughout the remainder of the book. Chapter 7 exam­
ines schemes for the approximation of slow moving waves in fluids that support
physically insignificant fast waves. The emphasis in Chapter 7 is on atmospheric
applications in which the slow wave is either an internal gravity wave and the fast
waves are sound waves, or the slow wave is a Rossby wave and the fast waves
are both gravity waves and sound waves. Chapter 8 examines the formulation of
wave-permeable boundary conditions for limited-area models with emphasis on
the shallow-water equations in one and two dimensions and on internally stratified
flow,

Many numerical methods for the simulation of internally stratified flow require
the repeated solution of eIliptic equations for pressure or some closely related
variable. Due to the limitations of my own expertise and to the availability of other
excellent references I have not discussed the solution of eIliptic partial differential
equations in any detail. A thumbnail sketch of some solution strategies is provided
in Section 7.1.3; the reader is referred to Chapter 5 of Ferziger and Periö (1997)
for an excellent overview of methods for the solution of eIliptic equations arising
in computational fluid dynamics.

I have attempted to provide sufficient references to allow the reader to fur­
ther explore the theory and applications of many of the methods discussed in the
text, but the reference list is far from encyclopedic and certainly does not include
every worthy paper in the atmospheric science or applied mathematics literature.
References to the relevant literature in other disciplines and in foreign language
journals is rather less complete.'

IThose not familiar with the atmospheric science literature may be surprised by the number of
references to Monthly Weather Review, which despite its title, has become the primary American
journal for the publication of papers on numerical methods in atmospheric science.



Preface xi

This book would not have been written without the generous assistance of sev­
eral colleagues. Christopher Bretherton , in particular, provided many perceptive
answers to my endless questions. J. Ray Bates, Byron Boville, Michael Cullen,
Marcus Grote, Robert Higdon, Randall LeVeque, Christoph Schär, William Ska­
marock, Piotr Smolarkiewicz, and David Williamson all provided very useful
comments on individual chapters. Many students used earlier versions of this
manuscript in my courses in the Atmospheric Seiences Department at the Univer­
sity of Washington, and their feedback helped improve the clarity of the manu­
script. Two students to whom I am particularly indebted are Craig Epifanio and
Donald Slinn. I am also grateful to James Holton for encouraging me to undertake
this project.

It is my pleasure to acknowledge the many years of support for my numerical
modeling efforts provided by the Mesoscale Dynamic Meteorology Program of
the National Science Foundation. Additional support for my atmospheric simula­
tion studies has been provided by the Coastal Meteorology ARI of the Office of
Naval Research. Part of this book was completed while I was on sabbatical at the
Laboratoire d' Aerologie ofthe Universire Paul Sabatier in Toulouse, France , and I
thank Daniel Guedalia and Evelyne Richard for helping make that year productive
and scientifically stimulating.

As errors in the text are identified, they will be posted on the web at http://
www. atmos.washington.edu/methods.for.waves, which can be accessed directly
or via Springer's horne page at http://www.springer-ny.com. I would be most
grateful to be advised of any typographicalor other errors by electronic mail at
dale.durran@atmos.washington.edu.

Seattle, Washington DALE R. DURRAN

Cover art: The three curves plot solutions to the linearized Rossby-adjustment
problem. The goveming equations and physical parameters for this problem are
identical to those given in Problem 12 of Chapter 3, except that the spatial domain
is -400 km ~ x ~ 400 km with open lateral boundaries, and the initial condition
for the free-surface displacement is h(x, t = 0) = arctan (x/20 km) . The curves
shown are plots of u(x, t = 943 s), u(x, t = 1222 s), and u(x, t = 1501 s) on an
artisically cropped portion of the sub-domain x > O.
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